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PREFACE 

'This publication contains the proceedings of a workshop held at NASA Langley 
Research Center, January 21-23, 1982, on technology for controlling large structures 
currently being conceived for space applications. This workshop was a follow-up to 
a workshop held at Langley in October 1980. (NASA CP-2187, Structural Dynamics and 
Control of Large Space Structures (1981) contains the proceedings of that workshop.) 

The workshop focused on progress in NASA Langley's basic research program in 
control of large space structures and heard reports on in-house efforts, university 
grants, and industry contracts, as well as on some efforts not directly supported 
by the NASA Langley Research Center program. This document contains copies of most 
of the visual material presented by each participant, together with as much descrip- 
tive material as was provided to the compiler. 

Use of trade names or names of manufacturers in this report does not constitute 
an official endorsement of such products or manufacturers, either expressed or 
implied, by the National Aeronautics and Space Administration. 

M. Larry Brumfield 
Langley Research Center 
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ACTIVE DAMPING OF A FLEXIBLE BEAK 

Garnett C. Horner 
NASA Langley Research Center 

Hampton, Virginia 



One objective in the flexible-beam research program is to develop an algorithm 
that will determine actuator and sensor locations. This is necessary because large 
space structures will have many locations where actuators can be placed. This 
research seeks to determine the "best" or optimum locations. In addition, the "best" 
locations are determined while certain constraints are satisfied which guarantee 
that mission performance requirements are achieved. 

The approach adopted in this research is to consider actuators and sensors to 
be collocated so as to produce an equivalent viscous damper. Ultimately, the 
experimental results of measuring the log decrement during free decay will correlate 
with the analytical predictions. (See fig. 1.) 

OBJECTIVE: TO DEMONSTRATE ACTIVE VISCOUS DAMPING ON A FLEXIBLE BEAM 

APPROACH: 

o TO USE COLLOCATED ACTUATOR/SENSOR TO PRODUCE VISCOUS FORCE 

o MEASURE DAMPING DURING FREE-DECAY 

Figure l.- Active damping of a flexible beam. 



Figures 2 and 3 show the flexible-beam facility. 

4 . . . . . 

Figure 2.- Side view of flexible-beam facility. 
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Figure 3.- Flexible-beam facility. 



Figure 4 shows the locations of the actuators and sensors along the beam axis. 
These locations were determined by the optimization algorithm so that the first five 
bending modes are controlled. 
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Figure 4.- Actuator and sensor locations 
on flexible beam. 
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Figure 5 shows the results of active damping as.'applied to the.flexible beam. 
Four different sets of- damper gains are shown,in the,.right-hand column., The vertical 
bar is proportional to the damping rate of the damper at the location shown on the 
beam. The experimental plots at the left of the figure were obtained from the first 
bending mode of the beam. With the damping rate of each damper set to zero, the beam 
was vibrated in the first mode. At the time that free decay starts, the damping rate 
of each damper is set to the desired value. :The comparison of the percent of modal 
damping is made using two experimentally based methods. -These values should be com- 
pared to the analytically determined.value. The,column,'entitled "graph" used a 
graphical technique to measure the amplitude of adjacent peaks. This data is used to 
calculate the log decrement, which in turn is used to calculate percent of modal 
damping. The column entitled "ITD" contains the results of using the Ibrahim time 
domain method. There seems to be reasonable agreement between the two experimental 
methods until large modal damping is achieved. In this region small measurement 
errors can cause large modal damping errors. 
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Figure 5.- Active damping results. 
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Figure 6 and 't are expanded amplitude afid time scale plots that show better the 
response detail dbrlng free deday when the dampers are turned on. 

WIthout control Wlth control 

Figure 6.- Mode 1 tesponse with a design modal damping = 0.05. 

Without control With control 

Figure 7.- Mode 1 response with a design modal damping = 0.6. 
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Figure 8 summarizes the accomplishments and needs of this research. 

o ACTIVE VISCOUS DAMPING HAS BEEN DEMONSTRATED 

o DIFFICULT TO MEASURE HIGH MODAL DAMPING 

o ACTUATORS REQUIRE COMPENSATION 

o DIGITAL CONTROL (VERSUS ANALOG> MAY REQUIRE MORE ANALYSIS 

Figure 8.- Summary. 
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DECOUPLING AND OBSERVATION THEORY APPLIED TO 

CONTROL OF A LONG FLEXIBLE BEAM 

IN ORBIT 

Harold A. Hamer 
NASA Langley Research Center 

Hampton, Virginia' 
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INTRODUCTION 

Decoupling theory is a convenient tool for devising control laws for 
structures with a large number of state variables because it allows independent 
control of each state. Complete decoupled control requires that the number of 
control actuators equal the number of modes in the system, which is a basic 
limitation in applying decoupling theory to the control of large space structures. 
Complete decoupled control is usually not achievable in practical application 
because a large space structure may have an infinite number of flexible modes; 
hence, procedures must be developed which maintain control of the structure with 
a small number of control actuators. Reduced-order systems must be utilized 
wherein only a few modes are included in the math model of the structure when 
calculating the gains for the feedback control law. In addition, some of the 
modes in the math model itself may be exempt from the control law if the number 
of actuators selected is less then the number of modeled modes. In both cases 
the control system must be designed to avoid serious problems associated with 
observation and control spillover effects caused by residual modes, which could 
result in poor performance or an unstable system. 

The present analysis presents techniques which use decoupling theory and 
state-variable feedback to control the pitch attitude and the flexible-mode 
amplitudes of a long, thin beam. An observer based on the steady state Kalman 
filter has been incorporated into the control-design procedure in order to 
estimate the values of the modal-state variables required for the feedback 
control law. 

10 



EQUATIONS OF MOTION 

Figure 1 shows the linearized equations of motion used for the decoupled- 
controlLanalysis of a 450-m long, thin, flexible beam in low Earth orbit. The 
equations are in modal form. The first equation represents the rigid-body 
(pitch) mode and includes the gravity-gradient effect, where w is the orbital 

C 

frequency. In the second equation n represents the number of flexible modes 
included in the math model, plus the residual modes. The damping term 2 <w A 
is included inasmuch as the residual modes require a small amount of damping 
for stability. The objective is to design a control system which provides 
independent control for each of the decoupled variables. 

d20 -- + TP 
dt2 

3wEe = J 

d2An dA E 
-+ 2TnWn -$ + 
dt2 

u; An = $ 
n 

n = 1, 2, 3, . . . 

Figure 1 
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BASIC EQUATIONS 

Figure 2 shows the basic equations used in the decoupled-control design. 
The equations are in state-vector form where the states x are the modal ampli- 
tudes and rates and include the residual modes. In the decoupling control law, 
u, the quantity v is the input command vector. The matrices F and G are the 
feedback and feedforward gains, respectively, which are calculated by the 
decoupling procedure. The estimator equation calculates the estimates of the 
modeled states ^x which are required by the control law. (The primes indicate 
modeled modes only.) The estimator utilizes the observation equation y and 
Kalman gains K which are precomputed by the steady state Kalman filter. The 
observation matrix senses attitude at two locations on the beam, where the $I 
values are the corresponding slopes of the mode shapes. 

SYSTEM: 

i = Ax+Bu+v 

u = Fx^ + Gv 

Y = cx+cd 

ESTIMATOR: 

* = A?+B;+K(y-C??) 

= (A-KCj?+KCx+B& 

OBSERVATION MATRIX: 

r 1 $1 @2 o3 - - - - an 0 0 0 o----o 

c = 

L 1 4;' 0;' +'; - - - -4; 0 0 0 o----o 1 
Figure 2 
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COMPOSITE EQUATIONS 

Figure 3 shows the basic equations in composite form as a 20th order system. 
These equations are used to produce simulated time histories of system responses 
for various control input commands. The upper set of equations represents the 
system equations and includes four modeled modes and two residual modes. The 
lower set represents the estimator equations, which incorporate estimates only 
of the modeled modes. It is apparent that the control and observation spillover 
effects are caused by the matrices B12x2 and C2x12. 

In the present analysis two torque actuators are used; each is one-sixth 
the distance from the end of the beam. One attitude sensor (e.g., star tracker) 
is at an actuator location, the other at one-third the distance from the end 
of the beam. Analyses were also performed by (1) replacing the latter sensor 
with a rate sensor, and (2) by moving this attitude sensor to the location of 
the other actuator; in both cases, however, overall performance was not as 
good as for the original setup. 

2 Control Actuators 
2 Attitude Sensors 
4 Controlled Modes 
2 Residual Modes 

B 12x2 F2x8 

K 8x2'2~ ' A' - K8x2C;x8 + BS'x2F2x8 12 ; 8x8 - 

Figure 3 
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DYNAMIC CHARACTERISTICS 

The dynamics of the system are shown in figure 4. The natural (open loop) 
frequencies and damping ratios are given in the second column. The value of 
0.001 for u8 is the orbital angular velocity (orbital frequency). Small values 
of damping were assumed for the flexible modes, starting at a low value of 0.005 
and increasing each successive mode by 10 percent. The fourth and fifth modes 
are taken as the residual modes. Some damping is required in these modes to 
avoid producing a system with constant oscillatory responses. 

The last two columns show values selected for the closed-loop dynamics 
for two decoupled control cases. In the FAST PITCH case the commanded pitch 
attitude is reached in about 40 seconds; in the SLOW PITCH case about 2 minutes 
are required. In the first case, the two actuators are used to decouple the pitch 
attitude and first flexible mode. The symmetric arrangement of the actuators 
produces an interaction between all four modeled modes such that a full-order F 
matrix is achieved; i.e., feedback control is available for all 4 modes in the 
math model. This condition exists only because the absolute values of the 
control-influence coefficients are the same in both columns of the B matrix. 
For other control arrangements, techniques have been developed in which the 
control-influence coefficients and/or the feedback gains are adjusted to produce 
simplified procedures for achieving overall control of the system. The current 
analysis also included model errors of up to + 15 percent in the control- 
influence matrix, with no apparent detrimental effect on the overall system 
performance. 

In the SLOW PITCH case, the same two actuator locations were employed; 
however, the control-influence coefficients were slightly changed so that the 
decoupling control law provided control for two modes only. In this case it 
was necessary to perform two separate decoupling calculations: (1) the pitch 
and first flexible modes were decoupled, and (2) the second and th.ird flexible 
modes were decoupled. The feedback gains obtained from both calculations were 
then combined to provide control for all four modeled modes. 
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DYNAMIC CHARACTERISTICS 
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CLOSED-LOOP EIGENVALUES 

The symbols in figure 5 depict the eigenvalues of the closed-loop system, 
assuming perfect knowledge of the state variables. Also shown are the loci of' 
closed-loop eigenvalues for the observer as the Kalman gains are increased. 
The observer (based on the steady-state Kalman filter) was designed to have a 
certain stability margin. This was attained by adding a positive scalar term 
to the diagonal elements of the system matrix A'. The gains were changed by 
varying this scalar. (The A matrix in the composite equations shown in figure 3, 
of course, is not altered.) In calculating the Kalman gains, the objective is 
to produce an observer whose response is faster than that of the closed-loop 
system with perfect knowledge of the state vector (eigenvalue real parts more 
negative than those of the closed-loop system). As shown in figure 5, there is 
no problem in meeting this condition for the filter eigenvalue corresponding 
to the pitch mode. (Hence, estimates of the pitch attitude should be very 
accurate.) However, for the flexible modes, large Kalman gains are required to 
drive the eigenvalues past the corresponding closed-loop values. In fact, it was 
found that Kalman gains which produced eigenvalues with real parts less than 
about -0.1 resulted in poor performance; i.e., excessive control forces and/or 
excessive overshoot in the flexible-mode response. An example of this is shown 
in a subsequent figure.' 

FAST-PITCH RESPONSE A 3 

0 PITCH MODE 
0 1ST MODE 

0 2ND MODE 
c 

~RD-MODE 
-- 

A 3RD MODE 
I 

FILLED SYMBOLS : 

> 

A-2 

SLOW-PITCH RESPONSE 

% 
PITCH MODE E 

be---- 
3 

2ND MODE 
f---- 

*- 
0 n --1 

El 

1S.T MODE 

F I LTER 27-- 

1 

I -5 0 

REAL 

Figure 5 
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ZERO COMMAND-FAST PITCH 

Figure 6 is an example of an instantaneous zero command (FAST PITCH case) 
to null arbitrary initial disturbances of -0.01 in pitch and O.Oi5, -0.005, and 
-0.02 in the first, second, and third flexible modes, respectively, and 0.01 in 
the residual modes (4th and 5th flexible modes). The Kalman gains used to 
determine the estimates of the modal variables (shown in 2nd column of time 
histories) correspond to real eigenvalues = -0.1, as previously discussed. It 
is assumed that instantaneous control torques Tl and T2 are available at time = 0, 
with initial estimates of 90 percent in pitch attitude and 80 percent in the three 
modeled flexible mode amplitudes; that is, the control actuators are not turned 
on until these estimates are established by the observer. Analysis has shown that 

: without the effect of the controls, these estimates are achieved in about 100 
seconds. The values of initial disturbances and initial estimates quoted here 
are used for all figures which follow, except where noted. All figures except 
figure 13 pertain to the FAST PITCH case. 

As shown in figure 6, the four modeled mode responses (first column of time 
histories) are nulled after about 40 seconds. As for the residual modes, there 
is some effect on A5 during the first few seconds; however, responses in both 
modes gradually die out due to natural damping. It should be noted that, with 
the controls operating, the observer obtains good estimates of the first three 

) modes, but fails in estimating A3 due to observation spillover caused by the 
residual modes. Attempts to improve this estimate by varying the Kalman filter 
gains are shown in the next two figures. 

17 
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FILTER GAINS REDUCED 

For the zero command in figure 7 the Kalman gains were reduced so that the 
real eigenvalues, corresponding to the flexible modes, were close to zero. 
This resulted in slowly damped oscillations in the three modeled flexible modes 
due to poor estimates in all these modes. 
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FILTER GAINS INCREASEL) 

The Kalman gains were increased for the zero command case in figure 8 so 
that the real eigenvalues, corresponding to the flexible modes, were approxi- 
mately -0.2. Here again, estimates were poor in A2 and AS. More notable is the 
poor performance as exemplified by the incre,ased control torques and the peak 
overshoots in the flexible mode responses, which far exceeded the initial 
disturbances. Large control spillover effect is also evident in the residual 
A5 - Attempts were made to improve the performance for this case, as shown in 
the next two figures. 
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Figure 8 
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FEEDBACK GAINS ADJUSTED 

Figure 9 is similar to figure 8, except the decoupling feedback gain matrix 
was changed by deleting the gains for the three flexible-mode amplitude displace- 
ments. Hence, the control system included feedback gains only for the pitch 
attitude and rate and the three flexible-mode amplitude rates. As shown by the 
lower control torques and peak responses, some improvement in performance was 
accomplished. Also, note the large reduction in the AS residual response. The 
system performance, however, is still unacceptable; the following figure shows 
a further attempt to improve this performance. 
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1st ORDER LAG: TAU = 5 SEC 

For figure 10, in addition to the feedback gain adjustment, a first order 
lag (time constant = 5 set) was included in the control system. This condition 
more closely resembles practical operational procedures because some lag will 
always be present in a control system. The results show further improvement 
in performance (especially in control requirements); however, it appears that 
the Kalman gains must be reduced for acceptable response in the flexible modes. 
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NO PITCH DISTURBANCE 

Figure 11 shows a zero command case similar to that of figure 6, except 
with no initial pitch disturbance. Comparison of the two figures shows the large 
effect of pitch disturbance on nulling the system. With no pitch to consider 
(and consequently no error in the initial estimate in pitch), figure 11 shows 
considerably lower control torques and a much better response in the third 
flexible mode. 
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NO RESIDUAL DISTURBANCES 

Figure 12 is similar to figure 6, except there are no initial disturbances 
in the residual modes. Comparison of the two figures shows that the responses 
in the modeled modes are not materially affected by the motions of the residual 
modes. Also, the control requirements are about the same in both cases, except 
for the small lingering oscillations in figure 6. 
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ZERO COMMAND-SLOW PITCH 

Figure 13 is an example of a zero command for the SLOW PITCH case. The 
results are similar to the FAST PITCH case (figure 6). Although not shown, 
about two minutes are required to null the pitch attitude. Also, the maximum 
control torque is reduced by about one-half, as are the response amplitudes 
in the residual A 5’ 
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ONE CONTROL INOPERATIVE 

Figure 14 is an example of a zero command (FAST PITCH case) where one of 
the control actuators is considered to be inoperative. The feedback gains for 
the remaining actuator were not altered. The time histories show adequate 
responses in nulling the system. In contrast to the two-actuator case (figure 6), 
0 and A, require about three times as much time to null 
scale).' 

(Note expanded time 
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FEEDBACK GAINS ADJUSTED, LAG INCLUDED 

Figure 15 illustrates the 
decoupling feedback gains were 
figure 9 and a first-order lag 

same case as the previous figure, except that the 
changed in the same manner as in the case of 
(tau = 5 set) was included in the control system. 

Comparison with figure 14 shows better response characteristics for 8 and Al, 
as well as a large reduction in control requirements. Also, note that the 
observer obtains good estimates of A3 after about 30 seconds. 
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TWO ZERO-COMMAND PROCEDURE 

The following four figures demonstrate a practical procedure for nulling 
initial disturbances with two separate zero-commands. Figure 16 represents the 
first zero-command and differs from the one in figure 6 in that actuator lag 
(tau = 5 set) is included and the closed-loop pitch frequency has been doubled. 
Because of the increased pitch response, all disturbances are essentially nulled 
within 30 seconds. The control actuators are then turned off (observer remains 
on) at this time as shown in the next figure. 
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CONTROLS OFF - OBSERVER ON 

The results of turning off the controls at time 30 seconds are shown in 
figure 17. The actuators were turned off in order to avoid the oscillating 
control torques which are shown to persist over a long time period in figure 16. 
As shown in figure 17, the disturbances have not been completely nulled, but 
fairly good estimates of these disturbances are obtained after 30 more seconds. 
(Note that tiithout the controls operating the observer is able to obtain a good 
estimate of A3.) The next step, then, is to apply the second zero command at 
this time. The resulting responses are shown in the next figure. 
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SECOND ZERO COMMAND AT 60 SEC 

The modal responses in figure 18 are essentially nulled after 30 seconds. 
Here, the control actuators are turned off for the final time, again to avoid 
the oscillating control torques which would be required over a long time period. 
The final results of the two-zero command procedure are shown in the next figure. 
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CONTROLS OFF AT 90 SEC 

The results of turning off the actuators after the second zero command' are 
shown in figure 19. The remaining disturbances are practically zero and will 
eventually die out through natural damping, 
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PITCH COMMAND - NO DISTURBANCES 

The next two figures illustrate examples of pitch commands whereby a pitch 
attitude of 0.01 radian is commanded. For the case in figure 20, there are no 
initial dusturbances, and hence no errors in the initial estimates. The commanded 
pitch attitude is reached in about 40 seconds, with only a small coupling effect 
on the second flexible mode. 
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INITIAL PITCH DISTURBANCE - ESTIMATE AT 90 PERCENT 

For the pitch command in figure 21, there is an initial pitch disturbance 
of -0.005 radian which is known only to an accuracy of 90 percent. The results 
illustrate the large effect of the initial estimate on the three modeled flexible 
modes. Also, the control-torque requirements are substantially increased over 
those of the previous figure. Doubling the error in the initial estimate 'would 
double the magnitude of these effects. 
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CONTROL REQUIREMENTS 

Figure 22 compares the maximum peak actuator torques (absolute values) required 
for pitch and zero commands, assuming no lag in the system. The data apply to a 
four-actuator control system but are representative of any control arrangement. 
For the pitch-command data, there is an initial disturbance of -0.005 radian and 
the commanded value is 0.01 radian. The zero-command data pertain only to nulling 
initial disturbance in the flexible modes; i.e., no pitch disturbance. Except 
where noted, the peak torques occurred after the initial time. 

As would be expected, the control requirements are essentially linearly related 
to the initial estimate. Also, the pitch commands require the higher control 
torques. Further, the results show that the requirements for zero commands increase 
as the accuracy of the initial estimate increase, while the opposite is true for 
pitch commands. 

301 

T, N-M 

50 
INITIAL ESTIMATE, PERCENT 

Figure 22 

34 



SENSOR LOCATION ERROR, 5 PERCENT TOWARDS LEFT 

Figure 23 is similar to the zero command shown in figure 6, except for sensor- 
location error; i.e., the attitude sensors have been placed at locations other 
than those (nominal) used for the observer in calculating the Kalman gains. In 
this case the sensor locations have been moved 22.5 meters (5 percent of beam 
length), both in the same direction from nominal. Comparison with figure 6 shows 
that, except for As, this error produced negligible effects on system performance. 
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SENSOR LOCATION ERROR, 5 PERCENT TOWARDS ENDS 

The case in figure 24 is the same as that for the previous figure, except 
the two sensors are moved in opposite directions, where the mode-slope differences 
from nominal (for example, sign changes) are more pronounced. Even though the 
system is eventually nulled, the performance is decreased as evidenced by the 
increased oscillations in A3 and in the control actuators. These results can 

be attributed to the poor estimates in the three modeled flexible modes. 
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SENSOR LOCATION ERROR, 10 PERCENT TOWARDS ENDS 

Relocation of the sensors 10 percent off the nominal position and in opposite 
directions leads to instability; this may be seen in figure 25. 
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ABSTRACT 

Active stabilization logic is synthesized to hold a feed at the focus of a 
spacecraft antenna dish. The feed support structure is modeled as a tetrahedron made 
up of flexible bars and connected to the dish by six short legs containing force 
actuators. Using the symmetry of the structure, the model can be decomposed into 
four uncoupled subsystems: (1) pitch/forward motions with four degrees of freedom 
(DOF) and two controls, (2) roll/lateral motions with four DOF and two controls, 
(3) vertical motions with three DOF and one control, and (4) yaw motion with one DOF 
and one control. This greatly simplifies the synthesis of control logic. 

INTRODUCTION 

A spacecraft consists of a massive central body with a large antenna dish at one 
end; the feed for this antenna is mounted to the dish with a flexible support struc- 
ture consisting of twelve bar-like members. (See fig. 1.) Six of the bars form a 
regular tetrahedron, with the feed at the apex. Two legs connect each of the three 
joints at the base of the tetrahedron to the antenna-dish/spacecraft, which we shall 
approximate as an inertial frame of reference due to its large mass. The mass of the 
structure will be lumped at the four joints of the tetrahedron, and the bars will be 
approximated as springs with axial deformation only. 

The design objective is to control the four lowest frequency vibration modes 
that involve lateral motions of the feed so that they are at least 10 percent 
critically damped. 

SEPARATION INTO SYMMETRIC AND ANTISYMMETRIC MOTIONS 

Motions symmetric with respect to y-z plane involve seven degrees of freedom: 

Y19 Zl' x2 = -x39 Y2 = Y3' z2 = 23' Y4' z4 

Motions antisymmetric with respect to y-z plane involve five degrees of freedom: 

Xl, x2 = x39 Y2 = 'Y3, z2 = 239 x4 

Three of the symmetric modes involve only vertical (zl) motions of the apex, and 
one antisymmetric mode is symmetric about the z axis (a yaw mode), producing zero 
motion of the apex. The remaining eight modes consist of two sets of four modes that 
have identical frequencies, but one set involves symmetric motions and the other set 
involves antisymmetric motions. 

The actuator forces can be arranged into six sets, one of which controls only 
the yaw mode, another that controls only zl motions, and two sets of two that con- 
trol the remaining symmetric and antisymmetric modes, respectively. Thus the sta- 
bilization problem may be reduced to two almost identical problems of controlling 
four modes with two controls. 
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F :; 

I ii !’ EQUATIONS OF MOTION 

Let pi be displacement vector of ith joint, ~ij be position vector from 
ith joint to jth joint, and kl, k2, kR be equal to EA/mL3 for base members, 
vertical members, and legs, respectively. Then 

3 zi 1,2+2 - $1 - kl’2,3 f 2,3.‘:2 - g3, + 
- klm2,4 2,4 

+ 
ii l (r 2 - G4) 

- k9e’2,5’2,5*‘2 - kR’2,6’2,6”2 + ‘2Jf2,5 + g2,6f2,6 

z 
r3 = +2G, 3%) 3 * G, - ;i> - klg2,3ik2,3-(?3 -Z2) - 

- G3,7~3,7.~3,7 - kig3,8g3,8’s3 + t3,93,, + 

s 
‘4 = -k2zl,4z1,4- G 

-f 
4 - rl> - klg2,4ii2,4- (:4 -G2) - 

- 9.54, $4, G4 - k~~4,lO~4,lO~~4 + 4,9f4,9 + 

For nominal configuration, 

k 
1 

= (1) ~~~cm = 0 5 
(2) m3 * 

k 
2 

= (l) (loo) = 0 05 

(2>ma3 l 

-b 3 
klg3,4g3,4.(r3 - r4) 

+ 
m3,8f3,8 

k 
R 
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COMPUTER CODE "TETRA" 

Calculates 12x12 K matrix, where 

se- 
dt2 

*rl' 
. . . 
r2 
. . . 
r3 
. . . 
r4 . . I 

= -K '1 
. . . 
r2 
. . . 
r3 
. . . 
'4 - . 1 + Gf 

Calculates 7x7 KS matrix and 5x5 KA matrix, where 

;i, = -KSdS + GSfS 

;i, = -KAdA + CAfA 

x2 - x3 Y2 + Y3 z2 + z3 T 
~1s 2 9 2 3 2 9 Y4, 1 z4 

3 
T 

A 
dA = 

x2 + x3 Y2 - Y3 z2 - z3 
2 ' 2 ' 2 yx4 

c 

H2 - H3 V2 + V3 

1 
T 

2 ' 2 9v4 

+ H3 '2 - '3 
1 

T 

2 ' 2 9H4 

4Y 
I 

Note actuator forces resolved into vertical 
and horizontal components (Vi, Hi) at joints 
i = 2,3,4, which makes the determination of 
Gs,GA quite simple. 

i 
P l -H 

v4 4 
/. 1 ‘\ 

/ I 
/ ’ I ’ \ 

/ I 
/ \ I 

H,- 4\--+-+x 
z’t 

/'A .\ \ . 
\ f n / ,’ 

6O"rJ /- 

v2 
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.- _--B--m-- 

l v3 

P 
H3 
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PRINT-OUT FROM "TETRA" 
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EQUATIONS OF MOTION IN MODAL FORM 

Using computer code "MODALSYS", the symmetric and antisymmetric equations 
of motion were put into modal form. Sketches of these mode shapes are given in 
figures 2 through 4. 
(fig. 2). 

Only four modes involve fore-aft (yl) motions of the apex 
Another four modes involve only lateral (xl) motions of the apex (fig. 3). 

Another three modes involve only vertical (21) motions of the apex (fig. 4). One 
mode involves no motion of the apex (fig. 5). 

SEPARATION INTO FOUR SUBSYSTEMS 

Only two linear combinations of actuator forces enter into the yl apex motions. 
(See first example of modal controllability matrix.) We shall call them f pitch and 

f fwd' Two different linear combinations of actuator forces enter into the x1 apex 

motions. (See second example of modal controllability matrix.) They will be referred 
to as f roll and f flat' One different linear combination of actuator forces enters 

into the z1 apex motions. It is called fvert. One different linear combination of 

actuator forces involves no apex motion, and is called f yaw' The equations of motion 

for these four subsystems are given elsewhere in this paper. 

ANALYSIS OF TETRAHEDRON WITH CONSTRAINED MOTION 

Symmetric Tetrahedron 

Constraints 

x1 =x 4 = 0, x3 = -x2, y3 = y2, z3 = z2 

h3 = -h2, v3 = v2, h4 = 0 

System equations 

x = (Y 1' 21' x2* Y2' 22' Y4' =4) 

u = (H 2' v2' v4) 

Y = (Y,, Y2) 

x = Fx + Gu + GAv 

y=HX 

where 
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Modal Analysis 

Mode no. 
12 
10 

9 
7 
4 
3 
1 
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Antisymmetric Tetrahedron 

Constraints 

*3 =* 2' Y3 = -y2, z3 = -z2, z1 = 0, y1 = 0, y4 = 0, z4 = 0, 

h3 = h2, v3 = -v2, v4 = 0 

System equations 

x= (* 1' 3' Y2' z2¶ *4) 

u = (h2, v29 h4) 
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Modal amplitudes 

9 = [m 12' mloy mgr m7’ m4’ m3’ ml1 
ii = Fqq + Gqu + GAqv 

Y = Hqq 

where 
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where 

PITCH/FORWARD TRANSLATION SUBSYSTEM 

% = -(l.342)*ml + 0.1907fp 

c4 = -(2.957)2m4 + 0.6652fF 

. . 
m7 = -(4.662)2m7 - 0.9848fp + 0.7914fF 

. . 
m10 = - -( 9.251)2m10 - 0.1320fp - 0.5788fF 

. - 

Yl 

z1 

x2 

y2 

z2 

Y4 

z4 . - 

= 

i -0.2629 0.1979 -0.0317. 

0 0 0 0 

0.0165 0.0832 0.0057 0.9673 

0.0997 0.8557 -0.1190 -0.6753 

0.0534 -0.1214 -0.5000 0.0188 

0.1283 1 -0.1090 1 

-0.1069 0.02424 1 -0.0376 

"1 

"4 

m7 

"1 I 0 
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and 

and 

HZ 

[I v2 =: 

v4 ! 
0.02602 

0.5000 

-1 

1 

-0.4872 1 

0.9744 
i 

-f .I H3 = -Hz 
P 

fF v3 = v2 

H4 = 0 

where 

-0.2286 0.0256: 

0.1300 -0.3579 

-0.0068 -0.7840 

1 -0.0264 

0.1409 1 

fR [! H3 =Hz 

fL v3 
= -v 

Z 

v4 = 0 

VERTICAL SUBSYSTEM 
3 . . 

m3 
= -(2.734)&m3 + 0.6208fV 

. . 
m9 = 

-(4.835)2mg + 0.8476fV 

. . 2 
m12 

= -(12.322) ml2 + 0.0192fV 

where 

ROLL/LATERAL TRANSLATION SUBSYSTEM 

G2 = -(1.342)2m2 f 0.2202fR 
. . 
"5 = -(2.957)2m5 + 0.5482fL 

'8 = -(4.662)2m8 + 0.9845fR - 0.5925fL 
. . 
mll = -(9.251)2mll + 0.1880fR + 0.6184f 

L 
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and 

- . 

Yl 

z1 

x2 

Y2 

z2 

y4 

$4 

‘0 0 

1 -0.7307 

0.0107 -0.0275 

0.0064 -0.0160 

0.2440 0.9994 

-0.0120 0.0316 

0.2440 1 

0 - 

0.0512 

-0.8659 

-0.5000 

-0.0193 

1 

-0.0193 

m3 

!I m9 

m12 

x3 = -x2 

Y3 = Y2 

=3 = z2 
= 

L- 

YAW SUBSYSTEM 
. . 
m6 = -(4.204)2m6 + l.OOOfy 

where 
I-' 
x1 

x2 

!J 
y2 

z2 

x4 

0 - 

-0.5000 

0.8660 

0 

1.000 

-1 

1 

1 

CI m6 I =X x3 2 

Y3 = -yz 

z3 = z2 = 

and 

iTI fY v2 = 0 
v3 = 0 
v4 = 0 

Figure 6 shows the combinations of controls that control only modes 1 and 4 
(and also modes 7 and 10). Figure 7 shows the combinations of controls that con- 
trol modes 2 and 5 (and also 8 and 11). Figure 8 shows the combinations of con- 
trols that control the vertical and yaw modes. 
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a 
1 

Rear view, 

Top view 

Figure l.- Antenna feed tower, 
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9 
Pitch 

Fore-aft 
translation 

Deformation 
vertical 
members 

a2 = 21.73 

Deformation 
base 

members 

= 85.6 

Side view Top view 

Figure 2.- Modes that involve only y motions of the apex, 
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Roll 

Lateral 
translation 

= 8.75 

Deformation 
rear vertical 

members 

Rear view Top view 

Figure 3.- Modes that involve only x motions of the apex. 
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r \ LY 
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/I ‘. 
Vertical 

translation /I\ 

Deformation 
base 

members 

WL = 151.8 .'/ 1 ' 

Side view Top view 

Figure 4.- Modes involving only z motions of the apex. 

55 



Side 

Rear view 

2 
w 

.3 I 

Top view 

Figure 5.- Antisymmetric mode involving no motion of apex. 

(a) Mode ml (pitch) controls (fp). 

(b) Mode m4 (forward translation) controls (fF). 

Figure 6.- Pitch and forward translation controls. 
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Rear view Top view 

(a) Mode m2 (roll) controls (fF). 
k 

Rear view Top view 

(b) Mode m5 (lateral translation) controls (fL). 

Figure 7.- Roll and lateral translation controls. 
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(a) Vertical modes control (fv). 

Side view 

(b) Yaw mode controls (fy). 

Rear view 

Figure 8.- Vertical and yaw controls. 
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ACTIVE CONTROL OF FLEXIBLE STRUCTURES WITH SEPARATED SENSORS AND ACTUATORS 

R. H. Cannon and D. Rosenthal 
Stanford University 

Stanford, California 
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The Galileo spacecraft. 

fnwau AND UmoeRms 

Despun section. L4 
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KEY CONTROL PROBLEMS OF FLEXIBLE SPACECRAFT 

l Very flexible 

l Low damping 

l Noncolocated sensor and actuator 

*Uncertain parameters 

*Nearly equal modes 

APPROACH TO CONTROL 

ORalman filter 
l Adaptive control 

Identify plant frequency 

Tune Kalman filter 

h 

kitial laboratory two-disk plant. 
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(a) Natural frequency modeled 10 percent lower than actual. 

(b) Natural frequency modeled 20 percent higher than actual. 

Step response of closed-loop system with mismatch in actual and modeled natural 
frequency. 

Controller On 
No Camand Step Cmund 

(Continued 
frm rbove) 

Step response of closed-loop system with self-tuning adaptive optimal controller. 
Vibration frequency in Kalman filter was incorrectly assumed to be 1.7 Hz (-25 
percent error) initially. Parameter error in model was corrected in real time by 
frequency-locked loop. 

62 



DOCKING OF A RIGID SPACECRAFT WITH 

UNRESTRAINED ORBITING FLEXIBLE STRUCTURE 

T. R. Kane 
Stanford University 
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Purpose: 

Establish a methodology for producing simulations of the docking of a 
rigid spacecraft with any unrestrained flexible structure. 

Method: 

Produce a detailed algorithm for the simulation of the docking of a rigid 
body with a nonuniform unrestrained beam. 

Background: 

Predocking and postdocking motions can be simulated with algorithms given 
in references 1 and 2. 

Tasks: 

(1) Determine the values acquired during docking by the variables character- 
izing the motions of the rigid body and the unrestrained beam. 

(2) Transform to the variables used in connectfon with the cantilever beam. 

(3) Perform simulations of the total process. 

REFERENCES 

1. Levinson, David A.; and Kane, Thomas R.: Simulation of Large Motions of 
Nonuniform Beams in Orbit. Part 1 - The Cantilever Beam. J. Astronaut. Sci., 
vol. 29, no. 3, July-September 1981, pp. 213-244. 

2. Kane, Thomas R.; and Levinson, David A.: Simulation of Large Motions of 
Nonuniform Beams in Orbit. Part 2 - The Unrestrained Beam. J. Astronaut. Sci., 
vol. 29, no. 3, July-September 1981, pp. 245-275. 
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Beam 
8m 6m 

Variables 

Beam tangent at Q 

Local vertical 

Initially undeformed beam 

60' 
/-- 

.--4 
Initially deformed beam 

-v- 
0.1 m 
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0.0 1000.0 2000.0 

t, set 

3000.0 4000.0 

i 1.0 lO~O.0 2obo. 0 

t, set 

3060.0 4otro. 0 

Libration of initially undeformed beam; no docking. 
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f-Docking 

&- -- - .f 

I 

1000.0 2000.0 
t, set 

3000.0 4000.0 

1.0 
I 

- 
I I 1 

1000.0 2000.0 3000.0 4000.0 
t. set 

i 

Libration of initially undeformed beam; perfect docking. 
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0.0 
I 

1000.0 
I 

2000.0 

t, set 

I I 
3000.0 4000.0 

I I I I 
0 l000.0 2dOO.O 3000.0 4ooo.b 

t, set 

Libration of initially undeformed beam; imperfect docking. Velocity mismatch 
approximately 1 cm/set; angular velocity mismatch approximately 0.01 rad/sec. 
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a. deg 
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t. set 
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Libration of initially undeformed beam; no docking. 
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a, deg 6 

Ql 
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1000.0 2000.0 

t, set 
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il.0 l0;lO.O 2oiJo. 0 
t. set 

3oAo.o 4060.0 

Libration of initially deformed beam; perfect docking. 
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a. deg 
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0.0 1000.0 2000.0 3000.0 4000.0 

t, set 
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t, set 

Libratian of initially deformed beam; imperfect docking. 
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a. deg 9 
8- 
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2000.0 

t. set 
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3000.0 4000.0 

0 

I I I 1 
0.0 1000.0 2000.0 

t. set 
3000.0 4000.0 

Libration of initially deformed beam; postdocking control proportional to -6. 
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RESEARCH ON ELASTIC LARGE SPACE STRUCTURES 

AS "PLANTS" FOR ACTIVE CONTROL 

H. Ashley and A. von Flotow 

Stanford University 
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INTRODUCTION 

l Modeling of large space structures (LSS) in terms of elastic wave propagation 

l Scale effects on structural damping 

l "Loss coefficients" of monolithic LSS 

l Wave propagation in nondispersive and dispersive media (1-D and 2-D) 

l Spectral separation of system response: 

x(s) = H(s)[u(s) + iC(s)l z )k(s)[u(s) + iC(s)l 

+ [H(s) T HR(d 1 hF(S) + "F(d 1 

correction term 

where HR(s) is a reduced-order transfer function 

l Reflection of waves from boundaries 

l Modeling of discrete structures as equivalent continuous structures 

@Dynamics of networks of elastic waveguides 

l Control of systems with wave-related time delays 

@Application to a 1-D system under active control: 0.12-set lag predicted with 
Timoshenko beam idealization'and empirically determined shear rigidity 

l significance of passive damping (ref. 1): 

1. A L93 with exactly zero damping is uncontrollable unless sensors and 
actuators are all collocated (often impractical) 

2. Even very small amounts of damping are important to practical success 
of control 

*Some approximate effects of LSS linear scale L on a typical modal damping 
ratio 5: 

1. For a "monolithic" element, c is proportional to material damping and 
decreases with decreasing frequency w (i.e., with increasing L) 

2. Viscous friction dominates at joints; thus 5 - l/L 

3. Coulomb frection at 
rate Q + 5 - (QL)2 

joints and joint preload is dependent on rotational 

4. All sources active * 5 between a constant and -L -1 
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STUDY OF INTRINSIC DAMPING IN MONOLITHIC METALLIC STRUCTURE 

l Two "semi-reversible" mechanisms seem feasible for LSS: 

1. Thermal relaxation 

2. Grain boundary relaxation (can give large values of 5 but required 
temperatures may be too high) 

l Work in progress on thermal damping 

l properties of thermal damping 

1. Involves coupling between mechanical and entropy waves; e+g., for 
isotropic solid with T = To + AT and displacement 3 Z ui + vj + wz, 

$ V2(AT) - cv% - 

- v(cT 
au - YY 

+ ozz> 

ax= E* = aAT + E 

. 

aa a> a0 -g+*+*= a2u 
. a,2 . 

2. < is configuration-dependent (e.g., 10 -2 to 10 -3 for beams and plates, 
lo-7 to 10 -8 for bars and rods). Composite beams are under study. 

3. The value of 5 depends on frequency w and material properties. E.g., for 
a rectangular beam of depth b: 

T 
b 

insulated4 
1 

TOW2 
5 f 0.55 - w 

PCV 1 1 w2 + u2 

with 1-1 q 
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Metal (R.T.) b, cm 

Al and alloys 10 
5 
1 

cu 10 
Ltiw-carbon steel 10 
Ti and alloys 10 
Ni and alloys 10 
Be 10 
Mg 10 
Al at 1000 K 10 

5 max X 10 -3 T ( 
1.53 0.083 
1.53 2.08 
1.53 8.31 
0.73 0.112 
0.675 0.0225 
0.18 0.0075 
0.79 0.0141 
0.5 (est.) 0.061 (est.) 
1.35 0.0844 
4.12 0.0755 

ti for 5 rad set -1 
max' 

a/ t 

Timoshenko beam waves. 
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0 LflO /UO is7 200 

Thermal damping theory compared with recent tests on 
free-free Al beams in vacua. 
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IDENTIFICATION AND CONTROL OF SPACECRAFT 

C. S. Greene 
M. F. Barrett 

Honeywell Systems and Research 
Minneapolis, Minnesota 
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IDENTIFICATION & CONTROL OF SPACECRAFT 

* THE PROBLEM 

+ CONTROL 

- CLASS I CAL 

- MODERN 

* IDENTIFICATION 

RIGID PAYLOAD 

MANIPULATOR 
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CLASSICAL CONTROL 

* SCALAR FEEDBACK DESIGN 

* LEAD-LAG CONTROLLER 

K(s) = 
k(s+a) 

(s2+2<b+b2) 

* BANDWIDTH AROUND 1 RAD/SEC 

SHUTTLE ElND PAYLOAD: FROM ALPHA TO Y-ATTITUDE 

FREQUENCY <radocc> 
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SHUTTLE hND PfiYLOhD: FROll ALPIIA TO Y-ATTITUDE 

\ 

- 

- 

- 

FREQUEHCY (rad/secj 

MODERN CONTROL 

7-l 

_1 
1e2 183 

* START WITh FULL-STATE DESIGN 

- GOAL: MINIMIZE PAYLOAD ATTITUDE ERRORS 

- ITERATE ON CONTROL PENALTY TO ACHIEVE BW OF 5 R/S 

* DESIGN FILTER TO RECOVER LQ RESPONSE 
- USE STEIN/DOYLE ROBUSTNESS RECOVERY RESULTS 

+ TEST ROBUSTNESS 



STATE FEEDBACK LQ 

1 OS freuuencu 

u1unt.r: Singular values of K<s>tGXf;> w=lEB 

10s frawency 
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I + KG 

1 og frequent 9 

-I 1’ r 
e 
a 
1 

d _ 
- 

log frequency 
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IDENTIFICATION 

k4XlttUM LIKELIHOOD ESTM4TION (MLE) 
-.-__ ~- 

IDENTIFICATION 

PROCESS 
1 E[wT] - H E[VVT] = R 

o STATE SPACE 

n* NODES (2x2 8LocKs) 

m INPUTS 

P OUTPUTS 

MODEL STRUCTURE 

-_ . 

Ij 

-Fi (t), 
xi ;= 
: 

(U= [I [ I Y . . . ; ci 0 :... : 1 
l FREQUENCY DOMAIN 

Y(S) = (G~s)1uk.)+w(s)1 + v(s) 

G*(s) = 
ci tl; 

i- 1 s~+2QpiL 

: . -_ 
I 
“1 (t)+ Xi -_ . . 

t)+ ” (t) [1 

o PARAMETER VECTOR 

85 



. . . . . . . . . . .-.- . ..-__._-_. -_-.--- 

MLE IDENTIFICATION SETUP 

l RESIDUAL DEFINITION 

'k 8 y(kT) - $(kT) 

o LIKELIHOOD FUNCTION (NEGATIVE LOG) 

L(a) f! 
N 

k& 
LkW 

A ;l = 
k=O 

7 LOG DET Sk + r: Sk rk 1 

WHERE 

a b Iw2 i, 23ioi, bi, ci; i = 1, . . . . nj = UNKNOWN PARAMETERS 

'k 
A 
= Eatrk+ = PREDICTED RESIDUAL COVARIANCE 

MLE IDENTIFICATION SOLUTION 

m PARAMETER ESTIMATE (THEORETICAL) 

G t ARG[~:~ L(.)1 = PARAMETER ESTIMATE 

o ITERATIVE ALGORITHMS 

,,. .I, > GRADIENT: iJ+l = iJ - cJ VL(a,) 

NEWTON-RHAPSON: iJ+l = iJ - [ 02LQ] -lvLGJ, 

L’ : ;!: ,:;- 

WHERE 
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IDENTlFICATlON ACCURACY ISSUES 

0 SYSTEMATIC ERRORS: E,(8) - aI 

- MODEL-ORDER MISMATCH 

- TEST SIGNAL AMPLITUDE AND SHAPING 

- SYSTEMATIC DISTURBANCES 

-SENSOR/ACTUATOR MODEL ERRORS 

l STOCHASTIC ERRORS: 0 -1 
“CN 

- RANDOM DISTURBANCES ANU SENSOR NOISE 

- TEST SIGNAL AMPLITUDE AND SHAPING 

- IDENTIFICATION TIME INTERVAL 

STEADY-STATE IDENTIFIABILITY ANALYSIS (YARED) 

l EXPECTED LIKELIHOOD FUNCTION 

= ; [,,, DET s + TR ts-‘s.,] 

a RESIDUAL COVARIANCES 

KALHAN FILTER PREDICTED RESIDUAL COVARIANCE HATRIX 

= ACTUAL RESIDUAL COVARIANCE HATRIX 

NOTE: S. AND l’(a) CAN ONLY BE COHPUTED WHEN THE TRUE PLANT PARUIETERS ARE 

KNOWN I 
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EXPECTED ALE IDENTIFICATION SOLUTION 

o EXPECTED PARAMETER ESTIMATE (THEORETICAL) 

a. p E. (3 = ARG {"AN I'w] 

o ITERATIVE ALGORITHMS 

GRADIENT: ieJ+l = iaJ - oJVI*(~.,) 

NEWTON-RHAPSON: kJ+l = AcJ - [021%.,,] -l VI%.J 

WHERE VI*(a) i g (a) 

v*1*(4 x 2i 
aa (al 

STEADY STATE IDENTIFICATION ACCURACY 

a SYSTEMATIC ERRORS (BIASES) 

- PARAMETER ERRORS 

A, agIAS = a, - a* = 0 WHEN NO MODEL MISMATCH 

- INFORMATION KASURE (YARED) 
A 

I(a, ; ;,, 0 I*kl*) - I*&) 2 0 

o STOCHASTIC ERRORS 

E (vm CL,] -l f--g) WHEN NO MODEL MISMATCH 
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STOCHASTIC ERROR WITH PROCESS NOISE 

KAL"hN FILTER 

E(uuT) = UI 

E(wwT) = WI 

E{VvTl - RI 

Gi(joi) = 
j2Fiui 

i 

2R 
a0 ; 

c- 

IGi(juill 2 % <cl IG. (jw.) I2 E '~1 1 I R 

U = TEST SIGNAL COVARIANCE 

I 

DOT,, CONSTANT 
R = "EASUREHENT NOISE COVA"IANCE 

-- 
0 

w (PROCESS NOISE COVARIANCE) 

SIMPLIFIED IDENTIFICATION ACCURACY ANALYSIS 
(FOR EACH MODE) 

w Y 
E[uuT] = UI E[wwT] = WI E[VvT] = RI 

cb T 

s2+2zws+w2 

I I 

a p (w’, 2.3~. hl,... h,,,, cl,..., c,1 - (bL or cM) 

02 2 
wz8F2 
(w2) 2 

1; 
SNR (ti+l)~ 

p 4 max ( 
e,m 

2 

1; (WAS. NOISE1 

sNR (N+~)T 

(PROC. NOISE) 

Obe 
2 

he2 = ii& 
l [ l$ + p-l] 1 

(N+~)T 

!!XE: THIS ANALYSIS ASSUMES THAT UT<<1, E cc 1 AND APPLIES FOR EACH MODE 
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NUMERICAL RESULTS 

o PROBLEM SIZE 

12 MODES (=22 - 8R.B, - 2 SMALL) 
2 INPUTS (a, 8 GIMBAL ANGLES) 
2 OUTPUTS (x, Y ATTITUDES) 

60 PARAMETERS (=l2 MODES x 5 PARAKTERS/MODE) 

o TEST SIGNAL, NOISE STATISTICS 
SAMPLE TIME: T = 0.1 SEC 
TEST SIGNAL: U = 4000(IN-LB)* 
PROCESS NOISE: W = 4O(IN-LB)2 
MEASUREMENT NOISE: R = 4 x lo-l2 RAD2 

o WORST-CASE RELATIVE ERRORS AT TIME (MODE 9): 

PARAMETERLSL(u14 
.* 0.0265 0.007 0.0007 

*w 3.75 1.0 0.1 

bl 13.6 3.6 0.36 

Cl 2.7 0.7 0.07 

=2 11.7 3.1 0.31 

SUMMARY 

o CONTROL PROBLEM 

- MODERN LQ CONTROL DESIGN WITH ROBUSTNESS RECOVERY 

PRODUCES ROBUST CONTROLLERS FOR LSS 

- ACCURATE ID ALLOWS A FIVE-FOLD INCREASE IN LOOP BW 

o IDENTIFICATION PROBLEM 

- STRUCTURAL MODES MAY BE IDENTIFIED ONE AT A TIME FOR 

SMALL DAMPING 

- LSS ID W/O KF 

--GREATLY REDUCES PARAMETER BIASES 

--GIVES ONLY MODEST INCREASE IN STOCHASTIC ERRORS 

- RELATIVE ERRORS IN PARAMETERS AFTER ID ARE SMALLER FOR 

FREQUENCY THAN FOR DAMPING OR MODE SHAPES 

o OPEN ISSUE: HOW ACCURATE MUST ID BE FOR ROBUST CONTROL DESIGN? 
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THE DYNAHICS AND CONTROL OF 

LARGE FLEXIBLE SPACE STRUCTURES 

Peter M. Bainum, V. K. Kumar, R. Krishna, 
A. S. S. R. Reddy, and C. M. Diarra 

Howard University 
Washington, D. C. 

91 



INTRODUCTION 

Large, flexible orbiting systems have been proposed for possible use in com- 
munications, electronic orbital-based mail systems, and solar energy collection. The 
size and low weight-to-area ratio of such systems indicate that system flexibility is 
now the main consideration in the dynamics and control problem. For such large, 
flexible systems, both orientation and surface shape control will often be required. 

Figure 1 illustrates a conceptual development plan of a system software capa- 
bility for use in the analysis of the dynamics and control of large space structures 
technology (LSST) systems. This concept can be subdivided into four different 
stages: (1) system dynamics; (2) structural dynamics; (3) application of control 
algorithms; and (4) simulation of environmental disturbances. Modeling the system 
dynamics of such systems in orbit is the most fundamental component. 

SOLAR RADIATION PRESSURE EFFECTS 

The equations for determining the effects of solar radiation pressure on a 
flexible beam are summarized below. 

Forces: 

Fa = -ho; 
J 

('; - ii) ds 
S 

(absorbing surface) 

FV = -2ho 
s 

c;<; - d A 2 ds (reflecting surface) 
S 

= Fa + E(Fy - Fa) (surface with reflectivity E) 

Moments: 

Ma = ho.;x 
s 

R(T * ii) ds (absorbing surface) 
S 

i$ = 2ho 
J 

f; x R(T * f;)2 ds (reflecting surface) 
S 

ME = Ma + E’iq - Ma> (surface with reflectivity E) 
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where 

; = unit vector in the direction of solar radiation 

; = unit vector normal to the surface ds 

h 
0 

= 4.64 X 10m6 N/m2 

Results for a flexible beam: 

f, = -aoh c a,(zl - zo) - b, 2 + h,bo~,(zl - zo) - bo]g 
3 

(zl + z,)/2 - 2/S-& ~(COS hR, - cos bE,g f sin CZ, + sin hQn} 

F = -2ho f z' 
(a,z’ - bo12 

Y 2 
S (1 + z') 

dx 2 - 2h, f 
(a,z ’ - b,)’ 

dx i; 
S (1 + z'>2 

Mu 0 = 2h 
(a,z ’ - bo12 

z'z l\ f 

S (1 + z') 2 - x + a dx k 

where 

aO 
= sin 0 bO = cos 0 

z (4 = flexural deflection 

Rn = nth modal frequency 
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Figure 2shows the variation of the resultant horizontal and normal force com- 
ponents of a beam with a completely absorbing surface as the solar incidence angle 8 
is varied from 0' to 90°. Here, 0 represents the angle between the normal to the 
undeflected beam and ?. The horizontal and normal force components are measured 
relative to the beam's undeflected axes. As expected, for small tip deflections of 
the beam, the resultant horizontal absorbing force component becomes zero for inci- 
dence angles of O0 and 90°, while the normal component has a maximum amplitude at 
zero incidence angle. In figures 2 and 3 the individual effect of each mode is 
illustrated, with the assumed beam tip deflection as indicated in the figures. 

The magnitude of the resultant moments as the solar incidence angle is varied is 
shown in figure 3 for the assumed tip deflection of 0.01%. Large moments can result 
for larger deflections, whereas these moments would be zero for a rigid beam. For 
small pitch angle displacements, the moment due to solar radiation pressure may 
become greater than the moment due to the gravity-gradient forces, as shown in fig- 
ure 4. It is seen that at geosynchronous altitudes, the moment due to solar radia- 
tion may become predominant even for deflections on the order of O.OlR. With the aid 
of moment diagrams such as those in figure 3, it is possible to determine the dis- 
turbance torques due to solar radiation pressure once the number of modes and the 
associated modal deflections are specified for a model. 

MODELING ERRORS - ORBITAL AND GRAVITY-GRADIENT EFFECTS 

One of the principal sources of (disturbance) torques acting on an orbiting 
space structure is the orbital (gyroscopic) and gravity-gradient effects. Such 
effects associated with the orbital (angular) motion do not need to be considered 
when developing a system model for an Earth-based large flexible system. Many 
investigators, however, model the pitch, roll, and yaw modes (rigid body motion) of 
large, flexible orbiting systems as double integrator plants (two poles at the 
origin), and the subsequent control system design is based on these models. It is 
the purpose of this section to evaluate the effects of omitting the orbital and 
gravity-gradient effects when designing shape and orientation control laws for 
flexible systems in orbit. Models of flexible square plates and shallow spherical 
shells in orbit are selected as examples. 

The effects of designing control laws without the orbital and gravity-gradient 
torques included in the system models of square plates and shallow spherical shells 
in low Earth orbit (250 nautical miles) are illustrated in figures 5 to 10. A square 
plate was also considered in a geosynchronous orbit. The analysis was performed by 
first calculating the control law, which was in the form u = Fx, for the case where 
the orbital and gravity-gradient effects are not included in the model. The same 
control law is then applied to the model that includes these effects. 

For figure 4, the control law was selected such that the overall response time 
constant of the system is 2.22 hours (which may be reasonable for a large space 
structure). The shift in the closed loop poles of the plate model due to the pres- 
ence of the orbital and gravity-gradient effects is illustrated in this figure. It 
can be seen that some of the poles move to the right half plane, leading to insta- 
bility and thus emphasizing the importance of including the orbital and gravity- 
gradient effects in the model. The poles due to the rigid body modes are shifted 
considerably, but the flexible modes remain virtually unaffected. This can be 
attributed to the high frequency of the flexible modes. (Note that the orbital and 
gravity-gradient effects are of a relatively low frequency.) This result gives an 
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indication that by designing a more robust (faster response) control system, the 
shift of the actual closed loop poles would be relatively less pronounced. 

This phenomenon can be demonstrated by designing the gain matrix, F, such that 
the desired response time constant is reduced to 460 seconds. The shift in the 
closed loop poles for this case is shown in figure 6. In figure 7 the control forces 
are shown for the second (more robust) control law, where the closed loop response 
with orbital and gravity-gradient effects is degraded but does not become unstable. 
(It should be noted that time has been nondimensionalized with respect to the orbital 
frequency of the 250-nautical-mile low Earth orbit, in order to provide a basis for 
comparison.) The difference in the total control force impulse as applied to the two 
models (a) and (b) is minimal because of the robustness of the controller. The 
slowly varying orbital and gravity-gradient torques have a relatively greater impact 
on the less robust systems, and can even lead to possible instabilities, as was 
illustrated in figure 5. 

As expected, the orbital and gravity-gradient effects are less pronounced in the 
case of a structure in geosynchronous orbit than in the case of a structure in low 
Earth orbit. However, if the control systems are designed with response times com- 
parable to the orbital periods, under the influence of orbital and gravity-gradient 
effects the closed loop systems may become unstable. 

The shift in the closed loop poles of the spherical shell model due to the pres- 
ence of the orbital and gravity-gradient effects is shown in figure 8. One of the 
closed loop poles is moved to the right-hand side of the S-plane, causing instability. 
As compared to the case of the plate, the effect of the orbital and gravity-gradient 
torques on the shell is more pronounced, as the instability due to movement of the 
poles occurs at the relatively fast designed response time constant of 615 seconds 
(compared to 8000 seconds in the case of plate). When the control is redesigned for 
a response time constant of 400 seconds, the shift in the poles is as shown in fig- 
ure 9. A general shift in the rigid body motion poles is observed, but the system 
remains stable. 

The control forces associated with both models (a) and (b) of figure 9 are com- 
pared in figure 10. A considerable increase in the control effort is observed when 
the model includes the effect of the orbital gyroscope and gravity-gradient torques. 
This may be explained by the fact that the mass distribution of the shell is more 
complex than that of the plate, resulting in relatively greater dynamic coupling when 
the gyroscopic and gravity-gradient effects are included in the shell model. 

THE DEVELOPmNT OF AN ALGORITHM TO EVALUATE COUPLING COEFFICIENTS 
FOR A LARGE FLEXIBLE ANTENNA 

The generic mode equations and the equations of rotational motion of a flexible 
orbiting body contain both coupling terms between the rigid and flexible modes and 
terms due to the coupling within the flexible modes that are assumed to be small and 
thus are usually neglected when a finite element analysis of the dynamics of the 
system is undertaken. In this section a computational algorithm is developed which 
permits the evaluation of the coefficients in these coupling terms in the equations 
of motion as applied to a finite element model of a hoop/column antenna system 
(ref. 1). 
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Using a Newton-Euler approach, one can express the equations of motion of an 
elemental mass of the system, in the frame moving with the body, as: 

. . . 
‘: cm+i+ 2ij+r+i xsi+w x (ix i) r,dv={ T + e + L(;)/& dv (1) 

where 

p =,mass per unit volume 

e = external ‘forces per unit mass 

+ elastic transverse displacements of the element of volume 

'I = force due to the gravity on the unit mass 

L= the linear operator which when applied to G yields the elastic forces 
acting on the element of volume considered 

r = position vector of element dv 

w = inertial angular velocity of the body frame 

acm = acceleration of the center of mass 

Equations of Rotational Motion 

The equations of rotational motion of the body are obtained by taking the 
moments of all the external, internal, and inertial forces acting on the body; i.e., 
from equation (1): 

J c 
. . ix a cm + : + (2; x ;) + (w x ;) f (; x (ii x ;)jj p dv = j-F x b(p>/p + 7 + z]odv 

V 

One can obtain the following form for the equations of rotational motion: 

co co co 
g + c p + c ,Cn) = ER + c -,Cn) + c 

n=l n=l n=l 

where 

(3) 

EC 
x (5 x io> - (i. l w)(ii x iofl p dv 
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OJ 
c q(n) = 

s( ‘* i o x ‘q + Zi, X ( wxq ') + go x '(5 x 4) + 4 x (ii x io) 

n=l V 

- (i. : W) c<il X 4) - <‘i l ;d (i x i,)}p dv 

co 
c -,(d = f {p dv x (acm - To) + 2 miAn $ Go x +‘p dv 
n=l V n=l V 

ER = 
s i. x Mgo P dv 

00 

c 
-,h) = i. x MS + i X Mio)P dv 

n=l V 

z= s ?xepdv 
V 

i=io+q 

M= matrix operator which when applied to 7 yields gravity-gradient forces 

a cm = acceleration of the center of mass 

To = force/mass due to gravity at the undeformed center of mass 

m(n) = modal shape vector for the nth mode 

w n = frequency of the nth mode 

An = time-dependent modal amplitude function 

Generic Mode Equations 

The generic mode equation is obtained by taking the modal components of all 
internal, external, and inertial forces acting on the body, i.e., 

s '. l . cm+i+2;xi+Gxi+Wx (ixi) pdv 
3 

V = s 3(n) . + z + ; p dv 1 
V 

(4) 
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The generic mode equation is obtained in the following form: 

;i, + a;An + '&/Mn + 2 $m/Mn = 
m=l 

+ 2 gm + En + 
m=l 

where 

74, = SC 
;h> 

l w X (w X io) p dv 1 V 

l ; x (ii x ii> p dv 1 m=l V 

gn = s 
;(n) 

l Mio p dv 

03 
c gm = / ;(n> - M<p dv 
m=l V 

En = s icn) l :p dv 

D; = s 
;<n> p dv l (acm - io) 

V 

Here I/I, is the inertia coupling between rigid body modes and the nth structural 
mode and $mn is the inertia coupling between the mth and nth structural modes. 

Cartesian Components of the Different Coupling Terms 

The expressions for R, 0 Cd , ER, C), $ n3 1cI,, gny ad gm in 
Cartesian components are presented in this section. The following vectors can be 
expressed in their Cartesian component form as: 

(5) 

r 0 = 5,: + 5,: + 5,G; w = wxz + WY3 + wzi; 
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G(n) = Q(n)A 
x i+ 9, 9 + QY 

E(n) = ,h>^ x i+G (n>3 + G(n)i; 
Y Z 

where 2, 3, and i; are unit vectors along 
the undeformed state, and 5 and 5 
undeformed state. X’ 5Y* Z 

the body principal axes of inertia in 
are the coordinates of a point in the 

With the use of the component forms of the vectors given above, one can expand 
the various vector expressions given in equations (3) and (5) to obtain 

Jy)wywz] ^i + p,", + (Jx - Jz)~z~x] ; 

Y 
- Jx)w w i; 1 XY 

H Cd - J-+)u - Hcn)a 
YY X 1 yx y 2x z 

- Hi;)) - wxwy(H;;) + Hi:))+ u~u~(H($ + Hi;)) 

ER = (Jz - Jy)M23: + (Jx - Jz)M31; + (Jy - Jx)M2$ 

(6) 

(7) 

(8) 
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G(n) = 
X An (M33 c 

- M22)(H;;) + Hi;') - M21(Hz) + Hi;') 

+M + Hz') + 2M23(H;) - H;;' (9) 

where 
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When a is 

In a similar 

when a is 
for 8. 

x in H? or 
aB 

manner, when a 

z in H$' or 

L($n' , 

is Y 
L(=d 

af3 ' 

the 

in 

a 

corresponding value of a in M is 1. 
,(n) or ,hd aB 

a8 aB ' 
a is 2 in M 

aB' 
and 

is 3 in M 
aB' 

The same reasoning holds 

The expressions for b-9 
Qy 

and Q Cd 

of x, Ys z in the expression for Q$ 

are obtained by the cyclic permutation 

in equation (7), and the expressions for 

Gcn) and Gcn) 
Y z are obtained by the cyclic permutation of x3 Ys = in the 

expression for x Gtn) in equation (9). 

For a discretized model, the expressions for the volume integrals are replaced 
by the following summations: 

H(n) = 
aB i=l 

L(m) = 2 (Qqi (4p)p, a6 
i=l 

(12) 

b,B = X,Y,Z) 

(13) 

where 

k = total number of discrete masses 

i = index identifying a nodal point 

m. = mass concentrated at the ith node 
1 

5, = coordinates of mi in the undeformed state 

REFERENCE 

1. Bainum, Peter M.; Reddy, A. S. S. R.; Krishna, R.; Diarra, Cheick M.; and Kumar, 
V. K.: The Dynamics and Control of Large Flexible Space Structures - V. NASA 
CR-169360, 1982. 
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SYSTEM DYNAMICS STRUCTURAL ANALYSIS 

Differential Equations - LSST Orbiting Systems STRUDL-II* 

Beam, incl. control (2-D)* 
. 

Det. frequencies, mode shapes 

Plate, incl. control (3-D)* NASTRAN? 

Shallow spherical shell, incl. control (3-D)* 
4 

More complicated system (3-D)* 
I 
I 

Hoop-column+ I 
t 

ENVIRONMENTAL 

Solar radiation 
forces/torques+ 

Thermal effects+ 
CONTROL ALGORITHMS 

Jones & Melsa" - opt. control 

ORACLS* - opt. control 
decoupling 
pole placement 

Hybrid systems.+ - passive/active 

Bang-bang 

*Operational. 
+In progress. 

Figure l.- Development of system software for LSST dynamics analysis. 
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- Rigid Beam and 
Symmetric Modes 

Tip Deflection (a) O.Ola 

30 45 60 75 90 
Incidence angle, 8, deg. 

(a) Horizontal component. 

-ia 
E 

ti 
15 30 45 60 

Incidence 
angl:, 90 

8, deg. 

(b) Normal component. 

Figure 2.- Variation of solar force components with incidence angle. 
Totally absorbing surface - free-free beam (length R = 100 m). 

Rigid Beam and Symmetric 

3xlo4; tisymmetric Modes 

, 
Tip Deflection(a) O.OlL 

lxlod 
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Tip Deflection O.OlR 

15 30 45 60 75 90 

Incidence angle, 0, deg 

Figure 3.- Pitch moment due to solar radiation pressure (completely absorbing 
surface). Effect of individual modes in the system - free-free beam. 

1o-4 

I lo-5 

a 
Y 

ri 
3 lo+ 

lo-7 
0.01 

(b) geosynchronous orbit 

0 - 0; Corresponds to local 
horizontal orientation 

0.1 1.0 
Pitch angle, 8, deg 

2.0 

Figure 4.- Moment due to gravity-gradient force as a function of 
pitch angle (100-m rigid beam). 
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(4 

27 

18 lb) 

9 

Design closed loop 
poles. Model does 
not include orbital 
and gravity-gradient 
effects. 

Closed loop poles 
resulting from the 
control law of (a) 
when applied to a 
model which includes 
orbital and gravity- 
gradient effects. 

3 rigid + 3 flexible modes 

Figure 5.- Shift in closed loop poles due to orbital and gravity-gradient 
torques. Square plate in 250-n.-mi. orbit. Overall designed 
response time constant of the system = 8000 sec. 
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-33 

(a) Designed closed loop poles.. 
Model does not include orbi- 
tal and gravity-gradient 
effects. 

(b) Closed loop poles resulting 
from the control law of (a) 
when applied to a model which 
includes orbital and gravity- 
gradient effects. 

. . . 410 

Real axis 

3 rigid + 3 flexible modes 

Figure 6.- Shift in closed loop poles due to orbital and gravity-gradient 
torques. Square plate in 250-n.-mi. orbit. Overall designed 
response time constant of the system = 460 sec. 
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2 
m 

L 
z 
rz 

-10.0 . 

-20.0 

Max. Force Amplitudes 

f; - fl - 14.60 N 

f2 = f2 * 8.88 N 
* 

f3 = f3 = 22.50 N 
f* - f 4 4 - 0.087 N 

(There is no appreciable difference in forces between 
model with G.G. and orbital effects and model without 
them. ) 

XI: f (t) * 261.5 N-set 
1 1 

\ ! 

(Non-Dimensionalized Time) 

Figure 7.- Time history of control forces. Square plate. 
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,270 (a) Designed closed loop poles. 
Model doesn't include orbital 
and ,gravity-gradient effects. 

180 

(b) Closed loop poles resulting 
from the control law of (a> 
when applied to a model which 
includes orbital and gratity- 
gradient effects. 

90 

3 rigid + 6 flexible modes 

-270 

Figure 8.- Shift in closed loop poles due to orbital and gravity-gradient 
torques. Shallow spherical shell in 250-n.-mi. orbit. Overall 
designed response time constant of the system = 615.0 sec. 

108 



(a) Designed closed loop poles. 
Model does not include orbital 
and gravity-gradient effects. 

(b) Closed loop poles resulting from 
the control law of (a) when 
applied to a model which includes 
orbital and gravity-gradient 
effects. 

30 

90 

1.0 

-90 

-180 

3 rigid + 6 fleldble modes 

- 270 

Figure 9.- Shift in closed loop poles due to orbital and gravity-gradient 
torques, Shallow spherical shell in 250-n.-mi. orbit. Overall 
designed response time constant of the system = 400 sec. 
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PEAKFORCE AMPLITUDES-CONTROLU4WDEVELOPEDWITEOUT 
ORBITAL AND GRAVITY-GRADIENT EFFECTS IN TEEMODEL AND 
TEEN APPLIED TO A MODEL WITH THEM (Shell in orbit). 

Without Orbital With Orbital and 
and G.G. Effects G.G. Effects* 

fl: 516.40 N 

f2: 73.30 N 

f3: 239.50 N 

f4: 117.54 N 

f5: 132.45 N 

fg: 146.82 N 

fl*: 565.63 N 

f2*: 164.76 N 

f3*: 321.11 N 

f4*: 117.07 N 

f5*: 153.84 N 

f$ 431.61 N 

EE fi - 7020.8 N-set EE f? - 19373.0 N-set 

T (- wet) 
(Non-Dimensionalized Time) 

Figure lO.- Time history of control forces. Shallow spherical shell. 
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CONTROL OF STRUCTURES IN SPACE 

L. Meirovitch and H. Barun 
Department of Engineering Science and Mechanics 

Virginia Polytechnic Institute and State University 
Blacksburg, Virginia 

111 



EQUATION OF MOTION FOR DISTRIBUTED SYSTEMS 

Differential equation: Lu(P,t) + M(P)J*u(P,t)/x* = f(P,t) , P E D 

Boundary conditions: Biu(P,t) = 0, 1=1,2,,,,,~ , P (: S 

u(P,tI = displacement at point P 

L, Bi = differential operators (L is self-adjoint of order 2~) 

M = mass density 

f(P,t) = distributed control force 

EIGENVALUE PROBLEM 

Differential equation: L+=AM+ 

Boundary conditions: Bi+= 0, i = 1,2,,,,,1) 

Solution: eigenvalues Ar =oF , eigenfunctions $- (r=l,*,,,,> 

Because L is self-adloint, eigenfunctions are orthogonal 

L is generally positive semidefinite+;\, are all nonnegative 

%- = 0 for rigid-body modes 

c+ =Jq = natural frequencies 

Orthonormality conditions: ID MS+,- dD = srs J ID +sLf'r dD = 'rgrs 
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MODAL EQUATIONS 

Expansion theorem: u(P,t) = g1 +,(P)u,w 

u,(t) = modal coordinates 

Modal eauat ions : ii,(t) + o$,(tl = f,(t) , r=l,*,,.. 

Modal controls: f,(t) =jD+,-(P)f(P,t)dD , r=1,2,,,. 

Coupled controls: f,(t) = f,(q, i,, u2, ir,,...) , r=1,2,". 

Independent modal-space control (IMSC): f,(t) = f,(u,,~,), r=1,2,111 

CONTROL IMPLEMENTATION 

Distributed actuators: f(P,t) = gl M(P)+,(P)f,(t) 

Coupled controls: unable to design distributed controls 

IMSC: design modal controls first, then use above formula 
no control soillover 

Discrete actuators: f(P,t) = j?l @j(t) s(P-Pj) = 

f,(t) = j~l +r(Pj) Fj (t) = ffl BrjFj(t) J r=l,*,,,,,n 

n = number of controlled modes 

,F = [Fl F2 04, FmI;T J = [fl f2 *aa fn]T B = Brj 

Coupled controls: 
IMSC: lk&gn 

Ff 

Design E(t) so as to.ensure controllability 
(t) so+as to coprol a given number of modes 
t) = B f(t) B = Pseudo-Inverse of B 

To a;o?d oseudozinvekses, let m = n, or the number of actuators 
must equal the number of controlled modes, 
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CONTROL IMPLEMENTATION (CONT’D) 

Distributed measurements: 

Measurements: u(P,t), ir(P,tI for all P and at any t 

Then, modal coordinates and velocities, u,(t) and i,(t), are computed 

by using the modal filters 

u,(t) = I, Id(P) +,(P)u(P,t)dD, c,(t) = 1 
D 

M(P)+,(P)fi(P,t)dD, r=1J2J111 

Discrete measurements: 

Measurements: Yj(t) = U(Pj,t), $j(t) = i(Pj,t), 1 = 1’2’0, ,,k 

k = number of sensors 

Standard approach: Use Luenberger observer to estimate state 

Discrete measurements treated as distributed: 

Use interpolation functions to compute estimate Z(P,t) of u(P,t) 

Then, use modal filters to compute estimates z,-(t) of u,(t) 

Divide structure into s segments (elements) 

Approximate displacement: “u(P,t> = jzl lJ(P)_vj(t) = 

!!j = measurements at the boundaries of j’th interval 

Q = vector of interpolation functions (from the finite element method> 

Estimated modal coordinates: 

G,(t) = {Dl.l(P)+r(P) j?l lJ~j(t)dD = f &jzj(t), = 
r = l,Z,,,.,n 

Similarly 2,(t) = 2 I *i/.(t) j=l -t-J-J 

Lrj = jDM(P,9r(P)cj(P)dD = const 

~rj are computed off-line, in advance, 
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CONTROL IMPLEMENTATION (CONT'D) 

Rearrange Lrj such that 

ii,(t) = ,el CrjYj(t) J 2,(t) = k Crj !ij(t) 
f = 1 

Let 

$1 = [til i&“’ 5,JT’ tjw = [e, 3, I I I aJT 
C = Crj J r=1,2,..,,n; j=1,2,..,,k 

i(t) = [yl ‘y2 III YklT’ j(t) =[Jil $2 1” $(jT 

G_(t) = cly ' ;ct, = cjct, 

The way C is assembled depends on the nature of the interpolation 

functions (see example later), 

THE LANGLEY BEAM EXPERIMENT 

Free-free beam controlled by using 4 actuators and 9 sensors 

Use IMSC to control four modes, two rigid-body and two elastic modes 

Actuator forces F,(t) = $, (B-')rjfr(t), j = 1'2'3'4 

Modal forces: 

1) For rigid body modes 

Tr = 1 firI + 1 Ti,l/c, , r=l,* 

cr = weighting factor 

if lr < d,, then f, = 0 

if 7r > d, and 

i) fir> 0, Er ~0, or 6, > 0 >b, and IGr)<Lr, then f, = -k, 

ii) G, K 0, $-' 0, or f, 4 0 4 b, and I?$<+ then f, = k, 

d, = magnitude of the deadband region 

'r = threshold velocity, k, = modal control force 
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THE LANGLEY BEAM EXPERIMENT (CONT'D) 

2) for elastic modes 

f,(t) = -k, , I;,-\ 3 d, and zr 2 0 

0 ' -d, 4 2, < d, 

For simulation 

for rigid-body 

Actuator locat i 

E(t) = B-‘f(t) 

Actual control 

Actuators ava 

to each modal 

a linear comb 

kr J /fir1 2 d, and E,< 0 

purposes, the response is 

and elastic modes, 

ons immaterial when IMSC i 

available in closed form both 

s used, 

Fj(t) = r$l (B-')jrfr(t) j=1,2,3,4 

forces are a combination of on-off functions of the type 

lable at LARC have four components, which can be assigned 

control force, As a result, each actuator command becomes 

nation of 4 modal on-off control forces, 
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THE LANGLEY BEAM EXPERIMENT (CONT'D) 

Sensors measure displacements alone, Ideally, for bending they should 

measure displacements and slopes (velocities and slopes of velocities too) 

Divide the beam into four equal segments (elements) and measure displacements 

at the ends and middle Point of the element, so that the nine sensors are spaced 

at equal intervals, 

As interpolation functions use 

L. = 
NJ [ t k(2 -1) 4kC 1-L) l-32+ 2L2JY 0 < t, < 1 

where L is a local coordinate related to the global coordinate x by 

L=j- Fx, in which j is the segment number 

The C matrix is assembled from Lri tensor as 

crp ; I ;,2,, I I .n J n=4 
P = 1,2 ,,,.,k, k = 9 

2 = index denoting the interpolation function 

j = index denoting the element number 

Because velocity measurements are not available estimate velocities by using the 

relation 

SI 
u,(jT) = 

$(lT, - G,(~T-T) 

T 

T= same ling time = l/33 sec. 

Or, one could use a modal Luenberger type observer, Because the controls 

are nonlinear, the convergence of the observer can only be determined by trial 

and error, 
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THE LANGLEY BEAM EXPERIMENT (CONT'D) 

Parameters associated with the beam: 

L = 12 ft. cross-section = 6 x 3/16 in 

6061 aluminum: p = 0,l lb/in3 E = 1 x lo7 lb/in2 

The free-free, uniform beam admits a closed-form solution. The 

transcendental equation was solved numerically to yield the eigenvalues 

01 = 0 

02 = 0 

w3 = 11,47979 rad/s 

O4 = 31,64450 rad/s 

0 5 = 62.03526 rad/s 

"6 = 102,5484 rad/s 

o7 = 153,1897 rad/s 

Simulation of the Beam motion: 

The first 7 modes are included in the simulation: 4 controlled + 3 

residual modes 

Control Gain Parameters: 

dl = d2 = 0,002 , d3 = d4 = 0,0005 

kl = k2 = 0,3 , k3 = 0,12, k4 = 0.03 

El = E2 = 0.01 

lr = IG,I + Ii?,1 710 , r=1,2 

Sampling time = l/33 set, 

Viscous damping was added to each flexible mode 

Damping factor tr = 0,002 , r=3,4,5,6,7 

Disturbance of the beam was taken in the form of a unit impulse of magnitude l/12 lb 

applied at x0 = 0,67L, 

The displacement of the beam cannot exceed 1 in at any time because of the location of 

the sensors and actuators in the experimental setup, 
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THE LANGLEY BEAM EXPERIMENT (CONT'D) 

Results 

. The main contribution to the response is from the rigid-body modes, 

l The second elastic mode shows noticeable participation, This participation will 
eventually disappear due to internal damping, 

l Control of the second elastic mode can be enhanced by sensing velocities, or 
estimating velocitites via a Luenberger observer, 

l Observation soillover (which may arise from the need of more sensors) was found 
to be negligible, So was the control spillover into the residual modes, 
Simulations of the beam with and without the residual modes indicated that 
soillover effects are infinitesimal, The reasons for this are: 

1) IMSC is used 
2) Nodal filters are used 
3) Residual modes have very high frequencies 

Conclusion 

The IMSC method in conjunction with on-off modal controls does a good job 
in controlling the motion of the beam, where the motion consists primarily of the 
riqid-body modes, 
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ROBUST PRECISION POINTING CONTROL OF 

LARGE SPACE PLATFORM PAYLOADS 

S. M. Joshi 
Old Dominion University Research Foundation 

Norfolk, Virginia 
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LSS CONTROLLER DESIGN STRATEGY 

0 INHERENT DAMPING PLAYS A VERY IMPORTANT ROLE IN STABILITY, 

THEREFORE IT IS HIGHLY DESIRABLE TO ENHANCE INHERENT DAMPING 

USING A SECONDARY CONTROLLER, 

l DESIGN PRIMARY CONTROLLER FOR CONTROLLING RIGID-BODY MODES 

AND POSSIBLY SOME SELECTED STRUCTURAL MODES, 

l 

l 

l 

l 

SECONDARY CONTROLLER - VELOCITY FEEDBACK 

FLEXIBLE PART OF DYNAMICS: 

SENSOR OUTPUT: 

4 = 5% 

CONTROL LAW: 

f = -KJ = -&pi 

WITH PERFECT (LINEAR, INSTANTANEOUS) ACTUATORS/SENSORS: 

- STABLE IF Kr 20 
- ASYMPTOTICALLY STABLE (AS) IF 

k, 70 AND@, g? CONTROLLABLE 

WHAT IS THE EFFECT OF 

NONLINEARITIES 

ACTUATOR/SENSOR DYNAMICS 
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EFFECT OF SENSOR/ACTUATOR NONLINEARITIES: --- 

ACT, 1 
NL 

ST ACT, 
1 

1 

K - 

ACTUATOR NONLINEARITIES: LET )$ (0 ) = 0 [ %‘a) = ACTUATOR; 

a) ORIGIN STABLE IF 30 

b) ORIGIN ASIL* IF Vr&?p~oJ) 70 for ufo 

AND [A, @T’ CONTROLLABLE 

(FOR DIAGONAL &, ui y;;,(<.) 7 0 3 

NONLINEARITIES IN ACTUATORS AND SENSORS: 

LET K, BE DIAGONAL 

a) ORIGIN STABLE IF a- jwa ,z 0 FOR EACH ACTUATOR AND SENSOR 

b) ORIGIN ASIL* IF 6pco-) 70 fl I, 

AND (A, @‘, IS CONTROLLABLE 

CONSIDER ACTUATOR/SENSOR DYNAMICS GIVEN BY 

WHERE /cc 70, SMALL; A, STRICTLY HURWITZ 

. IF THE CLOSED-LOOP SYSTEM WITH PFRFFCT ACTUATORS/SENSORS 

IS AS, THEN THE TRAJECTORY WITH FINITE-BANDWIDTH ACTUATORS/ 

SENSORS IS o(r) CLOSE TO TRAJECTORY WITH PERFECT ACTUATORS/ 

SENSORS (REF, 1) I 

HOW TO DETERMINE/CC THAT WILL GUARANTEE STABILITY? 

*ASYMPTOTICALLY STABLE IN THE LARGE 
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l CONSIDER THE SINGLE-INPUT SINGLE-OUTPUT CASE (SISO) 

tG&- 

STRUCT. DYN, 

Go 61 - 
ACTUATOR/SENSOR 

ASSUME SIMPLE STRUCTURAL MODE FREQUENCIES, NO DAMPING, AND 

NO POLE-ZERO CANCELLATIONS (ImE, CONTROLLABILITY) 

l THEOREM THE CLOSED-LOOP SYSTEM IS AS FOR SUFFICIENTLY 

SMALL K, >L’IF 

0 WHEN ACTUATOR/SENSOR HAVE rr, REAL POLES 

AT s= -fa AND NO ZEROS, THE SYSTEM IS AS FOR 

SMALL Kp>o IF 

GIVES SOME INSIGHT INTO ACTUATOR/SENSOR 

REQUIREMENTS, ADDITIONAL INVESTIGATION 

OBTAINING MORE USEFUL RESULTS, 

BANDWIDTH 

NEEDED FOR 

*a 
b 

WadAX 
(MIN, REQD,) 

1 0 

2 1 

3 1.73 

4 2.48 

5 3.09 

6 3.76 

7 4.4 

a 5.07 
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CONTROL OF PPS/LSS 

0 ATTITUDE AND VIBRATION CONTROL OF Lss 

0 POINTING CONTROL OF EACH PPS 

0 SINCE THE MASS OF EACH PPS MAY BE OF THE SAME 

ORDER AS THAT OF Lss, INSTABILITY IS POSSIBLE 

IF CONTROL SYSTEMS ARE DESIGNED INDEPENDENTLY, 

SECONDARY CONTROLLER USING ANNULAR MOMENTUM CONTROL 

DEVICES (AMCD'S) 

ASSUMPTIONS 

0 

0 

0 

AMCD RIMS ARE RIGID 

0 RIM DIA = 2 M (SMALL COMPARED TO LSS) 

ACTUATORS AND SENSORS PERFECT 

l ELECTROMAGNETIC ACTUATORS AND POSITION SENSORS 

ARE ALMOST PERFECTLY LINEAR IN THE OPERATING 

RANGE, BANDWIDTH IS SEVERAL HUNDRED Hz, 

ACTUATORS/SENSORS COLLOCATED 

0 INHERENT DESIGN CHARACTERISTIC OF AMCD 

0 CONTROL LAW: 

WHERE b IS THE ACTUATOR CENTERING ERROR VECTOR 

0 STABLE IF Kp70 , K,zo 

ASYMPTOTICALLY STABLE (AS) IF 
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b) t$is STRUCTURAL MODEL STABILIZABLE 

cl NO UNDAMPED L%i MODES AT i?jfi, (fli = SP J N FREQ! ) 
u 

PRIMARY ATTITUDE CONTROLLER (PA0 

0 USING TORQUE ACTUATORS 

0 COLLOCATED ACTUATORS/SENSORS 

a NONCOLLOCATED ACTUATORS/SENSORS 

0 USING AMCD'S 

PAC USING TORQUE ACTUATORS 

0 SEVERAL TORQUE ACTUATORS AT VARIOUS POINTS OF Lss 

l COLLOCATED ACTUATORS/SENSORS: 

0 EQUATIONS OF MOTION: 

0 COLLOCATED ACTUATORS/SENSORS 

MEASUREMENTS CONSIST OF: 

0 ATTITUDE VECTOR: d = r TX* 

0 ATTITUDE RATE VECTOR: o( = r’& 

CONTROL LAW: 7-C - (Gj,++Gp?) 
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0 STABLE IF G;,>o, G,zo 

l AS IF Gp 70, Gr70, (c, , r7 CONTROLLABLE 

0 CONTROL LAW MINIMIZES 

0 EFFECT OF ACTUATOR/SENSOR DYNAMICS 

SISO CASE, NO REPEATED FREQS,, CONTROLLABLE 

l AS FOR SMALL k 70 IF 

WHERE 24. P IS A FUNCTION 

OF ui AND POSITION RATE GAINS 

0 ADDITIONAL INVESTIGATION IS NEEDED 

0 IF TORQUE ACTUATORS AND ATTITUDE/RATE SENSORS ARE 

NOT COLLOCATED 

0 STABILITY NOT GUARANTEED 

0 MUST USE LQG-BASED APPROACHES INVESTIGATED EARLIER 

l KNOWLEDGE OF FREQUENCIES AND MODE-SHAPES REQUIRED 

A TRUNCATION: “RESIDUALn MODES IGNORED 

IN THE DESIGN PROCESS 
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A MODEL ERROR SENSZTZVITY SUPPRESSION (REF, 21, 

“SPILLOVER” IS INCLUDED IN THE QUADRATIC 

PERFORMANCE FUNCTION: 

0 IT CAN BE SHOWN THAT THE SAME AMCD’S CAN BE USED FOR 

PR IMARY CONTROL 

l ATTITUDE AND RATE SENSORS LOCATED ON Lss AT MIDPOINTS 

OF AMCD ACTUATORS 

0 APPROXIMATES TORQUE ACTUATORS AND COLLOCATED SENSORS- 

PROVEN TO BE STABLE 

0 CLOSED-LOOP RIGID-BODY BANDWIDTH DEPENDS ON TOTAL 

MOMENTUM, ALLOWABLE GAPS, ETC, 

PRELIMINARY MATH MODEL OF LSWMPPS 

0 ASSUME LUMPED POINT-MASSES AT POINTS OF ATTACHMENT OF 

PPS'S (FOR LSS MODEL) 

a ALL PPS RIGID 

0 EACH PPS CONSISTS OF GIMBALS AND TORQUERS (ONLY X-AXIS 

GIMBAL ASSUMED IN PRELIMZNARY STUDY), 
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0 MATH MODEL GIVEN BY: 

OBSERVATIONS 

0 INERTIAL ATTITUDE AND RATE SENSORS ON EACH PPS PAYLOAD 

0 m INERTIAL ATTITUDE AND RATE SENSORS ON Lss 

(COLLOCATED WITH LSS TORQUE ACTUATORS) 

0 SENSORS FOR MEASURING RELATIVE ANGLE BETWEEN EACH 

GIMBAL AND Lss 

CONTROL OF MULTIPLE PRECISION - POINTED STRUCTURES (MPPS) 
MOUNTED ON LSS 

. MPPS USED FOR COMMUNICATIONS, ASTRONOMY, EARTH RESOURCES, 

AND WEATHER PAYLOADS 
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0 ADVANTAGES: 

0 LESS ORBITAL SLOT SPACE AT GE0 

l SAVINGS IN POWER, CYROGENICS, GROUND DATA LINKS, AND 

SMALLER GROUND TERMINALS 

CONTROL LAWS 

l CONTROL LAW I: DECENTRALIZED CONTROL OF Lss/PPs: 

0 USE 6s ATTITUDE AND RATE SIGNALS AND DESIGN Lss 

CONTROL LAW (COLLOCATED ACTUATORS/SENSORS) 

0 USE PPS ATTITUDE AND RATE SIGNALS AND DESIGN 

CONTROL LAW (TO GENERATE DESIRED GIMBAL TORQUER TORQUES) 

0 THE RESULTING CLOSED-LOOP SYSTEM CAN BE UNSTABLE 

0 CONTROL LAW II: ROBUST COMPOSITE CONTROL 

l USE INERTIAL PPS AND Lss SENSORS, AND ALSO GIMBAL- 

ANGLE SENSORS AND COMBINE THE SIGNALS TO OBTAIN 

0 CONTROL LAW: 

f = -kpY-Kr>; 
0 CLOSED-LOOP SYSTEM LYAPUNOV-STABLE if K~7o,&;ro 

l ASYMPTOTICALLY STABLE (AS> IF &, KY 70, AND 

Lss STRUCTURAL MODEL STABILIZABLE, REGARDLESS OF 

NUMBER OF MODES AND NUMBER OF PPS, THEREFORE, 

CONTROLLER IS ROBUST. 
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NUMERICAL RESULTS 

. 100 X 100’ X O,lN COMPLETELY FREE ALUMINUM PLATE 

0 TWO PPS EACH WITH MASS = Lss MASS 

0 THREE L!% TORQUE ACTUATORS WITH COLLOCATED ATTITUDE AND 

RATE SENSORS 

0 CONTROL LAW I: DECENTRALIZED CONTROL 

l LSS BW = 0.05 rad/==c 

l PPS- h’/ INCREASED GRADUALLY - A STRUCTURAL MODE WAS 

DRIVEN UNSTABLE FOR PPS BW > 0,l -d/-c 

0 CONTROL LAW II: COMPOSITE CONTROL 

l LSS BW = 0,05 rad/sec 

l PPS BW OF 1 rad/sec <p= O,i') 

WAS EASILY OBTAINED WITHOUT SIGNIFICANT 

EFFECT ON CLOSED-LOOP Lss STRUCTURAL MODES 

CONCLUDING REMARKS 

0 TWO-LEVEL Lss CONTROL IS STABLE AND ROBUST AND 

OFFERS PROMISE 

0 FURTHER INVESTIGATION NEEDED ON EFFECTS OF 

ACTUATOR/SENSOR BANDWIDTH 

0 COMPOSITE LSSJMPPS CONTROLLER IS STABLE AND ROBUST 
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PLANS FOR CONTINUED RESEARCH 

0 COMPLETE INVESTIGATION OF’ LSS/flPPS COMPOSITE CONTROL, 

INCLUDING PERFORMANCE EVALUATION 

a INVESTIGATE ANNULAR SUSPENSION AND POINTING SYSTEM (ASPS) 

FOR PPS CONTROL ACTUATION 

0 START INVESTIGATION OF HOOP-COLUMN ANTENNA CONTROL 

REFERENCES 

1, CHOW, J, Hm; AND KOTOVIC, P, V,: A DECOMPOSITION OF NEAR 

OPTIMUM REGULATORS FOR SYSTEMS WITH SLOW AND FAST MODES, 
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL, 21, NO, 5, 
1976, PP, 701-705, 

2, SESAK, J, R,; LIKENS, P, W,; AND CORADETTI, T,: FLEXIBLE 

SPACECRAFT CONTROL BY MODEL ERROR SENSITIVITY SUPPRESSION 

(MESS>, J, ASTRONAUT, SCI,, VOL, 27, NO, 2, PP, 131-156, 
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Magnetic 
actuators 

AMCDf LSS CONFI GURATION 
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NONLINEAR EFFECT ON MODAL DATA ANALYSIS METHOD 

Lucas G. Horta 
NASA Langley Research Center 

Hampton, Virginia 
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NONLINEAR EFFECT ON MODAL DATA ANALYSIS METHODS 

OBJECTIVES: 

1 - DETERMINE HOW THE PRESENCE OF NONLINEARITIES IN STRUCTURAL 
TEST DATA CAN BE DETECTED WHEN USING MODERN LINEAR MODAL DATA 
ANALYSIS METHODS, 

2 - EVALUATE THE EXTENT TO WHICH LINEAR ALGORITHMS CAN PROVIDE 
USEFUL INFORMATION ON NONLINEAR SYSTEMS, 

APPROACH: 

1 - GENERATE SIMULATED TEST DATA BY A NONLINEAR ANALYTICAL MODEL, 

2 - USE LINEAR METHODS (IBRAHIM TIME DOMAIN ALGORITHM (ITD) AND 
FREQUENCY-DOMAIN TRANSFER FUNCTION TECHNIQUES) TO ANALYZE SETS 
OF THIS DATA WITH CONTROLLED PARAMETRIC VARIATION, 

SINGLE DEGREE 

F-R-I 

OF FREEDOM MODEL 

LINEAR NATURE\ FREQuEtiCy = O-289 Hz 

LINEAR MO&A DAMPING = O-01 
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SINGLE DEGREE OF FREEDOM RESPONSE 

J I I I I I 
2.4 6 8 10 8 IO 

TIME (SEC) TT M4E &Cl 
WCe= 0 cl&= IO 

THE IBRAHIM-TIME-DOMAIN (ITD> MODAL DATA ANALYSIS METHOD 

0 AN OFF-LINE LARGE-SCALE DATA ANALYSIS METHOD DEVELOPED FOR STRUCTURAL 
DYNAMICS TESTS, 

0 OPERATES ON FREE-DECAY RESPONSES SOLVING MANY DATA CHANNELS SIMULTANEOUSLY, 

0 HAS PROVEN MORE SUCCESSFUL THAN OTHER LABORATORY METHODS FOR HANDLING NOISE, 
i LARGE SYSTEMS, AND CLOSELY SPACED MODES, 
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SINGLE DEGREE OF FREEDOM RESULTS 

ITD 

IDENTIED 
FREQJHz> 

t‘ -- *----- 0 Q---- 

0 

1 I I t I I 

5 10 15 

INIT, AMPLITUDE (DEG,) 
Cl/C2 = 5 

12 

ITD 10 

IDENTIFIED 8 
DAMPING, 5 t 
X CRITICAL J 

t 

0 

INIT, AMPLITUDE (DEG,> 
Cl/C2 = 5 

SINGLE DEGREE OF FREEDOM RESULTS COMPARISON 

hAkTicAI 0.3042 o. 91 z-7 
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TWO DEGREE OF FREEDOM ANALYTICAL MODEL 

EQ~JA-~ION OF MOTiON 

7 

6 
- 

hlON (iNfAR ModE 

Fz= .lSq UZ 

TWO DEGREE OF FREEDOM RESULTS 

u ws uz --- g------------~q u-2 

1 . 

fl I3 

1 -;--- - -- - ----&~ 

q El 

I I I I I , I I , 

123456789 

A~YJMED DOF =b A SUMED DOF = IO 

K EPSM= ENERGY PROVIDED ro SECOND MODE 
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SUMMARY 

1 - THE ITD MODAL DATA ANALYSIS METHOD SUCCESSFULLY IDENTIFIED THE FREQUENCY 
COMPONENTS (BUT NOT DAMPING) OF THE TRUE SOLUTION OF A NONLINEAR SYSTEM 
FROM SIMULATED TEST DATA, 

2 - THE APPROXIMATE MODAL PARAMETERS OF THE LINEAR SYSTEM CAN BE IDENTIFIED BY THE 
ITD METHOD WHEN LOW LEVELS OF NONLINEARITIES ARE PRESENT, 

3 - THE ITD METHOD SUCCESSFULLY IDENTIFIED THE MODAL PARAMETERS OF A LINEAR 
MODE IN THE PRESENCE OF A NONLiNEAR RESPONSE, 

FUTURE RESEARCH THRUST 

1 - EXPERIMENTAL EVALUATION OF ITD METHOD ON A TWO-DEGREE-OF-FREEDOM NONLINEAR 
LABORATORY MODEL, 

2 - APPLICATION OF FREQUENCY-DOMAIN TRANSFER-FUNCTION TECHNIQUES TO THE SAME 
ANALYTICAL AND EXPERIMENTAL DATA, 



STRUCTURAL DESIGN FOR DYNAMIC RESPONSE REDUCTION 

Brantley R. Hanks 
NASA Langley Research Center 

Hampton, Virginia 
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OBJECTIVE: STUDY STIFFNESS AUGMENTATION BY MATHEMATICAL DESIGN 

APPROACH: APPLY LINEAR REGULATOR THEORY WITH PROPORTIONAL FEEDBACK 

JUSTIFICATION: STIFFNESS IS READILY AVAILABLE TO DESIGNER AS PREDICTABLE 

PASSIVE CONTROL 

TIME-INVARIAKT LINEAR REGULATOR---GENERAL 

SYSTEM: 

jr=Ax+Bu+Dw 

CONTROLLED VARIABLES: 

y = cx 

OBJECTIVE: 

Min J where J = xi Sf xf + 
c 
yTQy + uT Ru dt 

Ll 1 
OPTIMAL CONTROL (ASSUMING w Is RANDOM): 

-I u = -R BT Px 

WHERE P IS SOLUTION TO 

+ = -PA-ATP + PBR -' BTP - CTQC p(t,> = Sf 

IF tf'm, GET STEADY-STATE P (AND U) FROM 

0 = -PA - ATP + PBR-' BTP - CT QC 

POSITIVE DEFINITE P EXISTS IF 

. A IS DETECTABLE IN C, STABILIZABLE IN B 

. RESPONSE WEIGHTING MATRIX, Q, IS POSITIVE SEMIDEFINITE 

. CONTROL WEIGHTING MATRIX, R, IS POSITIVE DEFINITE 
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LINEAR REGULATOR ADAPTED TO STRUCTURES 

SYSTEM: 

OBJECTIVE FUNCTION: 

L 

ASSUME: 

. RANDOM INITIAL CONDITIONS 

l COMPLETE STATE FEEDBACK WITH NO ROTATIONAL COUPLING 

l tf' m (TIME-INVARIANT STRUCTURAL CHANGE) 

CONTROL: 

0 

M--l T, 
21 

+-‘BR-~BT ~-l T, 

WHERE P21 AND p22 
ARE SOLUTIONS TO 

PT 21 A21 
T T 

+ A21 p21 - p21 
T M-l BR-lBT(M-l)TP 

21 
+cTQC =o 

1 11 (1) 

AND 

P22A22 
T 

+ A22P22 
-1 - P22M BR -' BT(M-1)TP22 +(P21 + P;l + C2Q2C2) = 0 (2) 

-1 IN THESE EQUATIONS A21 = M K AND A22=M -' G 

NOTE THAT (1) IS NOT SYMMETRIC; ALSO THAT (1) IS INDEPENDENT OF (2). 
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Q WEIGHTING MATRIX CONSIDERATIONS 

Min J where J = 
U 

/o 

T 
c11 21 CT 

CT - 12 c22 

-I 

Qll Ql2 

Q21 Q22 

yTQy = (xT icT) 

l If rate and displacement considered independently and Q chosen so as not 

to couple x and 5 

yTQy = 

l For design, selection of C is governed by desired minimum response points. 

Hence, C and Q may be assigned similar functions. 

s Diagonal C and Q minimizes weighted square response at selected coordinates. 

s Choice of Qn = K and Q,, = M minimizes sum of strain and kinetic energy at 

locations determined and (optionally) weighted by C. 
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REGULATOR FOR STRUCTURES--MODAL COORDINATES : 

TliANSFORMATION x = @q WHERE q = -qke 

WHERE $ IS NORMALIZED l$TMl# = I 

, AND % IS ASSUMED PROPORTIONAL TO wi I.E., ai = -2siwi OR $TGr$ = 

OBJECTIVE FUNCTION BECOMES 

J = tf [cqTtT)kTy 4T;+] (R} +(uTRu)]dt 

NOTE THAT 

HENCE, WEIGHTING MATRIX Q = 

RICCATI EQUATIONS BECOME 

PT 21 n2 + s-z2 P21 + Pll BR-lE?T~l - C:a2C1 3: o (3) 

Pz2 pm J + p&J P 22 + P22BR-1 gTP221 - ( p21 + q1 + c2’c2) = 0 (4) 

WHERE p, g, R, AND C ARE MODAL EQUIVALENTS OF P, B, R, AND C. 

BY CHOOSING ?', B, R, AND c DIAGONAL, WE DECOUPLE THE SOLUTION AND GET PURE "MODAL 

CONTROL." 
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CANTILEVER BEAM MODEL 

ASSUMED: 

m CONSISTENT MASS FINITE ELEMENTS 

m UNIFORM INITIAL STIFFNESS & MASS DISTRIBUTION 

o FIRST NATURAL FREQUENCY = ,047 Hz (,297 RAD/SEC) 

PHYSICAL IMPLEMENTATION OF STIFFNESS CONTROL 

x,,$y COUP~MG 
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MODE 
~ i 

1 

2 

3 

4 
-- . 

CONTROL WEIGHTING EFFECTS ON DESIGN 

UNDAMPED NATURAL FREQUENCIES 

INITIAL 
FREQ,,s 

I297 

1,867 

5,262 

10,382 

I- FINAL FREQUENCY, RAD's~c 
R =-lo1 
--.--A 

1359 

1,880 

5,267 

0,384 
--~-__I 

INITIAL 
MODE DAMPING 

% c/c, 

1 2 

2 2 

3 2 

108 176 298 

35,o 78,l 131 

13,4 38.6 82,9 

781 2100 55,4 4 I 2 2,9 

*NOTE: SOLUTIONS OBTAINED SEPARATELY FOR STIFFNESS AND DAMPING 
COMPARED EXACTLY TO FULL ORDER CONTROLLER SOLUTION 

R=I 
-~ -1 

,557 

1,989 

5,309 

10,406 

DAMPING RATIOS 

-I- 

R = ,l I R = no1 I 

,972 1,725 

2,619 4,538 

5,684 7,711 

10,615 12,233 

R-= 101 

59,3 

FINAL DAMPING, % “C 
CR 

R=I 1 R = ,l I 1 R = ,Ol I 

12.0 

4,7 
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Xl 

125 

STIFFNESS MATRIX COMPARISON (ASSUMED CONSTANT MASS) 

ORIGINAL K 

81 X2 82 x3 e3 X4 Q4 

-1250 -125 -1250 ; 0 0 0 0 

16667 1250 8333 f 0 0 0 0 L----- 1 
250 0 -125 -1250' 0 0 

33333 1250 8333 ; 0 0 
-- --- 

250 0 -125 -125C 

cc)=. 247 fa&c 33333 1250 8333 

250 0 

33333 

FINAL K FOR R = 11 I 

'129.7 -1261 -127,8 -12411 -1,74 -3,83 -ml66 -,71' 
t 

16719 1254 82781 6,41 12,85 184 2,911 
l- ---- 

260.3 -5,22 -127 -1239 -I 
I 

-1858 -3.84 

33528 1236 8249 1 2845 4858 
I- -- -- 

246,3 -2.06 -124,6 -1239 

33540 1234 8252 

Xl 

% 

X2 

82 

X3 

03 

x4 

e4 

xl 

% 

X2 

e2 

x3 

e3 

268 
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R WEIGHTING EFFECT ON STIFFNESS MATRIX 
(FIRST ROW ONLY SHOWN) 

ORIG, Kij I25 -- 
-lz!xl -- 

-Eo 

-1252 

-l2Gl 

-1310 

-I25 
-- 

-125 

-l25,1 

-x27,8 

-la,3 

-12.50 -- 

-G!!xl 

-l24!3 

-1241 

-l220 

0 -- 

-,a8 

-2l 

-1874 

-3,x3 

0 
mm 

-,005 

-,I3 

-,71 

-2.9 

RELATED SPONSORED RESEARCH 

0 KAMAN AEROSPACE CORPORATION - AUTOMATED MATH MODEL 
IMPROVED FOR MATCHING EXPERIMENTAL DATA, 

0 INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND 
ENGINEERING - IDENTIFICATION OF EQUIVALENT PDE SYSTEMS 
TO MATCH MEASURED DATA, 

SUMMARY 

0 COMPUTER PROGRAM FOR REDESIGNING STRUCTURAL MODES TO 
REDUCE RESPONSE HAS BEEN INITIATED, 

0 LINEAR REGULATOR APPROACH IN MODAL COORDINATES HAS BEEN 
IMPLEMENTED, TRANSFORMATION OF SOLUTION TO PHYSICAL 
STRUCTURE IS A MAJOR PROBLEM, 

0 SOLUTION OF STIFFNESS EQUATIONS AND DAMPING EQUATIONS 
CAN BE DONE SEPARATELY AS NXN SET OF (MATRIX RICCATI) 
EQUATIONS, 

PLANNED EFFORT FOR '82 

0 INCLUDE MASS OF CONTROL 

0 STUDY WEIGHTING TO MINIMIZE OR SELECT CROSS-TERMS 

0 IMPLEMENT PHYSICAL COORDINATE SOLUTION 

0 STUDY POTENTIAL FOR "BENEFICIAL" CROSS TERMS 
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ALGORITHMS FOR ON-LINE 

PARAMETER AND MODE SHAPE ESTIMATION 

Frederick E. Thau 
The City University of New York 

New York, N.Y. 
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One of the schemes that has been proposed for the.adaptive control of large 
flexible space structures is shoti in figure 1. This approach is based upon a 
modal decomposition of the dynam2c response of the flexible structure and is 
designed to make use of the parallel processing features of.modern minicomputers. 

Satisfactory performance of the parallel structure identification technique shown 
in figure 1 can he achieved only when the approximation functions noted in the 
figure correspond to the natural modes of the flexible structure. The work 
summarized here presents a technique for estimating both mode shapes and modal 
parameters. 

w(s,t) = L, Qi It,Pi) pi (” +~(S,t) 
i=l 

(a) Motion of flexible structure. 

q (k+l) = A,q (k) + A2q (k-l) + B$J(k) + B2U (k-1) 

y(k) = Hq (k) + w(k) 

(b) Modal description. 

Figure l.- Problem formulation. 
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Figure 2 shows the analytic background for the formulation of the on-line 
identification problem. Themotion of.the flexible structure is expressed as a 
sum of NM terms involving themodal shape function E,(s) and the modal.smplitudes 
qi (3, piI wfiere s denotes' the spatial variable and t represents time. The 
parameter vector pi represents a set of parameters IATi,A2i;gli,B2f] .for each 
mode. The Zdentification‘problem is formulated in terms of the modal description 
shorn in figure 2(b), where the Ai,i=l,2 are di,agonal matrices of order NM, U(k) 
denotes a vector of actuator signals and the Bi are rectangular matrices. Matrix 
H, relating the modal amplitudes to the measurement vector y(k), has columns that 
are linearly independent in the modal model. On-line measurements Cy(k)),CU(k)} 
are to he processed in order.to obtain estimates of the matrices Ai, Bi, and H. 

ACIIJATM COMMAND 

Figure 2.- Distributed adaptive control. 
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Algorithms for on-line parameter.identificationare shown in figure.3. 
Assuming that the approximation functions are given, the modal parameters are 
updated using an output error formulation where the error ei is, given by 

ei(k-1) = qi(k-1) - ,Aliqi (k-21 - A2iqi (k-3) - i%liFi(k-2) - gZiFi(k-3) 

where Fi(k) denotes a modal force component. The weights W are selected to 
satisfy i 

W1q;(k-2) + W2q;(k-3) + W3F;(k-2) + W4F;(k-3) < 2 

to insure stability of the identification algorithm. 

The approach for updating the approximation functions is based on combining 
the modal equations shown in figure 2 into the single relation involving matrices 

*i and Ni where 

*i = HAiH+ 

i = 1,2 

Ni = HBi 

and (H)+ denotes the pseudo-inverse of H. Using a regression analysis approach, 
data are collected over a time interval of length N and a least-squares estimate 
Of Mi and Ni is obtained. When the number of modes in the modal approximation 
is the same as the number of sensors, the eigenvectors of Mi correspond to the 
columns of H. 

W,qi 1 k -2) 
pi(k) = pi(k-ll + ei(k-lI. W2qi (k-31 

W3Fi (k-2) 
W4Fi (k-31 

1 

(a) Pole-zero characteristics - output error formulation. 

y(k+l) = M,y (k) + M2y (k-l) + N,lJ (k) + N2U(k-II + n (k+l) 

Nl Y (N) = S(Nd + V(N); MT 

= S+(N) Y(N) 

(b) Approximation functions - regression analysis. 

Figure 3.- On-line parameter identification. 
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A schematic diagram of the flexible beam used to test the idenfification 
algorithms is shou& in figure 4. Sensor and actuator locations along the beam are 
shown along with the modal frequencies and mode shapes for the first three, flexible 
modes obtained from the SPAR analysis program. 

ACTUATOR- 
ly 1.81 Hz 

c 

I t I I I 1 1 
0 2 4 6 8 10 12 

Longitudinal Station, ft. 

Figure 4.- Modes of interest. 
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Figure 5 shows the modal decomposition for mode 3 unforced response. A set 
of approximation functions obtained from the SPAR analysis was used and eight 
modes were assumed in the real-time program that 'produced the modal amplitude 
signals shown. For this response there is some excitation of modes 1 and 2. 
However, higher frequency modes do not appear to be excited. 

.Ol : , ,.... -.. .- ._ -- --( . . I '.. -- -j_.__ .-I . q4 0 EP-W H -A---- 
-.Ol 

,TyL, 1-u. --,:,;: Fr .-, -1 --I 
.Ol 

95 0 

-.Ol E 
0 10 20 30 40 

Time, sec. 

Figure 5.- Modal decomposition. 

Eight SPAR modes; mode 3 excited. 
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Outputs, of four on-line identifiersthat result from self-sustained oscillation 
of the third vibrationmode are shown in figure 6. .Note that before the sustained 
oscillation occurs the Tdentiffars are respondingto measurement noise. Upon 
initiatZon,of the sustafned oscillatLon.the pafameters,of the vibrating mode are 
rapidly fdentified. The parameters pf correspond to the jth diagonal element of 
the matri'x AT, i = 1,2', shown in figu e 2. 4 Also shown in the figure are the 
modal parameters- derived from the structural analysis program. 

1 
Pl 

1 
p2 

1 
P3 

1 
P4 

3 

0 

-3 E 

3 

0 

-3 I 
3 r 

2 
Pl 

2 
P2 

2 

0 

-2 F 
2 

0 

-2 t 

I I 1 1 
0 10 20 30 

Time, set 

Figure 6.- Output of parameter identifiers. SPAR derived values; mode 3 excited. 
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Figure 7 showa the outputs of.four on-line-identifiers resulting from a ~-HZ 
excitation produced hy actuator'l; Note that the parameters of the first vibration 
mode are.idenkifted.h& the high. frequency modal parameters are not found as a 
result of.the 5-Hz &citation. 

1 0 I i 1 I 1 1 J 
0.5 1.0 1.5 0 0.5 1.0 1.5 

Time, set Time, SeC 
Figure 7.- Output of parameter identifiers. SPAR derived values. 

Sinusoidal excitation by actuator 1 at 5 Hz. 
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;( 
it 

i 

,‘i 
ii :; Figure 8 demonstrates the result of applyins the mode.shape identification 
i procedure (a) to a simulation wherein the beam was given an arbitrary displacement 

and (b) in an experiment wherein only the first flexible mode was excited. In the 
simulation the normalized mode shape obtained agreeawith that prodked by the 
SPAR analysis. However, in the laboratory experiment a distortion in the identified 
mode shape was observed. In both cases the mode shape.was identified on line after 
approximately 1 second of data processing. 

I . I I 
0 2 I 

I 1 I 1 I 
4 6 8 10 12 

Longitudinal station, ft 

(a) Simulation 

(b) Experimental 

Figure 8.- Identification of mode shape. 
First flexible mode. 

159 



A table of identified modal parameter values that resulted from a simulation 
incorporating both the mode shape and modal parameter identification schemes is 
shown in figure 9. Identification of mode shapes and parameters was accomplished 
in approximately 1 second of processing measurements from eight sensors distributed 
along the beam. 

[Simulation - all modes excited at parameter values] 

1 Flexible mode Initial Final Actual 

1 -0.8495 1.8726 1.87267 

2 -1.7194 1.0991 1.099181 

3 0.09918 -0.71936 -0.71940 

4 0.83907 -1.9960 -1.9960 

5 0.8726 0.15047 0.15049 

6 -2.996 1.8387 1.83907 

Figure 9.- Identification of modal parameters. 

SUMMARY 

l Presented algorithms for on-line parameter and mode-shape estimation 

l Examined identification performance using computer simulations and a 
limited number of laboratory experiments 

l Future work will include: 

(1) Further experimental studies 

(2) Development of separable nonlinear least-squares approach 
to identification 

(3) Development of on-line performance measures for sequential 
processing decisions 
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COMPONENT NUMBER AND PLACEMENT 

IN LARGE SPACE STRUCTURE CONTROL 

Wallace E. VanderVelde 
Department of Aeronautics and Astronautics 

Massachusetts Institute of Technology 
Cambridge, 1lassachusetts 
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PURPOSE: 

PROVIDE AN OBJECTIVE MEANS OF ASSISTING THE DESIGNER 

OF THE CONTROL SYSTEM FOR A LARGE FLEXIBLE SPACE 

STRUCTURE IN HIS CHoICE OF HOW MANY ACTUATORS AND 

SENSORS TO INCORPORATE IN THE SYSTEM, AND WHERE TO 

LOCATE THEM ON THE STRUCTURE, 

WHAT WE NEED IS: 

0 A QUANTITATIVE MEASURE OF HOW WELL A SYSTEM CAN BE CONTROLLED 

WITH A SPECIFIED SET OF ACTUATORS 

0 A CJUANTITATIVE MEASURE OF HOW WELL A SYSTEM CAN BE OBSERVED 

WITH A SPECIFIED SET OF SENSORS 

0 A MEANS OF RECOGNIZING THE EFFECTS OF COMPONENT FAILURES IN 

THESE MEASURES 

0 A MEANS oF OPTIMIZING THE LOCATIONS OF ACTUATORS AND SENSORS 

SO AS TO MAXIMIZE THESE MEASURES 
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A MEASURE OF THE DEGREE OF CONTROLLABILITY 

1, FIND THE MINIMUM CONTROL ENERGY STRATEGY FOR DRIVING THE SYSTEM 

FROM A GIVEN INITIAL STATE TO THE ORIGIN IN A PRESCRIBED TIME, 

2, DEFINE THE REGION OF INITIAL STATES WHICH CAN BE RETURNED TO THE 

ORIGIN WITHIN SPECIFIED LIMITS ON CONTROL ENERGY AND TIME USING 

THE OPTIMAL STRATEGY, 

3, DEFINE THE DEGREE OF CONTROLLABILITY TO BE SOME MEASURE OF THE 

SIZE OF THIS REGION, 

STEP 1. MINIMUM ENERGY CONTRflL 

/ 

T 
Problem statement: Min E = + UT R u at - - 

0 
. 

subject to x = Ax + Bu - - - 

x(O) , T given 

x(T) = 0 

Solution: u(t) = R-l BT Gpp (t) exp CT) -l $xx(T) ~(0) 

The fiij (t) are partitions of the transition matrix for the system 

A -BR-lBT 

0 -AT 
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STEP 2, THE RECOVER-Y REGION 

Using optimal control, the cost to return to the origin can be 

expressed: 

with 

E = $ ~(0)~ V(0) -I. E(O) 

. 
V = AIJ + VAT - BR-' BT V(T) = 0 

For specified values of time, 'T, and control energy, Es, the recovery 

region is the interior of the space bounded by the surface 

gwT V(0) -l ~(0) = 2 Es 

STEP 3, THE SIZE OF THE RECOVERY REGION 

First scale the state variables such that equal displacements in all 

directions are equally important. 

2 = Dx - - 

D= 

1 

X1min 1 0 
0 

x2 min . l * 
1 

X 
"min 

where xi 
min 

is the minimum initial value of xi one would like to be able 

to drive to the origin with constrained time and control energy. 
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STEP 3 (CONTINUED) 

Then define a weighted measure of the volume of the recovery region 

in the scaled space. 

Vol vS = vs + r ‘VR - Vt;’ 
R 

vS = volume of the largest tiphere which can be inscribed in the 

elliptical boundary of the recovery region 

vR = volume of the recovery region 

vR - % 

The Degree of Controllability is defined to be the n th root of this 

weighted volume. 

Also VR5 7-f cAyl'* i 

where the are the eigenvalues of D -' V(O)-' D-l. 

Alternatively 

vR = 71i (UiF 

where the Vi are the eigenvalues of DV(O)D. 

Then vS ~ 'Vi ) n/2 
min 

An analytic solution is available for V(0). 
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OCGREE OF CONTROLLQBILITY 

FOR R FREE-FREE BERM 

1 
12.00 

6EAM POSITION (FTI 

FIRST FLEXIBLE MODE ONLY 

1 ACTUATOR: VARIABLE POSITION 

DEGREE OF CONTROLLRBILITY 

FOR 17 FREE.-FREE BEWl 
SECOND FLEXIBLE MODE ONLY 
1 ACTUATOR: VARIABLE POSITION 

1 
I. 00 12.00 

BEQM POSITION EFTI 
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0 w 
d 

E 1 

OEGREE cIF C~NTR~LLFIBILITY 

FCJR F1 FREE-FREE BERM 
FIRST AND SECOND FLEXIBLE MODES 
1 ACTUATOR: VARIABLE POSITION 

-JO 

-h 

-m 
md 
a 

p 

s 
w 
00 

0 

“0.00 
I I I 1 

2.00 4. 00 6. 00 6.00 IO. 00 12 
BERM POSITIONIFT~ 

DEGREE OF CONTRCJLLFIBILITY 

. 00 

FOR FI FREE-FREE BERM 
FIRST AND SECOND FLEXIBLE MODES 
2 ACTUATORS: 1 FIXED AT CENTER 

1 VARIABLE POSITION 
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OEGAEE ‘OF CONTRClLLW3 I L Il-Y 

FOR f7 FREE-FREE BEQM 
FIRST AND SECOND FLEXIBLE MODES 
2 ACTUATORS: 1 FIXED AT END 

1 VARIABLE POSITION 

a 
Ei 
00 

2.00 2.00 I 4.00 I 8.00 1 6.00 1 10.00 1 12. 1 

BERM POSITION 

ONE MORE CONSIDERATION 

00 

WE WANT THE MEASURE OF CONTROLLABILITY ~0 REFLECT THE FACT 

THAT A SYSTEM WITH MORE ACTUATORS OF EQUAL EFFECTIVENESS HAS 

GREATER CONTROL CAPABILITY THAN ONE WITH FEWER ACTUATORS, 

THE DC JUST DEFINED IS MADE PROPORTIONAL'TO THE NUMBER OF 

ACTUATORS PLACED AT THE SAME LOCATIONS IF THE ELEMENTS OF R 
ARE SCALED INVERSELY WITH THE NUMBER OF ACTUATORS, 

FOR DIAGONAL R, CHOOSE ROii TO REFLECT THE RELATIVE COST OF 

THE DIFFERENT CONTROLS, THEN 

R ii = Ro. /m 
ii 

m = total number of actuators 
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A MEASURE OF THE DEGREE OF 

OBSERVABILITY 

1, IN TERMS OF AN INFORMATION MATRIX, DETERMINE HOW MUCH 

INFORMATION CAN BE DERIVED ABOUT THE SYSTEM STATE IN 

TIME T, STARTING FROM ZERO INFORMATION, USING THE GIVEN 

SET OF SENSORS, 

2, DEFINE THE DEGREE OF OBSERVABILITY TO BE A MEASURE OF 

THE SIZE OF THIS INFORMATION MATRIX, 

STEP 1, TliE INFORMATION MATRIX _ .-_ -.- ,..~~.__ -- ~. 

WE WANT THE DEGREE OF OBSERVABILITY TO BE A PROPERTY OF THE SYSTEM, 

NOT OF THE ENVIRONMENT IN WHICH IT OPERATES, SO DO NOT CONSIDER 

STATE DRIVING NOISE, 

THEN 
. 
J = - JA - ATJ + C M T -lc 

J(0) = 0 

CORRESPONDING TO THE SYSTEM MODEL 

ix = Ax + B: - - 

l=Cx+n 

T ;(tl)"(t2) = N (fj (t2-tl) 

AN ANALYTIC SOLUTION IS AVAILABLE FOR J(T), 
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STEP 2. THE SIZE OF THE MATRIX 

ONE WAY TO MEASURE THE SIZE OF J(T) IS TO INDICATE THE VOLUME 

CONTAINED WITHIN THE SURFACE 

vT J(T+ = 1 

RUT THE VARIABLES SHOULD BE SCALED TO REFLECT THE RELATIVE IMPORTANCE 

OF ERRORS IN THE DIFFERENT STATE VARIABLES, 

w=Fv - 

=2 mex 
0 

1 

. . e n max 

WHERE ei IS THE MAXIMUM TOLERABLE ERROR IN THE ESTIMATE OF Xi’ 
max 

THE DEGREE OF OBSERVABILITY IS DEFINED WITH RESPECT TO THIS VOLUME 

IN THE SPACE OF EQUALLY IMPORTANT ERRORS (2) JUST AS THE DEGREE OF 

CONTROLLABILITY WAS DEFINED FOR THE VOLUME OF THE RECOVERY REGION 

IN THE SPACE OF EQUALLY IMPORTANT CONTROL CHARACTERISTICS, 

DO = f/z 

VR = ~ (Vi)1’2 

vS = 0). 
lmin 

p'2 

WHERE THE Vi ARE THE EIGENVALUES OF FJfT)F* 
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DEGREE OF OBSERWBILITY 

=: FOR F1 FREE-FREE BERM 
FIRST FLEXIBLE MODE ONLY 

1 1 SENSOR: VARIABLE POSITION 

DEGREE OF OBSERWBILITY 
FOR Fl FREE-FREE BEQM 

8 
FIRST AND SECOND FLEXIBLE MODES 

2 SENSORS: 1 FIXED AT CENTER 

1 VARIABLE POSITION 

LLS: Cl. 
0, 

iii 

* 

3 

!% 
5.00 2.00 1 4. 1 00 6. 00 8.00 1 10.00 1 12 I 

BERM POSITION [FTI 

171 



RECOGNITION OF COMPnYENT FAILIJRFS IN 

THESk MEASIIRES 

LET f INDICATE THE STATE OF FAILURES AMONG THE ACTUATORS OR SENSORS. THEN 

FOR EVERY f, DC(f) OR Do(f) CAN BE COMPUTED AS JUST DESCRIBED. 

FROM THE STATISTICAL MODEL FOR FAILURES OF THE DIFFERENT COMPONENTS ONE CAN EXPRESS 

Prf(t) = fil. 

THE AVERAGE, OVER THE MISSION PERIOD, OF THE EXPECTED DEGREE OF CONTROLLABILITY OR 

OBSERVABILITY IS TAKEN AS THE FINAL MEASURE. 

ADC= $- 
Tm 

/ 
-ETiTr at 

m 
0 

1 ‘m 
L- 

Tm / 
c DC(fi) P[f(t) 
i 

= fil dt 

0 

= c DC(fi) +- 
/ 

Tm 
P[f(t) 

i mO 

= fil dt 

THE DEGREE OF OBSERVABILITY IS COMPUTED IN THE SAME WAY, 

FIRST AND SECOND FLEXIBLE MODES 

2 ACTUATORS: 1 FIXED AT END 

t-G 1 VARIABLE POSITION 
I- * 

1 

z 

:a- 
!!O FAILU ES 

ti 
. 

E 

ii5 
uz- 

EJ 

. 

k 

i 
~(FAIL <T,) = 9,37 

=S- 
t: ' 
0 

z 
2!0 

I 
4.0 

I I I 
IO. 0 

1 . . 
BE'AM Pi!&TIONq.~Tl 

12.0 
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OPTIMIZING CQMPONEr~T-LOCATInNS 

THE AVERAGE DEGREE.• F CONTROLLABILITY IS A FUNCTION OF THE CHOICE OF 

ACTUATOR LOCATIONS; LET ,.&INDICATE THE VARIOUS ADMISSIB LE CHOICES, 

. 

ADC $'ADC(fi) 

AN OPTIMIZATION ROUTINE IS REQUIRED TO FIND THE OPTIMUM LOCATIONS, 

ADC* = max ADC(t.e) 
10 

THE OPTIMUM SENSOR LOCATIONS ARE DEFINED IN THE SAME WAY USING THE 

AVERAGE DEGREE OF OBSERVABILITY, 

FIRST AND SECOND FLEXIBLE MODES 
2 ACTUATORS: 1 FIXED AT END - 

flPTIMUM LOCATION OF SECOND 

ACTUATOR WITHOUT CONSIDERING FAILURES 

CONSIDERING FAILURES 

2 I- 
I I I I I 

* . 2.0 4.0 -6.‘O 

BERM POSITIoN%I 
IO. 0 12.0 
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CHOICE OF THE NUMBER OF COMPONENTS 

THE OPTIMUM AVERAGE DEGREE OF CONTROLLABILITY Is A .FUNCTION OF 

THE NUMBER OF ACTUATORS IN THE SYSTEM, 

ADC’ + ADC* (m) 

WITH THE LIKELY CONSTRAINT THAT MULTIPLE ACTUATORS CANNOT BE PLACED 

IN THE SAME LOCATION, ADC*(m) SHOWS DIMINISHING RETURNS WITH 

INCREASING m, 

THE SAME IS TRUE FOR THE OPTIMUM AVERAGE DEGREE OF OBSERVABILITY, 
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A PROGRAM PLAN FOR THE DEVELOPMENT OF 

FAULT TOLERANT LARGE SPACE SYSTEXS 

Paul Motyka 
Charles Stark Draper Laboratory, Inc. 

Cambridge, Massachusetts 
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Objectives 

~~XP~CTED 
NUMBER OF 
FP.ILURES 
PER Y Ehfi 

l Establish the need for fault tolerance in LSS 

l Discuss the uniaue characteristics of LSS which 
affect fault tolerance 

l Sumnarlze the status of fault tolerant svstems 
for LSS 

l Discuss a oronram plan to validate and demonstrate 
the concept of fault tolerance for LSS 

Establishment of the Need for Fault Tolerant LSS 

N = Number of System 
Comoonents 

MEAN TIME I-IETWL%N MtiunCt 01) 
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Characteristics of LSS That Affect Fault Tolerance 

l DimensionalltY 

- Will have to consider a much larger number of components 
than in any previous application 

- May affect the achievement of real time operation and 
computational accuracy 

l Precise accuracy and stability requirements 

- Small failures will have to be detected and isolated quickly 

l Structural mode and Physical displacement effects on sensors 

- May be comparable in maanltude to the failures which 
must be detected 

l Environmental effects 

- Dynamic effects such as large angle slewing maneuvers 

- Thermal effects may produce changes in modal 
characteristics 

l Spillover (Model Order Reduction) effects 

- Mav introduce uncertainties which can be falsely 
interpreted as failures 

l Many diverse types of sensors Present 

- Must be collectively accounted for if system wide 
fault tolerant canabllitv is to be achieved 

l Multiple experiments operating on a single LSS 

- Interactions amonrl experiments may result in false alarms 

- A robust fault tolerant system mav be reauired to tolerate 
changes In modal characteristics wtth exoeriments 

l The modal frequencies may be in the controller bandwidth 

- Filter-inn to reduce modal effects and improve fault 
tolerant capabilitv mav not be possible 
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Status of Fault-Tolerant Technology for LSS 

l Little work has been done in this area 

l A large body of knowledge concernlnq fault tolerant systems 
has evolved in spacecraft and avionics applications 

l This material forms a solld foundation for the develooment of 
fault tolerant technology for LSS 

Elements of a Program Plan to Validate 

the Concept of Fault Tolerance for LSS 

l System modeling 

- Generate an analvtlc model of the LSS 

l Environment modellne 

- Define LSS tasks, maneuvers and disturbances 

. Requirements definition 

- Define LSS accuracy, strlbilltv and rellahlllty 
requirements 

l Component modellnq 

- Define analytic models, error effects, noise, flexlbllltv 
effects, etc. 

- Uncertalntles establish the fault tolerant cc3ablIlty of LSS 

l Fault tolerant techniques development 

- Develop algorithms to detect and isolate faults and 
reconflqure LSS 

l Simulation development 

- Both nonreal time and real time capabllltles wlll be 
needed 

. Development of o fault tolerant data processing capahlllty 

- Needed to carry out computations associated with the LSS 

- A firm basis for thls technology exists 
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Elements of a Program Plan to Validate 
the Concept of Fault Tolerance for LSS 

(concluded) 

l Concer>tuol design 

- Prellminarv definition of algorithms, comDonents, 
architectures, etc. and assessment of design 
alternatives 

l System design 

- Detailed and specific determination of Darameters, 
components, architectures and oloarlthms for selected LSS 

l Preliminary lmplementatlon 

- Deflnltlon of system software and hardware 

- Partitioninn of functions amona subsystems 

l Validation of fault tolerance concept and demonstration 
of capability 

- Use slmulotlon of comnlete LSS 

l Requirements evaluation 

- Use simulation to assess ability of fault tolerant 
LSS to meet accuracy and stabilltv requirements 

- Analytic techniques must be emploved to evaluate 
the rellabllltv of the LSS 

Conclusions 

l There is a definite need for fault tolerance in LSS 

l LSS have unique characteristics which impact foult tolerance 

l Very little work has been done reaardlnq fault tolerance for 
LSS although a solid base exists from spacecraft and avionics 
applications 

l A Program Plan for the validation and demonstration of the 
concept of fault tolerance for LSS has been developed 
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LARGE SPACE STRUCTURES 

CONTROL ALGORITHM CXARACTERIZATION 

E. Fogel 
Charles Stark Draper Laboratory, Inc. 

Cambridge, Massachusetts 
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Computation Consideration in 

LSS Control/Identification 

l Algorithms 

l Structures 

l Computation considerations 

Spillover Effect 

\ CONTROLLED MODES 

u 1 
contt-0 

I BR h RESIDUAL NODES 

computer 

182 



MODEL 

i = AX + BU 

A = dlas HJ 

y = cx 

HJ = 

Separation to : controlled modes 

XC 

: residual modes 

xR 

X= 
xc 
[l xc. 

-0 1 L 1 -02 0 

AC % 

[1 U 

BR 

LAC/HAC 

m: local feedback colocated sensor/actuator pairs 

+ Augment damp.ins 

lj.& dynamic feedback to control a reduced order model 

* frequency shaped K,F, 
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HAC/LAC: Cotjtro,l Algorithm 

U = "L + ",, 

Rate HAC rate = l/2 LAC rate 

LAC/HAC BASED COMPUTATION REQUIREMENTS 

I 

RATE 
I 

I 
I LOW . 

I 

; 
I 
I 
I 

COMPUTER 
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LQG APPROACH 

Solution 

solve LQG for xc 

J - II+ II,' + Ilu liR2] dt 

Imlementatlon 

A k? -- 
'= AcXc+BcU+KT (Y - C(g) 

K = - R-l BcTP 

PA, + AcTP + Q - PTBcR-bcTP = 0 

T.: BRT = 0 BcT f 0 

I 

orthogonal i tY 

i: ?cR’ 0 ic, # 0 conditions 

Closed loop: 

AC - BcTK 0 BcTK 

0 AR 0 

0 0 A, - ii& 

A 
e - Xc - ;;c 
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I I I 

I 

1 

I 
corncuter --------,----- --- -- - 1 

. lOO-METER BEAM 

. !&METER REFLECTOR ANTENNA 
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Beam Instrunentation 

3 clusters of x y accelerometer (sensor) 

proof mass (actuator) 

at: TOP, Middle, Bottom 

DIMENSION (Mu OF SENSOR VECTOR AND ACTUATOR VECTOR = 3 X 2 = 6 
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SOm REFLECTOR 

OFF SET FEED 
F/D - 2.0 
NONMETALLIC FEEDMAST 
TAPERED TENSION TRUSS 

Y 1 X 

Anteiino Instrunentation (detail) 

13 CLUSTERS OF COLOCATED SENSORS/ACTUATORS AS FOLLOWS: 

1, MAST/ORBITER ATTACHMENT: 

SENSORS 2 DDF ACCELERONETER PKG (x, Y) 
ACTUATOR 2 DOF PROOF MS 

2, REFLECTOR HUB WHERE FEED SUPPORT HAST IS ATTACHED TO ANTENNA SUPPORT MAST) 

SENSORS 2 DOF ACCELEROMETER PKG (x, y) 
1 DGF RATE GYRO (TORSION AXIS) 

ACTUATOR 2 DOF PROOF NASS PKG 
1DfJF TORQUE WHEEL 

3. 8 CLUSTERS OF INSTRUHENTS AROUND RIM OF REFLECTOR: 

SENSORS 2 DOF ACCELEROMETER (TANGENTIAL,+ z) TENSIOHETERS ON GUY 
WIRES 

ACTUATORS 2 DOF PROOF MASS (taneentlal +Z), GUY Tensloner 
4. MIDDLE OF FEED SUPPORT: 

SENSORS 2 DOF ACCELEROMETER PKG (x,Y) 
ACTUATORS 2 DOF PROOF HASS (X,Y) 
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Antenna Instrunentation (cont.) 

5, FEED MAST/SUPPORT MAST ATTACHMENT: 

SENSORS: 2 DOF ACCELEROMETER (x,Y) 

1 DOF RATE GYRO (TORSION) 
ACTUATORS 2 DOF PROOF MASS (X,Y) 

1 DOF TOROUE WHEEL (TORSION) 

6. AT FEED: 

SENSORS 2 DOF ACCELEROMETER (Y,z) 
ACTUATORS 2 DOF PROOF MASS (Y,i!) 

l DIMENSION OF SENSOR/ACTUATOR VECTORS (Ml = 2+3+2+3+2+8x3 = 36 

. THESE ALGORITHMS HAVE BEEN SIZED IN TERMS OF 
. FLOATING POINT OPERATION (FLOP) DEMANDS 
. STORAGE FOR VARIABLES 
. INPUT/OUTPUT DATA FLOH 

. FLOP SIZING (PER CONTROL CYCLE) DONE AS A FUNCTION 
OF THE NUMBER OF CONTROL STATES AND THE NUMBER OF 

SENSOR/ACTUATOR PAIRS 

. STORAGE FOR VARIABLES AND I/O SIZING DONE FOR 

SPECIFI: c STRUCTURE EXAMPLES 

InPutiOutput Data Flow Rates 

Assmtlon l Control bandwldth 50 Hz 

l Accuracy - 2 byte/word 

4 
c 

SarrPIlns frequency 250 Hz 
Comnand frequency 

Data Flow rate ( sensor 
Per 

actuator 
500 @ytes/seq 

TM: Beam: 3,000 LWtes/secJ 
Antenna: 18,000 CBYtes/sec] 

1553B bus CaPacity 48,000 @Ytes/sec] 
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G SI7I.M 

ANTFNNA 
SENSOR/ACTUATOR PAIRS (ml 6 36 
CONTROL STATES $1 20 20 
FLOP PER CYCLE* 1420 4420 
VARIABLES"" 752 2312 
I/O PER CYCLE 12 72 

*INCLUDES SENSOR COMPENSATION FLOP (120 FOR BEAM, 720 FOR ANTENNA) 

**INCLUDES SENSOR COMPENSATION VARIABLES (60 FOR BEAM, 360 FOR ANTENNA) 

FLOP/CYCLE 

LOG ALGORITHM: 2n2+ I-I-+4n-m 

I TYPICAL AP CAPACIN @ 250 cvcltds /////I 

/ 2kt //I// 

lkl I 

NUMBER OF CONTROLLED STATES (nJ 
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SENSOR/ACTUATOR PAIRS (m) 6 36 
CONTROL STATES (n,) 12 12 
FLOP PER CYCLE* 633 4608 
VARIABLES** 570 3060 
I/O 12 72 

l INCLUBES SENSOR COM'ENSATION FLOP (120 FOR BEAM, 720 FOR ANTENNA) 
l +INCLUBES SENSOR COMPENSATION VARIABLES (60 FOR BEAN, 360 FOR ANTENNA) 

FLOP/MC CYCLE 

(LAC FLOP + 4 HAC FtOP): %n~+~nH+~y,m+~+*2 

5 k’ - 

2k- m-30 

lk- 

100 
1 2 6 10 20 50 

STATES UNDER HIGH-A~~+ORITY CONTROL (nH) 
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COHPUTATION LOAD 

(qj) 
X GPC 

Structure Algorlttnn m n 
K FloPs/sec 

caPacltv HP%%! ty I 

Beam LQG 6 12 6 55 67 7 

6 16 10 112 135 I4 

HAC/LAC 6 12 6 34. 41 4 

6 16 IO 57 69 7 

Antenna LQG 36 42 6 260 300 36 

I HAULAC 36 42 6 750 900 100 

m = # of sensors/actuators 
n = # of modes In model 

“C - # of controlled modes 
"H 

SYSTFM IDFNTIFICATION COMPUTATIONAI WING 

. ARMA-LEAST SQUARES ALGORITHM SIZED FOR FLOP AS FUNCTION OF 
MODEL ORDER (NJ AND NUMBER OF SENSOR/ACTUATOR PAIRS (ml 

. FLOP REQUIREMENTS FOR THIS ALGORITHM ARE SO LARGE THAT 
IMPLEMENTATION IN A FLIGHT SYSTEM OR ITS GTF ANALOG IS 

PRECLUDED 
. EVEN IMPLEMENTATION IN GROUND-BASED COMPUTERS IS 

CONSIDERED QUESTIONABLE, BUT THIS STUDY ASSUMES 
A GROUND-BASED IMPLEMENTATION 

a NOTE: SOME OTHER SYSTEM IDENTIFICATION ALGORITHM MAY BE 

IMPLEMENTABLE IN A FLIGHT SYSTEM 
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l Algorithm 4ssessed - Least Squares 

Motivation for choosina LS 

l Relative hish spectral resolution 

l Comparable to other algorithm in computation 
complexity 

e.g. : Covariance algorithm 
: Maximum Entropy 

. "Better" alsorithms - considerably more complicated 

l Less complex alsorithms - considerable penalty in 
performance 

l LS- robust to order reduction 

l Useful for - control design 
- self tunlnc! regulators 

Identification Alsorlthm Sizing 

Assume the ARMA model 

yk = c AIYk-i + j$ BIUk-l 

where yk = vector of measurements (sensors) 
at cycle k 

'k = vector of control influence at cycle k 

we can write 

yk = 

= a-z k 

Use 1easFsquares identification 

r 
'k-1 1 

Y;(-n 

'k 
I 

%n+l 
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SENSOR/ACTUATOR PAIRS (m) 6 36 
MODES MODELLED (N) 12 42 
OFF-LINE MEGAFLOP 354.2 297,779 

FOR 4000 CYCLES 
OFF-LINE FLOP/CYCLE 88,552 74,444,881 

OFF-LINE MEGAFLOPS 22,l 18,611 
(a 250 CPS) 

ON-LINE FLOP/CYCLE 169,784 73,601,174 
ON-LINE MEGAFLOPS 42.5 18,400 

(a 250 CPS) 

a01 

AVIONICS DATA PROCESSING 

throunhrut (MFLOPS) 

0.1 1.0 10.0 100 

Near-Term Processor 1 I :: I 

IJ-Processors 

ProJected Trends 
(ovlonlcs) 

Exlstlng Control 

LSS Control (ATB Models) pdel Dependent 3 

LSS Identlflcatlon 

Other Space RQTS 

I b 

Houseket%ins s Payload Processing b ,Slsnal Processing, 
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PARTITIONING OF LARGE SPACE STRUCTURES 

VIBRATION CONTROL COMPUTATIONS 

J. Kernan 
Charles Stark Draper Labcratory, Inc. 

Cambridge, Massachusetts 
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SENSOR/ACTUATOR PAIRS (m) 6 36 
CONTROL STATES 
FLOP PER CYCLE* 

$1 20 20 
1420 4420 

VARIABLES** 752 2312 
I/O PER CYCLE 12 72 

*INCLUDES SENSOR COMPENSATION FLOP (120 FOR BEAN, 720 FOR ANTENNA) 
**INCLUDES SENSOR COMPENSATION VARIABLES (60 FOR BEAM, 360 FOR ANTENNA) 

SENSOR/ACTUATOR PAIRS (m) 6 36 
CONTROL STATES 
FLOP PER CYCLE* 

(n,) 12 12 
633 4608 

VARIABLES** 570 3060 
I/O 12 72 

*INCLUDES SENSOR COHPENSATION FLOP (120 FOR BEAM, 720 FOR ANTENNA) 
**INCLUDES SENSOR CONPENSATION VARIABLES (60 FOR BEAN, 360 FOR ANTENNA) . 
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. A RANGE OF CHOICES BETWEEN THE TWO FOLLOWING 
EXTREMES WAS INVEST 1 GATED: 
. CENTRAL COWUTAT 1 ON OF BOTH CONTROL 

AND SENSOR dONPENSAT ION 
. CONTROL COMPUTATIONS DISTRIBUTED AMONG 

CENTRAL AND LOCAL PROCESSORS; LOCAL 
PROCESSORS ALSO PERFORM SENSOR COMPENSATION 

. PORTIONS OF THE CONTROL COMPUTATIONS CAN 
BE DISTRIBUTED BECAUSE THE ROWS OR COLUMNS 
OF THE MATRICES INVOLVED CORRESPOND TO 
INDlVIDUAL SENSORS OR ACTUATORS 
. DISTRIBUTION IS SUPPORTED BY THE FACT THAT 

THE MATRICES INVOLVED ARE EITHER CONSTANT 
OR INFREQUENTLY CHANGED 

LSSC COMPUTATION DISTRIBUTED AMONG CENTRAL AND LOCAL PROCESSORS 

4-SENSOR 
CLUSTER 

,RAW SENSOR READINGS, 

KALMAN GAIN COLUMNS WEIGHTED 
FOR THESE 4 SENSORS SENSOR 

READINGS 

LOCAL PROCESSOR INPUT ACTIVITIES 

I ’ COMPENSATION 
\ 

I 

CENTRAL 
PROCESSOR 
ACTIVITIES 

VIBRATION 
CONTROL 
ALGORITHM 

ESTIMATED 
STATE 
VECTOR 

4-ACTUATOR 
CLUSTER 

ACTUATOR COMMANDS 

FEEDBACK GAIN ROWS 
FOR THESE 4 ACTUATORS 

LOCAL PROCESSOR OUTPUT ACTIVITIES 

2-ACTUATOR 
CLUSTER QQ 

ETC. ETC. 



* LQG COMPUTATIONS THAT SHOULD BE DISTRIBUTED TO LOCAL PROCESSORS, 
IN ORDER OF DECREASING PREFERENCE 

. COMPENSATING SENSOR READINGS FOR SCALE FACTOR, BIAS, AND DRIFT 

I APPLYING FEEDBACK GAIN TO ACTUATOR COMMANDS 

I APPLYING KALMAN GAIN TO COMPENSATED SENSOR READINGS 

I HA&AC COMPUTATIONS THAT SHOULD BE DISTRIBUTED TO LOCAL PROCESSORS, 
IN ORDER OF DECREASING PREFERENCE 

. COMPENSATING SENSOR READINGS FOR SCALE FACTOR, BIAS, AND DRIFT 

. APPLYING LOW-AUTHORITY GAIN TO ACTUATOR COMMANDS 

. APPLYING HAC FEEDBACK 8 FILTER GAINS TO ACTUATOR COMMANDS 

* APPLYING KALMAN GAIN TO COMPENSATED SENSOR READINGS 

* FREQUENCY SHAPING FILTER COMPUTATION (HAc/LAc) SHOULD STAY IN 
CENTRAL PROCESSOR 

LQG ALGORITHM (n, - 20) FOR BEAM 

CENTRAL PROCESSOR 
DATA: 762 VARIABLES 
FLOP: 1420 PER CYCLE 

2 INPUT 
VARIABLES 
(6 TOTAL) 

I I 
I 

LOCAL PROCESSQP_jEACH OF 3) 
DATA: 166 VARIABLES 
“FLOP”: -300 PER CYCLE 1 

CENTRALIZED 
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LOG ALGORITHM (n, - 201 FOR ANTENNA 

CENTRAL PROCESSOR CENTRAL PROCESSOR 
DATA: 2312 VARIABLES DATA: 612 VARIABLES 
FLOP: 4420 PER CYCLE FLOP: 640 PER CYCLE 

h 
I _ 

A 
20 INPUT 20 OUTPUT 
VARIABLES VARIABLES 

(20 TOTAL) 

RIM MUX PROCESSOR 
DATA: 160 VARIABLES PASS 
“FLOP”: 160 PER CYCLE THRU 

20R3 
OUTPUT 
VARIABLES 
(36 TOTAL) 

20R3 
INPUT 
VARIABLES 
(36 TOTAL) 

LOCAL PROCESSOR 
(EACH OF 13) 
DATA: - 
“FLOP”: -loo-160 PER CYCLE 

I 

20 INPUT 
VARIABLES 

CENTRALIZED 

HAC/LAC ALGORITHM (n, 0 12) FOR BEAM 

DISTRIBUTED 

CENTRAL PROCESSOR 
670 VARIABLES 
633 PER CYCLE 

2 INPUT 
VARIABLES 
(6 TOTAL) 

2 OUTPUT 
VARIABLES 
(6 TOTAL) 

‘I 

LOCAL PROCESSOR (EACH OF 3) 
DATA: - 
“FLOP”: 5 166 PER CYCLE 

CENTRALIZED 

20 INPUT 
VARIABLES 
[lo0 TOTAL) 

CENTRAL PROCESSOQ 
DATA: 306 VARIABLES 
FLOP: 309 PER CYCLE 

h 
12 INPUT 16” OUTPUT 
VARIABLES VARIABLES 
(36 TOTAL) (16 TOTAL) 

T 

LOCAL PROCESSOR (EACH OF 3) 
DATA: 60 VARIABLES 
“FLOP”: -225 PER CYCLE 

“THESE OUTPUTS ARE SENT ON 
EVERVOTHERCVCLE 

DISTRIBUTED 

199 



HAC/LAC ALGORITHM (nc - 12) FOR ANTENNA 

I CENTRAL PROCESSOR 
DATA: 3060 VARIABLES 
FLOP: 4608 PER CYCLE L I 

20R3 20R3 
OUTPUT INPUT 
VARIABLES VARIABLES 
(36 TOTAL) (36 TOTAL) 

CENTRALIZED 

CENTRAL PROCESSOR 
DATA: 396 VARIABLES 
FLOP: 360 PER CYCLE 

12 INPUT 
VARIABLES 

I RIM MUX PROCESSOR ---~ 
DATA: 96 VARIABLES PASS 
“FLOP”: 96 PER CYCLE r-t T,,RU 

12 INPUT 
VARIABLES 
196 TOTAL) 

LOCAL PROCESSOR 
(EACH OF 8 ON RIM) 
DATA: 123 VARIABLES 
“FLOP”: w 300 PER CYCLE 

16, OUTPUT 
VARIABLES 
(16 TOTAL) 

L 

12 INPUT 
VARIABLES 
(69 TOTAL) 

LOCAL PROCESSOR 
(EACH OF 5 NOT ON RIM) 
DATA: 80-123 VARIABLES 
“FLOP:” -225-300 PER CYCLE 

*THESE OUTPUTS ARE SENT 
ON EVERY OTHER CYCLE 

DISTRIBUTED 

. VIBRATION CONTROL OF LARGE SPACE STRUCTURES 

IS COMPUTATIONALLY DEMANDING - DRIVEN BY 
. NUMBER OF VIBRATION MODES CONTROLLED 
. NUMBER OF SENSOR/ACTUATORS PAIRS 
. CONTROL BANDWIDTH 

. DISTRIBUTION OF THE VIBRATION CONTROL COMPUTATIONS 

AMONG CENTRAL AND LOCAL PROCESSORS CAN SIGNIFICANTLY 
REDUCE THE THROUGHPUT REQUIRED FROM THE CENTRAL 

PROCESSOR AND MAY ALSO RESULT IN IMPROVED PERFORMANCE 

DUE TO REDUCED TRANSPORT LAG 
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SHUTTLE FLIGHT CONTROL 

AND STRUCTURE INTERACTION 

Michael Paluszek 
Charles Stark Draper Laboratory, Inc. 

Cambridge, Massachusetts 
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l A brief overview of the DAP 

l Results of the dmmic interaction study of 
the Orbiter with the General DYnamlcs Beam 
attached 

l Preliminary results of the three degree of 
freedom Payload Parametric study 

This is a diagram of the Orbiter Flight Control System (FCS). The functions 
relating only to the OMS have been eliminated for clarity. The vehicle can be 
maneuvered either manually or automatically. To perform an automatic maneuver the 
pilot specifies a new orientation for the Orbiter. This is processed by the steering 
processor, which sends a corresponding attitude error to the RCS processor. Jets 
are commanded to fire to reduce this error. The jet firings produce attitude changes 
that are measured by the IMU and sent to the state estimator at 6.25 Hz. The state 
estimator produces rate and acceleration estimates, filtering out high-frequency 
oscillations. The steering processor produces a new rate and attitude error from 
this data. 

CONTROL LAWS 

I 
RCS PROCESSOR 

I 
I 

MANUAL 
TRANSLAT:ON 
COMMANCI( ’ 

MANUAL 1 
ROTATtON 1 
COMMAND ’ - 

I 
AUTO 
ROTATION 1 
COMMAND( 

STEERING 

PROCESSOR 

DIRECT TRANSLATION 
COMMAND 

DIRECT ROTATION JET 

COMMAND - SELECT - 

ATTITUDE ERROR 
c c 

ANGULAR RATE _ PHASE 
ERROR - PLANE 

ATTITUDE 
ESTIMATE 

ANGULAR RATE 
ESTIMATE 

I EXPECTED A ANGULAR RATE 
J STATE 

ESTIMATOR ~ ATTITUDE OATA I 

I-l=+ I IMU 

DISTURBANCE 
ANGULAh 
ACCELERATION 
ESTIMATE 
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Chgracteristlcs of the Orbiter and DAP 

Orbiter 

0 Low inertial cross coupling 

l Flrst bending frequency 0.431 Hz 

l Large RCS Jet coupling particularly roll to YOW 

l I,,= ,883x106 slug-ft2, 12,5X of I,, 

0 Operational maneuver rate limit of 2 O/set 

DAP 

l Phase Plane autopilot assunlng decoupled axls 

l State Estimator uses IMU data only 

l second order filter characterlstlc 

l 6 dB down at ,06 Hz with vernler gains 

l Designed assumlng a rlgld vehicle 

This flow chart maps the interrelation of different criteria for the Orbiter 
flight envelope. The three parameters that are used to define an envelope are 
payload pointing accuracy, propellant budget and payload loads. While often con- 
sidered independently, they affect one another as indicated in the block diagram. 

Definition of the Orblter Fllsht Envelope 

t 
Payload Pointing 

Accuracy 

Oscll lotions 

_ L 
Vehicle 

L 
Payload Loads 

5 Maneuver 
---t Crltericl 
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Classes of System Rewonse 
for the Orbiter with a kexlble Payload 

1. The Autopl lot does not respond to the reload osci 1 latlons 
l vehicle oscillations small 
l payload osclllatlons may be large 

2. The Autopilot responds to Payload osclllatlons 
l vehicle rate or attitude errors exceed set llmlts 
l vehicle oscillations may diverge 
. attitude excursions IMIY be small 

This graph defines the regions of autopilot interaction for the Orbiter with a 
flexible payload. The x axis is the roll fundamental frequency and the y axis is the 
ratio of payload roll inertia to empty Orbiter roll inertia. Little or no interaction 
occurs in the region to the right of the solid line. In the region to the left some 
closed-loop response has been observed. The dotted line indicates the state estimator 
6 dB point. The ruled region is the current area of interest for the parametric 
study of the DAP response. 

10 

TxxTOThL-TxxORBITER 

TxxORBITER 
1 

I 
1 

I 

I 

0.1 1.0 

f roll (“‘I 
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Surnrnary of results of the dynamic interaction 

analysis of the General Dynamics beam 

The Orbiter with the General Dynamics beam experiment is pictured here. 
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This table gives the results of the dynamic interaction analysis of the 
Orbiter/GS beam combination. The columns list the maneuver-performed, the fuel 
expended, the type of Orbiter and payload oscillations, whether the DAP sent 
oscillatory firing commands to the jets, and comments. 

Except for the 5O roll case with rate limit clampdown, the vehicle and pay- 
load remained stable. In cases 4 and 7 through 10 oscillatory commands were sent 
to the jets indicating vibration feedback. Note that 4 was the worst case. Case 
no. 8 is worse than case no. 1, but case no. 10 is not worse than no. 4, as might 
be expected. 

DYNAMIC INTERACTION STUDY SUMMARY 

[Fundamental frequency in pitch = 0.046 Hz] 

Maneuver Fuel Payload Vehicle ROT-JET-CMD comments 

5 

6 

7 

8 

9 

10 

5' Roll 

Pitch 

Yaw 

5O Roll 
with att. hold 
RL=.Ol, DB=.l 

Astronaut 
Forced Osc. 

Jet F3U 
Stuck on 

Jet R4U 
Stuck on 

3.2O Roll 
Rate =.2 

5O Pitch 
with att. hold 

3.2' Roll 
with att. hold 

6.1 stable stable 

4.2 stable stable 

6.3 stable stable 

12.0 diverge diverge 

stable stable 

stable stable 

stable stable yaw 

6.1 stable stable 

7.5 

10.5 

stable stable pitch 

stable stable 

l- Oscillations 

roll,pitch 

roll up to 
60 set 

roll until 
clampdown 

results after 
clampdown 

results after 
autopilot on 

.046 Hz pulse 
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This figure and the next one are examples of the output from two SLS runs. 
Note that in both cases oscillatory commands are being sent to the jets, but only 
in the roll case are diverging oscillations seen. 

5 deg pitch with rl = D2 deg/sec, db = I deg 
with an attitude hold at 60 WC with 

rl = .Ol de&see, db - 1 deg 
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6 deg roll with rl -.02deg/secdb=ldeg 
with an attitude hold at 60 ccc with 

rl = .Ol deg/sec, db = 1 deg 
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The Three Degree of Freedom Payload Simulation 

for Orblter/Povload Pknnetric Studies 

The General Dynamics Beam 

l Base Properties 

. *xx Payload/I,, vehicle = ,698 

l froll ,r)G42 Hz 

f,ltch ,049 Hz 

,667 Hz 

l Results with base model 

l Payload diverges in pitch 

l oscillators Jet firings after rate limit change 

l Trends with Parameter changes 

l vehicle osclllatlons are greatest at fro11 = ,046 Hz 

l behavior insensitive to vaw frequency and I,, payload changes 

l increasing rate limits and deadbands can limit small 
oscillations 

l vehicle oscillations increase as Payload inertia increases 

The last four figures give results from the parametric study. The first 
case is for a three-degree-of-freedom model of the GD beam. The second is for 
a payload with a roll bending frequency of 0.02 Hz and a larger inertia ratio. 
In the latter case a more severe oscillatory rotation command is seen and the 
vehicle maneuvering is more sluggish. 
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s” Roll Maneuver 
rl - ,02 O/set , db - BP 

at 60 set set 
rl - ,Ol O/set , db = Jo 

with 

General Dmmics Beam as the Payload 

0 20 40 60 63 1G3 
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5" Roll Maneuver 

rl = ,O2 O/set , db = #5O 
at 60 set set 

rl = ,Ol ‘/set , db = Jo 

0 20 40 60 80 100 
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2) 20 40 60 8-O ilo 
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“1 1 

20 40 SO 80 iO0 
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0 20 40 SO 80 100 
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~.-~- - 

;;o 40 60 8b 100 
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LARGE SPACE STRUCTURES CONTROLS RESEARCH AND DEVELOPMENT 

AT MARSHALL SPACE FLIGHT CENTER - 

STATUS AND FUTURE PLANS 

H. Buchanan 
Marshall Space Flight Center 
Systems Dynamics Laboratory 

Huntsville, Alabama 
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PHASE C START 
I 

TIME YMHS 

NON COLOCATED 

ARRAY SYSTEMS / 

--“TROL SYSTEH 
;N TKHSIQUES 

OBJECTIVE I: STABILITY AND MODAL CONTROL 

DEMONSTRATE THAT THE FIRST NINE MODES (THREE RIGID + SIX FLEX) 

OF THE SEPS TEST ARTICLE CAN BE ACTIVELY CONTROLLED. 

FEATURES: 

l LOW FREQUENCY (f < 1 Hz). 

0 ACTIVE MODAL DAMPING - EXPERIMENT GOAL OF 10%. 

l CONTROL OF ASYMMETRIC STRUCTURE WITH COUPLED MODES. 

0 INVESTIGATE EFFECT OF CONTROLLER SATURATION ON DYNAMICS. 

SEPS SOLAR ARRAY FLIGHT TEST MODES 

FREQUENCY Hz I DESCRIPTION 

0 
0 
0 
.032 
.035 
.059 
.096 
.117 
.165 

RIGID BODY 
RIGID BODY 
RIGID BODY 
OUT OF PLANE* BENDING 
IN PLANE BENDING + TORSION** 
IN PLANE BENDING + TORSION 
OUT OF PLANE BENDING 
IN PLANE BENDING + TORSION 
OUT OF PLANE BENDING 

*PLANE OF SOLAR BLANKET 
**TORSION OF MAST 
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OBJECTIVE: TO DEVELOP A MULTILEVEL CONTROL APPROACH WHICH SUPWRTS A MODULAR OR BUILDING BLOCK 

APPROACH TO THE BUILDUP OF SPACE PLATFORMS. 

OUTLOOK: CONCEPT HAS BEEN 

MODEL OF A BASIC 

EXTENSION OF THE 

DEVELOPED AND TESTED IN IHREE-AXIS COMPUTER SIMULATIOi UTILIZING A FIVE-BODY 

SPACE PLATFORM MODULE. ANALYTICAL EFFORTS HAVE CONTINUED TO FOCUS ON 

BASIC THEORY AND SUBSEQUEF APPLICATION. 
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DEPLOYABLE ANTENNA SURFACE SHAPE CONTROL 

o OBJECTIVE - DEVELOP PRELIMINARY SPECIFICATIONS 

FOR A FLIGHT EXPERIMENT TO EVALUATE SEVERAL 

ALGORITHMS FOR CONTROLLING THE SHAPE OF LSS. 

o STATFMENT OF WORK SUMMARY 

- DEMONSTRATE ANALYTICALLY THE FEASIBILITY 

FOR SUCH AN EXPERIMENT. 

- SPECIFY HARDWARE AND SOFTWARE REQUIREMENTS. 

- IDENTIFY REQUIREMENTS WHICH WOULD IMPACT 

CURRENT DESIGN. 

- DEFINE A FLIGHT TEST PLAN. 

SAFECONTROLEXPERIMENT 

CONTROL SENSORS 

SAFE TEST ARTICLE 
(105 x 14”) 

AGSCONTROLCOMPUTER 

ASPS GIMBAL 
SYSTEM IAGS 

ORBITER VCS 
PROVIDES EXCITATION 
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OBJECTIVE II: DISTURBANCE ISOLATION AND LOAD ALLEVIATION DURING MANEUVERS 

DEMONSTRATE THAT DISTURBANCES ORIGINATING IN THE 

ORBITER (VCS FIRINGS AND CREW MOTION) CAN BE EFFECTIVELY 

ISOLATED FROM THE TEST ARTICLE BY MEANS OF SOFTWARE AND 

ACTIVE CONTROL. IN A SIMILAR MANNER LOADS IMPOSED ON THE 

STRUCTURE BY MANEUVERING WILL BE ALLEVIATED. 

01x 10-3 g DISTURBANCE LEVEL. 

033 NM TORQUE ALLEVIATION. 

OBJECTIVE Ill: POINTING 

DEMONSTRATE CONTROLLER CAN POINT BASE OF APPENDAGE TO 1 

;e^c ACCURACY (EXPERIMENT GOAL). NO STAR TRACKER SUN SENSOR 

INPUT WILL BE USED AND PERIOD OF PERFORMANCE WILL BE SHORT TO 

MINIMIZE RATE GYRO DRIFT. 

3 AGS 
b RATE - 

GYRO’S 

3 SEPS 

SEPS I 
* RATE - 

GYRO’S 
---t 

STRUCTURE 
I ~ 3 BASE 

ACCEL. - 

NASA 
STD 
#2 
COMPUTER 

. GIMBAL 
TORQUERS = 
3 AXES 
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CONTROL GROUND 

/ 
CONSTANT 

gm 
i. 

TENS I ON 

TEST SCHEMATIC 

, AIR BEARING 

SUSPENSION 

2 DEGREE OF 
FREEDOM 
CONTROL 
GIMBAL 

EXCITATION 
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Research on the Control of Large Space Structures* 

E. D. Denman 
Department of Electrical mgineering 

University of Houston 
Houston, Texas 

*Paper not presented at conference. This work was partially supported by NASA 
Langley Research Center under grant NSG-1603. 
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INTRODUCTION 

The research effort on the control of large space structures at the University 
of Houston has concentrated on the mathematical theory of finite-element models; 
identification of the mass, damping, and stiffness matrix; assignment of damping to 
structures; and decoupling of structure dynamics. The objective of the work has been 
and will continue to be the development of efficient numerical algorithms for analy- 
sis, control, and identification of large space structures. The major consideration 
in the development of the algorithms has been the large number of equations that must 
be handled by the algorithm as well as sensitivity of the algorithms to numerical 
errors. 

The finite-element model that has been used in the linear second-order matrix 
differential equation 

Md2x(t) 

dt2 

+ Cdx(t) 
dt 

+ Xx(t) = f(t) (1) 

where McRmm is the masizatrix, &Rrnxm is the damping matrix, KER 
mxm 's the 

stiffness matrix, x(t)ER is the node displacement vector, and f(t)ERmX 
t is the 

forcing function vector. 

The Laplace transform of equation (1) gives the matrix equation 

[Ms2+~s+~]x(s) = B(s) (2) 

where B(s) contains the initial condition information as well as the forcing func- 
tion. If s is replaced in equation (2) by h, equation (2) then takes the form of 
a lambda matrix: 

x(X)X(X) = B(X) 

If it is assumed that the initial conditions are zero and no forcing function is 
present, then 

(3) 

x(X)X(X) = [MX2+EA+??]X(x) 
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is the homogeneous equation that will be of interest. The latent roots hi Of 

A(A) are given by 

det x(.X) = det[MA2+~A+~] = 0 (5) 

and the latent vectors yi are obtained from 

provided that all latent roots are distinct, of multiplicity one. 

Lancaster (ref. 1) and Dennis et al. (ref. 21, as well as others, have published 
material on lambda matrices. One of the tasks during the past research period has 
been to consider their work as well as extensions of the algebraic theory of lambda 
matrices for the control of structures. 

ALGEBRAIC THEORY OF LAMBDA MATRICES 

A comprehensive treatment of the algebraic theory of lambda matrices cannot be 
presented in this short paper. Only the essentials necessary to understand the damp- 
ing assignment problem will be given. 

Consider the lambda matrix 

A(h) = Q[Ix2+Cx+K]QT = QA(h>QT (6) 

where Q is the Cholesky matrix of the decomposition of M = QQT. The normalization 
process in equation (6) will retain the symmetry of C and K. The lambda matrix 
A(h) will be considered in the following work and it will be assumed that the latent 
roots of A(h) appear in conjugate pairs as well as being distinct. This restric- 
tion is not necessary but is made to simplify the analysis. 

It can be shown that the matrix 

0 I 
Ac = [ 1 -K -C 

(7) 
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has eigenvalues hi that are equal to the latent roots of A( A) l The right and left 
eigenvectors of AC contain the right and left latent vectors of A(h) with 

and 

Z = 
Ci 

where yci and 'ci are the right and left eigenvectors, respectively. An eigen- 
projector, Pi, will be defined as the matrix 

oII+c) zi [ 1 zi (9) 

T 
Y 

'i 
cizci 

= T 
'ciyci 

where the matrix Aci defined by 

A =P 
ci i Ac 

= AcPl 

(10) 

(11) 

will have the same eigenvectors as AC but all eigenvalues will be zero except for 
Ait which will be the same as in A . The eigenprojectors are the matrix residues of 
the partial fraction expansion of k,(A)]-' with 

2m Pi 
[AC(x) 1-l = 1 - i=l + (12) 

where 

pi = ~~ 
i 

(X-X,) [Ac(‘i) 1-l (13) 
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A latent projector will be defined as the matrix residues of the partial frac- 
tion expansion of [A(h)]" where 

[A(X)]-' = 
2m p^i 
,E, (X-X,) 

with 

5 = ;z 
i 

(M,)[A(X)l-' 

The latent projectors are also given by 

T 
h 
Pi = YiZi 

T dA$) 

‘i dX ‘i 

(14) 

(15) 

(16) 

where yi and Zi are the latent vectors of A( A). 

To complete the limited discussion of the algebraic theory, the relationship 
that exists between the eigenprojectors and latent projectors must be given. By 
inverting AC(A) it can be shown that 

h 
Pi = Pi (17) 

with the past definitions holding. 

ASSIGNMENT OF DAMPING 

An algorithm to assign damping to a particular undamped mode has been developed, 
although the theory has not been fully explored at this time. Considerable work 
remains to be carried out to develop and test a comprehensive algorithm. Therefore 
the material in this section is only preliminary. 

Consider the undamped structure with the associated lambda matrix 

A(X) = Ix2+K (18) 
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If it is assumed that K is symmetric and positive definite then all latent roots of 
A(A) lie along the- jo 3xis. Since K is positive definite all of its eigenvalues 
will be real with A 

i =w ni' 
and the eigenprojectors of K are given by 

(';I-K)-1 = 

where it can be shown that Pi is given by 

(19) 

(20) 

which will be defined as the augmented latent projector. It is not difficult to show 
that the undamped A, is 

but since the undamped matrix is 

0 I 
A = 

CU [ 1 -K 0 

then 

y (P^ih:+P;A;2) = 0 
i=l 

i Q+P;h;) = I 
i=l 

cm 

(22) 

(23) 

(24) 
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The damped case has a similar form with the exception that the upper diagonal block 
is modified with 

(25) 

Suppose now that the undamped structure is to have damping added to the 

jth mode (i.e., Aj and A;) and all other modes are to remain undamped. Using 

equations (21) and (221, A, becomes 

A = cd 

‘y CA 
i=l 

P&+$;h;2) 

i+j 

-7 (&+$;)K 
i=1 

i (~ihi+iQ;) 
i=l 
if j 

L 
if j 

which can be rewritten as 

A cd= I 
0 

-Y 
i=l 

PiK 

W 

i pi 
i=l 
W 

0 

1 

if j 

B A +;*A* jj jj 

2 A* *2 P^X+PA 
jj jj 

- 

+ 

-yjK 

-F ii 

-C. 
J 

+ 

(26) 

(27) 
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and also in the form 

2m 
A cd =Acd i! Pi+A P. =A++A 

i=l cd J j 

i+j 

The matrix A+ denotes the matrix constructed from the summation and Aj is the 
complement to A+. 

The last step in the algorithm is to recognize that A+ is orthogonal to I+; 
thus 

m - _ 
0 1 pi 

i=l 
i#j 

(29) 

0 
. 

Finally, 
3 

is the matrix that is orthogonal to The eigenprojector 

if j 

‘j must be orthogonal to all Pi as the set of eigenprojectors have the orthogonal 
property 

pp =o 
3-j i+j (30) 

The C. 
consta3nt. 

matrices are therefore nothing more than c.P where a. is a scaling 
The trace of Cj is 3 j I 

trace (Cj) = iIl 'ii j = 2'j , 
(31) 
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where trace (5.1 = 1. 
of A(h) with ' 

me scaling constants are then used to place the latent roots 

3 2 2 
(32) 

(33) 

An example will naw be given to illustrate the algorithm. Let C = 0 and 
select K as 

300 -200 
K- [ 1 -200 350 

which has eigenvalues ij11.1105 and kj22.9468. The augmented projectors are 

0.496139 
Fl = 

0.437983 
I 

and 

-0.496139 
F2 = 

0.562017 
I 

The matrices 

1 0.8827824 
Cl = 

0.8827824 0.7793048 1 
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and 

1 -1.1327785 
c2 = 

-1.1327785 1.283187 
I 

are orthogonal to 'P and 5 . Note that the columns in C, 
by constants and rem&n ortho$onal to 5, and 5 

I 
and C, can be scaled 

L 

2' 

The eigenvalues of 

are given in the computed results below. 

A(I,J) MATRIX 

EIGENVALUES REAL 

1 0 
2 0 
3 3.044033-22 
4 3.044033-22 

No damping 

A(I,J) MATRIX 

0 0 1 0 
0 0 0 1 

-300 200 -1 -.882783 1 

0 
1 
0 
0 1 

IMAGINARY 

22.9468 
-22.9468 

11.1105 
-11.1105 

L 200 -350 -.882783 -.779305 J 

EIGENVALUES REAL IMAGINARY 

1 3.998933-08 22.9468 
2 3.998933-08 -22.9468 
3. - .889652 11.0748 
4 - .889652 -11.0748 

Damping in lowest mode 
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A(I,J) MATRIX 

0 1 0 
0 0 1 
200 -1 1.13278 

-350 1.13278 -1.28319 1 1 0 
0 

t 
-300 

200 

[ 

0 
0 

-300 
200 

EIGENVALUES REAL IMAGINARY 

1 -1.14159 22.9184 
2 -1.14159 -22.9184 
3 2.847953-08 11.1105 
4 2.847953-08 -11.1105 

Damping in highest mode 

A(I,J) MATRIX 

0 1 
0 0 
200 -1 

-350 .125 

EIGENVALUES REAL 

1 -.570798 
2 -.570798 
3 -.444827 
4 -.444827 

0 
1 
.125 1 -1.03125 

IMAGINARY 

22.9399 
-22.9399 

11.1019 
-11.1019 

Damping in both modes 

The undamped system matrix and its eigenvalues are given first. The lowest mode 
was then damped with the system matrix and its eigenvalue given. The third test was 
to include damping for the highest mode where c = c2. The last test was to combine 
the damping for the two modes with 

c = 3 (cl+c2) = a1qcx2F2 = 0.889655Fl + 1.141595p2 

The system matrix and its eigenvalues are then given. It should be noted that the 
new values of c. 

3 
of the two modes are 

a1 = 0.889652 
2 = 0.444827 
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and 

a2 = 1.141595 
2 = .570797 

The algorithm allows damping to be assigned to all modes and to the prediction of the 
location of the system eigenvalues. 

The major problem that remains to be resolved is that of constructing the c 
matrix, which is symmetric and positive definite as well as realizable. It will be 
assumed that e and i? are tridiagonal with the off-diagonal elements having a 
smaller magnitude than the diagonal elements. The off-diagonal elements must be 
negative with positive diagonal terms. 

IDENTIFICATION OF M, C, AND K 

Ihe quadrature algorithm for identifying the mass, damping, and stiffness 
matrices of a structure is still under study. The algorithm performs well with 
simulated data, but attempts to utilized data from the beam experiment at NASA 
Langley Research Center have not produced useable results. It is believed that the 
conditions on the beam during the data collection may not have satisfied the require- 
ments of the algorithm. 

The quadrature identification, as well as other algorithms, will receive major 
attention in the future. One of the major problems in developing an efficient 
algorithm is the availability of test data, either by computer simulation or from a 

.test bed. The Langley Research Center experimental beam is a suitable test bed, but 
planning and running test data are costly and time consuming. Plans for the future 
ihclude construction of an electronic analog test bed that will be low cost and will 
provide flexibility in the types of structures that can be simulated. The test bed 

.wli(ll. be used primarily in the development of the identification algorithm, but it can 
also be used for developing control algorithms. 

SIMULATION OF STRUCTURES 

Some of the preliminary work on designing a structures test bed at the 
University of Houston has been completed. The type of simulator considered is an 
electronic analog that will be constructed from low-cost operational amplifiers, 
resistors, and capacitors. Data acquisition will be handled by a PDP 11/70 computer 
for signal processing. 'Ihe PDP 11/70 is equipped with analog-to-digital and digital- 
to-analog converters and has adequate storage to perform on-line data collection and 
processing. 

CONCLUSIONS 

Some of the work that has been supported under grant from NASA Langley Research 
Center has been described in this report. Preliminary details on the assignment of 
damping are covered, as well as some information on identification and simulation. 
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The identification work has not been described since the algorithm is given in refer- 
ence 3. !Ihe simulation facility is still in the planning stage and a decision to 
build such a test bed has not been made, Further descriptions of this research are 
given in references 4 and 5. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

Lancaster, P.: Lambda Matrices and Vibrating Systems. Pergamon Press, N.Y., 
1966. 

Dennis, J. E., Jr.; Traub, J. F.; and Weber, R. P.: The Algebraic Theory of 
Matrix Polynomials. SIAM J. Numer. Analy., vol. 13, no. 6, Dec. 1976, pp. 
831-845. 

AIAA Guidance and Control Conference. A Collection of Technical Papers. 
Albuquerque, N.M., August 19-21, 1981. 

Denman, E. D.: Roots of Real Matrices. Linear Alg. & Appl., vol. 36, 1981, 
pp. 133-139. 

Denman, E. D.; and Leyva-Ramos, J.: Spectral Decomposition of a Matrix Using 
the Generalized Sign Matrix. APP~. Math. & Comp., vol. 8, no. 4, June 1981, 
PP- 237-250. 

233 





ACTIVE CONTROL OF A FLEXIBLE BEAM 
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ACTIVE CONTROL OF A FLEXIBLE BEAM 

Because of inherent low damping and high flexibility, large space structures 
may require some form of active control of their dynamics. Because of the apparent 
inability to accurately model the dynamics of these structures, methods for 
parameter adaptive control are now being developed at Langley. The process 
currently being studied is shown in the block diagram below. This approach uses a 
digital computer to process discrete sensor data, identify modal parameters, 
calculate modal control gains, and then convert the modal.forces to real forces. 
The last two blocks are the topic of this presentation. Some of the problems con- 
sidered are: (1) the possibility that there may be many modes to control with 
limited amounts of hardware, and (2) the required accuracy of identified structural 
parameters. 

BACKGROUND: 

- NEED TO CONTROL FLEXIBLE MOTION OF LARGE SPACE STRUCTURES 

- ABILITY TO ACCURATELY MO,DEL THE DYNAMICS OF THESE STRUCTURES IS UNCERTAIN 

- THEORY NOW BEING DEVELOPED FUR PARAMETER ADAPTIVE CONTROL OF THESE STRUCTURES 

PARAMETERS I 

I I 
-------,------------,A 

PROBLEMS: . 
- POSSIBLY MANY NODES TO CONTROL 

- LIMITED HARDWARE (CUMPUTAT I OR, SENSORS, ACTUATORS) 

- HOW WELL STHUCTURAL PAHAMETEHS MUST BE IDENTIFIED FOR CONTROL 
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RESEARCEI TASK 

The specific research task was to design a digital control scheme to suppress 
vibration of a homogeneous free-free beam. A qigital computer simulation algorithm 
was then used to test (1) the effects of controlling more modes than available 
actuators, and (2) the sensitivity to identified structural parameters. 

l DESIGN A DIGITAL CONTROL SCHEME TO SUPPRESS VIBRATION OF A 
HOMOGENEOUS FREE-FREE BEAM 

o EXAMINE EFFECT ON STABILITY OF: 

- FEWER ACTUATORS THAN CONTROLLED NODES 

- ERRORS IN STRUCTURAL MODEL PARAMETERS 

o TEST WITH AN EXISTING SIMULATION ALGORITHM 
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MATHEMATICAL MODEL 

The continuous beam was modeled by using the SPAR finite element algorithm 
which generates mode shapes and frequencies. These were used to write a modal 
representation of the beam dynamics which was used to design the control gains. 

o CONTINUOUS MODEL 

o FINITE ELEMEN.T MODEL OF-BEAM 

- MODE SHAPES AND FREQUENCIES FOR 25 ELEMENT MODEL ARE 
GENERATED BY SPAR 

o MODAL REPRESENTATION 

x = [Elq 

- SET OF 50 UNCOUPLED ZND-ORDER SYSTEMS 

e CONTROL SYSTEM DESIGNED USING THIS fiODAL REPRESENTATION OF THE 
STRUCTURAL DYNAMICS 
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DISCRETF. TIP& MODEL 

In order to simplify the digital simulation and prepare for eventual digital 
implementation, the modal equations of motion were discretized. This results in 
the scalar equation which shows the present modal amplitude to be a function of the 
past two amplitudes and the past two controls. There is a discrete time transforma- 
tion analogous to the Laplace transform which results in a characteristic polynomial 
in 2. The roots of this polynomial may be plotted in the complex plane with 
stability represented by magnitudes of less than 1. Analysis of the control system 
will be done primarily in this z-plane. 

o NECESSAKY FOR: 

- DESIGN OF DIGITAL SIMULATION 

- EVENTUAL DIGITAL IMPLEMENTATION 

l D1SCRET.E EOUATIUN OF MOTION: 

q(k) = *l q(k-l) + *2 q(k-2) + '1 '(k-1) + '2 "(k-2j 

where A = f(w ,T), T = sampling interval, 

B = f(w ,c,T), e = mode shapes. 

a DISCRETE TIME TRANSFORM (ANALOGOUS TO LAPLACE TRANS.) RESULTS Time 

IN A CHARACTERISTIC POLYNOMIAL IN Z: 
0 = i c. ,i-1 

i=l ' 

S-PLANE 
d Z-PLANE 

CONTINUOUS TIME DISCRETE 
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CONTROL DESIGN APPR0ACH 

The modal control design approach is to choose desired closed-loop roots from 
which the modal controller gains can be calculated. The modal control forces may 
be calculated directly, and the actual control forces can be calculated using a 
pseudo-inverse. 

CHOOSE DESIRED CLOSED LOOP ROOTS FOR EACH MODE 

CALCULATE MODAL CONTROLLER GAINS 

CALCULATE MODAL CONTROL FORCES 

CONVERT MODAL FORCES TO ACTUATOR FORCES 
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DIGITAL CONTROL OF ONE BK)DE 

The control of one mode is achieved by using the minimum order control law 
required for pole placement. This is of the same form as the modal equation of 
motion. The closed loop controller has a fourth-order characteristic equation as 
shown. The coefficients of this equation are determined from the desired closed- 
loop roots and are functions of the mode and control coefficients in the plant and 
control modal equations. The control objective is to achieve the desired roots 
defined by (.a,b,c,d] by solv$ng for the controller, gains ccl, C2, Dl, D2). 

0 MINIMUM ORDER CONTROL LAW FOR..POLE PLACEMENT 

"(k) = '1 q(k-l) + ‘2 q(k-2) + D1 "(k-l) + D2 “(k-2) 

- NOTE SAME FORM AS PLANT MODEL 

[q(k) = A1 q(k-l) + A2 q(k-2) + '1 "(k-l) + *2 “(k-2)] 
- C’S & D's ARE FOUR CONTROL GAINS 

o CLOSED LOOP CONTROLLER 

- HAS DISCRETE TIME CHARACTERISTIC EQUATION 

z4 tat 3 + b z 2 +cz+d = 0 

where {a ,b ,c ,d 1 = f(A .* .C ,D I. 

l CONTROL OBJECTIVE: ' 
- ACHIEVE DES1 RED CLOSED LOOP ROOTS (AS DEFINED BY a,b,c,d) 

BY CALCULATING THE CONTROL GAINS, 
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The control problem is shown in the block diagram below. The parameter 
uncertatities affect the calculation,of the modal controller gains and a pseudo- 
inverse results- in a least squares type-error in the actual forces applied to the 
beam. A typical set of closed-loop roots is shown in each of the two complex 
plane plots. The design criterion is to place the roots of the controlled modes on 
a constant damping l&e in the s-plane. This line maps onto a constant-radius 
circle on the complex z-plane, wztth uncontrolled roots on the unit circle. 

o CONTROL PROBLEM 

SARAMETER UNCERTAINTY 
I 

o REPRESENTATION OF CLOSED LOOP DYNAMICS 

Z-PLQNE 
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RESULTS - CASE 1 

A baseline set of results is shown below. Exact parameters are used to 
calculate the control'gaius and five inodes are controlled with five actuators. 
Note that all roots are c&kulated exactly so that all modal amplitudes have the 
same decay envelope. Also,'mode sti, which is not controlled, does show "minor" 
excitation and continues to "rfng",after control to the other modes is stopped. 
This is not evfden't from'the figure. 

o CASE+ EQUAL NUMBER OF ACTUATORS AND CONTROLLED MODES 
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RESULTS - CASE II 

This. next case illustrates an attempt to control more modes.than available 
actuators. Here it is no longer pos&'ble to solve exactly for the desired roots, 
and one root does be&me un&aIile,'as shoti by the increasing amplitude of the 
fourth mode. 

-o CASE .I I : FEWER ACTUATORS THAN CONTROLLED MODES - UNSTABLE 

5 CONTROLLED 

Li ACTUATORS 

Z-PLFINE 

7 lH 8 OESIREO _^. ^... m-, 

2.5- 

llorx 4 
AMPLlTUDE o'"~"~"A"n"A"~"A~A"AA/\"A A A A 

-2.5- 
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RESULTS - CASE III 

In the third case it is shown that attempting to control more modes than 
available actuators does not necessarily mean the system will be unstable. Note 
here that the calculated roots are closer to the desired roots and that, while the 
fourth mode is near the unit circle, it now is slightly stable. This can be 
explained by considering that the additional actuator and mode provide one more 
data point for the least squares fit. 

l CASE III: FEWER ACTUATOriS Tli.IN CONTROLLED MODES - STABLE 

6 CONTROLLED 

5 ACTUATORS 

Z-PLFINE 

In 
I o DESIRED 

a CQLCULRTED 
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PARAMETER ERROR SENSITIYITY 

The results of the parameter error sensitivity study are shown below. Error 
was placed on the modal frequency and damping parameters of the modes selected for 
control. Experixntal results show that the parameter estimator may have errors on 
the order of 25 percent. The locus of roots calculated using a parameter error 
range of 220 percent is plotted below. The magnitude of the error at which the 
modes became unstable is summarized in the table. Note that as the mode number 
increases, the sensitivity decreases for the first three modes. The high sensi- 
tivity of mode six in case III is unexplained at this time. 

o ERROR ON MODAL FREQUENCY AND DAMP 
91k) = 5 ‘(k-1) + &q(k-2) 

ING PARAME TERS ONLY 

+ ‘; “(k-l) + ‘: “(k-2) 

a NO ERROR ON RIGID BODY PARAMETERS 

l BASED ON EXPERIMENTAL PARAMETER ESTIMATE ERRORS OF f 5% 

5 COHJROLLED 

5 ACJIJAIORS 

Z-PLQNE Z-PLQNE 

l'RU= iO3125 SEC 

s CFlLCULRTEO s CFlLCULRTEO 

\: I- I L, AC-T. 

246 

.‘I 



CONCLUSIONS 

1, LIMITED ACTUATORS: 

- THIS DESIGN PROCESS YIELDS UNDESIRABLE CLOSED LOOP DYNAMICS 
WHEN THE NUMEER OF CONTROLLED MODES EXCEEDS THE NUMBER OF 
AVAILABLE ACTUATORS, 

2, PARAMETER ERROR: 

- ERRORS WITHIN THE RANGE OF EXPERIMENTAL RESULTS CAN CAUSE 
INSTABILITY, 

- CONTROL SYSTEM MUST BE MADE MORE TOLERANT OF PARAMETER ERROR, 
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OPTIMAL DAMPING FOR A 

TWO-DIMENSIONAL STRUCTURE 

W. D. Pilkey and B. P. Wang 
University of Virginia 

Charlottesville, Virginia 
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SYNTHESIS OF THE DAMPING MATRIX 

FOR SPECIFIED DAMPING RATIOS 

[Ml& + [k](x) =tPl 1x1 is n x 1 

CONTROL FORCES 

CF? = EBllul {u) is A x 1 

A= number of actuators 

Iul = -IDI &, IDJ iS A x n 

or 

IF) = -[clW 

where 

CC] = [BIbI 
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PROBLEM 

Pind 
% 

such that 

J -c ICijl 
Lj 

is minimized subject to the constraints 

c, > c IP 
for L - 1 to L 

and 
C ii>o , c..=c.. 

13 31 

% 
= prescribed damping ratios for the Lth mode 

Eigenvalue Problem: 

(s2(M] + 8 [Cl + EKllCP? = (01 

with roots 
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. : CHA RA C 7ERIS TIC EQ. IS : 

CWARACTERIS T/C EQUATION: 

OR 
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DEFINITION: 
OP TIMAL OAMPER L OCA TfONS 
FOR A PARTICULAR MODE 
ARE WHf’f EUUEi? 

MAXIMUM DAMPING CAN 
BE INTROOUCED 

OR 

ACHE VE GIVEN DAMPING 
WITH MIEIIMUM DAMPING 
CONSTANTS 

TYPICAL ROOT LOCUS PLOT 
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#.e CONSTANT 

\ t 
Im 6) 

TYPICAL ROOT LOCUS 
FOR /N?iQOWChVG MORE 
DAMPERS WAN NO. OF 
R/6/D BODY MODES 

255 



MAXIMUM fJ?EQUENCY 
SEHRATION CRITERION 

(MFSC) 

THE OPTIMAL DAMPER 
LOCIAVON IS WHERE 
THE SEpAlQATfON BETWEff 
T#‘E COAWUAINEO 
fREQUEEJCY AND THE 

NATURAL FREQUENCY 
/S MAXIMUM 

SOL VE FOR w,,~ (OR & ) 
f’.WM Qls,) r o 

THE DESIRED DAMPING CONSTANT 
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SYNTHESIS OF MULTIPLE 
DAMPERS 

CASE 2 

257 



258 

RANK OF SOME TWO DAMPER LOCATIONS 
ACCOUOING 70 MCFC 

DAMPING CONSTANTS MQlJlRED 70 
ACHEVE c4 t 0.6 
OAMPrR LOCA’TION~ REQUIRED 

No. 1 NO.2 C, c2 ce!k 
I 88 0.296 0.136 
/ SO 1.024 9% 

:‘r 44 58 ; 0: 11:; 498 ;.:“605 i44r 1.064 

MAXIMUM OAMPINS ACHIEVE0 IN f#?ST 

(WlTH SAME D&lPtNG CONSTANT AT Au 

IOCATIONS) 

I, so, 88 0.95 0.34 0.05 0.48 
I> 44,76 0.60 0.31 0.46 0.34 



CONCL USIONS 

l CRITERIA FOR SELECTION OF 
OPTlhiHL DAMPER LOCATIONS 
PRESENTED 

. RAMPING SYNTHESIS PROBLEM 
FORMULATED AN0 APPLIED 
TO NASA GRIL LAGE MOOEL 

OAMPING SYNTUESIS 
EXAMPLE t 

DESIRE0 G = 0.6 
& = OS 

DAMPER LOCATIONS : 
0.O.E I, 44,78 

uEsucTs : 
LOCATION GAIN 

I 0.272 
44 0.514 
78 0.269 
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&vW=ING SWTUESIS EXAMPLE2 

RESULTS : 
LOCATION 5 c; ci 

I 0.21 
/I 0.25 E% 
39 0.20 d. /3I 
:: 0.20 0.247 0. I31 
88 0s:: . 0.245 

ACIMVED DAMPING 
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