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thermodynasic limit. We focus entirely on electronic energies, and accord-
ingly take the protons to be fixed st positions {Rz). If the electrons
are assigned position and momentum operators |F‘l and IB'I. then the
Hamiltonian for the system is

u-unou”onw ' (1)
where
W 2
H ef ez P R {22)
ee ¥a- 2¥j|;._;’| _
2
<1y & (20)
L " 2 Meraranl
n"u'-' .
and
4

H = L . (2c)
LT

(Here m is an electron’s mass and e the magnitude of its charge.)
The mean charge density of electroas in this system is p = -eN/8, and

the electrostatic energy of a uniform charge distribution with this density

L

1s -% | ¢fa* —2— . The traditiona) fateracting electron gas problem
2 r
examines the Lnrg,l of an electron system relative to this term, i.e.,

the corresponding Hamiltonian is taken to be

R N4 SRS I LN RSN R (" 7"~ TR N, 3
H Ea-'zI 2!,' (3

The ground state energy of ”eq

has been studied extensively:$+7 when

expressed in terms of the linesr density parameter re* (Wl-l)ln ao'l

(ao is the Sohr radius), it is approximately

0
NEqy(ry) »

where the contributions are the familiar kinetic, exchange and correlation

n(2:21 _ 0.916

s

2

- 0.115 + 0.031 n r‘)ly

energy terms, 3he latter being the Nozidres-Pines spproximation (see

below). MNote 81so that in the large system limit, assumed here,

be witten

where

1 Y
‘5 ‘zo v (k)p (k) b (-K)

v (k) 1 ave? /2

and where

gw)=;a

* >

iker

1

is the one-particle density operator for electrons.

If we take n(?) as the total charge density of the protons placed in a
compensating uniform background of negative charge, 1.e.,

n(F) speel 6(;4;').
1

then (1) may be regrouped as

(4

N.g may
(s
(6)
m

(s)

o B s



5
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o1y gt 2E0tr) (%)
‘ 77
2
N | P S ) (%)
' > b a > >
|r'-l'| |r-lt‘|

The term (9b) can now be recognized as the Madelung energy, N E"(rs.{il]).
for a static array of ions in a uniform compensating background. As
indicated, E“ depends upon the density and upon the crystal structure of
the proton lattice. However, the structural dependence is known to be
weak," and €y may be accurately estimated using the spherical cell
approximation in which each proton is surrounded by a sphere just large
enough that the net charge within 1t vanishes (such a sphere has radius
's‘o)' and in which the overlap of spheres is ignored. This neutral sphere

has electrostatic energy

r.a
£y * I srrlars (1- (r"—)a) -:- .- -‘;—‘ Ry. (10)
0 H H

which accurately approximates the structural result

1 T
€ " 5ok ‘Eo ve (k) 5, (E)e (-K) (an

where

- . ii-“l
op(l) =Je . 12)
] 8

(For crystalline lattices ;p(;) =N {'c where l;‘) 1s the set of
sRg
reciprocal lattice vectors.) Motice that the Madelung part of the

Hamiltonian (1.e., 9) may be rewritten exactly as

e " N * -,
%u!c»’d?u.(_l_(_l"';": 0% I'Jatfer nlnlr) (13
¢ [F - % tecC, C |F - #|

where cl 1s the unit cel) associated with site t. The spherical cel)
approximation therefore calculates the Madelung energy by neglecting the
Yast term of (13) and by replacing Co with a sphere of equal volume.

Next we examine (9c), which is the electron proton interaction energy
relative to the interaction energy between protons and & uniform compens at -
ing background. We compare two methods for treating this term: first the
structural expansion technique, which was applied to a point-fon system
{metalltc hydrogen) by Hammerberg and Ashcroft.’ Second, the Wigner-Seitz
method which is developed further here. To obtain the structural expansion

we first recast (9) tnto the form

HesH + uin -% I vc(l);e(f);p(-‘)- } (14)

>

+0

which is valid in the thermodynamic limit. By introducing a coupling
constant into the ast term we may use a theorem of Pauli? to wite the

ground state energy as



e (k) - D () My(r, R,0)

-1 I v (k)' (-k) lq o_(£)]2>dr (15)
ﬂ!.o c\* 1% £ l’e I

where ll) represents the exact many electron ground state for H at coupling

strength 2. Mote that (Sc) depends on structure through ;p(-;). The '
- d

structural expansion calculates (llp'(l)ll) by developing 1t n orders!®

of vc(k);’(:). The linear term in response theory is
Aoy 0] = XMlhse (v (1) (16)

where x{1(2) s the first order polarizabi}ity of the interacting electron
gas. At this level of approximation

0 0 1 20" - 1
LAY v2wey (Bra -E)x ). (7)

Thus, the structural expansion explicitly uses the result (4) of the inter-
acting electron gas problem, and its results may be systematically improved
by applying higher orders of response theory.?

In contrast, the Wigner-Seitz! method involves approximations that are
Tess well defined, and it cannot directly draw upon the standard electron
9as result (4). Mowever, it lends itself more readily to direct physical
approximat fon: for example, it calculates approximate one-electron wave
functions which are inaccessible via the structural expanston. (The

o”GIn,‘L "
. -t

numerical results of the two methods are, in fact, quite similar.) In the
Wigner-Seitz wethod, one first investigates approximate single-body wave
functions “(F) by making an initia) assumption (to be improved in Section
1v) that when an electron’s coordinate 1s found within the Wigner-Seitz
cell of a given proton, the repulsion of the N-1 remaining electrons is
exactly canceled by the attraction of the N-1 remaining protons. In this
situation an electron is influenced only by its nearest meighbor proton

and Q(F) then satisfies the single-particle Schridinger equation

2 2
-‘va-!_ f) s E ). 19
- I’)w‘(r) ‘o‘() (19)

where ¥ may now be restricted to & single Nigner-Seitz cell. The boundary
condition on this equation is most readily incorporated by invoking the
spherical cell approximstion, in which!} the £ « § wave function is
required to be spherically symmetric and satisfies

(angr)sar), , = 0. (20)

(Wmen k » B, the appropriate boundary conditions sre more cosplex,® but
these conditions will not be needed in the following.) Thus the first step
in the Wigner-Seitz calculation is to determine the ke a'bottu of the
band™ energy by solving » radially symmetric one-body Schwidinger equation
within the spherical unit cell. The total ground state energy for the full
Ham§ 1tontan (1) is then estimated using the techniques descridbed in Section
1.



111. TOTAL EMERGY: SPHERICAL CELL APPROXIMATION

If we possessed the N approsisate ene-electrom wave functions, .‘(f-).
which are occupled in the ground state, then we could evaluate the exact
Haniitonian (1) in the Slater determinant comstructed from these wave func-
tions. The resuliting Hartree-Fock-)ike approximation for the ground state
energy s just

e -1

J & ei- 5 R R (218}
k,s @

llr—t' €

2
L3 by "1"’2—.3'—."|',"1’|2”;.(’z’|2 (218)

uz:.s:.s’m rl°l’
.Lor g ¢ & .0, (r)o(r)o'(r)' (#y)
e ’]r__r” A Sk S O
. {21c)
2
| [
RN e — (21d)
2Lm o -
I‘l'.-l

where the K,5 sums extend over the occupied levels (s represents the
electron spin prejection). Ve assume the wave functions are normalized by

-

[ & |o,)2 o0 o [ € jo -1 (22)
[ t o £

Each integral over ihe volume 1a (213-b) may be brokes iato 2 sum over
lattice sites @ plus an integral over the corresponding Wigner-Seitz cell
Gy- In the spherical cell swpproxisation al) of the “"cross terms®

TR e
. 2E,

involving two different cells can be evaluated exictly, smd they comspire
to exactly cancel the proton-proton energy (21d). In additiom, (19) may be
vsed to simplify (21a), leading to

Eglry) '%.i E, (23)
ks &
1 1 7312 PRI
' J o3 "'1"’2——.— IH R]] Io (F))° (2m)
ks kest’ GG [y - ol

2
[J&F oF , i _,02(F))0_(F)02(F, )0 (7))
Is.?,.m'zlf.: L ARl v

1
)

(2Xx)

where the sums are understood to be over the occupied Jevels. We will
trest each of the three compoments in tera.

First, we examine the average sisgle-body emergy, (23a). The first
term in the sum 1s just E., the band siniaum, which s found by solving the
boundary value probles

2 2
o a® 24 .
- (_.5 : ) .o(r) . .o(r) EO’O(')' (2¢)
(“d")r‘ao = 0. _ (2s)

Following Bardeen,> we make the substitutioas $ = rg, €, = -(ol(ezlza
ond y - ZE,l,Izr/ao. The equation for S is then Whittaker's equation



1n

Cp-1/2
és, v 1
S, pee-dsa0 . (26)
"2 y []

which leads tc the solution, regular at the origin, (

% = a1 -1 22;) (27)
where Wa;b;y) fs Kummer's confluent hypergeometric function.'?*13
Application of the boundary condition (25) then leads to the simple non-

linear eligenvalue equation

(l

Ly - 1600 gV 52« 0 e GV IME iy - 0.

(28

Thve binding energy Eb is eastily found by solving (28) mumerically: fn
the regime of interest Kummer's function may be evaluated to desired

accuracy by simply retaining more and more terms of its power series

representation. The mormalized wave fuaction for re " 1.5 s plotted

in figure 1.
The wave function (27) has a cusp at the origin, as do a)] the hydro-

gen atom wave functions. In fact, all these cusps are fdentical in that
(6(1n $)/or) g = - 85 (29)

Tais cusp condition has recently been proven to pply under very general

conditions: 1 1t will aid us in later calculations when no exact solution

%:‘ 24
12 00498 ,‘9
n

is availsble.

Me must now find the effect of the potential ¥(r) on t; when ke 3
These effects are manifested principally in an effective mass o*, defined
by

2,2
£, " b L voud, (30)

(The higher order terms in k may be ignored because the band is only half
filled.) Bardeen® has shown that e* is given by

4 3.2
5 =3 rtrgap’legin) %% b)) (31)
where the function P(r) 4s a solution of
dP 2 2n
P+ 2 (e, - ¥(r))P =0
drz rz *2 ° o

For & Coulomb potential we may use the variables introduced ia (24) to

write this equation as 5
2
.—.0[--0—.-—1'-0. (33)
"2 4 y ’2

which is once again Whittaker's equation. The P(r) dq;endent quantity in
(31) is given by
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Ebllzn "S)

(r d') ( e 112] . (2 . E-UZ) _ 3 . (34)
PorTilo 2 w2 -k o y,)
Once o 1is thus aobtained, we approximate {23a) by
1 . m_ 2.21 35
u.l E; Eﬂ"-.-vrz)”' (35)
k,$ s

Now we fnvestigate the Hartree energy (23). The first term in the

sum is

2 2 rdy r
m L — ” ; ’u('l)’of"z) = l&zuz ]s drr o;(r) / dr'r'zog(r').

coco ¥ - 7y 0 ° (36)

This term can be evaluated using the power series representation for
Kummer *s function, but convergence is slow enough that this is not
practical for rg greater than about 3.5. For larger values of rg the

_ integral 1s readily evaluated numerically. The remaining terms in the
Hartree sum can also be evaluated, but only with considerable effort. This
may be avoided, however, by noting that (36) is the largest term in the
Hartree sum. This follows from the observation that the low energy ked
wave fuaction s itself much larger near the center of the cell (where
potestial energy is low) than at its edge, whereas the high energy wave
functions are more uniform in amplitude. On the other hand, a lower bound

on the sum is necessarily given by the Hartree integral for a flat

1 %
wave function, namely

I’l

lﬁez 2 | dgr 3 1 dr'r'z 3 - 8 Ry (37)
0 as(rag’0 alrag)?

At " 1.5, the upper bound (36) is only 5% larger than the lower
bound (37). This fortunate mmerical coincidence implies that little error
is introduced by taking the sum (23b) as the average of the two bounds (36)
and (37). This is precisely the approximation that we will employ.

The remaining exchange term (23c) is traditionally difficult to
evaluate. Wigner and Huntington' argue that 1t is closely spproximsted by
the uniform interacting electron gas result ‘-(O.QISIrs)ly. and we also
accept this result.

Finally, E?; sust be corrected by adding a correlation energy. Ve
wil) again use a uniform electron gas result, namely the Nozidres-Pines’
interpolation formula (-0.115 + 0.031 In rg)Ry. Our final approximation
for the ground state energy per electron is thus

= 22,1 6

Ory) =gy + [ 1ty ¢ 22 -
s

0.916
's

- 0.115 + 0.031 In rsly.
(38)

where "00 appears in (36). This result is plotted in figure 2: the zero
pressure density corresponds to rg = 1.66, at which point the cohesive
energy (relative to well-separated electrons and ?rotons) 1s -1.078 Ry.
The results are numerically quite close to those of Chakravarty et ﬂ..’
which were obtained using a completely different method.
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Secause the Nasiltonian 1s explicitly spin-independent, the sbove
discussion 1s readily eatended to consider & 1pin polarized ground state.
In this case the Kinetic energy term 2.21/r 2 becomes 3.51/r 2, and the
exchange term -O.GWr’ becomes -l.lﬂlrs. Otherwise equation (38) 1s
wnchanged. These results are also graphed in figure 1: parasagnetic and
spin aligned energies are seen to be equal & " 3.50.

Iv.  SCREEMING EFFECTS

In Section 111 we found approximate single-body wave functions fros &
Schrddinger equation which ignored electron-electron repulsion.
Subsequently, the total energy was obtatned by evalusting the exact
Hantitontan in 2 state comstructed from these wave functions. Better
wave functions, snd sore accurate energies, may be cbtained .by utiitzing 2
screened potential. The Schrddinger equation then becomes (hereafter we
use omic wnits with Ry « &4 czlz = 1)

(-9 - ; + 0N ©F) - €& (7), (39)

we-e Il?) fs some aversge potential arising from electron-electron
repuision. Me now exanine tw such screeuing potentinls: first che
pot'stial of 2 segative unit charge wmiformly distriduted throughout the
wigner-Seitz sphere, samely
%

Y - .:_, (> 2 - r?). (40)

R

16 27
‘(qf

Second, & Thomas-Fermt screening potestial

k. r
() o2 0e ) ke (lf—)""—%ﬁ. (1)
$

Ure

For the first case the k = O SchwBdinger equation can be solved exsctly
using the power series method. For the second the Schrldinger equation fs
analyzed varistionally.

¥e begin by noting that the total Hamiltonian (1) con be trivially

rewitten as:
- r - ‘ - H - ‘ 3 “2,
Wehs 'a wry- By i’.:t wry- &)

where U(7) 15 mow chosen to vanish for ¢ eutside the Wigner-Seitz cell. By
evalusting this Hamiltonien f1a 2 Siater determinant composed of solutions
to (39), we fiad that the Martree-Fock-like energy (23) s sitered only by
the addition of the (negative) ters
1 [# Joet?)|? W) (43)
" £s o .

This sum can be estimated (o5 the Wartree sum wis), by sveraging the lower
bound

-4-];’ e 'oz(r) wr) (84)



v

ng the wpper bound (obtsined viing wniasdular wive functions in (43))

- ..‘—'— (‘ l"t wor). (45)
St 3’0
-8
3
This last expression is equal te
- 12/(5rg), (mmifors backgrownd petestisl)
2

6 (s S AP N
3 et e e # + (Thomas -Fernt entist).
. 5 i (t" = )| potenttal)

s with the eorlier Nertres sus, 1he Joss of accoracy involved in this
bownding procedure 13 sot serfows. Wote that &t ry © 1.5 the two bownds
e ffer by only 3 (for beth potestials).

e will trest the miforn Dackground potential first. The bowndary
valve prodblies fer '0‘" is thes

& 2¢ 2,1 2 .2

(- 5 re r . = (" -r ))00(') . 500‘,(?). (86}
[ 4 r'

(«,/«),’ 0. (47)

Althougn (46) i3 spparentiy aot 2 *standard” or °named” differestis)
equation, 1t 15 esstly solved viing the aethod of Frebiaivs.’s Only ome
solution 15 reguler & the origin, and it i3

A A g 3
olr) e=Sr)ys= | sr, (e8)
0 r r‘_oi

where

5 " 0, 8. 1. 5 -1, s ° (1/6)(2-(0 * llr‘)

.. d .32 1
IR (LG B R " VY42 * 3 ) (#9)

The series for ${r) converges sslivtely and wiformly for sll v, 30 we 2oy
interchange differentistion and sumsstion. fHence boundary conditien {e7)
becomes ’

I 0-psgleo {s0)

2]

which Teads to an eigowalus equstion for !o. and which is esstly solved
sumerically. Motice that the cusp condition (29) s essctly satisfied by
wave function (48), despite the wie of 2 men-Coulembic patemtial {see
footaote 8 of refereace )4).

The effective mess may be determined frem oguitions (J1) md (32),
where now ¥(r) s -2/r ¢ u'(r). The relevant solution of (32) is
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Y '
. r; Pyh *0, s 1, py, = -2
»r) 'L'. o * " ¢ 3

-1 3 1
B v - — — . ] 4
 ° 012 (2, * (& ,‘3)’1-2 * red Pi-a) 2 (1)

Finally the Mortri:, exchange, and correlation energyies are trested as they”
were for 8 pure Covlesd potestial. To the grownd state energy formula {38)
we must therefore s8d owr estimste for the s (43). The resulting energy
estinate 15 plotted sgainst r_ fa figoe 3. The aiatmm energy, .
-1.052 Ry, falls &t L 1.65.

The analysis of the Thomes-Fersl potential may be approached using the

sane power series method. Indeed, we fing that (49) is replaced by

-1 ('t

0 (1-=-1)! s.'t ’i-z) 2.
(52)

o l.l"|.

1
1(1-1)‘z

The cusp condition i3 again satisfied exactly. lowever, becawse 3¢
depends wpon 311 the preceding coefficients 3y to S,y have not been
le to establish that the serfes actwally comverges. umerical evidence
tadicates that it does, Ia fact, comverge, but only very slowly. For rg
grester then showt 1.2, convergence 1s slow enough that the exact power
serfes solution s of 1ittle help In practical calculations. These are
physically taportamt values of Fos s0 a oifferent approach is clearly
required.

The varistions! aethod proves to be &n dcurate technique for finding

[o -md oo(r). A suitadle tria) wove function ’t(') sust satisfy the

symmetry condition

o‘(r’ v 4)s o‘(r$ - a), (53)

1n order to asswre that the boundary condition (20) s satisfied in such 3

way that the wave function is smooth a8 7 =« r in addition, 1t is ex-

5"
pected to behave Vike the 1s hydrogenic wave function nesr the erigin,
i.e.,

w(r) = A e’ forr « v, (54)

Both of these requirements are satisfied by the cheice

”
0 (r) = by cosh (rr ) o '{1 b, sin -(-—-J—z;;‘ LA (s%)
- s

™his o‘(r) does mot avtomaticaily satisfy the cusp conditien (29). We

nusy therefore adopt either of two varistional strategies: 1) vary m chosen
par ameters in "(r) while taposing me constraint (sorsslizaties}, or

11) incresse the variastionsl sum by ove ters, vary w] paramsters, and
fapos2 two constraints (normalization, and the cusp conditien). In either
case the varistional probles 1s straightforuard and the results ore
sctuslly quite sisflar. Tats technigue can easily S» checked by wsing it
to recalcwlate (0('5) for the Coulomd pocential itself. With W = 5 in the
sum, the variational and truncated series resvits diffeved by snly parts
per @iliton throughout the range D < r < 5. Ther = 1.5 vartationa!
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wave function cannot be distinguished from figure 1 because of the width of
the tracing pen.

The Nortree integral (36) and the “screening correction” integral (44)
we stratghtforwerdly computed from the : - 3 varfational wave function.
The only resataing obstacle s the effective mass, which can again be found
by integrating (32) mumerically. Altersatively, the band width (and hence
o) may be calculated from an {sotropic two plane wave model appropriate
for a spherical Brilloutin zone.’® If K is the magnitude of the shortest
reciprocal lattice vector (3o that K/2 is the radtus of the first Brillouin

zone and -;- ":' ;- (x/2)3 = (21)?), then in this mode) the energy E(k)

relative to ;(f . 3) is given by

(k) + Eg(k-K) (k) + Elkx) , -
where Eo(k) = k? and ;(l) is the Fourter transform of the potential. From
(56) we find an approxiaste dond width,

€, - E,x2) - jux)] - E(0) - & w2, (57)

which defines the effective mass @*. The results of the two methods are
rather similor (the two effective masses differ by 5% at '; = 1.5. In
the following we will wse the results of the first method.

The ground state energy of this last model is again plotted in figure
3. The mintmum falls at v« 1.61, where €0 « - 1.038 Ry, & valve which
is in close agresment with the results of Yua and Mahan.'

e g -

v. ConCLUSIONS

It is worth emphasizing that the work reported here s mot a siatisti-
c3)] mechanica) calculation. Ne do not examine al! possidble states of N and
find which 1s the most probable. Instead we have proceeded from the
assumption that the most probable state for the density range of interest
1s a metallic one in which the protons occupy the sites of a Bravals
lattice. The spherical cell approximation ebviously elisinites amy refer-
ence to the choice of Bravais lattice, and also eliminates the possibility
that the ground state is some other coafiguration, such as a lattice with 2
diatomic basis (which 1s the experimental structure at zero tempevature and
astmospheric pressure) or a "Viquid® in which the protos disorder is due not
to thermal agitation, but to quantum flurt=ztioas.’” It 1s thes mot sur-
prising that our curves show physic.ily irrelevant megative pressure for
re greater than about 1.65. Tnis simply reflects the well-known fact that
at these densities the ground state is mot a Bravais lattice metal, but is
either & molecular s0lid or a meta! in oexistence with such 2 so)id. To
complete the equation of state for hydrogen, then, we seed to find
Eo(r’) for a lattice with & diatomic basis,’® and commect the two curves
vsing a Gibbs tangent comstruction. OF cowrse, there remdins always 2
possibility that a third configuration, with still lower emergy, s the
true ground state. Accordingly owr calculations do m prefess to find the
zero temperature equation of state for hydrogen, but rather the grownd
state emergy of electroms in the presence of 2 putative static Sravais
lattice of protons. (The major difference between this model and 2 plow-
sible picture of metallic hydrogen is the lack of .ionic sotion.) The
results do, however, show that if metallic hydrogen exists ia 2 uilc

5 4
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or setastable state, then 1t must have a density greater than sbout 0.60
g/cn® (vhich corresponds to v = 1.65).
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