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PREFACE

- This publication contains the proceedings of a workshop held at NASA Langley
Research Center, January 21-23, 1982, on technology for controlling large structures
currently being conceived for space applications. This workshop was a follow-up to
a workshop held at Langley in October 1980. (NASA CP-2187, Structural Dynamics and
Control of Large Space Structures (1981) contains the proceedings of that workshop.)

The workshop focused on progress in NASA Langley's basic research program in
control of large space structures and heard reports on in-house efforts, university
grants, and industry contracts, as well as on some efforts not directly supported
by the NASA Langley Research Center program. This document contains copies of most
of the visual material presented by each participant, together with as much descrip-
tive material as was provided to the compiler.

Use of trade names or names of manufacturers in this report does not constitute

an official endorsement of such products or manufacturers, either expressed or
implied, by the National Aeronautics and Space Administration.

M. Larry Brumfield
Langley Research Center
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ACTIVE DAMPING OF A FLEXIBLE BEAM

Garnett C. Horner
NASA Langley Research Center
Hampton, Virginia



One objective in the flexible-beam research program is to develop an algorithm
that will determine actuator and sensor locations. This is necessary because large
space structures will have many locations where actuators can be placed. This
research seeks to determine the "best' or optimum locatiomns. 1In addition, the "best"
locations are determined while certain constraints are satisfied which guarantee
that mission performance requirements are achieved.

The approach adopted in this research is to consider actuators and sensors to
be collocated so as to produce an equivalent viscous damper. Ultimately, the
experimental results of measuring thée log decrement during free decay will correlate
with the analytical predictions. (See fig. 1.)

OBJECTIVE: TO DEMONSTRATE ACTIVE VISCOUS DAMPING ON A FLEXIBLE BEAM

APPROACH:
o T0 USE COLLOCATED ACTUATOR/SENSOR TO PRODUCE VISCOUS FORCE

o MEASURE DAMPING DURING FREE-DECAY

Figure 1.- Active damping of a flexible beam.



Figures 2 and 3 show the flexible-beam facility.

Figure 2.- Side view of flexible-beam facility.
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Figure 3.- Flexible-beam facility.




Figure 4 shows the locations of the actuators and sensors along the beam axis.
These locations were determined by the optimization algorithm so that the first five
bending modes are controlled.
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Figure 4.- Actuator and sensor locations
on flexible beam.



Figure 5 shows the results of active damping as applied to ‘the. flexible beam.
Four different sets of damper gains are shown,in the right-hand column. .The vertical
bar is proportional to the damping rate of the damper at the location shown on the
beam. The experimental plots at the left of the figure were obtained from the first
bending mode of the beam. With the damping rate of each damper set to zero, the beam
was vibrated in the first mode. At the time that free decay starts, the damping rate
of each damper is set to the desired value. :The comparison of the percent of modal
damping is made using two experimentally based methods. -These values should be com-
pared to the analytically determined. value. The column. entitled "graph" used a
graphical technique to measure the amplitude of adjacent peaks. This data is used to
calculate the log decrement, which in turn is used to calculate percent of modal
damping. The column entitled "ITD" contains the results of using the Ibrahim time
domain method. There seems to be reasonable agreement between the two experimental
methods until large modal damping is achieved. In this region small measurement
errors can cause large modal damping errors.

PERCENT MODAL DAMPING BEAN
MODE 1 RESPONSE EXPERIMENT [ANALYSIS %Cl'\:l:"ICZ Tic %cq
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Figure 5.- Active damping results.
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Figure 6 and 7 are expanded amplitude and time scale plots that show better the
response detail during free decay when the dampers are turned on.

\//\\//\\//\\//\\//\\/r\\

"

Without control | With control

Figure 6.~ Mode 1 response with a design modal damping = 0.05.

e

Without control | With control

Figure 7.~ Mode 1 response with a design modal damping = 0.6.




Figure 8 summarizes the accomplishments and needs of this research.

o ACTIVE VISCOUS DAMPING HAS REEN DEMONSTRATED

o DIFFICULT TO MEASURE HIGH MODAL DAMPING

0 ACTUATORS REQUIRE COMPENSATION

o DIGITAL CONTROL (VERSUS ANALOG) MAY REQUIRE MORE ANALYSIS

Figure 8.- Summary.



DECOUPLING AND OBSERVATION THEORY APPLIED TO

CONTROL OF A LONG FLEXIBLE BEAM
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INTRODUCTION

Decoupling theory is a convenient tool for devising control laws for
structures with a large number of state variables because it allows independent
control of each state. Complete decoupled control requires that the number of
control actuators equal the number of modes in the system, which is a basic
limitation in applying decoupling theory to the control of large space structures.
Complete decoupled control is usually not achievable in practical application
because a large space structure may have an infinite number of flexible modes;
hence, procedures must be developed which maintain control of the structure with
a small number of control actuators. Reduced-order systems must be utilized
wherein only a few modes are included in the math model of the structure when
calculating the gains for the feedback control law. In addition, some of the
modes in the math model itself may be exempt from the control law if the number
of actuators selected is less then the number of modeled modes. In both cases
the control system must be designed to avoid serious problems associated with
observation and control spillover effects caused by residual modes, which could
result in poor performance or an unstable system.

The present analysis presents techniques which use decoupling theory and
state-variable feedback to control the pitch attitude and the flexible-mode
amplitudes of a long, thin beam. An observer based on the steady state Kalman
filter has been incorporated into the control-design procedure in order to
estimate the values of the modal-state variables required for the feedback
control law.

10



EQUATIONS OF MOTION

Figure 1 shows the linearized equations of motion used for the decoupled-
control analysis of a 450-m long, thin, flexible beam in low Earth orbit. The
equations are in modal form. The first equation represents the rigid-body
(pitch) mode and includes the gravity-gradient effect, where w, is the orbital

frequency. In the second equation n represents the number of flexible modes.
included in the math model, plus the residual modes. The damping term 2Zw A
is included inasmuch as the residual modes require a small amount of damping
for stability. The objective is to design a control system which provides
independent control for each of the decoupled variables.

2 T
Sl-—g' + 3 (1)2 8 = ‘TJ.E
dt ¢
dzAn dAn Em
+ 20w = w. A =
dt2 n n dt n'n Mn

Figure 1

1



BASIC EQUATIONS

Figure 2 shows the basic equations used in the decoupled-control design.
The equations are in state-vector form where the states x are the modal ampli-
tudes and rates and include the residual modes. In the decoupling control law,
u, the quantity v is the input command vector. The matrices F and G are the
feedback and feedforward gains, respectively, which are calculated by the
decoupling procedure. The estimator equation calculates the estimates of the
modeled states X which are required by the control law. (The primes indicate
modeled modes only.) The estimator utilizes the observation equation y and
Kalman gains K which are precomputed by the steady state Kalman filter. The
observation matrix senses attitude at two locations on the beam, where the ¢
values are the corresponding slopes of the mode shapes.

SYSTEM:
X = Ax + Bu + v
u = FX + Gv
y = Cx+ w
ESTIMATOR:
/.\ i - o
X = AX + Bu + K(y - CX)

(A - KA)%X + KCx + Bu

OBSERVATION MATRIX:

1 ¢, ¢, ¢g----¢ 0 0 0 0----0
C =
" 1" " "
1 ¢1 ¢2 ¢3 - - - - ¢n 0 o0 0 0----20
Figure 2

12
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COMPOSITE EQUATIONS

Figure 3 shows the basic equations in composite form as a 20th order system.

These equations are used to produce simulated time histories of system responses
for various control input commands. The upper set of equations represents the
system equations and includes four modeled modes and two residual modes. The
lower set represents the estimator equations, which incorporate estimates only
of the modeled modes. It is apparent that the control and observation spillover

effects are caused by the matrices B12x2 and C2x12'

In the present analysis two torque actuators are used; each is one-sixth
the distance from the end of the beam. One attitude sensor (e.g., star tracker)
is at an actuator location, the other at one-third the distance from the end
of the beam. Analyses were also performed by (1) replacing the latter sensor
with a rate sensor, and (2) by moving this attitude sensor to the location of
the other actuator; in both cases, however, overall performance was not as
good as for the original setup.
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2 Attitude Sensors
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DYNAMIC CHARACTERISTICS

The dynamics of the system are shown in figure 4. The natural (open loop)
frequencies and damping ratios are given in the second column. The value of
0.001 forme is the orbital angular velocity (orbital frequency). Small values

of damping were assumed for the flexible modes, starting at a low value of 0.005
and increasing each successive mode by 10 percent. The fourth and fifth modes
are taken as the residual modes. Some damping is required in these modes to
avoid producing a system with constant oscillatory responses.

The last two columns show values selected for the closed-loop dynamics
for two decoupled control cases. In the FAST PITCH case the commanded pitch
attitude is reached in about 40 seconds; in the SLOW PITCH case about 2 minutes
are required. In the first case, the two actuators are used to decouple the pitch
attitude and first flexible mode. The symmetric arrangement of the actuators
produces an interaction between all four modeled modes such that a full-order F
matrix is achieved; i.e., feedback control is available for all 4 modes in the
math model. This condition exists only because the absolute values of the
control-influence coefficients are the same in both columns of the B matrix.
For other control arrangements, techniques have been developed in which the
control-influence coefficients and/or the feedback gains are adjusted to produce
simplified procedures for achieving overall control of the system. The current
analysis also included model errors of up to * 15 percent in the control-
influence matrix, with no apparent detrimental effect on the overall system

performance.

In the SLOW PITCH case, the same two actuator locations were employed;
however, the control-influence coefficients were slightly changed so that the
decoupling control law provided control for two modes only. 1In this case it
was necessary to perform two separate decoupling calculations: (1) the pitch
and first flexible modes were decoupled, and (2) the second and third flexible
modes were decoupled. The feedback gains obtained from both calculations were
then combined to provide control for all four modeled modes.

14
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DYNAMIC CHARACTERISTICS

NATURAL | DECOUPLED
- FAST-PITCH RESPONSE SLOW-PITCH -RESPONSE
W g R/S .001 .07677 .0302

W L4275 .70 1.1
W, 1.172 2.084 1.1635
W3 2.297 3.063 2.091
Wy 3.797

Ws 5.6716
_ N I -

Se 0 .736 .70
% .005 .2185 .3354
3, .0055 .863 .2013
3; .00605 .225 .2344

$. .00665

3; .00732 L

Figure 4
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CLOSED-LOOP EIGENVALUES

The symbols in figure 5 depict the eigenvalues of the closed-loop system,

assuming perfect knowledge of the state variables.

Also shown are the loci of

closed-loop eigenvalues for the observer as the Kalman gains are increased.
The observer (based on the steady-state Kalman filter) was designed to have a

certain stability margin.
to the diagonal elements of the system matrix A'.
(The A matrix in the composite equations shown in figure 3,
In calculating the Kalman gains, the objective is

varying this scalar.

of course, is not altered.)

This was attained by adding a positive scalar term
The gains were changed by

to produce an observer whose response is faster than that of the closed-loop .
system with perfect knowledge of the state vector (eigenvalue real parts more

negative than those of the closed-loop system).

As shown in figure 5, there is

no problem in meeting this condition for the filter eigenvalue corresponding

to the pitch mode.
accurate.)

drive the eigenvalues past the corresponding closed-loop values.

(Hence, estimates of the pitch attitude should be very
However, for the flexible modes, large Kalman gains are required to

In fact, it was

found that Kalman gains which produced eigenvalues with real parts less than
about -0.1 resulted in poor performance; i.e., excessive control forces and/or

excessive overshoot in the flexible-mode response.

in a subsequent figure .~

16

FAST-PITCH RESPONSE A 73
O PITCH MODE
O 1st MODE
< 2nvp MODE 3RD MODE |
A 3rD MODE
FILLED SYMBOLS : A _
SLOW-PITCH RESPONSE
PITCH MODE
- ——=
2ND MODE
€ —_—— - — —.—
o m_
B
1sT MoDE
< - — — — —]

FILTER—/

REAL

Figure 5
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ZERO COMMAND-FAST PITCH

Figure 6 is an example of an instantaneous zero command (FAST PITCH case)
to null arbitrary initial disturbances of -0.01 in pitch and 0.015, -0.005, and
-0.02 in the first, second, and third flexible modes, respectively, and 0.01 in

the residual modes (4th and 5th flexible modes). The Kalman gains used to

determine the estimates of the modal variables (shown in 2nd column of time
-0.1, as previously discussed. It

histories) correspond to real eigenvalues
is assumed that instantaneous control torques T1 and T2 are available at time
with initial estimates of 90 percent in pitch attitude and 80 percent in the three
modeled flexible mode amplitudes; that is, the control actuators are not turned

on until these estimates are established by the observer. Analysis has shown that
without the effect of the controls, these estimates are achieved in about 100
seconds. The values of initial disturbances and initial estimates quoted here

are used for all figures which follow, except where noted. All figures except
figure 13 pertain to the FAST PITCH case.

As shown in figure 6, the four modeled mode responses (first column of time
As for the residual modes, there

histories) are nulled after about 40 seconds.
is some effect on A5 during the first few seconds; however, responses in both
modes gradually die out due to natural damping. It should be noted that, with

the controls operating, the observer obtains good estimates of the first three
due to observation spillover caused by the

=0’

modes, but fails in estimating A3
Attempts to improve this estimate by varying the Kalman filter

residual modes.
gains are shown in the next two figures.

17
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FILTER GAINS REDUCED

For the zero command in figure 7 the Kalman gains were reduced so that the
real eigenvalues, corresponding to the flexible modes, were close to zero.
This resulted in slowly damped oscillations in the three modeled flexible modes
due to poor estimates in all these modes.
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FILTER GAINS INCREASED

The Kalman gains were increased for the zero command case in figure 8 so
that the real eigenvalues, cerresponding to the flexible modes, were approxi-
mately -0.2. Here again, estimates were poor in A2 and A3. More mnotable is the

poor performance as exemplified by the increased control torques and the peak
overshoots in the flexible mode responses, which far exceeded the initial
disturbances. Large control spillover effect is also evident in the residual

A5. Attempts were made to improve the performance for this case, as shown in

the next two figures.
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FEEDBACK GAINS ADJUSTED

Figure 9 is similar to figure 8, except the decoupling feedback gain matrix
was changed by deleting the. gains for the three flexible-mode amplitude displace-
Hence, the control system included feedback gains only for the pitch

ments.

attitude and rate and the three flexible-mode amplitude rates.

As shown by the

lower control torques and peak responses, some improvement in performance was
accomplished. Also, note the large reduction in the AS residual response. The

system performance, however, is still unacceptable; the following figure shows
a further attempt to improve this performance.
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1st ORDER LAG:

TAU = 5 SEC

For figure 10, in addition to the feedback gain adjustment, a first order

lag (time constant = 5 sec) was included in the control system.

This condition

more closely resembles practical operational procedures because some lag will

always be present in a control system.

The results show further improvement

in performance (especially in control requirements); however, it appears that
the Kalman gains must be reduced for acceptable response in the flexible modes.
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NO PITCH DISTURBANCE

Figure 11 shows a zero command case similar to that of figure 6, except
with no initial pitch disturbance. Comparison of the two figures shows the large
effect of pitch disturbance on nulling the system. With no pitch to consider
(and consequently no error in the initial estimate in pitch), figure 11 shows
considerably lower control torques and a much better response in the third
flexible mode.
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NO RESIDUAL DISTURBANCES

Figure 12 is similar to figure 6, except there are no initial disturbances
in the residual modes. Comparison of the two figures shows that the responses
in the modeled modes are not materially affected by the motions of the residual
modes. Also, the control requirements are about the same in both cases, except
for the small lingering oscillations in figure 6.
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ZERO COMMAND-SLOW PITCH

Figure 13 is an example of a zero command for the SLOW PITCH case. The
results are similar to the FAST PITCH case (figure 6). Although not shown,
about two minutes are required to null the pitch attitude. Also, the maximum
control torque is reduced by about one-half, as are the response amplitudes

in the residual A5.
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ONE CONTROL INOPERATIVE

Figure 14 is an example of a zero command (FAST PITCH case) where one of
the control actuators is considered to be inoperative. The feedback gains for
the remaining actuator were not altered. The time histories show adequate
responses in nulling the system. In contrast to the two-actuator case (figure 6),
8 and A, require about three times as much time to null (Note expanded time

scale).
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FEEDBACK GAINS ADJUSTED, LAG INCLUDED

Figure 15 illustrates the same case as the previous figure, except that the
decoupling feedback gains were changed in the same manner as in the case of

figure 9 and a first-order lag (tau

5 sec) was included in the control system.

Comparison with figure 14 shows better response characteristics for 6 and Al’

as well as a large reduction in control requirements.
observer obtains good estimates of A3 after about 30 seconds.
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TWO ZERO-COMMAND PROCEDURE

The following four figures demonstrate a practical procedure for nulling
initial disturbances with two separate zero-commands. Figure 16 represents the
first zero-command and differs from the one in figure 6 in that actuator lag
(tau = 5 sec) is included and the closed-loop pitch frequency has been doubled.
Because of the increased pitch response, all disturbances are essentially nulled
within 30 seconds. The control actuators are then turned off (observer remains

on) at this time as shown in the next figure.
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CONTROLS OFF - OBSERVER ON

The results of turning off the controls at time 30 seconds are shown in

figure 17.

The actuators were turned off in order to avoid the oscillating
control torques which are shown to persist over a long time period in figure 16.

As shown in figure 17, the disturbances have not been completely nulled, but
fairly good estimates of these disturbances are obtained after 30 more seconds.
(Note that without the controls operating the observer is able to obtain a good
The next step, then, is to apply the second zero command at

estimate of A3.)

this time.

The resulting responses are shown in the next figure.
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the oscillating control torques which would be required over a long time period.
The final results of the two-zero command procedure are shown in the next figure.

SECOND ZERO COMMAND AT 60 SEC

The modal responses in figure 18 are essentially nulled after 30 seconds.
Here, the control actuators are turned off for the final time, again to avoid
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CONTROLS OFF AT 90 SEC

The results of turning off the actuators after the second zero command are
shown in figure 19. The remaining disturbances are practically zero and will
eventually die out through natural damping. :
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PITCH COMMAND - NO DISTURBANCES

The next two figures illustrate examples of pitch commands whereby a pitch

attitude

initial dusturbances, and hence no errors in the initial estimates.

of 0.01 radian is commanded.

For the case in figure 20, there are no

The commanded

pitch attitude is reached in about 40 seconds, with only a small coupling effect
on the second flexible mode.
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INITIAL PITCH DISTURBANCE - ESTIMATE AT 90 PERCENT

For the pitch command in figure 21, there is an initial pitch disturbance
of -0.005 radian which is known only to an accuracy of 90 percent. The results
illustrate the large effect of the initial estimate on the three modeled flexible
modes. Also, the control-torque requirements are substantially increased over
those of the previous figure. Doubling the error in the initial estimate would
double the magnitude of these effects.
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CONTROL REQUIREMENTS

Figure 22 compares the maximum peak actuator torques (absolute values) required
for pitch and zero commands, assuming no lag in the system. The data apply to a
four-actuator control system but are representative of any control arrangement.
For the pitch-command data, there is an initial disturbance of -0.005 radian and
the commanded value is 0.01 radian. The zero-command data pertain only to nulling
initial disturbance in the flexible modes; i.e., no pitch disturbance. Except
where noted, the peak torques occurred after the initial time.

As would be expected, the control requirements are essentially linearly related
to the initial estimate. Also, the pitch commands require the higher control
torques. Further, the results show that the requirements for zero commands increase
as the accuracy of the initial estimate increase, while the opposite is true for

pitch commands.
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SENSOR LOCATION ERROR, 5 PERCENT TOWARDS LEFT

Figure 23 is similar to the zero command shown in figure 6, except for sensor-
location error; i.e., the attitude sensors have been placed at locations other
than those (nominal) used for the observer in calculating the Kalman gains. In
this case the sensor locations have been moved 22.5 meters (5 percent of beam

length), both in the same direction from nominal.
except for A., this error produced negligible effects on system performance.
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SENSOR LOCATION ERROR, 5 PERCENT TOWARDS ENDS

The case in figure 24 is the same as that for the previous figure, except
the two sensors are moved in opposite directions, where the mode-slope differences

from nominal (for example, sign changes) are more pronounced.

Even though the

system is eventually nulled, the performance is decreased as evidenced by the
increased oscillations in A_ and in the control actuators.

3

These results can

be attributed to the poor estimates in the three modeled flexible modes.
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SENSOR LOCATION ERROR, 10 PERCENT TOWARDS ENDS

Relocation of the sensors 10 percent off the nominal position and in opposite

directions leads to instability; this may be seen in figure 25.
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ABSTRACT

Active stabilization logic is synthesized to hold a feed at the focus of a
spacecraft antenna dish. The feed support structure is modeled as a tetrahedron made
up of flexible bars and connected to the dish by six short legs containing force
actuators. Using the symmetry of the structure, the model can be decomposed into
four uncoupled subsystems: (1) pitch/forward motions with four degrees of freedom
(DOF) and two controls, (2) roll/lateral motions with four DOF and two controls,

(3) vertical motions with three DOF and one control, and (4) yaw motion with one DOF
and one control. This greatly simplifies the synthesis of control logic.

INTRODUCTION

A spacecraft consists of a massive central body with a large antenna dish at one
end; the feed for this antenna is mounted to the dish with a flexible support struc-
ture consisting of twelve bar-like members. (See fig. 1.) Six of the bars form a
regular tetrahedron, with the feed at the apex. Two legs connect each of the three
joints at the base of the tetrahedron to the antenna-dish/spacecraft, which we shall
approximate as an inertial frame of reference due to its large mass. The mass of the
structure will be lumped at the four joints of the tetrahedron, and the bars will be
approximated as springs with axial deformation only.

The design objective is to control the four lowest frequency vibration modes
that involve lateral motions of the feed so that they are at least 10 percent
critically damped.

SEPARATION INTO SYMMETRIC AND ANTISYMMETRIC MOTIONS

Motions symmetric with respect to y-z plane involve seven degrees of freedom:

Y1s 23> X2 T X3, Yo T V3, 29 T Z3s Yy» z4

Motions antisymmetric with respect to y-z plane involve five degrees of freedom:

X1, X3 T X3, Y2 T 7¥3> Z2 T 23, X4

Three of the symmetric modes involve only vertical (zl) motions of the apex, and
one antisymmetric mode is symmetric about the z axis (a yaw mode), producing zero
motion of the apex. The remaining eight modes consist of two sets of four modes that
have identical frequencies, but one set involves symmetric motions and the other set
involves antisymmetric motions.

The actuator forces can be arranged into six sets, one of which controls only
the yaw mode, another that controls only 2z; motions, and two sets of two that con-
trol the remaining symmetric and antisymmetric modes, respectively. Thus the sta-
bilization problem may be reduced to two almost identical problems of controlling
four modes with two controls.
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EQUATIONS OF MOTION

Let ¥i be displacement vector of ith joint, Eij be position vector from
ith joint to jth joint, and k1, ko, kg be equal to EA/mL3 for base members,

vertical members, and legs, respectively. Then

>

-»> - -> > > - > -> -> > >
ry = ~komy omy 3 (ry - r3) - komy 3my 3-(r3 - r3) - komy smy 4-(F1 - T4)

el > > > - > > > > > > > >
g = Tkgmy gy 97Ty~ Tp) -~ kymy gmy 50 (T, - 1) kymy 48 4"ty = T,

>

-> -> > > -> > >
= kgmp smp 57Ty — kgmy gmy gTy +my 5fy 5+ my 6fy ¢

> > > > > > > > > > ->
T3 = ~komy gmy 37 (r3 - vp) - kymy gmy 3-(r3 - p) - kgmy umy 4 (T3 - 1)

->

ms gfs. g

- > - -> -> - ->
-k m ‘r., + m

T kM3, 7M3,7 3,7 T Ko3, 83,87 T3 T Wy yf3 7 F
Ty = kol my g (g = Tp) = Ry gy 40 (Fy = By - kg ity g (F - 2
> > > > > > > >
T kams, My, 97Ty ~ Kemy 10m4 10-T4 4 9f4,9 + my 10f4,10

For nominal configuration,
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COMPUTER CODE "TETRA"

Calculates 1212 K matrix, where
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de [ *3 3
"4 T4

Calculates 7%7 Kg matrix and 5%5 K, matrix, where

dg = —KSdS + GSfS
dA = —K.AdA + GAfA
—~ T
é XZ_XB y2+}’3 22+23
dS = _}’1, 21> 2 ’ 2 ] 2 s Y4 24
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EQUATIONS OF MOTION IN MODAL FORM

Using computer code 'MODALSYS", the symmetric and antisymmetric equations
of motion were put into modal form. Sketches of these mode shapes are given in
figures 2 through 4. Only four modes involve fore-aft (y;) motions of the apex
(fig. 2). Another four modes involve only lateral (xl) motions of the apex (fig. 3).
Another three modes involve only vertical (zl) motions of the apex (fig. 4). One
mode involves no motion of the apex (fig. 5).

SEPARATION INTO FOUR SUBSYSTEMS

Only two linear combinations of actuator forces enter into the y; apex motions.
(See first example of modal controllability matrix.) We shall call them fpitch and
ffwd' Two different linear combinations of actuator forces enter into the x; apex
motions. (See second example of modal controllability matrix.) They will be referred
to as fr and f One different linear combination of actuator forces enters

oll flat”

into the z; apex motions. It is called fvert' One different linear combination of

actuator forces involves no apex motion, and is called fyaw' The equations of motion

for these four subsystems are given elsewhere in this paper.

ANALYSIS OF TETRAHEDRON WITH CONSTRAINED MOTION
Symmetric Tetrahedron
Constraints
Xp =%, =0, X3 = =%y, ¥3 =9 23 7 7

h3 = —h2, V3 T Vs h4 =0

System equations
X = (yl’ zl’ Xz, Yz, 229 YA, 24)

u = (HZ’ Vs V4)

vy = (yy5 ¥y)

= +
Xx = Fx + Gu + GAY
y = Hx

where
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and

and

9

™2

where

50

1]

0.02602
0.5000

-1

1 fp H3 = ~Hz
-0.4872 fF V3 = V2
0.9744 H4 =0

ROLL/LATERAL TRANSLATION SUBSYSTEM

2
-(1.342) m, + 0.2202fR

2
-(2.957) mg + 0.5482fL

2
-(4.662) mg + 0.9845fR - 0.5925fL

2
-(9.251) L 0.1880fR + 0.6184fL
1 -0.2761 ~0.2286 0.0256 ] "mz'
0.1188 1 0.1300 -0.3579 g
_ | 0.0165 0.0874 ~0.0068 -0.7840 mg
— 2 -
0.0926 -0.2207 1 0.0264 mlH
0.0901 0.8483 0.1409 1
. ]
-0.1735 -0.5000 fo Hy =Hz
=] 1 —0.7299| | £, vy = -V,
0.3470 1 v, =0

VERTICAL SUBSYSTEM

2
-(2.734) my + 0.6208fv

2
-(4.835) ng + 0.8476fv

-(12.322)%n

12 + 0.0192fV



Y1 (‘O 0 0 m, X, -X
z, 1 -0.7307 0.0512 m9 Y3 Yy
x2 0.0107 -0.0275 -0.8659 m12 z3 z,
Yy 0.0064 -0.0160 -0.5000
z, 0.2440 0.9994 -0.0193
Yy ~0.0120 0.0316 1
_?4_ -0.2440 1 —0.019EJ
and
v 0T
v, 1 l:fVJ
V3 1
NI
YAW SUBSYSTEM
” 2
m, = ~(4.204) ™ + l.OOOfY
where
— - r— -
xl 0 EIG:I x3 = x2
x, ~0.5000 ¥y = -yz
Yy 0.8660 z3 =z,
z2 0
_le _1.000_
and
[ —
B 2 ] m-o
H3 1 V3 =0
H 1 vV, =0
L4 L | 4

Figure 6 shows the combinations of controls that control only modes 1 and 4
(and also modes 7 and 10). Figure 7 shows the combinations of controls that con-
trol modes 2 and 5 (and also 8 and 11). Figure 8 shows the combinations of con-
trols that control the vertical and yaw modes.
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Rear view.

Top view

Figure 1.~ Antenna feed tower.



Pitch

4

Fore-aft
translation

wz = 8.75

Deformation
vertical
members

wz = 21.73

Deformation
base
members

Side view Top view

Figure 2.- Modes that involve only y motions of the apex,
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Lateral
translation

w” = 8.75

Deformation
rear vertical
members

wz = 21.73

Deformation
base
members

Rear view Top view

Figure 3.- Modes that involve only x motions of the apex.
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Vertical

T'ﬂ
(&2

®
translation

w? = 7.47 -
(4> )

Deformation
vertical
members

w2 = 23.37

Deformation
base
members
w2 = 151.8
{‘_-._.——————-
Side view Top view

Figure 4.- Modes involving only z motions of the apex.
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Rear view Top view

Figure 5.~ Antisymmetric mode involving no motion of apex.

Top view

2,.4-; Hy=s 450 Hz..zeo \d‘ Uy 2 =260

2v7_ --il Vz .5 V;=.5

Side view

(a) Mode my (pitch) controls (fp).
©Va=. 974
Top view
Side view
Hy = -
Hz = 1,732 / 3 1
‘ 2Vz =974V, = o] Vz- ~,487 v3 < -.487

(b) Mode m, (forward translation) controls (fF).

Figure 6.- Pitch and forward translation controls.
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He =247
t g

Hen 347 H,==173 / \ H3=-~113
1 RN o

- [ o
T"_Vz*i V=-1 | V=4 Vp=-1
Rear view Top view

(a) Mode m, (roll) controls (fP).

_ Hz2-.5

k

—pe 4 > s ~P \®

l ‘V,;_:-.’Bo ;\/,; =.,730 T VZ = =730
Rear view Top view

(b) Mode m, (lateral translation) controls (fL).

Figure 7.- Roll and lateral translation controls.
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2\&1;2 '\QEﬁl T 'V;=‘1 \5-;1

Side view Rear view

(a) Vertical modes control (fv).

Hg'G 1

Side view Rear view

(b) Yaw mode controls (fy)'

Figure 8.~ Vertical and yaw controls.



ACTIVE CONTROL OF FLEXIBLE STRUCTURES WITH SEPARATED SENSORS AND ACTUATORS

R. H. Cannon and D. Rosenthal
Stanford University
Stanford, California
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KEY CONTROL PROBLEMS OF FLEXIBLE SPACECRAFT

¢ Very flexible ® Uncertain parameters

¢ Low damping ® Nearly equal modes
® Noncolocated sensor and actuator

APPROACH TO CONTROL

¢ Kalman filter ¢ Adaptive control

Identify plant frequency
Tune Kalman filter

Initial laboratory two-disk plant.
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Step response of closed-loop system with mismatch in actual and modeled natural
frequency.
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Step resvonse of closed-loop system with self-tuning adaptive optimal controller.
Vibration frequency in Kalman filter was incorrectly assumed to be 1.7 Hz (-25
percent error) initially. Parameter error in model was corrected in real time by

frequency-locked loop.
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DOCKING OF A RIGID SPACECRAFT WITH

UNRESTRAINED ORBITING FLEXIBLE STRUCTURE

T. R. Kane
Stanford University
Palo Alto, California
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Purpose:

Establish a methodology for producing simulations of the docking of a
rigid spacecraft with any unrestrained flexible structure.

Method:

Produce a detailed algorithm for the simulation of the docking of a rigid
body with a nonuniform unrestrained beam.

Background:

Predocking and postdocking motions can be simulated with algorithms given
in references 1 and 2.

Tasks:

(1) Determine the values acquired during docking by the variables character-
izing the motions of the rigid body and the unrestrained beam.

(2) Transform to the variables used in connection with the cantilever beam.

(3) Perform simulations of the total process.

REFERENCES

1. Levinson, David A.; and Kane, Thomas R.: Simulation of Large Motions of
Nonuniform Beams in Orbit. Part 1 - The Cantilever Beam. J. Astronaut. Sci.,
vol. 29, no. 3, July-September 1981, pp. 213-244.

2. Kane, Thomas R.; and Levinson, David A.: Simulation of Large Motions of

Nonuniform Beams in Orbit. Part 2 - The Unrestrained Beam. J. Astronaut. Sci.,
vol. 29, no. 3, July-September 1981, pp. 245-275.
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RESEARCH ON ELASTIC LARGE SPACE STRUCTURES

AS "PLANTS" FOR ACTIVE CONTROL

H. Ashley and A. von Flotow

Stanford University
Stanford, California
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INTRODUCTION

e Modeling of 1la
® Scale effects on structural damping

® "Loss coefficients" of monolithic LSS

e Wave propagation in nondispersive and dispersive media (1-D and 2-D)
® Spectral separation of system response:

x(s) = H(s)[u(s) + iC(s)] = H.(s)[u(s) + 1C(s)]

+ [H(s) - HR(S)][uF(S) + iCF(S)]
e

correction term
where HR(s) is a reduced-order transfer function
® Reflection of waves from boundaries
® Modeling of discrete structures as equivalent continuous structures
® Dynamics of networks of elastic waveguides
e Control of systems with wave-related time delays

® Application to a 1-D system under active control: 0.1l2-sec lag predicted with
Timoshenko beam idealization and empirically determined shear rigidity

e Significance of passive damping (ref. 1):

1. A L8388 with exactly zero damping is uncontrollable unless sensors and
actuators are all collocated (often impractical)

2. Even very small amounts of damping are important to practical success
of control

® Some approximate effects of LSS linear scale L on a typical modal damping
ratio Z:

1. For a "monolithic" element, 7 is proportional to material damping and
decreases with decreasing frequency w (i.e., with increasing L)

2. Viscous friction dominates at joints; thus 7 ~ 1/L

3. Coulomb frection at joints and joint preload is dependent on rotational
rate Q > ¢ ~ (QL)2

4, All sources active - [ between a constant and ~L—1
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STUDY OF INTRINSIC DAMPING IN MONOLITHIC METALLIC STRUCTURE

e Two "semi-reversible'" mechanisms seem feasible for LSS:
1. Thermal relaxation

2. Grain boundary relaxation (can give large values of [ but required
temperatures may be too high)

® Work in progress on thermal damping
® Properties of thermal damping

1. Involves coupling between mechanical and entropy waves; e,g., for
isotropic solid with T = T0 + AT and displacement § = ui + vj + wk,

anr L%
ot p[l - 2v]

0102
thay
o

2
V= (AT) - c,

o=

o - v(o +0 )
XX vy zZz

éE-E E = oAT +
9x XX

E
[ ]
[ ]
lej >ls] o0 2
XX, _Xy ., _ Xz _ 97 u
ox oy %z 2
. ot

2. ¢ is configuration-dependent (e.g., 10_2 to 10_3 for beams and plates,

10_7 to 10-8 for bars and rods). Composite beams are under study.

3. The value of 7 depends on frequency w and material properties. E.g., for
a rectangular beam of depth b:

b

insulated ——

N

T Eaz

z = 0.55 o [ Wil 2] with u = (%;) K sec_l
v

pe W + 1
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IDENTIFICATION AND CONTROL OF SPACECRAFT

C. S. Greene
M. F. Barrett
Honeywell Systems and Research
Minneapolis, Minnesota
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IDENTIFICATION & CONTROL OF SPACECRAFT

* THE PROBLEM
* CONTROL
- CLASSICAL
- MODERN

* JDENTIFICATION

RIGID PAYLOAD

/]

. i
y <
REMOTE

MANIPULATOR
ARM
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CLASSICAL CONTROL

* SCALAR FEEDBACK DESIGN

* LEAD-LAG CONTROLLER

k (s+a)

K(s) =
(s2+2cb+b?)

* BANDWIDTH AROUND 1 RAD/SEC

SHUTTLE AND PAYLOAD: FROM ALPHA TO Y-ATTITUDE

100
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183
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SHUTTLE AND PAYLOARD: FROM ALPHA TO Y-ATTITUDE

: \
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N
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FREQUENCY (rads/sec’

MODERN CONTROL

* START WITH FULL-STATE DESIGN
- GOAL: MINIMIZE PAYLOAD ATTITUDE ERRORS
- ITERATE ON CONTROL PENALTY TO ACHIEVE BW OF 5 Rr/s

* DESIGN FILTER TO RECOVER LQ RESPONSE
- USE STEIN/DOYLE ROBUSTNESS RECOVERY RESULTS

* TEST ROBUSTNESS
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IDENTIFICATION

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

IDENTIFICATION
T -
PROCESS EB"’ ] W : MEASUREMENT E[VVT] =R
NOISE NOISE
W
PLANT
TEST % _
s'frAL RESIDUAL ‘
T —
]
Efu]-0 :
]
1
ID MopeL '
o )
1
\ A :
it e Kauman FroTerf<<-*
4a MLE
IDENTIFIER
MODEL STRUCTURE
7] r E——— - -
o STATE Space : . 0if: .
~— O _:_ _ _
X, 10 1 . "ol
ne MoDEs (2x2 BLocks) LECe)= ] ! X5 T
s 5 RE 2 I En g R T
: 0 l" .
m INPUTS
- - - - L L. J
P OUTPUTS ] B | ! s
A ol..] X5 (t)+[v:|(t)
-4t ' Xy

o FREQUENCY DoMAIN
v(s) = (GLs)Lu(8)+w(s)] + v(s)

ne ¢, o]
X .
G"(S) B ;1 52*251‘“13*“12

o PARAMETER VECTOR

a, = (uei, 204 0r50 bay, Cayz i =1, ...
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MLE IDENTIFICATION SETUP

® ResipuvAL DEFINITION

r, & yxm - Fam

o LikerLiHoob Function (NeecaTive Loe)

N
L(a) £ I L (o)
=() k
N
A 1 T
= E 3 [LOG DET Sk + Ty Sk rk]
k=0
WHERE
o & (w2, 20,0, by, e i =1, ..., n} = UNKNOWN PARAMETERS
A
s, = B {r,r;} = PREDICTED RESIDUAL COVARIANCE

MLE IDENTIFICATION SOLUTION
o PARAMETER ESTIMATE (THEORETICAL)

~ 4
a = ARG{ MIN L(u)} = PARAMETER ESTIMATE

o [TERATIVE ALGORITHMS

GRADIENT: o 3 = o — ¢, Vl(a))

~

NewTon-RHAPSON: ;J+1 =a, - [VZL(;J)] ) VL(;J)

WHERE
L) & 2 )

. 2
2 oy A2
V2| (a) & 5;5 (a)



IDENTIFICATION ACCURACY ISSUES

STV o

e SYSTEMATIC ERRORS: Ew(&) - as '
- MODEL-ORDER MISMATCH

- TEST SIGNAL AMPLITUDE AND SHAPING

- SYSTEMATIC DISTURBANCES

~SENSOR/ACTUATOR MODEL ERRORS

~

Pzam< -—-- ----f
i,

Cl‘ P

I
1 BIas 1

¢ STOCHASTIC ERRORS: aa-\-/i_N

- RANDOM DISTURBANCES AND SENSOR NOISE
- TEST SIGNAL AMPLITUDE AND SHAPING

- IDENTIFICATION TIME INTERVAL

STEADY-STATE IDENTIFIABILITY ANALYSIS (YARED)

e ExpecTED LiKeLIHOOD FuNCTION

(e

1" () = Eu
= % [LOG DET S+ TR(S'IS.)]

o ResipuaL CovARIANCES

S=E, {rKrKT}= KALMAN FILTER PREDICTED RESIDUAL COVARIANCE MATRIX

Se = Es {l‘KIKT} = ACTUAL RESIDUAL COVARIANCE MATRIX

S

NoTe: Se AND 1"(a) CAN ONLY BE COMPUTED WHEN THE TRUE PLANT PARAMETERS ARE
KNOWN,

P
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EXPECTED MLE IDENTIFICATION SOLUTION

o ExpecTED PARAMETER ESTIMATE (THEORETICAL)
.~ 8 .
as = (e {a} = ARG {"é" I (n)}

o ITERATIVE ALGORITHMS
R . . -
GRADIENT: w7 = s =€ 9] (%))

-~ - [ 2 -1 e
Newron-Ruason: asjq = an, = [V (ae ] 7 917 (e )

WHERE vl'(u) =9l (a)
Ba

Vzl'(a) = %I.(a)
Oa

STEADY STATE IDENTIFICATION ACCURACY

o SYSTEMATIC ERRORS (BIASES)
- PARAMETER ERRORS

e

Sgrag = 8% = Gx = 0 WHEN NO MODEL MISMATCH

- INFORMATION MEASURE (YARED)

Ilo, 5 ay) 217 - 1" >0

o STOCHASTIC ERRORS

Lm Es {LM.)(&-&.)T}

R . ~ AT .- -1
[VZ[ (u.)] ! En{[%la (“0)] [g‘!;(“o)] }[\72[ (Gc)] (;}:1)2

Cov{&}

ez e

[Vzl'( ;-)] -1 %;:I) WHEN NO MODEL MISMATCH



c'2
a

{PARAMETER

ERROR

COVARIANCE)

onN
<z

STOCHASTIC ERROR WITH PROCESS NGISE

E{uuT} = ur
E{wwl} = WI
E{vwT} = RI

c;bT
6; (Juy) = —=2
1 J 1 s
3285wy
 aw BENT 3 RO
—5, Guy)| ? & < fe; GGuy) | 3 >>1
U = TEST SIGNAL COVARIANCE BOTH CONSTANT

R = MEASUREMENT NOISE COVARIANCE

° W (PPOCESS NOISE COVARIANCE)
SIMPLIFIED IDENTIFICATION ACCURACY ANALYSIS
(FOR EACH MODE)
v
E[uu = WI Efvw?] = RI
ch 4
sz+2:ms+m2
a 4 (mz, 2¢uw, bl"" b, Clrvenr cp} - (bL or cM)
2 2
%w?  _sc? 1 ¢ o & max (o sz}il
(w?) SNR  (N+1)T em bl Jel?
2 2, 12
S200 _ _ 4 _ 1 sur & ,—IELJ%I— g (MEAS. NOISE)
3 = 4t R
(2Lw) SNR (N+1)T
tw % (PROC. NOISE)
g 2 2
Bt _ 1l . 1
bl SNR bl (N+1)T
%em? _ 1 let?, -1, 1
cn SNR I:c“.l vl (N+1)T
NOTE: THIS ANALYSIS ASSUMES THAT wT <<1, ¢ << 1 AND APPLIES FOR EACH MODE
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NUMERICAL RESULTS

o PROBLEM SIZE

12 MODES (=22 - 8R.B., - 2 SMALL)

2 INPUTS (o, 8 GIMBAL ANGLES)

2 QUTPUTS (x, v ATTITUDES)

60 PARAMETERS (=12 MODES x 5 PARAMETERS/MODE)

o TEST SIGNAL, NOISE STATISTICS

SAMPLE TIME: T=0.1 SEC
TEST SIGNAL: U = 4000(IN-LB)Z
PROCESS NOISE: W = 4OCIN-LB)2

MEASUREMENT NOISE: R = 4 x 10712 pap?

o WORST-CASE RELATIVE ERRORS AT TIME (MODE 9:
PARAMETER 1 SEC 14 SEC  0.39 HRS

w? 0.0265  0.007 0.0007

2cu 3.75 1.0 0.1

b, 13.6 3.6 0.36

o 2.7 0.7 0.07

<, 11.7 3.1 0.31
SUMMARY

o CONTROL PROBLEM
- MODERN LQ CONTROL DESIGN WITH ROBUSTNESS RECOVERY
PRODUCES ROBUST CONTROLLERS FOR LSS

- ACCURATE 1D ALLOWS A FIVE-FOLD INCREASE IN LOOP BW

o [DENTIFICATION PROBLEM
- STRUCTURAL MODES MAY BE IDENTIFIED ONE AT A TIME FOR

SMALL DAMPING

- LSS ID W/0 KF
--GREATLY REDUCES PARAMETER BIASES
--GIVES ONLY MODEST INCREASE IN STOCHASTIC ERRORS

- RELATIVE ERRORS IN PARAMETERS AFTER ID ARE SMALLER FOR
FREQUENCY THAN FOR DAMPING GR MODE SHAPES

o OPEN ISSUE: HOW ACCURATE MUST ID BE FOR ROBUST CONTROL DESIGN?



THE DYNAMICS AND CONTROL OF

LARGE FLEXIBLE SPACE STRUCTURES

Peter M, Bainum, V. K. Kumar, R. Krishna,
A. S. S. R. Reddy, and C. M. Diarra
Howard University
Washington, D. C.
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INTRODUCTION

Large, flexible orbiting systems have been proposed for possible use in com-
munications, electronic orbital-based mail systems, and solar energy collection. The
size and low weight-to-area ratio of such systems indicate that system flexibility is
now the main consideration in the dynamics and control problem. For such large,
flexible systems, both orientation and surface shape control will often be required.

Figure 1 illustrates a conceptual development plan of a system software capa-
bility for use in the analysis of the dynamics and control of large space structures
technology (LSST) systems. This concept can be subdivided into four different
stages: (1) system dynamics; (2) structural dynamics; (3) application of control
algorithms; and (4) simulation of environmental disturbances. Modeling the system
dynamics of such systems in orbit is the most fundamental component.

SOLAR RADIATION PRESSURE EFFECTS

The equations for determining the effects of solar radiation pressure on a
flexible beam are summarized below.

Forces:
?a = —ho? U/ﬂ(% . ﬁ) ds (absorbing surface)
s
— A A A 2 .
Fy = —2ho n(T - n)” ds (reflecting surface)
s
FE = Fa + e(FY - Fa) (surface with reflectivity )
Moments:
ﬁa = ho%x d/ﬁﬁ(? - n) ds (absorbing surface)
s
EY = 2h0 J(.ﬁ x R(T - 3)2 ds (reflecting surface)
s
ﬂe = ﬁa + e(}-'lY - ﬁa) (surface with reflectivity ¢€)
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where

= unit vector in the direction of solar radiation

—>

= unit vector normal to the surface ds
2

=]

h = 4.64 x 10‘6 N/m

Results for a flexible beam:

~

Fa = -;aoho[ao(zl - zg5) - bg]/i\_ + hobo[ao(zl - 2z5) - bo]k

<4
[}

(az' - b))% (az' - b))% .
-2h z' dx i ~ 2h f dx k

F =
Y A 1+ 29?2 L@+ 2?2
2
_ (a.z' - b.) ~
MY=2hof ° 2 (z'z—x+%)dxk
s 1L+ 2z")
where
a = sin © bo = cos 6

z(x) = flexural deflection

v o dz
dx

te]
I

nth modal frequency

4 —hoéobo{(zl + zo)/2 - 2/Qn E?(cos hf2, ~ cos Qni] + sin @, + sin hﬂn}
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Figure 2 .shows the variation of the resultant horizontal and normal force com~
ponents of a beam with a completely absorbing surface as the solar incidence angle 6
is varied from 0° to 990. Here, 6O vrepresents the angle between the normal to the
undeflected beam and T. The horizontal and normal force components are measured
relative to the beam's undeflected axes. As expected, for small tip deflections of
the beam, the resultant horizontal absorbing force component becomes zero for inci-
dence angles of 0° and 90°, while the normal component has a maximum amplitude at
zero incidence angle. In figures 2 and 3 the individual effect of each mode is
illustrated, with the assumed beam tip deflection as indicated in the figcures.

The magnitude of the resultant moments as the solar incidence angle is varied is
shown in figure 3 for the assumed tip deflection of 0.01%. Large moments can result
for larger deflections, whereas these moments would be zero for a rigid beam. For
small pitch angle displacements, the moment due to solar radiation pressure may
become greater than the moment due to the gravity-gradient forces, as shown in fig-
ure 4. It is seen that at geosynchronous altitudes, the moment due to solar radia-
tion may become predominant even for deflections on the order of 0.01f. With the aid
of moment diagrams such as those in figure 3, it is possible to determine the dis-
turbance torques due to solar radiation pressure once the number of modes and the
associated modal deflections are specified for a model.

MODELING ERRORS - ORBITAL AND GRAVITY-GRADIENT EFFECTS

One of the principal sources of (disturbance) torques acting on an orbiting
space structure is the orbital (gyroscopic) and gravity-gradient effects. Such
effects associated with the orbital (angular) motion do not need to be considered
when developing a system model for an Earth-based large flexible system. Many
investigators, however, model the pitch, roll, and yaw modes (rigid body motion) of
large, flexible orbiting systems as double integrator plants (two poles at the
origin), and the subsequent control system design is based on these models. It is
the purpose of this section to evaluate the effects of omitting the orbital and
gravity-gradient effects when designing shape and orientation control laws for
flexible systems in orbit. Models of flexible square plates and shallow spherical
shells in orbit are selected as examples.

The effects of designing control laws without the orbital and gravity-gradient
torques included in the system models of square plates and shallow spherical shells
in low Earth orbit (250 nautical miles) are illustrated in figures 5 to 10. A square
plate was also considered in a geosynchronous orbit. The analysis was performed by
first calculating the control law, which was in the form u = Fx, for the case where
the orbital and gravity-gradient effects are not included in the model. The same
control law is then applied to the model that includes these effects.

For figure 4, the control law was selected such that the overall response time
constant of the system is 2.22 hours (which may be reasonable for a large space
structure). The shift in the closed loop poles of the plate model due to the pres-—
ence of the orbital and gravity-gradient effects is illustrated in this figure. It
can be seen that some of the poles move to the right half plane, leading to insta-
bility and thus emphasizing the importance of including the orbital and gravity-
gradient effects in the model. The poles due to the rigid body modes are shifted
considerably, but the flexible modes remain virtually unaffected. This can be
attributed to the high frequency of the flexible modes. (Note that the orbital and
gravity-gradient effects are of a relatively low frequency.) This result gives an
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indication that by designing a more robust (faster response) control system, the
shift of the actual closed loop poles would be relatively less pronounced.

This phenomenon can be demonstrated by designing the gain matrix, F, such that
the desired response time constant is reduced to 460 seconds. The shift in the
closed loop poles for this case is shown in figure 6. In figure 7 the control forces
are shown for the second (more robust) control law, where the closed loop response
with orbital and gravity-gradient effects is degraded but does not become unstable.
(It should be noted that time has been nondimensionalized with respect to the orbital
frequency of the 250-nautical-mile low Earth orbit, in order to provide a basis for
comparison.) The difference in the total control force impulse as applied to the two
models (a) and (b) 1s minimal because of the robustness of the controller. The
slowly varying orbital and gravity-gradient torques have a relatively greater impact
on the less robust systems, and can even lead to possible instabilities, as was
illustrated in figure 5.

As expected, the orbital and gravity-gradient effects are less pronounced in the
case of a structure in geosynchronous orbit than in the case of a structure in low
Earth orbit. However, if the control systems are designed with response times com-
parable to the orbital periods, under the influence of orbital and gravity-gradient
effects the closed loop systems may become unstable.

The shift in the closed loop poles of the spherical shell model due to the pres-
ence of the orbital and gravity-gradient effects is shown in figure 8. One of the
closed loop poles is moved to the right-hand side of the S-plane, causing instability.
As compared to the case of the plate, the effect of the orbital and gravity-gradient
torques on the shell is more pronounced, as the instability due to movement of the
poles occurs at the relatively fast designed response time constant of 615 seconds
(compared to 8000 seconds in the case of plate). When the control is redesigned for
a response time constant of 400 seconds, the shift in the poles is as shown in fig-
ure 9., A general shift in the rigid body motion poles is observed, but the system
remains stable.

The control forces associated with both models (a) and (b) of figure 9 are com—
pared in figure 10. A considerable increase in the control effort is observed when
the model includes the effect of the orbital gyroscope and gravity-gradient torques.
This may be explained by the fact that the mass distribution of the shell is more
complex than that of the plate, resulting in relatively greater dynamic coupling when
the gyroscopic and gravity-gradient effects are included in the shell model.

THE DEVELOPMENT OF AN ALGORITHM TO EVALUATE COUPLING COEFFICIENTS
FOR A LARGE FLEXIBLE ANTENNA

The generic mode equations and the equations of rotational motion of a flexible
orbiting body contain both coupling terms between the rigid and flexible modes and
terms due to the coupling within the flexible modes that are assumed to be small and
thus are usually neglected when a finite element analysis of the dynamics of the
system is undertaken. In this section a computational algorithm is developed which
permits the evaluation of the coefficients in these coupling terms in the equations
of motion as applied to a finite element model of a hoop/column antenna system
(ref. 1).
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Using a Newton—-Euler approach, one can express the equations of motion of an
elemental mass of the system, in the frame moving with the body, as:

- o= I - - - - -
{acm+r+2w+r+w><r+wx(er)}@dv={f+e+L(q)/p}pdv ¢D)

where
p = mass per unit volume

external forces per unit mass

ol
1l

q = elastic transverse displacements of the element of volume
f = force due to the gravity on the unit mass

L = the linear operator which when applied to q yields the elastic forces
acting on the element of volume considered

LB
]

position vector of element dv
®w = inertial angular velocity of the body frame
acm = acceleration of the center of mass

Equations of Rotational Motion

The equations of rotational motion of the body are obtained by taking the
moments of all the external, internal, and inertial forces acting on the body; i.e.,

from equation (1):

f;x[acm+§+(zaxx;:)+(Z.)X-f')+(a)x(ax;))]pdv=f;><[L(E)/p+f+€pdv
v

(2)

One can obtain the following form for the equations of rotational motion:

R+ a®+ 3 5™ g+ 8™ 4t ©)
where

R [Fox @xE) - G D@xT )0 av

v
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2 a® - ff, x G ar x (Bx D) ay x (BxD)wax (B,

n=1 v

- <§o : w[@x - @q- a)):J(E)XT:O)}p dv

- (n) - T BT
ED fquvx(acm—fo)+zg.wnAnfro><¢> p dv
n=

n=1 v v
5, = J 7, %, 0 av
oo
T e® - f (5, %+ T x M) av
v

.)f.E x e p dv

v

=]
[
i

ol
fl

ro + q

=1
Il

M = matrix operator which when applied to r yields gravity-gradient forces

Ecm = acceleration of the center of mass

Eo = force/mass due to gravity at the undeformed center of mass
6(n) = modal shape vector for the nth mode

w, = frequency of the nth mode

An = time-dependent modal amplitude function

Generic Mode Equations

The generic mode equation is obtained by taking the modal components of all
internal, external, and inertial forces acting on the body, i.e.,

f‘d‘,(n) . [;cm+;+2g,x;+ax§+5x(BX;):]DdV

v
- f 3 . [L(a)/p +E+elo dv (4)
v
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The generic mode equation is obtained in the following form:

[e o]
e 2
An + wnAn + wn/Mn + Z len/M

oo
]
" (%n + :E: gmn + En + Dn)//Mn
m=1 m=1

it

where

b= JB® - Ex5 48 a k@]
v

7+ 3@ -ax@xa):]pdv

E‘G
I
e 1
o
—~
=]
~
€1
X
Qe
+
L= B
~
=]
~
IS
X

2 8 =f5(n) - Mgp dv

1 v

n=f<—1>(n)'_epdv

0

=

= /E)(n)p dv ° (Zcm - fo)

v

>}
i

Here ¢, 1is the inertia coupling between rigid body modes and the nth structural
mode and Y, . is the inertia coupling between the mth and nth structural modes.

Cartesian Components of the Different Coupling Terms

The expressions for R, Q(H), G

c®™, oy,

R? n m’ &n’ and &mn in
Cartesian components are presented in this section. The following vectors can be
expressed in their Cartesian component form as:

r, = Exl + EyJ + Ezk; w=wi+wij+wk
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i)

1= 20 a3 E; o™ = o™i+ 4™+ oMk

y z
n=1
=(mn) _ (n)? (n)2 (n)p
Q =Q, "1+ Qy i+Q, 'k
a(n) _ G(n)’i‘ + G(n)3 + cML
X y z

A

where 1,
the undeformed state, and Ex’
undeformed state.

A ~
j, and k are unit vectors along the body principal axes of inertia in
Ey, and Ez are the coordinates of a point in the

With the use of the component forms of the vectors given above, one can expand

the various vector expressions given in equations (3) and (5)

to obtain

§=[Jd> + (J —J)ww]’i\+[Jd) + (J -J)ww]§
X X z vy z vy x z’ 7z x

+[:Jo'u + —J)ww]k
z z y X 'xy

X n\ yz zy vx

&m=K(ﬂm_ﬂmw+zﬁﬂﬁ?+ﬂgv%_Hm>

zz

w - H(“)w]
v ZX 2z

X

+ AnIZZ(H}(’;l) + H(“))djx - (H]({n) + H}E?)d)y - (Hén) + Hf{?)d)

Yy

- 20w, (H(n) - H<n)) - wxwy(H(n) + Héz))+ waZ(H}((;) + gt

y zz vy Xz

b (o2 - )@l + H;y)]

GR = (Jz - Jy)M23i + (Jx - JZ)M3lj + (Jy - JX)M21k

y

z

2)

(6)

(7

(8)
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(n) (n) (n) (n) (n)
Gx = A EMI&S 22)( +H zy ) MZl(sz + Hzx )

+ M31(H<n) + H(n)) + 2M23(H}(7;) - H(“))] | (9)

yx zz

p o= &X(H(n) + H(n)) + o (H(n) - H(n)) + &Z(H(n) _ H(n))

n vz zy Yy zX Xz Xy yX
+ W W (H(n) + H(“)> + 0w (H(“) + H(n)) + W W (H(n) + H(“))
X y\ Xy yxX y z\ yz zy Z. X\ 2X Xz
2( . (n) (n) (n) (n) 2(.(n) (n)
- wX(Hyy + sz ) - wy( z + H ) w, (Hxx + Hyy) (10)

b = 2 L - 1) 40 (L - 1) w0, (5 - 1)

‘A EI’X(L(m) ) L(mn)) + o (L(mn) _ L(mn)) . &)Z(L(mn) _ L(mn))

yz 2y y\ zx Xz Xy yX

o (L(mn) + L(mn)) + W W (L<"m) + L(m)) + mzwx(L(mn) + L(m))

Xy ¥yX y 2\ yz 2y zZX p. &4
— (L(mn) + L(mn)) wz(L(mn) + L(mn)) - w? (L<‘“n) + L(mn)):‘ (11)
xX\'yy y\ zz XX z\ xx vy

- (n)
g = ZOLBZ Hyg Mg

_ (mn)
8. = Ay Easz L Mg

where

B () / £ o™ dm

1 o) f o™ oV an

o, B=%,y, z orl, 2, 3
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When o 1is x imn Hég) or Lézn), the corresponding value of o in MaB is 1.
In a similar manner, when o is y in Hég) or Légn), a is 2 din MﬁB’ and
when o is z in Hég) or Légn), a is 3 in MﬁB° The same reasoning holds
for B.

The expressions for (n) and Q(n) are obtained by the cyclic permutation
z

of x, y, z 1in the expression for Qén) in equation (7), and the expressions for
G;n) and G:n) are obtained by the cyclic permutation of x, y, z in the

expression for G(n)

« in equation (9).

For a discretized model, the expressions for the volume integrals are replaced
by the following summations:

k
(n) _ (n)
Ha§ = ;:1 (€4 (4’6 )1“‘1 (12)
(a,B = x’}':z)
k
(mn) _ (m) (n)
Log ~ = Z (q;a )i (¢B )imi (13)
i=1
where
k = total number of discrete masses

i = index identifying a nodal point

m;, = mass concentrated at the ith node
Ea = coordinates of m, in the undeformed state
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SYSTEM DYNAMICS STRUCTURAL ANALYSIS

Differential Equations - LSST Orbiting Systems STRUDL-TT"
Beam, incl. control (2-D)* Det. frequencies, mode shapes
Plate, incl. control (3—D)* NASTRANi
Shallow spherical shell, incl. control (3-D)* \
More complicated system (3-D)* '
Hoop-column® '
1)
ENVIRONMENTAL
Solar radiation +
CONTROL ALGORITHMS forces/torquei

Thermal effects

Jones & Melsa™ - opt. control

ORACLS™ - opt. control
decoupling
pole placement

Hybrid systems™ - passive/active
Bang-bang

*Operational.
tIn progress.

Figure 1.- Development of system software for LSST dynamics analysis.
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Figure 2.- Variation of solar force components with incidence angle.
Totally absorbing surface - free-free beam (length £ = 100 m).
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Figure 3.- Pitch moment due to solar radiation pressure (completely absorbing
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surface). Effect of individual modes in the system - free-free beam.

(a) 250-n.-mi. orbit
(b) Geosynchronous orbit

10-6-~ 8@ = 0; Corresponds to local
horizontal orientation
107’ } :
0.01 0.1 1.0 2.0

Pitch angle, 0, deg

Figure 4.- Moment due to gravity-gradient force as a function of
pitch angle (100-m rigid beam).



33 (a) Design closed loop
] ' poles. Model does
27 . not include orbital
and gravity-gradient
effects.

L18 - (b) Closed loop poles

resulting from the
control law of (a)
when applied to a
model which includes
orbital and gravity-
gradient effects.,

@

Imag. axis

-

-4.0 -3.0 -2. -1.0 1.0 2.0 3.0 4.0
Real axis

J
-9

@
-18

|
-27

| ]
=33

3 rigid + 3 flexible modes

Figure 5.~ Shift in closed loop poles due to orbital and gravity-gradient
torques. Square plate in 250-n.-mi. orbit. Overall designed
response time constant of the system = 8000 sec.
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(a) Designed closed loop poles.-
Model does not include orbi-
tal and gravity-gradient
effects.

(b) Closed loop poles resulting
from the control law of (a)
when applied to a model which
includes orbital and gravity-
gradient effects.

33
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1
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»
[
00
Bl
s
»"9
|-18
|
=27
]
[ —33
1]

1.0 2.0 3.0 4.0
Real axis

3 rigid + 3 flexible modes

Figure 6.- Shift in closed loop poles due to orbital and gravity-gradient
torques. Square plate in 250-n.-mi. orbit. Overall designed
response time constant of the system = 460 sec.
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Figure 7.-

Time history of control forces.
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(Non-Dimensionalized Time)
Square plate.
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=270 (a) Designed closed loop poles.
Model doesn't include orbital
and gravity-gradient effects.

E (b) Closed loop poles resulting
180 from the control law of (a)
o when applied to a model which
] includes orbital and gravity-
3 gradient effects.
é’
L

90

[ 3

1.0

3 rigid + 6 flexible modes

-180

~270

Figure 8.- Shift in closed loop poles due to orbital and gravity-gradient
torques. Shallow spherical shell in 250-n.-mi. orbit. Overall
designed response time constant of the system = 615.0 sec.
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(a)

(b)

Designed closed loop poles.
Model does not include orbital
and gravity-gradient effects.

Closed loop poles resulting from
the control law of (a) when
applied to a model which includes
orbital and gravity-gradient
effects.

$270

Imag. Axis

180

90

-4.0

1.0

-180

%’ 3 rigid + 6 flexible modes

- 270

r

Figure 9.- Shift in closed loop poles due to orbital and gravity-gradient

torques. Shallow spherical shell in 250-n.-mi. orbit. Overall
designed response time constant of the system = 400 sec.
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Figure 10.- Time history of control forces. Shallow spherical shell.
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EQUATION OF MOTION FOR DISTRIBUTED SYSTEMS

Differential equation: Lu(P,t) + M(P)3%u(P,t)/3t = f(P,t) , Pe€ D
Boundary conditions: Byu(P,t) =0, t=1,2,....p0 , P€S

u(P,t) = displacement at point P

L, By = differential operators (L is self-adjoint of order 2p)

M = mass density

f(P,t) = distributed control force

EIGENVALUE PROBLEM

Differential equation: Lé=2aMe
Boundary conditions: Byj#=0, 1| =1,2,...,p
Solution: eigenvalues A, =c>% » elgenfunctions ¢. (r=1,2,,..)
Because L is self-adjoint, eigenfunctions are orthogonal
L is generally positive semidefinite » A, are all nonnegative
Ar = 0 for rigid-body modes

@ =J/x, = natural freauencies

Orthonormality conditions: SD M1§¢} dD = srs p SD +SL¢; dD = Arsrs



i
J
4 MODAL EQUATIONS

Expansion theorem: u(P,t) = §§1'+r(P)ur(t)

up(t) = modal coordinates

Modal equations: U.(t) +@2u (1) = f (D) , r=l,2,...

Modal controls: f.(t) =5.D $(PIF(P,)AD , r=1,2,..,
Counled controls: f.(t) = f.(uj, Uy, Ugs Ogsend) » r=li2,...

Independent modal-space control (IMSC): fr(t) = fr(ur,ﬂr), r=1,2,...

CONTROL IMPLEMENTATION

Distributed actuators: f(P,t) = E:l M(P)$ (P)f (1)
r=
Coupled controls: unable to design distributed controls

IMSC: design modal controls first, then use above formula
no control spillover

m N
Discrete actuators: f(P,t) = _5;1 Fj(t) §(P-Pp)
J:

m m
fr(t) = _’El +r(PJ)FJ(t) = ng BrJFJ(t) ’ I’=l,2,..-;n

number of controlled modes

n

T ¢- T p-
[FiFp oo Fplo £=[f fp oo f]) B = By

£

Coupled controls: Design F(t) so as to ensure contrgllability

IMSC: Design (t) 80, as to control a given number of modes
Then, F(t) = B*'f(t) , BY = pseudo-inverse of B
To avoid pseudo= 1nverses, let m = n, or the number of actuators
must equal the number of controlled modes.
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CONTROL IMPLEMENTATION (CONT’D)

Distributed measurements:
Measurements: u(P,t), G(P,t) for all P and at any t
Then, modal coordinates and velocities, u.(t) and Gr(t), are computed
by using the modal filters

up(t) = $D H(P) ¢ (PIU(P,£)dD, U (1) = {D M(P) ¢ (P)U(P,1)AD, r=1.2,...
Discrete measurements:

Measurements: yj(t) = u(Pj,t),-Qj(t) = G(Pj,t), = 1,2,00.,K
k = number of sensors
Standard approach: Use Luenberger observer to estimate state

Discrete measurements treated as distributed:
Use interpolation functions to compute estimate J(P,t) of u(P,t)
Then, use modal filters to compute estimates Gr(t) of u,.(t)
Divide structure into s segments (elements)
Approximate displacement: U(P,t) = }él L}(P)yj(t)

vj = measurements at the boundaries of j’tn interval
L; = vector of interpolation functions (from the finite element method)

Estimated modal coordinates:

S S
0 = v T . = Ve
i.(t) = SDn<P)+r(P) L, Ly 0 = 2 Lo,
r=1,2,....n

J=
I = SDM(P)+r(P)Lj(P)dD = const

. a8 .
similorly 4p(6) = 2 I8, (0

I

1 are computed off-line, in advance.



CONTROL IMPLEMENTATION (CONT'‘D)

Rearrange I.; such that

"~ K
() = L €

~ k Y
: _ C.i V;(D)
(t) , u.(t) = ri 7
j=1 r =

riv;
Let
g(t) = [Gl Gz.ll ﬁn]Tl ‘g(t) = [ﬁl ﬁz [ ﬁn]T

C

er 2 r=1;2;.--;n; j=112Jllllk

X(t) = [yl y2 [ yk]TJ i(t) = [91 92 1 yk]T

et = oy, Qe = o
The way C is assembled depends on the nature of the interpolation
functions (see example later).

THE LANGLEY BEAM EXPERIMENT

Free-free beam controlled by using 4 actuators and 9 sensors
Use IMSC to control four modes, two rigid-body and two elastic modes
Actuator forces FJ(t) = Egl (B‘l)rjfr(t), J=L2,3.4
Modal forces:
1) For rigid body modes
7 =101 + 1T 0/c, , rel,2
C, = welghting factor
if 9, < d., then f. =0
if 7, > d, and
DG >0, ﬁr >0, or iy > 0>, and \ﬁrl< €., then f,
i1) U, < 0, ﬁr‘ 0, or G, <0< ﬁr and 'ar'“'r’ then f,
d, = magnitude of the deadband region
€. = threshold velocity, k

il 1}
x |
x

r= modal control force
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THE LANGLEY BEAM EXPERIMENT (CONT‘D)

2) for elastic modes
fe(t) = <k, » U 1> d. and u. > 0
0o . —dr < Up < dr

ke » lal2 de and < 0

r

For simulation purposes, the response is available in closed form both
for rigid-body and elastic modes.
Actuator locations immaterial when IMSC is used.

4
F(t) = B Le(t) Fj(n = £ @by fo(t) j=1,2,3.4

Actual control forces are a combination of on-off functions of the type

f,

ke
den -

- der

ke

Actuators available at LARC have four components, which can be assigned
to each modal control force. As @ result, each actuator command becomes
a linear combination of 4 modal on-off control forces.



THE_LANGLEY BEAM EXPERIMENT (CONT'‘D)

Sensors measure displacements alone. Ideally, for bending they should
measure displacements and slopes (velocities and slopes of velocities too)

Divide the beam into four equal segments (elements) and measure displacements
at the ends and middle point of the element, so that the nine sensors are spaced
at equal intervals.

As interpolation functions use
- _ - - 24T
L= [e2- we-2 132+ 287, 0< <1
where p 1s a local coordinate related to the global coordinate x by

e=1j - %x, in which j 1s the segment number

The C matrix is assembled from‘lrJ tensor as

1’2)lllln ’ n=q

S 3 ¢
Cro = &) & kre f2j4-2,0
1121---1k1 k=9

r
S
P

£ = index denoting the interpolation function
J index denoting the element number
Because velocity measurements are not available estimate velocities by using the

relation

A U0D - GUT-D
u.(JT) =
-

T = sampling time = 1/33 sec.

Or, one could use a modal Luenberger type observer. Because the controls
are nonlinear, the convergence of the observer can only be determined by trial
and error,



THE _LANGLEY BEAM EXPERIMENT (CONT'd)

Parameters associated with the beam:
L =12 ft. cross-section = 6 x 3/16 in
6061 aluminum: ¢ = 0.1 1b/in® E = 1 x 107 1b/in2

The free-free, uniform beam admits a closed-form solution. The
transcendental equation was solved numerically to vield the eigenvalues

W, =0

W, =0

wz = 11.47979 rad/s
Wy = 31.64450 rad/s
wg = 62.03586 rad/s
wg = 102.5484 rad/s
w; = 153,1897 rad/s

Simulation of the Beam motion:

The first 7 modes are included in the simulation: 4 controlled + 3
residual modes

Control Gain Parameters:

dy =dy =0.002 ., dg=d, = 0,0005

ki =kp = 0.3 , kz = 0.12, k = 0.03
= 0,01

7r = W+ 1810 710 L re1,2

Sampling time = 1/33 sec,

™
—
)

[l
]
i

Viscous damping was added to each flexible mode

Damping factor §- = 0,002 , r=3,4,5,6,7

Disturbance of the beam was taken in the form of a unit impulse of magnitude 1/12 1b
applied at xy = 0.67L.

The displacement of the beam cannot exceed 1 in at any time because of the location of
the sensors and actuators in the experimental setup,
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THE LANGLEY BEAM EXPERIMENT (CONT’D)

Results

« The main contribution to the response is from the rigid-body modes.

« The second elastic mode shows noticeable participation. This participation will
eventually disappear due to internal damping.

» Control of the second elastic mode can be enhanced by sensing velocities, or
estimating velocitites via a Luenberger observer,

« Observation spillover (which may arise from the need of more sensors) was found
to be negligible. So was the control spillover into_the residugl modes,
Simulations of the beam with and without the residual modes indicated that
spillover effects are infinitesimal. The reasons for this are:

IMSC is used

1)
2) Modal filters are used ) )
3) Residual modes have very high frequencies

Conclusion

. _The IMSC method in conjunction with on-off modal controls does @ good job
in controlling the motion of the beam, where the motion consists primarily of the
rigid-body modes.
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ROBUST PRECISION POINTING CONTROL OF

LARGE SPACE PLATFORM PAYLOADS

S. M. Joshi
01d Dominion University Research Foundation
Norfolk, Virginia
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LSS CONTROLLER DESIGN STRATEGY

INHERENT DAMPING PLAYS A VERY IMPORTANT ROLE IN STABILITY,
THEREFORE IT IS HIGHLY DESIRABLE TO ENHANCE INHERENT DAMPING

USING A SECONDARY CONTROLLER,

DESIGN PRIMARY CONTROLLER FOR CONTROLLING RIGID-BODY MODES
AND POSSIBLY SOME SELECTED STRUCTURAL MODES.

SECONDARY CONTROLLER - VELOCITY FEEDBACK

FLEXIBLE PART OF DYNAMICS:

G+DF+A9=PF

. %
D=D 20 , Nz diagl(W*w,”, -, wn )

SENSOR OUTPUT:
% = P9

CONTROL LAW:

7(= “K,,X, = -K,@?.

WITH PERFECT (LINEAR, INSTANTANEOUS) ACTUATORS/SENSORS:

- st iIF K, 20
- ASYMPTOTICALLY STABLE (AS) IF
Tn
K, >o AND(_/L , @) CONTROLLABLE
WHAT IS THE EFFECT OF

NONLINEARITIES

ACTUATOR/SENSOR DYNAMICS



R e —

EFFECT OF SENSOR/ACTUATOR NONLINEARITIES:

 AcT. |—] S . A
‘ ﬁ[ TﬁECT ‘ SEﬁEOR—:p

K,

' - |
ACTUATOR NONLINEARITIES: LET (& /o) =0 [ ‘é{a) ACTUATOR |

a) ORIGIN STABLE IF UTK;'%(U) 2o

b) ORIGIN ASIL® IF U"K;’%(U) >0 for v#o
ao (A, P’)  contRoLLABLE )
(For D1AGONAL IS ) %‘_(u‘.) >0])

NONLINEARITIES IN ACTUATORS AND_ SENSORS: v -
Ler IS, BE DIAGONAL

a) ORIGIN STABLE IF & Y/(07) Z O FOR EACH ACTUATOR AND SENSOR
b) ORIGIN ASILY 1IF O ¥(o) 70O " "

anp (A, D7) 1S CONTROLLABLE

CONSIDER ACTUATOR/SENSOR DYNAMICS GIVEN BY
.
/4 Xa = Aaxa"‘ .& Ua
WHERE A4 >0, SMALL; A, STRICTLY HURWITZ

® IF THE CLOSED-LOOP SYSTEM WITH PERFECT ACTUATORS/SENSORS
IS AS, THEN THE TRAJECTORY WITH FINITE-BANDWIDTH ACTUATORS/
SENSORS 1S O(M) CLOSE TO TRAJECTORY WITH PERFECT ACTUATORS/
SENSORs (REF. 1),
HOW TO DETERMINE A4 THAT WILL GUARANTEE STABILITY?

* ASYMPTOTICALLY STABLE IN THE LARGE
123



® CONSIDER THE SINGLE-INPUT SINGLE-OUTPUT CASE (SISO)

_Q'——> G&)

STRUCT. DYN.

Ga (s

ASSUME SIMPLE STRUCTURAL MODE FREQUENCIES, NO DAMPING, AND

ACTUATOR/SENSOR

NO POLE-ZERO CANCELLATIONS (I,E. CONTROLLABILITY)

® THEOREM THE CLOSED-LOOP SYSTEM IS AS FOR SUFFICIENTLY
smaLL KKy >o1F

-90° < G(w) < 90°
AT W= W (<=142,---,7)

WHERE @[QJ) :L@Ow)

®  ALWAYS STABLE FOR 15T ORDER (Fp(s)
®  WHEN ACTUATOR/SENSOR HAVE 72l3 REAL POLES

AT S=~0, AND NO ZEROS, THE SYSTEM IS AS FOR

SMALL K,)o IF

CWrrax
7an 77"/2 Na)

GIVES SOME INSIGHT INTO ACTUATOR/SENSOR BANDWIDTH
REQUIREMENTS., ADDITIONAL INVESTIGATION NEEDED FOR
OBTAINING MORE USEFUL RESULTS.

[ 08,/CUunx

0
1
.73
.48
.09
.76

.4
.07

Oa >

(MIN, REQD.)

3
)

W N bH W N -
;P W N —
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CONTROL OF PPS/LSS
® ATTITUDE AND VIBRATION CONTROL OF LSS
® POINTING CONTROL OF EACH PPS

® SINCE THE MASS OF EACH PPS MAY BE OF THE SAME
ORDER AS THAT OF LSS, INSTABILITY IS POSSIBLE

IF CONTROL SYSTEMS ARE DESIGNED INDEPENDENTLY.

SECONDARY CONTROLLER USING ANNULAR MOMENTUM CONTROL
DEVICES (AMCD’S)

ASSUMPTIONS
® AMCD rRimMs ARE RIGID
e RIMDIA=2M (sMALL COMPARED T0 LSS)
® ACTUATORS AND SENSORS PERFECT

L ELECTROMAGNETIC ACTUATORS AND POSITION SENSORS
ARE ALMOST PERFECTLY LINEAR IN THE OPERATING
RANGE. BANDWIDTH IS SEVERAL HUNDRED Hz.

° ACTUATORS/SENSORS COLLOCATED

i INHERENT DESIGN CHARACTERISTIC ofF AMCD

® CONTROL LAW:
f = KP &+ Kr6
WHERE & IS THE ACTUATOR CENTERING ERROR VECTOR
® STBLE IF K, >0 , K,=20
ASYMPTOTICALLY STABLE (AS) 1F

a) K, >0, K, >o
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b) LSS STRUCTURAL MODEL STABILIZABLE

c) NO UNDAMPED LSS MODES AT ZJ'ﬂ;_ (n,- = SPIN FREQ,}

a) ;Si P*i ;ﬁ' o
i

PRIMARY ATTITUDE CONTROLLER (PAC)

® USING TORQUE ACTUATORS
®  COLLOCATED ACTUATORS/SENSORS
b NONCOLLOCATED ACTUATORS/SENSORS

e usiNe AMCD’S

PAC USING TORQUE ACTUATORS

® SEVERAL TORQUE ACTUATORS AT VARIOUS POINTS OF LSS
. COLLOCATED ACTUATORS/SENSORS:

hd EQUATIONS OF MOTION:

A X+ Boxs+ Gxg = [T

'x% = ('géf, é%: <77:)‘T

®  COLLOCATED ACTUATORS/SENSORS
MEASUREMENTS CONSIST OF:
e ATTITUDE VECTOR: « = FTXs
® ATTITUDE RATE VECTOR: of = PT;‘S

CONTROL LAW: = - (G‘Po(-f-ﬁ,,o?)
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® STABLE IF Gp>0 ., G20
-
s M IFG,>0, Gy29, (G, ") conTRoLLABLE

® CONTROL LAW MINIMIZES
o0
(xST: "ST’ Tr) Q' : o S ).(5 dt
\]- - O Q?_ (o} xs
0 s’ R

® EFFECT OF ACTUATOR/SENSOR DYNAMICS
; SISO CcASE, NO REPEATED FREQS., CONTROLLABLE
§ Let B(w)= LGl , futo) =0
| Gr= R9p » Gy = R9r
e ASrForsmaLL R >0 1F
~ P, < Blw) < 18- B,
WHERE ,éz‘. IS A FUNCTION

OF ((J‘ AND POSITION RATE GAINS

® ADDITIONAL INVESTIGATION 1S NEEDED

L IF TORQUE ACTUATORS AND ATTITUDE/RATE SENSORS ARE

NOT COLLOCATED
® STABILITY NOT GUARANTEED
e MuST USE LQG-BASED APPROACHES INVESTIGATED EARLIER
® KNOWLEDGE OF FREQUENCIES AND MODE-SHAPES REQUIRED

A TRUNCATION: "RESIDUAL” MODES IGNORED

o

IN THE DESIGN PROCESS
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A MODEL ERROR SENSITIVITY SUPPRESSION (REF, 2),

"SPILLOVER” 1S INCLUDED IN THE QUADRATIC

PERFORMANCE FUNCTION:

)%: = /k<:)<= + I&CLL

X, = ApXx t Bt

T= f a{?x‘TQ X, + uRu + (.B,u.)tQ,. (.Bru)}dt‘
0

IT CAN BE SHOWN THAT THE SAME AMCD’S cAN BE USED FOR

PRIMARY CONTROL

ATTITUDE AND RATE SENSORS LOCATED ON_LSS AT MIDPOINTS

oF AMCD AcTuATORS

APPROXIMATES TORQUE ACTUATORS AND COLLOCATED SENSORS~

PROVEN TO BE STABLE

CLOSED-LOOP RIGID-BODY BANDWIDTH DEPENDS ON TOTAL

MOMENTUM, ALLOWABLE GAPS, ETC.

PRELIMINARY MATH MODEL OF LSS/MPPS

ASSUME LUMPED POINT-MASSES AT POINTS OF ATTACHMENT OF

PPS’S (For LSS MoDEL)
ALL PPS RIGID

EACH PPS CONSISTS OF GIMBALS AND TORQUERS (ONLY X-AXIS

GIMBAL ASSUMED IN PRELIMINARY STUDY),



MATH MODEL GIVEN BY:

AX+ Bx +Cx = [F

x= (%, 6,8.%. 5% 7@’

r1q)<l

A, 0 o _Jo O - O O
[o In,- | B= [o D] ¢ [o ./\.}
A = c{hag (w? 09;', IS (47;; )

r T
£ =077, T, Ton Tge, - Top)

I = (73u,7}/)r

OBSERVATIONS
® INERTIAL ATTITUDE AND RATE SENSORS ON EACH PPS pavLoAD

® m [INERTIAL ATTITUDE AND RATE SENSORS ON LSS

(COLLOCATED WITH LSS TORQUE ACTUATORS)

® SENSORS FOR MEASURING RELATIVE ANGLE BETWEEN EACH

GIMBAL AND LSS

CONTROL OF MULTIPLE PRECISION - POINTED STRUCTURES (MPPS)
MOUNTED ON LSS

® MPPS USED FOR COMMUNICATIONS, ASTRONOMY, EARTH RESOURCES,

AND WEATHER PAYLOADS
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®  ADVANTAGES:
e LESS ORBITAL SLOT SPACE AT GEO

®  SAVINGS IN POWER, CYROGENICS, GROUND DATA LINKS, AND

SMALLER GROUND TERMINALS

CONTROL LAWS

® CONTROL LAW ]: DECENTRALIZED cONTROL OF LSS/PPS:

e yse LSS ATTITUDE AND RATE SIGNALS AND DESIGN LSS
CONTROL LAW (COLLOCATED ACTUATORS/SENSORS)

i use PPS ATTITUDE AND RATE SIGNALS AND DESIGN
CONTROL LAW (TO GENERATE DESIRED GIMBAL TORQUER TORQUES)

L THE RESULTING CLOSED-LOOP SYSTEM CAN BE UNSTABLE

® CONTROL LAW II: ROBUST COMPOSITE CONTROL

e USE INERTIAL PPS AND LSS SENSORS, AND ALSO GIMBAL-
ANGLE SENSORS AND COMBINE THE SIGNALS TO OBTAIN

-
Yy=Ix
®  CONTROL LAW:
[ ]
f=-Key-K»
®  CLOSED-LOOP SYSTEM LvAPuNov-sTABLE if Kj 20, Ky zo

* asymproTICALLY STABLE (AS) IF K, K, >o0, AND
LSS STRUCTURAL MODEL STABILIZABLE, REGARDLESS OF
NUMBER OF MODES AND NUMBER OF PPS, THEREFORE,
CONTROLLER IS ROBUST.
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| NUMERICAL RESULTS

e 100’ x 100’ x 0,1” COMPLETELY FREE ALUMINUM PLATE

® TWo PPS EACH WITH MASS = LSS MAss
® THREE LSS TORQUE ACTUATORS WITH COLLOCATED ATTITUDE AND
RATE SENSORS
® CONTROL LAW I: DECENTRALIZED CONTROL
e |SS BW ~ 0,05 raa/sec

e PPS BW INCREASED GRADUALLY - A STRUCTURAL MODE WAS

DRIVEN UNSTABLE FOR PPS BW > 0.1 rad/sec

® CONTROL LAW Il: COMPOSITE CONTROL
o |SS BW = 0,05 rad/sec

e PPS BW oF 1 radssec (9= 10.7)
WAS EASILY OBTAINED WITHOUT SIGNIFICANT

EFFECT ON CLOSED-LOOP LSS STRUCTURAL MODES

CONCLUDING REMARKS

®  TWO-LEVEL LSS CONTROL 1S STABLE AND ROBUST AND

OFFERS PROMISE

e FURTHER INVESTIGATION NEEDED ON EFFECTS OF

ACTUATOR/SENSOR BANDWIDTH

® composITE LSS/MPPS CONTROLLER 1S STABLE AND ROBUST
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PLANS FOR CONTINUED RESEARCH

® COMPLETE INVESTIGATION OF LSS/MPPS cOoMPOSITE CONTROL,

INCLUDING PERFORMANCE EVALUATION

® [NVESTIGATE ANNULAR SUSPENSION AND POINTING SYSTEM (ASPS)

FOR PPS CONTROL ACTUATION

® START INVESTIGATION OF HOOP-COLUMN ANTENNA CONTROL

REFERENCES

1. CHow, J. H.; anD Kotovic, P. V.: A DecoMposiTioN OF NEAR
OpTiMuM REGULATORS FOR SYSTEMS WITH SLow AND Fast MopEs.
IEEE TRAaNsAcTIONS oN AutoMAaTIC CoNTROL, voL. 21, No. 5,
1976, pp. 701-705,

2. Sesak, J. R.; Likens, P. W.; anp CoraDeTTI, T.: FLEXIBLE
SpACECRAFT CoNnTrROL BY MoDEL ERROR SENSITIVITY SUPPRESSION
(MESS), J. AstronaAuT. ScI., voL. 27, No. 2, pp. 131-156,



Magnetic
actuators 7

AMCD/ LSS CONFIGURATION
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IMAGINARY

.06 — s

03 1

-.10 -.09 -.08 -.07 -.06 ~.05 -.04 -.03 -.02 -.0 0
REAL

Single AMCD
---- Second AMCD Added
Third AMCD Added

SECONDARY CONTROLLER ROOT LOCI

.
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NONLINEAR EFFECT ON MODAL DATA ANALYSIS METHOD

Lucas G. Horta
NASA Langley Research Center
Hampton, Virginia

135



136

NONLINEAR EFFECT ON MODAL DATA ANALYSIS METHODS

OBJECTIVES:
1 - DETERMINE HOW THE PRESENCE OF NONLINEARITIES IN STRUCTURAL
TEST DATA CAN BE DETECTED WHEN USING MODERN LINEAR MODAL DATA
ANALYSIS METHODS,
2 - EVALUATE THE EXTENT TO WHICH LINEAR ALGORITHMS CAN PROVIDE
USEFUL INFORMATION ON NONLINEAR SYSTEMS,
APPROACH:

1 - GENERATE SIMULATED TEST DATA BY A NONLINEAR ANALYTICAL MODEL,
2 - USE LINEAR METHODS (IBRAHIM TIME DOMAIN ALGORITHM (ITD) AND

FREQUENCY-DOMAIN TRANSFER FUNCTION TECHNIQUES) TO ANALYZE SETS
OF THIS DATA WITH CONTROLLED PARAMETRIC VARIATION,

SINGLE DEGREE OF FREEDOM MODEL

_ Fx:£ (&)

SysTEM  PigfERENTIAL Eq;.:nfou {OR snvall DS PIACEMENT

2 T
£3-- 069 5o g0

ik

General Form

5= €. 6%+ (26 + 38

LINEAR NATURA) FREQUENCY = 0.2.88 vz

LINEAR Modal DanmpiNe = 0.0}



SINGLE DEGREE OF FREEDOM RESPONSE

POS. (RAD)
©
(lino

POS. (RAD)

L el i 1 ]

2 4 6 8 0

TIME (SEQ)
Ci/Ca= O

THE IBRAHIM-TIME-DOMAIN (ITD) MODAL DATA ANALYSIS METHOD

AN OFF-LINE LARGE-SCALE DATA ANALYSIS METHOD DEVELOPED FOR STRUCTURAL
DYNAMICS TESTS.

OPERATES ON FREE-DECAY RESPONSES SOLVING MANY DATA CHANNELS SIMULTANEOUSLY.

HAS PROVEN MORE SUCCESSFUL THAN OTHER LABORATORY METHODS FOR HANDLING NOISE.
LARGE SYSTEMS, AND CLOSELY SPACED MODES.
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SINGLE DEGREE OF FREEDOM RESULTS

7 : ° ok 1o °
IDENTIED | IDENTIFIED gr
FREQ., (Hz2) DAMPING, 5
i % CRITICAL at °
- 2 .
o6 8 fe g®
i 5 10 15
-2 ©
5 10 15
INIT. AMPLITUDE (DEG.) INIT. AMPLITUDE (DEG.)
cl/c2 = 5 c1/cz = 5

SINGLE DEGREE OF FREEDOM RESULTS COMPARISON

Fy (HZ) | Fa (W) Fs (HZ\

ANA Iy Tical 0.3042 |o. Ql A ,u.ﬁ_l 52"_-
ITD ©.3030/0.8970 | 1.562
% DiFFERENCE 0.39 .72 2.76

[
Cwee=5 IC=10
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FREéH(Hlﬂ'Jl)

NN @

TWO DEGREE OF FREEDOM ANALYTICAL MODEL
SysTEM EQuUATION OF MOTIiON

R = R

3 -4

NN N N WL W NN
L
Lk e S S e e

LINEAR Mode Non [inEAR ModE
Fi=.100 Hz Fo = o199 HZ

TWO DEGREE OF FREEDOM RESULTS

AssomeD DOF =6

*
E

I

°r
(® LiINEAR MODE — Tr
[0 Nonlivgar Mode ‘g & [
ONLINEA ; 5 D D
-
=
4l
(6]
wdF
a4
e it B0 wer D] g a
@ m e - m - - ©-0 S S5
1 1 [ [ [ 1 1 J 1 1 1 ] 1 ] [ 1
2 % 4 5 6 7T 89 1.2 34 65 6 718

AssumgeDp DOF =10

PSM = ENERGY PROVIDED To 52(OND AMODE
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SUMMARY

1 - THE ITD MODAL DATA ANALYSIS METHOD SUCCESSFULLY IDENTIFIED THE FREQUENCY
COMPONENTS (BUT NOT DAMPING) OF THE TRUE SOLUTION OF A NONLINEAR SYSTEM
FROM SIMULATED TEST DATA.

2 - THE APPROXIMATE MODAL PARAMETERS OF THE LINEAR SYSTEM CAN BE IDENTIFIED BY THE
ITD METHOD WHEN LOW LEVELS OF NONLINEARITIES ARE PRESENT,

3 - THE ITD METHOD SUCCESSFULLY IDENTIFIED THE MODAL PARAMETERS OF A LINEAR
MODE IN THE PRESENCE OF A NONLINEAR RESPONSE.

FUTURE RESEARCH THRUST

1 - EXPERIMENTAL EVALUATION OF ITD METHOD ON A TWO-DEGREE-OF-FREEDOM NONLINEAR
LABORATORY MODEL.

2 - APPLICATION OF FREQUENCY-DOMAIN TRANSFER-FUNCTION TECHNIQUES TO THE SAME
ANALYTICAL AND EXPERIMENTAL DATA.
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STRUCTURAL DESIGN FOR DYNAMIC RESPONSE REDUCTION

Brantley R. Hanks
NASA Langley Research Center
Hampton, Virginia
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OBJECTIVE: STUDY STIFFNESS AUGMENTATION BY MATHEMATICAL DESIGN
APPROACH:  APPLY LINEAR REGULATOR THEORY WITH PROPORTIONAL FEEDBACK

JUSTIFICATION: STIFFNESS IS READILY AVAILABLE TO DESIGNER AS PREDICTABLE
PASSIVE CONTROL

TIME-INVARIANT LINEAR REGULATOR---GENERAL

SYSTEM:

%X = Ax + Bu + Dw

CONTROLLED VARIABLES:

y = Cx
OBJECTIVE:
Y
Mﬁn J where J = x¥ Sf Xe + [}TQy'+ ul Ru] dt
(o)
OPTIMAL CONTROL (ASSUMING w IS RANDOM):
u = —R_1 BT Px
WHERE P IS SOLUTION TO
b = —pa-aTp + pBR ! BTP - clqcC P(te) =S¢

IF tf—’-w, GET STEADY-STATE P (AND U) FROM

0=-PA- ATP + pBR L BTP - ¢T QC

POSITIVE DEFINITE P EXISTS IF
e A IS DETECTABLE IN C, STABILIZABLE IN B
® RESPONSE WEIGHTING MATRIX, Q, IS POSITIVE SEMIDEFINITE

® CONTROL WEIGHTING MATRIX, R, IS POSITIVE DEFINITE
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S .

LINEAR REGULATOR ADAPTED TO STRUCTURES

SYSTEM:

e

| o 1 X | o u j o f 2
= + w w ~ N(0.0%)
. -1 -1 . 1 | -1 1
X -M 'K -M G X M B ,M D

OBJECTIVE FUNCTION:

o
=
w

ASSUME:
® RANDOM INITIAL CONDITIONS
® COMPLETE STATE FEEDBACK WITH NO ROTATTONAL COUPLING

—>» © (TIME-INVARIANT STRUCTURAL CHANGE)

[ ]
te

CONTROL:

0 0 X
ol =L T -1 T ol - T -1 T
M "BR "B' M P21 M "BR B' M P22 b4

WHERE P21 AND P22 ARE SOLUTIONS TO

T T T _ o T vl oo laTew HT +cT =
Py Ay A, Py - P, M7 BR B M ?21 R 0

AND
T

T - —loo-l STyt T C.Q.C.) =0
Pyobyy + Ay Po, ~ By M "BR B M) Py, + (P21 + Pyt 2Q,C5) (2)

-1 ol
MK AND A, =M G

IN THESE EQUATIONS A21
NOTE THAT (1) IS NOT SYMMETRIC; ALSO THAT (1) IS INDEPENDENT OF (2).
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Q WEIGHTING MATRIX CONSIDERATIONS

o

M.;lin J where J = [yTQy + uTR'u] dt
: 0
T, _ .T T T '
yhay = (=" &) Ci1 Y1 o C11 G2 ()%
el ¢ Q. Q C.. ¢ %
12 C22 21 %2 21 “22

If rate and displacement considered independently and Q chosen so as not

to couple x and x

T T.T T
yQy = (x x €11 Y3 Oy 0 x

T
Caz Q95 Cyy

Me

For design, selection of C is governed by desired minimum response points.

Hence, C and Q may be assigned similar functioms.
Diagonal € and Q minimizes weighted square response at selected coordinates.

Choice of Qn = K and Q22 = M minimizes sum of strain and kinetic energy at

locations determined and (optionally) weighted by C.



RE_GULATOR FOR STRUCTURES--MODAL COORDINATES

. (o5 + Jug)t
TRANSFORMATION x = ¢q WHERE gq = q e

WHERE ¢ IS NORMALIZED ¢ ™M¢ = I

= = Tos = [
AND o, 1S ASSUMED PROPORTIONAL TO w, (I.E., oy 2£0, OR ¢ Go rzgimj:l)

OBJECTIVE FUNCTION BECOMES

. te (ch'lT) ¢TK¢ 0 q +(uTRu) at
0 o oM |a

NOTE THAT
T, _ I\ 2 - K2
¢K¢—[ wiJ = [Q\]
. \92

-
HENCE, WEIGHTING MATRIX Q = [ Y J
0 I

RICCATI EQUATIONS BECOME

T 2 2 T -1,T T2, _
leﬂ + Q P21+P215R B PZI—CIQ Cl—O (3)

-1 gT T Te )2
Poy EZEQ\} + fzgn\]?zz +P,,BRTLBIP - (P21 +PL + G cz) =0 (&)

WHERE P, B, R, aND C ARE MODAL EQUIVALENTS OF P, B, R, AND C.
BY CHOOSING P, B, R, AND C DIAGONAL, WE DECOUPLE THE SOLUTION AND GET PURE "MODAL

CONTROL."
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CANTILEVER BEAM MODEL

?x‘ 1x,_ ?x, ?x,,,
Do, Do e WDe,

NN

ASSUMED:
o CONSISTENT MASS FINITE ELEMENTS

e UNIFORM INITIAL STIFFNESS & MASS DISTRIBUTION

o FIRST NATURAL FREQUENCY = .047 Hz (.297 RAD/SEC)

PHYSICAL IMPLEMENTATION OF STIFFNESS CONTROL

Xs 38y COUPLING

X3
T "//i:i\\ TENSIONED CABLE
| 1 - _12ey
COMPRESSION MEMBER
B, ,9; COUPLING
7 ﬂ)oL 1 26x |

ERACTICAL OPTIMUM?

T
i
/
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CONTROL WEIGHTING EFFECTS ON DESIGN

UNDAMPED NATURAL FREQUENCIES

INITIAL | FINAL FREQUENCY, RAD/sgc

MODE | FREQ..§g¢ | R=10I |[R=1 [R=.11 =.011
1 .297 . 359 .557 .972 1.725

2 1,867 1.880 1.989 2.619 4,538

3 5,262 5,267 5.309 5,684 7.711

4 | 10.382 10,384 10.406 10.615 12,233

R D B
DAMPING RATIOS
R INITIAL | ¢/
MODE DAMPING _ FINAL DAMPING. 7 “/C..
% C/C, =10T | R=1 R=.11 R=.011

1 2 59,3 108 176 298

2 2 12.0 35,0 78.1 131
3 2 4,7 13.4 38.6 ' 82.9
4 2 2.9 7.1 21.0 55,4

*NOTE: SOLUTIONS OBTAINED SEPARATELY FOR STIFFNESS AND DAMPING
COMPARED EXACTLY TO FULL ORDER CONTROLLER SOLUTION
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STIFFNESS MATRIX COMPARISON (ASSUMED CONSTANT MASS)

X 8
125 -1250
16667
[129.7  -1261
16719

148

w=.297 fﬁ;}(_c

w=,

ORIGINAL K
Xy 6, X3 63 Xy 8y

125 -1250 : 0 0 0 0 ]
1250 8333 :_ 0o 0 0 0
250 0 -125 -1250} 0 0
33333 1250 8333 1 0 0

250 0 -125  -1250

33333 1250 8333

250 0
33333
FINAL K FOR R = .1 I

-127.8  -la41t-1,74 -3,83 -,166 -.71]

1254 8278: 6.41 12.85 .84 2,94

Lo — =

260.3  -5.22 -127  -1239 | -1.58  -3.84
33528 1236 8249 L_z.us 4,58
246.3  -2.06 -152.5__;1525
17274 33540 1234 8252
268 -3.37
33543

&



R WEIGHTING EFFECT ON STIFFNESS MATRIX
(FIRST ROW ONLY SHOWN)

Oric. Ki; 125 -12%0 | -15 -1250 | 0 0 0 L_ 0

—_—— - — 4 - J—
R=101 151 -1250 -125 -1250 | -.008 -.008 -002 |~005
R = I 12517 "1252 "'125|l —]-ZLB --21 --27 _-% _IB
R=.11 18,71 -12%61 -127.8 | -1241 |[-L.74 -3.83 -7 =71
R=.011] 150.8f -1310 -150.3 | <120 1-3.19 -24,0 -1.8 | =29

RELATED SPONSORED RESEARCH

KAMAN AEROSPACE CORPORATION - AUTOMATED MATH MODEL
IMPROVED FOR MATCHING EXPERIMENTAL DATA.

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND
ENGINEERING - IDENTIFICATION OF EQUIVALENT PDE SYSTEMS
TO MATCH MEASURED DATA.

SUMMARY

COMPUTER PROGRAM FOR REDESIGNING STRUCTURAL MODES TO
REDUCE RESPONSE HAS BEEN INITIATED,

LINEAR REGULATOR APPROACH IN MODAL COORDINATES HAS BEEN
IMPLEMENTED, TRANSFORMATION OF SOLUTION TO PHYSICAL
STRUCTURE IS A MAJOR PROBLEM.

SOLUTION OF STIFFNESS EQUATIONS AND DAMPING EQUATIONS

CAN BE DONE SEPARATELY AS NXN SET OF (MATRIX RICCATI)
EQUATIONS.,

PLANNED EFFORT FOR ‘82

INCLUDE MASS OF CONTROL
STUDY WEIGHTING TO MINIMIZE OR SELECT CROSS-TERMS
IMPLEMENT PHYSICAL COORDINATE SOLUTION

STUDY POTENTIAL FOR “BENEFICIAL” CROSS TERMS
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ALGORITHMS FOR ON-LINE

PARAMETER AND MODE SHAPE ESTIMATION

Frederick E. Thau
The City University of New York
New York, N.Y.
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One of the schemes that has been proposed for the adaptive control of large
flexible space structures is shown in figure 1. This approach is based upon a
modal decomposition of the dynamic response of the flexible structure and is
designed to make use of the parallel processing features of modern minicomputers.
Satisfactory performance of the parallel structure identification technique shown
in figure 1 can be achieved only when the approximation functions noted in the
figure correspond to the natural modes of the flexible structure. The work

summarized here presents a technique for estimating both mode shapes and modal
parameters.

wis, t)

g

g (tp) € (s) + Y (s, t)
i=1

(a) Motion of flexible structure,
U(k-1)

qQ{k+1) = A'q(k) + A,q (k-1) + BIU(k) + B

2 2

YOk = Ho (k) + w(k)

(b) Modal description.

Figure 1.~ Problem formulation.
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Figure 2 shows the analytic background for the formulation of the on-line

identification problem. The motion of the flexihle structure is expressed as a

sum of NM terms involving theé modal shape function §_ (s) and the modal amplitudes
qi(t,p;) where s denotes the spatial variable and "t represents time. The
parameter vector pf Yepresents a set of parameters '~ [Aj4,A24,B14,B24] for each
mode. The identiffcation problem is formulated in terms of the modal description
shoun in figure 2(b), where the Aj,i=1,2 are diagonal matrices of order NM, U(k)
denotes a vector of actuator signals and the Bj are rectangular matrices. Matrix
H, relating the modal amplitudes to the measurement vector y(k), has colummns that
are linearly independent in the modal model. On-line measurements {y(k)},{U(k)}
are to be processed in order to obtain estimates of the matrices A4y, Bj, and H.

MEASUREMENT DATA ACTUATOR COMMAND

CALCULATION
FOR MODAL
CONTROLLER

R TR R
g '?J .
»ﬁ%‘g‘ﬁ%

)

SR
: :'.b:”“‘f?:??.

AT

8y

RS

Figure 2.- Distributed adaptive control.
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Algorithms for on-line parameter identification are shown in figure 3.
Assuming that the approximation functions are given, the modal parameters are
updated using an output error formulation where the error ej is given by

e;(k-1) = q;(k-1) - A;;q,(k-2) ~ Ay.q,(k-3) - B F, (k-2) - B, F; (k-3)

where Fj(k) denotes a modal force component. The weights W, are selected to
satisfy : 1

2

2
qui(k—Z) + qui

2 2
(k-3) + W3Fi(k—2) + W4Fi(k—3) < 2

to insure stability of the identification algorithm.

The approach for updating the approximation functions is based on combining
the modal equations shown in figure 2 into the single relation involving matrices

M. and N. where
i i

=
=
=+

and (H)+ denotes the pseudo-inverse of H. Using a regression analysis approach,
data are collected over a time interval of length N and a least-squares estimate
of M; and Nji is obtained. When the number of modes in the modal approximation
is the same as the number of sensors, the eigenvectors of Mj correspond to the
columns of H.
MQiH-Z)
pi(k)= pi(k-H + ei(k-l)- qui {(k-3)

WBFi (k-2)

WdFi (k-3)

(a) Pole-zero characteristics - output error formulation.

YORHTh= My (K0 + My (k=10 # N U (KD # NyUGK=1) + n (k1)
NPy o = soomTevin; mo=(m T
T
A, ",
USESSTERZE Y %
't
)

(b) Approximation functions - regression analysis.

Figure 3.- On-line parameter identification.
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A schematic diagram of the flexible beam used to test the identificatiomn
algorithms is shown in figure 4. Sensor and actuator locations along the beam are
shown along with the modal frequencies and mode shapes for the first three flexible
modes ohtained from the SPAR analysis program.

SENSOR
'—W\

T

ACTUATOR——A

1 o
e 1.81 Hz
b |
- O//’——\
“«©
-1
1 4.99 Hz ~—
& o\\_/\ |
o
-1 - 4‘§\\\\
1
9.74 Hz
& or\\/\/ o
‘o. v
~-1t=
l L | 1 1 i 1
0 2 4 6 8 10 12

Longitudinal Station, ft.

Figure 4.- Modes of interest.
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Figure 5 shows the modal decomposition for mode 3 unforced response. A set
of approximation functions obtained from the SPAR analysis was used and eight
modes were assumed in the real-time program that produced the modal amplitude
signals shown. For this response there is some excitation of modes 1 and 2.
However, higher frequency modes do not appear to be excited.

Time, sec.

Figure 5.- Modal decomposition.

Eight SPAR modes; mode 3 excited.
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Outputs of four on-line identifiers that result from self-sustained oscillation
.Note that before the sustained
oscillation occurs the identifiers are responding.to measurement noise. Upon
initiation of the sustained oseillation the parameters of the vibrating mode are
rapidly ifdentified. The parameters p correspond to the jth diagonal element of
the matrix Aj, 1 = 1,2, shown in figure 2., Also shown in the figure are the
modal parameters derived from the structural analysis program.

of the third yibration mode are shown in figure 6.

1
Py
1
Py
1
Py
3~
1
pa (VI o
..3 .
L 1 | J
0 10 20 30
Time, sec

Figure 6.~ Output of parameter identifiers. SPAR derived values; mode 3 excited.
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Figure 7 shows the outputs of four on-line identifiers resulting from a 5-Hz
excitation produced by actuator 1. Note that the parameters of the first vibration
mode are identified but the high frequency modal parameters are not found as a

result of the 5~Hz excitation.

2
1 P
Py 1
1 2
P — i - - P
2 —— 'Xr*-;'“-—‘ [ENU --;-——‘: R = —-[ 2
00 U P o NS P S
i i o
. ! o T '“1"_'_'—' - I
B A SR SR :...L,_
3~ AN | O A
A S | AT
2
P3
pZ
4

(=3
(=)
w
-
[«}
s
w

Figure 7.- Output of parameter identifiers.

Sinusoidal excitation by actuator 1 at 5 Hz.
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Figure 8 demonstrates the result of applying the mode shape identification
procedure (a) to a simulation wherein the beam was given an arbitrary displacement
and (b) in an experiment wherein only the first flexible mode was excited. 1In the
simulation the normalized mode shape obtained agreed with that produced by the
SPAR analysis. However, in the laboratory experiment a distortion in the ildentified

mode shape was observed. In both cases the mode shape was identified on line after
approximately 1 second of data processing.

(a)

-

-1 LIS

(a) Simulation

(b) Experimental

L ]

1
L)

1 1 t
4 6 8 10 12

o
N -

Longitudinal station, ft

Figure 8.- Identification of mode shape.
First flexible mode.
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A table of identified modal parameter values that resulted from a simulation
incorporating both the mode shape and modal parameter identification schemes is
shown in figure 9. Identification of mode shapes and parameters was accomplished
in approximately 1 second of processing measurements from eight sensors distributed

along the beam.

[Simulation - all modes excited at parameter values]

Flexible mode Initial Final Actual
1 -0.8495 1.8726 1.87267
2 ~-1.7194 1.0991 1.099181
3 0.09918 | -0.71936 | -0.71940
4 0.83907 | -1.9960 -1.9960
5 0.8726 0.15047 0.15049
6 -2.996 1.8387 1.83907

Figure 9.- Identification of modal parameters.

SUMMARY

e Presented algorithms for on-line parameter and mode-shape estimation

e Examined identification performance using computer simulations and a
limited number of laboratory experiments

e Future work will dinclude:
(1) Further experimental studies

(2) Development of separable nonlinear least-squares approach
to identification

(3) Development of on-line performance measures for sequential
processing decisions
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COMPONENT NUMBER AND PLACEMENT

IN LARGE SPACE STRUCTURE CONTROL

Wallace E. VanderVelde
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
Cambridge, Massachusetts
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PURPOSE:

PROVIDE AN OBJECTIVE MEANS OF ASSISTING THE DESIGNER
OF THE CONTROL SYSTEM FOR A LARGE FLEXIBLE SPACE
STRUCTURE IN HIS CHOICE OF HOW MANY ACTUATORS AND
SENSORS TO INCORPORATE IN THE SYSTEM, AND WHERE TO
LOCATE THEM ON THE STRUCTURE.

WHAT WE NEED IS:

0 A QUANTITATIVE MEASURE OF HOW WELL A SYSTEM CAN BE CONTROLLED
WITH A SPECIFIED SET OF ACTUATORS

0 A QUANTITATIVE MEASURE OF HOW WELL A SYSTEM CAN BE OBSERVED
WITH A SPECIFIED SET OF SENSORS

0 A MEANS OF RECOGNIZING THE EFFECTS OF COMPONENT FAILURES IN
THESE MEASURES

0 A MEANS OF OPTIMIZING THE LOCATIONS OF ACTUATORS AND SENSORS
S0 AS TO MAXIMIZE THESE MEASURES
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A MEASURE OF THE DEGREE OF CONTROLLABILITY

1. FIND THE MINIMUM CONTROL ENERGY STRATEGY FOR DRIVING THE SYSTEM
FROM A GIVEN INITIAL STATE TO THE ORIGIN IN A PRESCRIBED TIME.

2, DEFINE THE REGION OF INITIAL STATES WHICH CAN BE RETURNED TO THE
ORIGIN WITHIN SPECIFIED LIMITS ON CONTROL ENERGY AND TIME USING
THE OPTIMAL STRATEGY.

3. DeFINE THE DEGREE OF CONTROLLABILITY TO BE SOME MEASURE OF THE
SIZE OF THIS REGION,

STEP 1. MINIMUM ENERAGRY CONTROL

T

_[ g? R u dt
o .

subject to x = Ax + Bu

N} =

Problem statement: Min E =

x(0) , T given
x(T) =0
solution: u(e) = K1 8T b1 P m P ™ x0)

The ibij(t) are partitions of the transition matrix for the system

1.T

-1 7]

o
—
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STEP 2. THE RECOVERY REGTON

Using optimal control, the cost to return to the origin can be

expressed:

1

E=12 x0T v x(0

with v

it
z
~
+
<
ol
1
w
o
w

v(T) = 0

For specified values of time, T, and control energy, Es’ the recovery

region is the interior of the space bounded by the surface

x0T v(0)™ x(0) = 2 B

STEP 3, THE STZE OF THE RECOVERY REARION

First scale the state variables such that equal displacements in all

directions are equally important.

z = Dx
r vl
1
X
1 .
min 1
b= x2min e
. 1
%n
min
b el
where X4 is the minimum initial value of x; one would like to be able

min
to drive to the origin with constrained time and control energy.



_ -

STEP 3 (coNTINUED)

Then define a weighted measure of the volume of the recovery region

in the scaled space.

Vol = V., + +— (V

VS = volume of the largest sphere which can be inscribed in the
elliptical boundary of the recovery region
VR = volume of the recovery region

th

The Degree of Controllability is defined to be the n root of this

weighted volume.

Also vV_=x

where the ’Li are the eigenvalues of Dt v(0)~1 p7l,

Alternatively

~ 1/2
VR ~ 7Ti (Ui)

where the Ui are the eigenvalues of DV(0)D.

Then VS X (Ui )n/ 2
min

An analytic solution is available for V(0).
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ONE MORE CONSIDERATION

WE WANT THE MEASURE OF CONTROLLABILITY TO REFLECT THE FACT
THAT A SYSTEM WITH MORE ACTUATORS OF EQUAL EFFECTIVENESS HAS
GREATER CONTROL CAPABILITY THAN ONE WITH FEWER ACTUATORS.

THE DC JuST DEFINED IS MADE PROPORTIONAL TO THE NUMBER OF
ACTUATORS PLACED AT THE SAME LOCATIONS IF THE ELEMENTS OF R
ARE SCALED INVERSELY WITH THE NUMBER OF ACTUATORS.,

ForR DI1AGONAL R, CHOOSE Roii TO REFLECT THE RELATIVE COST OF
THE DIFFERENT CONTROLS., THEN

Rii = Rb../m
ii
m = total number of actuators



A_MEASURE OF THE DERREE OF

OBSERVABILITY

1, IN TERMS OF AN INFORMATION MATRIX, DETERMiNE HOW MUCH
INFORMATION CAN BE DERIVED ABOUT THE SYSTEM STATE IN
TIME T, STARTING FROM ZERO INFORMATION, USING THE GIVEN
SET OF SENSORS.

2. Derine THE DeEGREE OF (BSERVABILITY TO BE A MEASURE OF
THE SIZE OF THIS INFORMATION MATRIX.

STEP 1. THE INFORM ATION MATRIX

We waNT THE DeEGREE oF OBSERVABILITY TO BE A PROPERTY OF THE SYSTEM,
NOT OF THE ENVIRONMENT IN WHICH IT OPERATES., S0 DO NOT CONSIDER
STATE DRIVING NOISE,

THEN

T T

J=-ada-a%s + Tt

C

J(0) =0

CORRESPONDING TO THE SYSTEM MODEL

X = Ax + Bu

y=¢Cx+n
n(tIn(t,) T = N §lt,~ty)

AN ANALYTIC SOLUTION IS AVAILABLE ForR J(T).
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STEP 2, THE SIZE OF THE MATRIX

ONE wAY TO MEASURE THE SIZE OF J(T) IS TO INDICATE THE VOLUME
CONTAINED WITHIN THE SURFACE

1

viamTly =1

BuT THE VARIABLES SHOULD BE SCALED TO REFLECT THE RELATIVE IMPORTANCE
OF ERRORS IN THE DIFFERENT STATE VARIABLES,

e

n
max
— —

WHERE €; 1S THE MAXIMUM TOLERABLE ERROR IN THE ESTIMATE OF X;-.
max

THE DEGREE OF OBSERVABILITY IS DEFINED WITH RESPECT TO THIS VOLUME
IN THE SPACE OF EQUALLY IMPORTANT ERRORS (W) JuST AS THE DEGREE OF
CONTROLLABILITY WAS DEFINED FOR THE VOLUME OF THE RECOVERY REGION
IN THE SPACE OF EQUALLY IMPORTANT CONTROL CHARACTERISTICS.,

n VS
DO = \'[Vg + V; (VR - Vg)
_ 1/2
VR = ZT(L/i)
Ve = (U, ?
S lmin

WHERE THE V; ARE THE EIGEMVALUES OF FJ(T)F.
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RECOGNITION OF COMPONENT FAILURES IN
THESE MEASURES .

LET £ INDICATE THE STATE OF FAILURES AMONG THE ACTUATORS OR SENSORS. THEN
FOR EVERY £, DC(f) OR DO(f) CAN BE COMPUTED AS JUST DESCRIBED.

FROM THE STATISTICAL MODEL FOR FAILURES OF THE DIFFERENT COMPONENTS ONE CAN EXPRESS
PIf(t) = £,].

THE AVERAGE, OVER THE MISSION PERIOD, OF THE EXPECTED DEGREE OF CONTROLLABILITY OR
OBSERVABILITY IS TAKEN AS THE FINAL MEASURE.

T
E m
ADC = %—f DC(t) dt
m
[}

T
1 " )
= = DC(f.) P[f(t) = £.] dt
Tm j’ i i i
o]

1 m
= L pctey) - PlE(e) = £] at
1 m o

THe DEGREE OF OBSERVABILITY IS COMPUTED IN THE SAME WAY,

FIRST AND SECOND FLEXIBLE MODES
2 ACTUATORS: 1 FIXED AT END

0 - 1 VARIABLE POSITION
=%
—
-d
P
s8]
SS% ~ Mo FAILU ES
=%
[ =]
<
[
s
oo - .
*
W
o
w P(FarL < Tp) = 0,37
w
%
ws
o
@ — T }
| ] I
.0 2.0 .. 8.0 8.0 10.0 12.0

0
BERM POSITIONI(FT)
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OPTIMIZING CO MPOMENT LOCATIONS

THE AVERAGE DEGREE OF CONTROLLABILITY IS A FUNCTION OF THE CHOICE OF
ACTUATOR LOCATIONS; LET £, INDICATE THE VARIOUS ADMISSIB LE CHOICES.

ADC = ADC (£)

AN OPTIMIZATION ROUTINE IS REQUIRED TO FIND THE OPTIMUM LOCATIONS,

ADC* = max ADC (£)
Len

THE OPTIMUM SENSOR LOCATIONS ARE DEFINED IN THE SAME WAY USING THE
AVERAGE DEGREE OF OBSERVABILITY,

FIRST AND SECOND FLEXIBLE MODES
2 ACTUATORS: 1 FIXED AT END

OPTIMUM LOCATION OF SECOND
ACTUATOR WITHOUT CONSIDERING FAILURES
: No FAILURES

0OPTIMUM LOCATION OF SECOND ACTUATOR
‘ CONSIDERING FATILURES

.98
+

.64
1

P(FaiL < T) = 0,37

DEGREE OF CONTROLLABILITY
.47

.30

.b 2.0 Joo sle 7 elo
BEAM POSITIONI(FT)
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CHOICE OF THE NUMBER OF COMPONENTS

THE OPTIMUM AVERAGE NEGREE OF CONTROLLABILITY 1S A FUNCTION OF
THE NUMBER OF ACTUATORS IN THE SYSTEM,

ADC* => ADC* (m)

WITH THE LIKELY CONSTRAINT THAT MULTIPLE ACTUATORS CANNOT BE PLACED
IN THE SAME LOCATION, ADC*(m) SHOWS DIMINISHING RETURNS WITH
INCREASING m.

THE SAME IS TRUE FOR THE OPTIMUM AVERAGE DEGREE OF (BSERVABILITY.

1.0

PFaL) s 02
- == PIFAIL) = $7%

i 2 s P
NO, ACTUATORS



ik

=S

S
pES= S

A PROGRAM PLAN FOR THE DEVELOPMENT OF

FAULT TOLERANT LARGE SPACE SYSTEMS

Paul Motyka
Charles Stark Draper Laboratory, Inc.
Cambridge, Massachusetts
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Objectives

o Establish the need for fault tolerance in LSS

« Discuss the unique characteristics of LSS which
affect fault tolerance

e Summarize the status of fault tolerant systems
for LSS

o Discuss a program plan to vallidate and demonstrate
the concept of foult tolerance for LSS

Establishment of the Need for Fault Tolerant LSS

N = Number of System

Comnonents
10}
-
}_
’_
EXPECTED 6
NUMBER OF L
FAILURES
PER YEAR k
1=
=
}._
06}
SN A I ! L1 1311
10,000 " 100,600 1,000,000

MEAN TIMI: BETWEEN FAILURES {h)
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Characteristics of LSS That Affect Fault Tolerance

Dimensionality

- Will have to consider a much laraer number of components
than in any previous application

- May affect the achlievement of real time operation and
computational accuracy

Precise accuracy and stabllity reauirements

- Small fallures will have to be detected and isolated auickly

Structural mode and physical displacement effects on sensors

- May be comparable in maanitude to the failures which
must be detected

Environmental effects

- Dynamic effects such as large angle slewing maneuvers
- Thermal effects may produce chanaes in modal
characteristics

Spillover (Model Order Reduction) effects

- May introduce uncertainties which can be falsely
interpreted as failures

e Many diverse types of sensors present

- Must be collectively accounted for if system wide
fault tolerant canability is to be achieved

Multiple experiments opergtina on a single LSS

- Interactions amona experiments may result in false alarms

- A robust fault tolerant system may be reaquired to tolerate
changes in modal characteristics with experiments

The modal frequencies may be in the controller bandwidth

- Filtering to reduce modal effects and improve fault
tolerant capability mav not be possible
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Status of Fault-Tolerant Technology for LSS

Little work has been done in this area

A larce body of knowledae concerning fault tolerant systems
has evolved in spacecraft and avionics applications

This material forms g solid foundation for the development of
fault tolerant technology for LSS

Elements of a Program Plan to Validate

the Concept of Fault Tolerance for LSS
System modeling

- Generate an analvtic model of the LSS
Environment modeling

- Define LSS tasks, maneuvers and disturhances

Requirements deflinition

- Define LSS accuracy, stabilitv aond reliability
requirements

Component modeling

- Define analytic models, error effects, nofse, flexibility
effects, etc.

- Uncertalntles estahlish the fault tolerant ccpabllity of LSS
Fault tolerant techniques development

- Develop algorithms to detect and isolate faults and
reconflqure LSS

Simulation development

- Both nonreal time and real time capabilities will be
needed

Development of a fault tolerant data processing capabillty

- Needed to carry out computations assoclated with the LSS

- A firm basis for this technology exists



Elements of a Program Plan to Validate
the Concept of Fault Tolerance for LSS
(concluded)

Concentual deslagn
- Preliminary definition of algorithms, components.,
architectures, etc. and assessment of design
alternatives

System desian

- Detalled and specific determination of parameters.
components, architectures and alaorithms for selected LSS

Preliminary implementation

- Definition of system software and hardware

- Partitioning of functlions amona subsvstems

Validation of fault tolerance concept and demonstration
of capability

- Use simulation of comnlete LSS
Requirements evaluation

- Use simulation to assess ability of fault tolerant
LSS to meet accuracy and stability requirements

- Analytlc techniques must be emploved to evaluate
the rellability of the LSS

Conclusions

There is a definite need for fault tolerance in LSS
LSS have unique characteristics which impact foult tolerance

Very little work has been done reaarding fault tolerance for
LSS although a solid base exists from snacecraft and avionics
anplications

A progoram plan for the validation and demonstration of the
concept of fault tolerance for LSS has been developed
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LARGE SPACE STRUCTURES

CONTROL ALGORITHM CHARACTERIZATION

E. Fogel

Charles Stark Draper Laboratory, Inc.

Cambridge, Massachusetts
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Computation Consideration in
LSS Control/Identification

Alaorithms

Structures

Comnutation considerations

Spillover Effect

| {8, J  CONTROLLED MODES Xe
U
contlro )
| Bp al RESIDUAL MODES R
L__ LSS . .
computer

182
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} MODEL

X = AX + BU y = CX
A = dla H H 0 !
= g =
J J 2 0
Separation to : controlled modes
X

c

residual modes

LAC/HAC

" LAC: local feedback colocated sensor/actuator pairs

-+ Augment damping

HAC: dynomic feedback to control a reduced order model

*  frequency shaped K.F.
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HAC/LAC»antrollAlgorlthm

LAC: 4 = 6y 6 = 6>0

HAC v=Q FrhX
. : )
X = AR+ BU+ K(y - CX)
Uy = GX + 6,7

U = UL + UH

Rate  HAC rate = 1/2 LAC rate

LAC/HAC BASED COMPUTATION REQUIREMENTS

COMPUTER
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LQG APPROACH

~EErThESeae
Be—— =S

Solution

solve LQG for X,

o= fxe 02 2] e
Implementation

Y A

U = TKX
A . A _¥ A
Xe = AXc +Bo U+ KT (y - C.Xo)

- _glpT
kK = -r1s]Tp
T -lyg Tp =
PA. + A.TP + @ - PTBLR™'TB.'P = 0

T : BT = 0 BCT # 0 orthogonality

T: T CR = ( TCC # 0 conditions

Closed loop:

= -1 B N r n
xc AC - BCTK 0 BCTK XC
'HE 0 A O Xp
dt KTC
e 0 0 A. - KTC €
" i C CJ | B
A A
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Beam Instrumentation

3 clusters of x vy {:occelerometer (sensor)

proof mass (actuator)
at: Top., Middle, Bottom

DIMENSION (M) OF SENSOR VECTOR AND ACTUATOR VECTOR = 3 Xx 2
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60m REFLECTOR

.__.| 12.7:4"—'“” MAST

\
} ! OFF SET FEED
FEED ,G F/D = 2.0
SUPPORY 14 a NONMETALLIC FEEDMAST
MAST / ;-t S TAPERED TENSION TRUSS
w-d
18
(=]

100m

\
4.9m_{ rH

Y x

Antenng Instrumentation (detail)

13 CLUSTERS OF COLOCATED SENSORS/ACTUATORS AS FOLLOWS:
1. MAST/ORBITER ATTACHMENT: '

SENSORS 2 DOF ACCELEROMETER PKG (x, ¥)
ACTUATOR 2 DOF PROOF MASS

2, REFLECTOR HUB (WHERE FEED SUPPORT MAST IS ATTACHED TO ANTENNA SUPPORT MAST)

SENSORS 2 DOF ACCELEROMETER PKG (x, v)
1 DOF RATE GYRO (TORSION AXIS)
ACTUATOR 2 DOF PROOF MASS PKG

1 DOF TORQUE WHEEL
3. 8 CLUSTERS OF INSTRUMENTS AROUND RIM OF REFLECTOR:
SENSORS 2 DOF ACCELEROMETER (TANGENTIAL,+ z) TENSIOMETERS ON GUY

WIRES
ACTUATORS 2 DOF PROOF MASS (tangentlol +Z), Guy Tensloner
4, MIDDLE GF FEED SUPPORT:
SENSORS 2 DOF ACCELEROMETER PKG (x,Y)
ACTUATORS 2 DOF PROOF MASS {(x,y)



Antenna Instrumentation (cont.)

5, FEED MAST/SUPPORT MAST ATTACHMENT: -

SENSORS : 2 DOF ACCELEROMETER (x,V)
1 DOF RATE GYRO (TORSION)

ACTUATORS 2 DOF PROOF MASS (x,¥)
‘ : 1 DOF TORGUE WHEEL (TORSION)

6. AT FEED:

SENSORS 2 DOF ACCELEROMETER (v,2)
ACTUATORS 2 DOF PROOF MASS (v,2)

¢ DIMENSION OF SENSOR/ACTUATOR VECTORS (M) = 2+3+2+3+2+48x3 = 36

L9G AND HAC/IAC COMPUTATIONAL SIZING

. THESE ALGORITHMS HAVE BEEN SIZED IN TERMS OF
. FLOATING POINT OPERATION (FLOP) DEMANDS
. STORAGE FOR VARIABLES
. INPUT/OUTPUT DATA FLOW

. FLOP SIZING (PER CONTROL CYCLE) DONE AS A FUNCTION
OF THE NUMBER OF CONTROL STATES AND THE NUMBER OF
SENSOR/ACTUATOR PAIRS

. STORAGE FOR VARIABLES AND 1/0 SIZING DONE FOR
SPECIFIC STRUCTURE EXAMPLES

Input/Output Data Flow Rates

Assumption o (Control bandwidth 50 Hz
e Accuracy - 2 byte/word

- Sampling freaguency 250 Hz
Command frequency

Data Flow rate sensor
per { 500 [Bytes/sed]
actuator
Total: Beam: 3,000 [Bytes/sec]

Antenna: 18,000 (Bytes/sec]
15538 bus capacity 48,000 [Bytes/sec]
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LA6 SIZING

BEAM
SENSOR/ACTUATOR PAIRS (m) 6
CONTROL STATES (1) 20
FLOP PER CYCLE 1420
VARIABLES"* 752
1/0 PER CYCLE 12

*INCLUDES SENSOR COMPENSATION FLOP (120 FOR BEAM, 720 FOR ANTENNA)
"*INCLUDES SENSOR COMPENSATION VARIABLES (60 FOR BEAM, 360 FOR ANTENNA)

FLOP/CYCLE
LOG ALGORITHM: 2n§ +n_+4nm

36
20
4420
2312
72

‘ﬁ1l"

10k
5k
TYPICAL AP CAPACITY @ 250 cycles/s

1

. i I
1 2! 5 10 20°
NUMBER OF CONTROLLED STATES (n,)




"INCLUDES SENSOR COMPENSATION FLOP (120 FOR BEAM, 720 FOR ANTENNA)
**INCLUDES SENSOR COMPENSATION VARIABLES (60 FOR BEAM, 360 FOR ANTENNA)

10k

REAM
SENSOR/ACTUATOR PAIRS (m) 6
CONTROL STATES (n.) 12
FLOP PER CYCLE 633
VARIABLES"" 570
1/0 12

FLOP/LAC CYCLE
16 2

(LAC FLOP + g HAC FLOP): my+ EnH«b;nHm-t +2m2

ANTENNA

36
12
4608
3060
72

5k

T Tt

- 3sxANTENNﬁJ

2k

m = 30

1k

| R PR B N N O I | 1

TYPICAL AP
CAPACITY @
250 LAC/s

1 2 5 10 20

STATES UNDER HIGH-AUTHORITY CONTROL (ny}
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n rate % GPC X tvnlcol
(
) canaclt AP capaclty

Structure Algorithm m n (ng K Flops/sec y
Beam LQ6G 6 12 6 55 67 7
6 16 10 112 135 1y
HAC/LAC 6 12 6 34, 41 4
6 16 10 57 69 7
Antenna LQAG 36 42 6 260 300 36
HAC/LAC 36 42 6 750 900 100

m = # of sensors/actuators ne

n = # of modes In model “H} = # of controlled modes

SYSTEM IDENTIFICATION COMPUTATIONAL SIZING

. ARMA-LEAST SQUARES ALGORITHM SIZED FOR FLOP AS FUNCTION OF
MODEL ORDER (n) AND NUMBER OF SENSOR/ACTUATOR PAIRS (m)

. FLOP REQUIREMENTS FOR THIS ALGORITHM ARE SO LARGE THAT
IMPLEMENTATION IN A FLIGHT SYSTEM OR ITS GTF ANALOG IS
PRECLUDED

. EVEN IMPLEMENTATION IN GROUND-BASED COMPUTERS IS
CONSIDERED QUESTIONABLE, BUT THIS STUDY ASSUMES
A GROUND-BASED IMPLEMENTATION

o  NOTE: SOME OTHER SYSTEM IDENTIFICATION ALGORITHM MAY BE
IMPLEMENTABLE IN A FLIGHT SYSTEM




FE==]

Bt eSS

g==2t1

Aloorithm Assessed - Least Sauires

B
L ]

Motivation for choosina LS

e Relatlive hiah spectral resolution
e Comparable to other alaorlthm in computation
complexity :

e.g.,: Covarlance alaorithm
Maximum Entropy

e “Better” algorithms - considerably more complicated

e Less complex alaorithms - considerable pendalty in
performance

e LS - robust to order reduction

e Useful for - control design
- self tunina requlators

Identification Algorithm Sizing

Assume the ARMA model

Yo = ;51 AyYe-1 * g ByUp_y

where Vg = vector of measurements (sensors)
at cycle k
Uk = vector of control influence at cycle k
we can write _
y 7
' k-1
yk = [Al:l [} :,AI’I:BO'} [ Bn_]] :
yk_n
Uy
:
_ _”k-n+[

(l-Zk

Use least squares identification
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SYSTEM IDENTIFICATION ALGORITHM FLOP REQUIREMENTS

BEAM ANTENNA
SENSOR/ACTUATOR PAIRS (m) 6 36
MODES MODELLED (w) 12 42
OFF-LINE MEGAFLOP 354.2 297,779
FOR 4000 CYCLES
OFF-LINE FLOP/CYCLE 88,552 74,444,881
OFF-LINE MEGAFLOPS 22,1 18,611
(8 250 CPS)
ON-LINE FLOP/CYCLE 169, 784 73,601,174
ON-LINE MEGAFLOPS 42,5 18,400
(@ 250 CPS)
AVIONICS DATA PROCESSING
throuchput (MFLOPS)
0l 0.1 1.0 10.0 100
Existing Space Processor fh—t—Ll—2——t —
Near-Term Processor é——:-:—;
¢ BT 2
U-Processors - & B
) g 2
Pro)ected Trends s &
(avionics) - . . , N
Existlng Control Lm
LSS Control (ATB Models) g’; godel Dependent
LSS Identification K
Other Space RQTS Housekeeping Payload Processing y ,Slgngl Processing,

194



PARTITIONING OF LARGE SPACE STRUCTURES

VIBRATION CONTROL COMPUTATIONS

J. Kernan
Charles Stark Draper Laberatory, Inc.
Cambridge, Massachusetts
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BEAM ANTENNA
SENSOR/ACTUATOR PAIRS (m) 6 36
CONTROL STATES (n.) 20 20
FLOP PER CYCLE 1420 4420
VARIABLES™" 752 2312
170 PER CYCLE 12 72

"INCLUDES SENSOR COMPENSATION FLOP (120 FOR BEAM, 720 FOR ANTENNA)
"*INCLUDES SENSOR COMPENSATION VARIABLES (60 FOR BEAM, 360 FOR ANTENNA)

HAC/LAC SIZING
BEAM ANTENNA
SENSOR/ACTUATOR PAIRS (m) 6 36
CONTROL STATES (n,) 12 12
FLOP PER CYCLE® 633 1608
VARIABLES"* 570 3060
1/0 12 72

*INCLUDES SENSOR COMPENSATION FLOP (120 FOR BEAM, 720 FOR ANTENNA)
“*INCLUDES SENSOR COMPENSATION VARIABLES (60 FOR BEAM, 360 FOR ANTENNA)
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DISTRIBUTION OF VIBRATION CONTROL AND SENSOR COMPENSATION COMPUTATIONS

. A RANGE OF CHOICES BETWEEN THE TWO FOLLOWING
EXTREMES WAS INVESTIGATED:
'« CENTRAL COMPUTATION OF BOTH CONTROL
AND SENSOR COMPENSATION
«  CONTROL COMPUTATIONS DISTRIBUTED AMONG
CENTRAL AND LOCAL PROCESSORS; LOCAL
PROCESSORS ALSO PERFORM SENSOR COMPENSATION
. PORTIONS OF THE CONTROL COMPUTATIONS CAN
BE DISTRIBUTED BECAUSE THE ROWS OR COLUMNS
OF THE MATRICES INVOLVED CORRESPOND TO
INDIVIDUAL SENSORS OR ACTUATORS
e  DISTRIBUTION IS SUPPORTED BY THE FACT THAT
THE MATRICES INVOLVED ARE EITHER CONSTANT
OR INFREQUENTLY CHANGED

LSSC COMPUTATION DISTRIBUTED AMONG CENTRAL AND LOCAL PROCESSORS

O QOO oielelele
CLUSTER CLUSTER

_RAW SENSOR READINGS ACTUATOR COMMANDS
COMPENSATION FOR SCALE CENTRAL
FACTOR, BIAS, AND DRIFT "Aggfjﬁrsgg FEEDBACK GAIN ROWS
COMPENSA'I’ED READINGS : FOR THESE 4 ACTUATORS
T v X X X
XX XX v XX X
XX XX v X X X 1]
xxx x| LY X X X u
L u
KALMAN GAIN COLUMNS WEIGHTED | )& U
FOR THESE 4 SENSORS SENSOR 0
READINGS
VIBRATION
CONTROL
LOCAL PROCESSOR INPUT ACTIVITIES ALGORITHM LOCAL PROCESSOR OUTPUT ACTIVITIES
K
2-SENSOR °<9 2-ACTUATOR
CLUSTER A CLUSTER
‘ zc
§ 0 Via >
cOMPENSATION R, | [8Us prd
ESTIMATED MXV 3
STATE
x VECTOR X X X
X X X XX
x

ETC.
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RECOMMENDATIONS FOR CENTRAL/LOCAL PROCESSOR PARTITIONING

LQG COMPUTATIONS THAT SHOULD BE DISTRIBUTED TO LOCAL PROCESSORS,
IN ORDER OF DECREASING PREFERENCE

COMPENSATING SENSOR READINGS FOR SCALE FACTOR, BIAS, AND DRIFT

' APPLYING FEEDBACK GAIN TO ACTUATOR COMMANDS
APPLYING KALMAN GAIN TO COMPENSATED SENSOR READINGS

. HAC/LAC COMPUTATIONS THAT SHOULD BE DISTRIBUTED TO LOCAL PROCESSORS,
IN ORDER OF DECREASING PREFERENCE
' COMPENSATING SENSOR READINGS FOR SCALE FACTOR, BIAS, AND DRIFT
APPLYING LOW-AUTHORITY GAIN TO ACTUATOR COMMAMDS
' APPLYING HAC FEEDBACK & FILTER GAINS TO ACTUATOR COMMANDS

. APPLYING KALMAN GAIN TO COMPENSATED SENSOR READINGS

FREQUENCY SHAPING FILTER COMPUTATION (HAC/LAC) SHOULD STAY IN
CENTRAL PROCESSOR

LQG ALGORITHM (n, = 20) FOR BEAM

CENTRAL PROCESSOR CENTRAL PROCESSOR
DATA: 752 VARIABLES DATA: 452 VARIABLES
FLOP: 1420 PER CYCLE FLOP: 880PER CYCLE
2 INPUT 2 0UTPUT 20 INPUT 20 OUTPUT
VARIABLES VARIABLES VARIABLES VARIABLES
{6 TOTAL) (6 TOTAL) (60 TOTAL) (20 TOTAL)
LOCAL PROCESSOR (EACH OF 3) LOCAL PROCESSOR (EACH OF 3}
DATA: — : DATA: 100 VARIABLES
“FLOP": ~100 PER CYCLE “FLOP": ~300 PER CYCLE

CENTRALIZED DISTRIBUTED
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LOG ALGORITHM (n, = 20) FOR ANTENNA

CENTRAL PROCESSOR CENTRAL PROCESSOR
DATA: 2312 VARIABLES DATA: 512 VARIABLES
FLOP: 4420 PER CYCLE FLOP: 940 PER CYCLE
A A
20 INPUT 20 QUTPUT 20 INPUT
VARIABLES VARIABLES VARIABLES
(20 TOTAL) {100 TOTAL)
RIM MUX PROCESSOR
20R3 20R3 DATA: 160 VARIABLES | p
: ASS
OUTPUT INPUT EL O
VARIABLES VARIABLES FLOP™: 160 PER CYCLE| THRU
(36 TOTAL) (36 TOTAL)
20 INPUT
VARIABLES
(160 TOTAL)
Y Y
LOCAL PROCESSOR LOCAL PROCESSOR LOCAL PROCESSOR
(EACH OF 13) (EACH OF 8 ON RIM) (EACH OF 5 NOT ON RIM)
DATA: — DATA: 160 VARIABLES DATA: 100-150 VARIABLES
“FLOP”: ~100-150 PER CYCLE “FLOP": ~400 PER CYCLE “FLOP": ~300-400 PER CYCLE

CENTRALIZED DISTRIBUTED
HAC/LAC ALGORITHM (n; = 12) FOR BEAM

CENTRAL PROCESSOR CENTRAL PROCESSQ

DATA: 570 VARIABLES DATA: 308 VARIABLES

FLOP: 633PERCYCLE FLOP: 309 PER CYCLE
2 INPUT 2 OUTPUT 12 INPUT 16* OUTPUT
VARIABLES VARIABLES VARIABLES VARIABLES
(6 TOTAL) (6 TOTAL) {36 TOTAL) {16 TOTAL}

A

LOCAL PROCESSOR (EACH OF 3)

DATA:
“FLOP”: ~100 PER CYCLE

LOCAL PROCESSOR (EACH OF 3}

DATA: 80 VARIABLES
“FLOP": ~225 PER CYCLE

*THESE OUTPUTS ARE SENT ON
EVERY OTHER CYCLE

CENTRALIZED DISTRIBUTED
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HAC/LAC ALGORITHM (n, = 12) FOR ANTENNA

CENTRAL PROCESSOR CENTRAL PROCESSOR
DATA: 3060 VARIABLES DATA: 396 VARIABLES
FLOP: 4608 PER CYCLE FLOP: 360 PER CYCLE
% 12 INPUT 16* QUTPUT 12 INPUT
VARIABLES VARIABLES VARIABLES
{16 TOTAL)} {60 TOTAL)
RIM MUX PROCESSOR
20R3 20R3 DATA: 96 VARIABLES | pass
OUTPUT INPUT “FLOP": 96 PER CYCLE | THRU
VARIABLES VARIABLES
(36 TOTAL)} (36 TOTAL)
12 INPUT
VARIABLES
# (96 TOTAL) ‘ *
LOCAL PROCESSOR LOCAL PROCESSOR LOCAL PROCESSOR
(EACH OF 13) (EACH OF 8 ON RIM) (EACH OF 5 NOT ON RIM)
DATA: — DATA: 123 VARIABLES DATA: 80-123 VARIABLES
“FLOP": ~100-150 PER CYCLE “FLOP"": ~300 PER CYCLE “FLOP:” ~225-300 PER CYCLE
*THESE OUTPUTS ARE SENT
ON EVERY OTHER CYCLE

CENTRALIZED

. VIBRATION CONTROL OF LARGE SPACE STRUCTURES

CONCLUSTON

DISTRIBUTED

IS COMPUTATIONALLY DEMANDING ~ DRIVEN BY
NUMBER OF VIBRATION MODES CONTROLLED
NUMBER OF SENSOR/ACTUATORS PAIRS

CONTROL BANDWIDTH

. DISTRIBUTION OF THE VIBRATION CONTROL COMPUTATIONS
AMONG CENTRAL AND LOCAL PROCESSORS CAN SIGNIFICANTLY
REDUCE THE THROUGHPUT REQUIRED FROM THE CENTRAL
PROCESSOR AND MAY ALSO RESULT IN IMPROVED PERFORMANCE
DUE TO REDUCED TRANSPORT LAG
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SHUTTLE FLIGHT CONTROL
AND STRUCTURE INTERACTION

Michael Paluszek
Charles Stark Draper Laboratory, Inc.
Cambridge, Massachusetts
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« A brief overview of the DAP

o Results of the dynamic Interaction study of
the Orbiter with the General DPynamics Beam

attached

e Preliminary results of the three degree of
freedom payload parometric study

This is a diagram of the Orbiter Flight Control System (FCS). The functions
relating only to the OMS have been eliminated for clarity. The vehicle can be
maneuvered either manually or automatically. To perform an automatic maneuver the
pilot specifies a new orientation for the Orbiter. This is processed by the steering
processor, which sends a corresponding attitude error to the RCS processor. Jets
are commanded to fire to reduce this error. The jet firings produce attitude changes
that are measured by the IMU and sent to the state estimator at 6.25 Hz. The state
estimator produces rate and acceleration estimates, filtering out high-frequency
oscillations. The steering processor produces a new rate and attitude error from

this data.

ESTIMATOR ATTITUDE DATA

V) o

'f" CONTROL LAWS
| RCS PROCESSOR |
|
MANUAL | DIRECT TRANSLATION o |
]
TRANSLATION COMMAND i
CommAND] DIRECT ROTATION JET JETON/OFF| @cs
COMMAND | DELT HOTA SELEC g
STEERING COMMAND T I Tcommanos | e7s T
MANUAL | ATTITUDE ERROR f
ROTATION g l
CoMMAND T PROCESSOR |ANGULAR RATE PHASE |
AUTO ERAAOR *1 PLANE
ROTATION | | )
COMMAND ' I 'ﬁ
e o
| | 5
DISTURBANCE o
l ANGULAR I [~}
ACCELERATION I 3
[ ESTIMATE 3
| | g
| ATTITUDE |
| ESTIMATE ]
ANGULAR RATE |
i ESTIMATE '
| EXPECTED A ANGULAR RATE |
| STATE - |
I T
-

ey et C— G— G———  — G— Chuy  Gmve  GANSS G G— v Ge— — —_— —— S— C—
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Characteristics of the Orbiter and DAP

Oorbiter

DAP

Low inertial cross coupling
First bending frequency 0.43] Hz
Large RCS Jet coupling particularly roll to yaw

- 6 2
L = .883x10° slug-ft<, 12.5% of I,

Operational maneuver rate limit of 2 ©/sec

Phase Plane autopilot assuming decoupled axis
State Estimator uses IMU data only

» second order filter characteristic

e« 6 dB down at .06 Hz with vernier gains

Designed assuming a rigid vehicle

This flow chart maps the interrelation of different criteria for the Orbiter
flight envelope. The three parameters that are used to define an envelope are
payload pointing accuracy, propellant budget and payload loads. While often con-
sidered independently, they affect one another as indicated in the block diagram.

Definition of the Orbiter Flight Envelope

)

Payload Pointing

Accuracy
)
Jet Firing | .| Reauired Propellant
Frequency I Budget
Vehicle
Vehicle - Payload Loads »| Maneuver [
Oscillations | Criteria
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Closses of System Response
for the Orbiter with a Flexible Payload

1. The Autopilot doeé not respond to the nayload oscillations
o vehicle oscillations small
« payload oscillations may be large

2. The Autopilot responds to payload oscillations
o vehicle rate or attitude errors exceed set limits

o vehicle oscillations may diverge
e attitude excursions may be small

This graph defines the regions of autopilot interaction for the Orbiter with a
flexible payload. The x axis is the roll fundamental frequency and the y axis is the
ratio of payload roll inertia to empty Orbiter roll inertia. Little or no interaction
occurs in the region to the right of the solid line. 1In the region to the left some
closed-loop response has been observed. The dotted line indicates the state estimator
6 dB point. The ruled region is the current area of interest for the parametric

study of the DAP response.

10

Txx'l'OTAL—IXXORBITER p e GD. 1
T__ORBITER
3.4

RMS/PEP :

0.1 0.1 _ 1.0

roll
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Summary of results of the dynamic interaction
analysis of the General Dynamics beam

The Orbiter with the General Dynamics beam experiment is pictured here.

AW AV A L0,

AW a

VAYAVAVAVACALANAY AN .V,

A WAN

AVAVAVAVAV AV AV,

VAV,
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This table gives the results of the dynamic interaction analysis of the
Orbiter/GS beam combination., The columns list the maneuver performed, the fuel
expended, the type of Orbiter and payload oscillations, whether the DAP sent
oscillatory firing commands to the jets, and comments.

Except for the 5° roll case with rate limit clampdown, the vehicle and pay-
load remained stable. In cases 4 and 7 through 10 oscillatory commands were sent
to the jets indicating vibration feedback. Note that 4 was the worst case. Case
no. 8 is worse than case no. 1, but case no. 10 is not worse than no. 4, as might

be expected.

DYNAMIC INTERACTION STUDY SUMMARY

[Fundamental frequency in pitch = 0.046 Hz]

Oscillations
Maneuver Fuel Payload Vehicle ROT-JET-CMD comments
1 5° Roll 6.1 stable stable
2 Pitch 4.2 stable stable
3 Yaw 6.3 stable stable
4 5° Roll 12.0 diverge diverge roll,pitch results after
with att. hold clampdown
RL=.01, DB=.1
5 Astronaut - stable stable results after
Forced Osc. autopilot on
6 Jet F3U - stable stable
Stuck on
7 Jet R4U - stable stable yaw
Stuck on
8 3.29 Roll 6.1 stable stable roll up to .046 Hz pulse
Rate =.2 60 sec
9 59 Pitch 7.5 stable stable pitch
with att. hold
10 3.2° Roll 10.5 stable stable roll until
with att., hold clampdown
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This figure and the next one are examples of the output from two SLS rums.
Note that in both cases oscillatory commands are being sent to the jets, but only
in the roll case are diverging oscillations seen.
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5 deg pitch with rl = 02 deg/sec, db = 1 deg
with an attitude hold at 60 sec with
rl = 01 deg/sec, db = 1 deg
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The Three Degree of Freedom Payload Simulation
for Orbiter/Payload Parometric Studies

The General Dynamics Beam

e Base Properties
. Ixx .ooylood/lxx vehicle = ,698

U fl'Oll . NG42 Hz
fyaw  +667 HZ

e Results with base model

e payload diverges In pitch
e oscillatory Jet firings after rate limit change

e Trends with parameter changes

« vehicle oscillations are greatest at f.q;; = .046 Hz
» behavior insensitive to vaw freauency and I,, payload changes

e 1Increasing rate 1imits and deadbands can limit small
oscillations

o vehicle oscillations increase as payload inertia increases

The last four figures give results from the parametric study. The first
case 1s for a three-degree-of-freedom model of the GD beam. The second is for
a payload with a roll bending frequency of 0.02 Hz and a larger inertia ratio.
In the latter case a more severe oscillatory rotation command is seen and the
vehicle maneuvering is more sluggish.
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5° Roll Maneuver

rl = ,02 °/sec , db = ,5°
at 60 sec set

rl = .01 °/sec , db = .1°
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Fuel (lbs)

RJC Yaw

RJC Pitch

RJC Roll
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General Dynamics Beaom as the Payload
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5° Roll Maneuver

rl = ,02 °/sec , db = .5°
at 60 sec set
rl = .01 °/sec , db = ,1°
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LARGE SPACE STRUCTURES CONTROLS RESEARCH AND DEVELOPMENT
AT MARSHALL SPACE FLIGHT CENTER -

STATUS AND FUTURE PLANS

H. Buchanan
Marshall Space Flight Center
Systems Dynamics Laboratory
Huntsville, Alabama
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-3 .2 -1 PHASE C START
[ A | . i . | .
TIME YEARS

MOMENTUM
MANAGEMENT

1.4.2.1

MODULAR
CONTROL

1.4.2.7*

CONTROL
INTEGRATION

1.4.2.8

PLATFORM
ACS DESIGN

NON COLOCATED
SENSORS

1.4.2.1

CONTROL OF
ARRAY SYSTEMS

1.4.2.5

CONTROL SYSTEM
DESIGN TECHNIQUES

1.4.2.1

SENSORS
AND ACTUATORS
FOR BERTHING

1.4.3.2 * REFERS TO WORK BREAKDOWN

STRUCTURE (WBS) IN SPACECRAFT
SYSTEMS MANAGEMENT PLAN

CONTROL
FOR BERTHING

1.4.2.7

OBJECTIVE I: STABILITY AND MODAL CONTROL

DEMONSTRATE THAT THE FIRST NINE MODES (THREE RIGID + SIX FLEX)

OF THE SEPS TEST ARTICLE CAN BE ACTIVELY CONTROLLED.

FEATURES:
@ LOW FREQUENCY (f <1 Haz).
® ACTIVE MODAL DAMPING — EXPERIMENT GOAL OF 10%.
® CONTROL OF ASYMMETRIC STRUCTURE WITH COUPLED MODES.
® INVESTIGATE EFFECT OF CONTROLLER SATURATION ON DYNAMICS.

SEPS SOLAR ARRAY FLIGHT TEST MODES

FREQUENCY Hz DESCRIPTION

0 RIGID BODY

0 RIGID BODY

0 RIGID BODY

.032 OUT OF PLANE* BENDING

.035 IN PLANE BENDING + TORSION®**
.059 IN PLANE BENDING + TORSION
.096 OUT OF PLANE BENDING

17 IN PLANE BENDING + TORSION
.165 OUT OF PLANE BENDING

*PLANE OF SOLAR BLANKET
**TORSION OF MAST
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OBJECTIVE: TO DEVELOP A MULTILEVEL CONTROL APPROACH WHICH SUPPORTS A MODULAR OR BUILDING BLOCK

APPROACH TO THE BUILDUP OF SPACE PLATFORMS.

CONSTRUCTION
Fiatioma “ ' onautn,
(Control intemrace
Module

1)

50 KW POWER SYS
(Control Module I)

OUTLOOK: CONCEPT HAS BEEN DEVELOPED AND TESTED IN THREE-AXIS COMPUTER SIMULATION UTILIZING A FIVE-BODY

MODEL OF A BASIC SPACE PLATFORM MODULE. ANALYTICAL EFFORTS HAVE CONTINUED TO FOCUS ON

EXTENSION OF THE BASIC THEORY AND SUBSEQUENT APPLICATION.

£

\."\/_‘
=

(3
Z5

R G

SRR
V\‘ =
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DEPLOYABLE ANTENNA SURFACE SHAPE CONTROL

o OBJECTIVE - DEVELOP PRELIMINARY SPECIFICATIONS
FOR A FLIGHT EXPERIMENT TO EVALUATE SEVERAL

ALGORITHMS FOR CONTROLLING THE SHAPE OF LSS.

o STATEMENT OF WORK SUMMARY
- DEMONSTRATE ANALYTICALLY THE FEASIBILITY
FOR SUCH AN EXPERIMENT.
- SPECIFY HARDWARE AND SOFTWARE REQUIREMENTS.
- IDENTIFY REQUIREMENTS WHICH WOULD IMPACT
CURRENT DESIGN.

- DEFINE A FLIGHT TEST PLAN,

SAFE CONTROL EXPERIMENT

CONTROL SENSORS

SAFE TEST ARTICLE
{(105° x 14"} -

AGS CONTROL COMPUTER

ASPS GIMBAL
SYSTEM {AGS)

ORBITER VCS$
PROVIDES EXCITATION



OBJECTIVE lI:

OBJECTIVE Iil:

DISTURBANCE ISOLATION AND LOAD ALLEVIATION DURING MANEUVERS
DEMONSTRATE THAT DISTURBANCES ORIGINATING IN THE
ORBITER (VCS FIRINGS AND CREW MOTION) CAN BE EFFECTIVELY
ISOLATED FROM THE TEST ARTICLE BY MEANS OF SOFTWARE AND
ACTIVE CONTROL. IN A SIMILAR MANNER LOADS IMPOSED ON THE
STRUCTURE BY MANEUVERING WILL BE ALLEVIATED.

®1x 10~3 g DISTURBANCE LEVEL.

@33 NM TORQUE ALLEVIATION.
POINTING
DEMONSTRATE CONTROLLER CAN POINT BASE OF APPENDAGE TO 1
fa¢ ACCURACY (EXPERIMENT GOAL). NO STAR TRACKER SUN SENSOR
INPUT WILL BE USED AND PERIOD OF PERFORMANCE WILL BE SHORT TO
MINIMIZE RATE GYRO DRIFT.

3 AGS
> RATE
GYRO'S

4

3 SEPS

. SEPS

" STRUCTURE # 2

-1 RATE -

—I |3 BASE . | COMPUTER
~| ACCEL. "

AGS
GIMBAL

A

TORQUERS
3 AXES




CONTROL GROUND TEST SCHEMATIC

AIR BEARING
CONSTANT /
TENS | ON M
SUSPENS | ON .
S LARGE SPACE STRUCTURE
N TEST ARTICLE
—t—
e
2 DEGREE OF |
FREEDOM LW
CONTROL , CONTROL COMPUTER
G1MBAL /
A -
AIR

|__—  seARING

/f/’// V- A R R R R B A e A e

EXCITATION

AR
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Research on the Control of Large Space Structures®

E. D. Denman
Department of Electrical Engineering
University of Houston
Houston, Texas

*Paper not presented at conference. This work was partially supported by NASA
Langley Research Center under grant NSG-1603. '
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INTRODUCTION

The research effort on the control of large space structures at the University
of Houston has concentrated on the mathematical theory of finite-element models;
identification of the mass, damping, and stiffness matrix; assignment of damping to
structures; and decoupling of structure dynamics. The objective of the work has been
and will continue to be the development of efficient numerical algorithms for analy-
sis, control, and identification of large space structures. The major consideration
in the development of the algorithms has been the large number of equations that must
be handled by the algorithm as well as sensitivity of the algorithms to numerical
errors,

The finite-element model that has been used in the linear second-order matrix
differential equation

Md%x(t) 4 Cdx(t) + Kx(t) = £(t) W

dt2 dt

where MeRmxm is the mass matrix, EERmxm is the damping matrix, Engxm x%s the
stiffness matrix, x(t)eRm is the node displacement vector, and f(t)eRm is the
forcing function vector.

The Laplace transform of equation (1) gives the matrix egquation

[M32¥Eé¥f]x(s) = B(s) (2)

where B(s) contains the initial condition information as well as the forcing func-
tion. If s 1is replaced in equation (2) by A, equation (2) then takes the form of
a lambda matrix:

AQ)X() = B(A) (3)

If it is assumed that the initial conditions are zero and no forcing function is
present, then

ZOVX() = [MZHTHRIZO) %)
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is the homogeneous equation that will be of interest. The latent roots \; of
A(A) are given by

det A(\) = det [MA4CME] = 0 : (5)

and the latent vectors y; are obtained from
— 2 — —_ _
A(Ai)yi = [M}\i+c>\i+K]yi =0

provided that all latent roots are distinct, of multiplicity one.

Lancaster (ref. 1) and Dennis et al., (ref. 2), as well as others, have published
material on lambda matrices. One of the tasks during the past research period has
been to consider their work as well as extensions of the algebraic theory of lambda
matrices for the control of structures,

ALGEBRAIC THEORY OF LAMBDA MATRICES

A comprehensive treatment of the algebraic theory of lambda matrices cannot be

presented in this short paper. Only the essentials necessary to understand the damp-

ing assignment problem will be given.,

Consider the lambda matrix

AN = Q[I)\2+C)\+K]QT = QA(}\)QT (6)

where @ 1is the Cholesky matrix of the decomposition of M = QQT. The normalization
process in equation (6) will retain the symmetry of C and K. The lambda matrix
A(A) will be considered in the following work and it will be assumed that the latent
roots of A(A) appear in conjugate pairs as well as being distinct. This restric-
tion is not necessary but is made to simplify the analysis.

It can be shown that the matrix

A = @)
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has eigenvalues Ai that are equal to the latent roots of A(A). The right and left
eigenvectors of A, contain the right and left latent vectors of A()A) with

Vi
Yei = \ (8)
1¥1
and
-
(AiI+C)zi
zZy = . 9)
L i
where Yo and z_. are the right and left eigenvectors, respectively. BAn eigen-
projector, Py will be defined as the matrix
y ZT
cici
P, =5 (10)
1 z
ci¥et
where the matrix Ay defined by
A.,=P, A =AP (1)

will have the same eigenvectors as A, but all eigenvalues will be zero except for
Ai, which will be the same as in A,. The eigenprojectors are the matrix residues of

the partial fraction expansion of [Z-\c(k)]-l with

2m P,

-1 i
(A, NI = 121 Py (12)
where
_ im -1
P, = X+Ai (A—Ai)[Ac(Ai)] (13)
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A latent projector will be defined as the matrix residues of the partial frac-
tion expansion of [A(A)]~! where

: -1 2? ﬁi .
AD] "= ) w5 (14)
=3 (AP
with
A _ 2im -1
Pi = A+A1 (A—Ai)[A(A)] (15)

The latent projectors are also given by

v,z
A i%1
P, = (16)
i P da(r))
i ax 71

where y; and z; are the latent vectors of A(M).

To complete the limited discussion of the algebraic theory, the relationship
that exists between the eigenprojectors and latent projectors must be given. By
inverting Ac(k) it zan be shown that

I+
Xi C 1
i i (17)

-]
Il
2~

with the past definitions holding.

ASSIGNMENT OF DAMPING
An algorithm to assign damping to a particular undamped mode has been developed,
although the theory has not been fully explored at this time. Considerable work
remains to be carried out to develop and test a comprehensive algorithm. Therefore
the material in this section is only preliminary.

Consider the undamped structure with the associated lambda matrix

AQ) = TA%4K (18)
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If it is assumed that K

will be real with Xi =

m P
Gr-x)"t = ) i

i=1 ( -Ai)

is symmetric and positive definite then all latent roots of
A(A) 1lie along the Jjw axis. Since K

is positive definite all of its eigenvalues

where it can be shown that P; is given by

which will be defined as the augmented latent projector.

that the undamped A, is

-
m

~ 2/\* *2
igl (B AP D)

cu
m

@A AR
IRt R

but since the undamped matrix is

0 I
AC =
u -k 0
then
oA k%
J@.AZPr%) = 0
1=1 ii i1
moA Ak %
I A+ =1
i=1
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N %k
Y @A 4PN
2y TAMTN

m

A L2 ~k %D
Y@ AHP D)
PETRRE N A !

Oy and the eigenprojectors of K are given by

a9

(20)

It is not difficult to show

-

(21)

(22)

(23)

(24)



)

e

is modified with
m k& W
) E A+

-
m A Ak %k *
I @ 2B P +a0))
1=1 1=1

The damped case has a similar form with the exception that the upper diagonal block

(25)

m

A 2~k %2
Y @ AHRLALD)
qoq AMTAM

oA ~k_ %
-Y (B A HPADK

=1
| -

0 1

-K -C

Suppose now that the undamped structure is to have damping added to the
and x;) and all other modes are to remain undamped. Using

jth mode (i.e., lj
equations (21) and (22), A_ becomes
[ m m 7
~ 2 Ak _%k2 ~ Ak *)
121 G W 121 B AP
143 1#]
Acd= i - +
A Ak * A L2 ~k_ %2
;Zl (B h +B 0K 121 (B A+R A5 )
| 1#] i#] i
r -1
A2 Ak k2 ¥ & A&k
P.ASHP A, “+C. AHC. M) P oA 4P,
( 3737373 733 3 I R
(26)
@A APAHK B 224p%) "2
3737373 373 7373 J
which can be rewritten as
m_ — .
[0 } P, [ o P
i=1 J
i#3
Acd= o + 27
-y P,K 0 -P_ K -C.
2 1 i 3
L i#] i .. i
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and also in the form

i
P, + A
cd 1=1 i c

1#3

A a- A

P. = AT4a (28)
c J

d 3

The matrix AY denotes the matrix constructed from the summation and Aj is the
complement to at,

The last step in the algorithm is to recognize that at is orthogonal to Aj;

thus
™ m " _ — r -
0 ZPi ] 0 P, 0 0
=1 J
i#j
= (29)
? — —
-y P,K 0 -P K -C, 0 0
L 4= 1 ) i1 L |
i#j

m
Finally, Cj is the matrix that is orthogonal to Z Pi' The eigenprojector
i=1

_ _ 1#]
P. must be orthogonal to all Pi as the set of eigenprojectors have the orthogonal
property

P, =0 i#j (30)

The C. matrices are therefore nothing more than ajﬁj where aj is a scaling

constanht. The trace of Cj is

20 (31)

m
trace (Cj) = 2 cii,j = i

i=1
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where trace (P.) = 1. The scaling constants are then used to place the latent roots
of A(A) with

v
-
oj 7 (32)
2 2 2
wj wnj - oj (33)

An example will now be given to illustrate the algorithm. ILet C = 0 and
select K as

300 -200

-200 350

which has eigenvalues +j11.1105 and +j22.9468. The augmented projectors are

0.562017 0.496139

?l=
0.496139 0.437983
and
_ 0.437983 -~0.496139
P2 =
-0.496139 0.562017
The matrices
1 0.8827824
Cl =

0.8827824 0.7793048
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and .
1 -1.1327785

Q
I

-1.1327785 1.283187

are orthogonal to P and P.. Note that the columns in Cy and C, can be scaled

by constants and remain orthogonal to 51 and 52.

The eigenvalues of

are given in the computed results below,

A(I,J) MATRIX

0 0 1 0
0 0 0 1
-300 200 4] 0
200 =350 0 0
EIGENVALUES REAL IMAGINARY
1 0 22.9468
2 0 -22.9468
3 3.04403E-22 11.1105
4 3.04403E-22 -11.1105
No damping
A(I,J) MATRIX
0 0 1 Q
0 0 0 1
-300 200 -1 -.882783
200 -350 -.882783 -.779305
EIGENVALUES REAL IMAGINARY
1 3.99893E-08 22.9468
2 3.99893E~-08 -22.9468
3 - .889652 11.0748
4 - .889652 -11.0748

Pamping in lowest mode
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A(I,J) MATRIX

0 0 1 0
0 0 0 1
-300 200 -1 1.13278
200 =350 1.13278 -1.28319
EIGENVALUES REAL IMAGINARY
1 -1.14159 22,9184
2 -1.14159 ~22.9184
3 2.84795E-08 11.1105
4 2.84795E-08 -11.1105
Damping in highest mode
A(I,J) MATRIX
0 0 1 0
0 0] 0 1
-300 200 -1 .125
200 -350 .125 -1.03125
EIGENVALUES REAL IMAGINARY
1 -.570798 22,9399
2 -.570798 -22.9399
3 -.444827 11,1019
4 -.444827 -11,1019

Damping in both modes

The undamped system matrix and its eigenvalues are given first. The lowest mode
was then damped with the system matrix and its eigenvalue given. The third test was
to include damping for the highest mode where C = C,. The last test was to combine
the damping for the two modes with

l p— —_
C = 5 (Cl+02) = o,P. +o,P

1E1+F, 0.889655Pl + 1.141595P2

The system matrix and its eigenvalues are then given. It should be noted that the

new values of Gj of the two modes are

_ 0.889652

1 ) = 0.444827

o]
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and

= _1._._].4_1515. = 570797

) 2

The algorithm allows damping to be assigned to all modes and to the prediction of the
location of the system eigenvalues.

The major problem that remains to be resolved is that of constructing the C
matrix, which is symmetric and positive definite as well as realizable, It will be
assumed that C and K are tridiagonal with the off-diagonal elements having a
smaller magnitude than the diagonal elements. The off-diagonal elements must be
negative with positive diagonal terms.

IDENTIFICATION OF M, C, AND K

The quadrature algorithm for identifying the mass, damping, and stiffness
matrices of a structure is still under study. The algorithm performs well with
simulated data, but attempts to utilized data from the beam experiment at NASA
Langley Research Center have not produced useable results. It is believed that the
conditions on the beam during the data collection may not have satisfied the require-
ments of the algorithm.

The quadrature identification, as well as other algorithms, will receive major
attention in the future. One of the major problems in developing an efficient
algorithm is the availability of test data, either by computer simulation or from a
"test bed. The Langley Research Center experimental beam is a suitable test bed, but
planning and running test data are costly and time consuming. Plans for the future
include construction of an electronic analog test bed that will be low cost and will
provide flexibility in the types of structures that can be simulated. The test bed
_wﬂll,be used primarily in the development of the identification algorithm, but it can
aisb be used for developing control algorithms.

SIMULATION OF STRUCTURES

Some of the preliminary work on designing a structures test bed at the
University of Houston has been completed. The type of simulator considered is an
electronic analog that will be constructed from low-cost operational amplifiers,
resistors, and capacitors. Data acquisition will be handled by a PDP 11/70 computer
for signal processing. The PDP 11/70 is equipped with analog-to-digital and digital-
to-analog converters and has adequate storage to perform on-line data collection and
processing,

CONCLUSIONS
Some of the work that has been supported under grant from NASA Langley Research

Center has been described in this report. Preliminary details on the assignment of
damping are covered, as well as some information on identification and simulation.
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The identification work has not been described since the algorithm is given in refer-
ence 3. The simulation facility is still in the planning stage and a decision to
build such a test bed has not been made. Further descriptions of this research are
given in references 4 and 5,
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ACTIVE CONTROL OF A FLEXIBLE BEAM

Because of inherent low damping and high flexibility, large space structures

mav reguire some form of active control of their dvnamics. BRecauge of the apnarent
mj ‘-b‘lu‘-‘b P o Bl e O B BAE NS B s e ol W N N Bl Y de W e Ve ol ‘J - A el et T e WBAS N b “rr“‘b“b

inability to accurately model the dynamics of these structures, methods for
parameter adaptive control are now being developed at Langley. The process
currently being studied is shown in the block diagram below. This approach uses a
digital computer to process discrete sensor data, identify modal parameters,
calculate modal control gains, and then convert the modal. forces to real forces.
The last two blocks are the topic of this presentation. Some of the problems con-
sidered are: (1) the possibility that there may be many modes to control with
limited amounts of hardware, and (2) the required accuracy of identified structural
parameters.

BACKGROUND:
- NEED TO CONTROL FLEXIBLE MOTION OF LARGE SPACE STRUCTURES
- ABILITY TO ACCURATELY MODEL THE DYNAMICS OF THESE STRUCTURES IS UNCERTAIN
- THEORY NUW BEING DEVELOPED FOR PARAMETER ADAPTIVE CONTROL OF THESE STRUCTURES

I s FLEXI
A/D STRUC

PROCES
SENSO ] ODAL S N . ) SEE——. REAL
DATA PARAMETERS ! CONTROL FORCES
S——— GAINS ‘

I
S f—— IDENTIFY L1 ! CALCULATE [———mm{ APPLY f
R MODA MODAL |
|
|
!

PROBLENMS :
- POSSIBLY MANY MODES TO CONTROL
- LIMITED HARDWARE (CUMPUTATION, SENSURS, ACTUATORS)
- HOW WELL STRUCTURAL PARAMETERS MUST BE IDENTIFIED FOR CONTROL
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RESEARCH TASK
The specific research task was to design a digital control scheme to suppress
vibration of a homogeneous free-free beam. A digital computer simulation algorithm

was then used to test (1) the effects of controlling more modes than available
actuators, and (2) the sensitivity to identified structural parameters.

AgCHEME'TO SUPPRESS VIBRATION OF A

o EXAMINE EFFECT ON STABILITY OF:
- FEWER ACTUATORS THAN CONTROLLED MODES
- ERRORS IN STRUCTURAL MODEL PARAMETERS

o TEST WITH AN EXISTING SIMULATION ALGORITHM
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MATHEMATI CAL MODEL

The continuous beam was modeled by using the SPAR finite element algorithm
which generates mode shapes and frequencies. These were used to write a modal
representation of the beam dynamics which was used to design the control gains.

o CONTINUOUS MODEL

B

o FINITE ELEMENT MODEL OF BEAM

- MODE SHAPES AND FREQUENCIES FOR 25 ELEMENT MODEL ARE
GENERATED BY SPAR

[M1X + [K]x =F

o MODAL REPRESENTATION
= [E] q

X
[\'"'t] 1 [\ki.] a=u: u-=[E]E

- SET OF 50 UNCOUPLED 2ND-ORDER SYSTEMS

o CONTROL SYSTEM DESIGNED USING THIS MODAL REPRESENTATION OF THE
STRUCTURAL DYNAMICS
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DISCRETE TIME MODEL

In order to simplify the digital simulation and prepare for eventual digital
implementation, the modal equations of motion were discretized. This results in
the scalar equation which shows the present modal amplitude to be a function of the
past two amplitudes and the past two controls. There is a discrete time transforma-
tion analogous to the Laplace transform which results in a characteristic polynomial
in z. The roots of this polynomial may be plotted in the complex plane with
stability represented by magnitudes of less than 1. Analysis of the control system
will be done primarily in this z-plane.

o NECESSARY FOR:
- DESIGN OF DIGITAL SIMULATION

- EVENTUAL DIGITAL IMPLEMENTATION %2 q .. g
| ///T‘\\\i;l/’__ﬂt——
o DISCRETE EQUATION OF MOTION: ! : '
k) =R k1) * A2 Y2yt OBy Uyt B2 Y(k-e) ez »
— 1
where A = f(w ,1), t = sampling interval, ! - k-1 k
! ——
B = f(w ,e,7), e = mode shapes. k-2)% (kil)r ;T
o DISCRETE TIME TRANSFORM (ANALOGOUS TO LAPLACE TRANS.) RESULTS  Time
IN A CHARACTERISTIC POLYNOMIAL IN Z: n i1
0= ] ¢ 2
i=1
Jw Tm
S~ PLANE 7 = eST 7-PLANE
I
% Re
N
R§§ UNSTABLE UNSTABLE
F}\ REGION REGION
CONTINUQUS TIME DISCRETE
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CONTROL DESIGN APPROACH

The modal control design approach is to choose desired closed-loop roots from
which the modal controller gains can be calculated. The modal control forces may
be calculated directly, and the actual control forces can be calculated using a
pseudo-inverse.

e CHOOSE DESIRED CLOSED LOOP ROOTS FOR EACH MODE
e CALCULATE MODAL CONTROLLER GAINS
o CALCULATE MODAL CONTROL FORCES

o CONVERT MODAL FORCES TO ACTUATOR FORCES
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DIGITAL CONTROL OF ONE MODE

The control of one mode is achieved by using the minimum order control law
required for pole placement. This is of the same form as the modal equation of
motion. The closed loop controller has a fourth-order characteristic equation as
shown. The coefficlents of this equation are determined from the desired closed-
loop roots and are functions of the mode and control coefficients in the plant and
control modal equations. The control objective is to achieve the desired roots
defined by (a,b,c,d) by solving for the controller gains (C,, Cz, Dy» D2).

e MINIMUM ORDER CONTROL LAW FOR-POLE PLACEMENT

Uy = €1 9k-1) * C2 Y(k-2) 01 Y(k-1) T P2 Y(k-2)

- NOTE SAME FORM AS PLANT MODEL

lagey = Ay 9(k-1) * A2 Y(k-2) * By ¥(ko1) * B2 Y(k-2)]
- C's & D's ARE FOUR CONTROL GAINS

e CLOSED LOOP CONTROLLER

MODAL
EQUATION

CONTROL
LAW

- HAS DISCRETE TIME CHARACTERISTIC EQUATION
z4 + a z3 + b z2 +cz+d =0
where (a ,b ,c ,d } = f(A ,8 ,C ,D ),
e CONTROL OBJECTIVE:

- ACHIEVE DESIRED CLOSED LOOP ROOTS (AS DEFINED BY a,b,c,d)
BY CALCULATING THE CONTROL GAINS,
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CLOSED-LOOP CHARACTERISTICS

The control problem is shown in the block diagram below. The parameter
uncertainties affect the calculation of the modal controller gains and a pseudo-
inverse results In a least squares type error in the actual forces applied to the
beam. A typical set of closed-loop roots is shown in each of the two complex
plane plots. The design criterion is to place the roots of the controlled modes on
a constant damping line in the s-plane. This line maps onto a constant-radius
circle on the complex z-plane, with uncontrolled roots on the unit circle.

o CONTROL PROBLEM

({PARAMETER UNCERTAINTY,

r

u
MODE 1 1
CONTROLLER ST _SQUARES ERROR
Y2 F
MODE 2 1
DESIRED g CONTROLLE
IR o : u =[E]TEF¢F »™] sTRuCTURE
u ! Fm
ODE n y,
ONTROLLER
0 REPRESENTATION OF CLOSED LOOP DYNAMICS
S-PL93§? Z-PLANE
S TRUS 03125 sec. siReD
o b

s CALCULATED

Constant decay 1ing ]
\: 58,00
-
]
s
Vs
)
Q-
! 31
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RESULTS - CASE 1

A baseline set of results is shown below. Exact parameters are used to
calculate the control gains and five modes are controlled with five actuators.
Note that all roots are calculated exactly so that all modal amplitudes have the
same decay envelope. Also, mode six, which is not controlled, does show "minor"
excitation and continues to "ring" after control to the other modes is stopped.
This is not evident from the figure.

o CASE-T: EQUAL NUMBER OF ACTUATORS AND CONTROLLED MODES

S-PLANE 2-PLANE
i Koa Thus .02 me_ ' o GSIRED

5 onus -gm 3 s CALCWATED
S ACTUATORS » 3
s 3
3
3.
Jiodeabindin 3

%
]
3
&

-|||llllu-l|l|u

0 4 4 A2 8
~———e-
3.a
TIHE HISTORY PLOTS TIME HISTORY PLOTS
|F\\ wouLi :5:,’1 L e
B {_ — =
'l . -
, l\ A DA A a
et I— - <] e \VAYA"2A A da
W ol
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RESULTS - CASE II

This next case illustrates an attempt to control more modes than available
actuators. Here it is no longer possible to solve exactly for the desired roots,

and one root does become unstable, as shown by the increasing amplitude of the
fourth mode.

9 CASE.I1: FEWER ACTUATORS THAN CONTROLLED MODES - UNSTABLE

S CONTROLLED Z-PLANE

Y ACTUATORS ] ® DESIRED

@ CALCULATED

2.5

Jome b E/\/\/\I\A/\/\/\/\/\/\/\/\ A/\[\/\f\[\ﬂ/\/\/\ﬁ
HPLITU (l/vV\JVV\/\/V\/\/\/\/VV\/VV\/V\/\[\/U

2.5
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RESULTS - CASE III

In the third case it is shown that attempting to control more modes than
available actuators does not necessarily mean the system will be unstable. Note
here that the calculated roots are closer to the desired roots and that, while the

This can be

fourth mode is near the unit circle, it now is slightly stable.
explained by considering that the additional actuator and mode provide one more

data point for the least squares fit.

FEWER ACTUATORS THAN CONTROLLED MODES - STABLE

e CASE III:
Z-PLANE
6  CONTROLLED
Im
S ACTUATORS ® DESIRED
@ CALCULATED

1 [\/\/\[\/\/\[\/\/\[\/\/\/\/\/\f\[\/\/\/\/\AAA/\'

AQgIﬁTSDE-OLNVV\/VUvVVVVVV‘\]VVVVV\/\/\,(VVVV

!

245



PARAMETER ERROR SENSITIVITY

The results of the parameter error sensitivity study are shown below. Error/
was placed on the modal frequency and damping parameters of the modes selected for
control. Experimental results show that the parameter estimator may have errors on
the order of *5 percent. The locus of roots calculated using a parameter error
range of *20 percent is plotted below. The magnitude of the error at which the
modes became unstable is summarized in the table. Note that as the mode number
increases, the sensitivity decreases for the first three modes. The high sensi-
tivity of mode six in case III is unexplained at this time.

o ERROR ON MODAL FREQUENCY AND DAMPING PARAMETERS ONLY

i

i = g1 i i
= A
W 70, 910 T A2, %(k-2) By Y(kon) By U(yog

e NO ERROR ON RIGID BODY PARAMETERS

e BASED ON EXPERIMENTAL PARAMETER ESTIMATE ERRORS OF

S CONTROLLED
G ACTUATORS

52

Z-PLANE
TAU= 03125 sec_ p, PARAMETER ERROR AT INSTABILITY
@ CALCULATED R n
CASE MODE_3 | MoDE 4 | mMopE 5 | MODE 6
I 5 cont,! -10% | -12% -4z | 4
5 acT, | 8% - -
I15 cont.] -6 % 0.0 % -14 g
| 4 acT. +14% — -
' ITT 6 conT.| -8 % 122 | -16% 2%
5AcT, | 8% - - 42
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ll

2,

CONCLUSIONS

LIMITED ACTUATORS:

- THIS DESIGN PROCESS YIELDS UNDESIRABLE CLOSED LOOP DYNAMICS
WHEN THE NUMBER OF CONTROLLED MODES EXCEEDS THE NUMBER OF
AVAILABLE ACTUATORS.,

PARAMETER ERROR:

- ERRORS WITHIN THE RANGE OF EXPERIMENTAL RESULTS CAN CAUSE
INSTABILITY,

- CONTROL SYSTEM MUST BE MADE MORE TOLERANT OF PARAMETER ERROR,
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OPTIMAL DAMPING FOR A

TWO-DIMENSIONAL STRUCTURE

W. D. Pilkey and B. P. Wang
University of Virginia
Charlottesville, Virginia
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SYNTHESIS OF THE DAMPING MATRIX
FOR SPECIFIED DAMPING RATIOS

IM1{x) + [k}{x) =(F} {x} is n x 1

CONTROL FORCES

{F} = [B]{u} {u} is A x 1
A = number of actuators
{u} = -[p] {;:} [D] is A x n
or
{r} = -[c]{x}
where

[c] = [B][D]
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PROBLEM

Find cij such that
3~ 1t c, .l

. i

i.j J

is minimized subject to the constraints

! tp

and

clp

Eigenvalue Problem:

(s2[M] + s [C] + (K] (s} =

with roots

8 = -Clw

for ¢ = 1 to L

= prescribed damping ratios for the fith mode

™ N

An
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DAMPED EIGENVALUE PROBLEM :

{23=[0 I ]{z}

-MK -MC
2nx2n

ALTERNATE EFFICIENT
FORMULATION FOR
CHARACTERISTIC EQUATION .

det([I] + sIR)[E]) =0

ASSUMING NO. OF DAMPERS <<
NO. OF D.0.F

[R] = SUBMATRIX OF [R]
[R] = (s2[M] +([K1)™

SPECTRAL REPRESENTATION




OERIVATION OF CHARACTERISTIC
EQUATION .

DISTURBANCE

C>

[R(s)) -

UNOAMPED
SYSTEM

STT—]

N, DAMPERS

.« CHARACTERISTIC £Q. 15 :
det([I] + s[RI[C]) =0

SPECIAL CASE :

INTROODUCE SINGLE DAMPER
AT DOF J

CHARACTERISTIC EQUATION:

oRrR
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OEFINITION :

NDTIAMAI DAMDED 1 NrATINNS
U TIIVIRAL URIVITER &VULMITIVITY

FOR A PARTICULAR MODE
ARE WHERE EITHER

MAXIMUM DAMPING CAN
BE INTRODUCED

Or

ACHIEVE GIVEN DAMPING
WITH MINIMUM DAMPING
CONSTANTS

€ =CONSTANT Im(s)

f

@y

-
Re(s)

TYPICAL ROOT LOCUS PLOT
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MINIMUM CONSTRAINED
FREQUENCY CRITERION

(MCFC)

THE OPTIMAL DAMPER
LOCATION IS WHERE THE
CONSTRAINED FREQUENCY
IS A MINIMUM

€= CONSTANT
 Im(s)

———"‘"a‘

FRT. SEPARATION

INCREAS

Re(s)

TYPICAL RoOT Locus
FOR INTROODUCING MORE
DAMPERS THAN NO. OF
R/6/D BODY MODES
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MAXIMUM FREQUENCY
SEPARATION CRITERION
(MFSC)

THE OPTIMAL DAMPER
LOCATION 1S WHERE

THE SEPARATION BETWEEN
THE CONSTRAINED
FREQUENCY AND THE
NATURAL FREQUENCY

/1S MAXIMUM

SYNTHESIS OF SINGLE DAMPER
CHARACTERISTIC EQUATION 15
Fs) = 1 + sRy(s)¢
=1 +cPls)+ jeQls) =0
SPECIFY & (OR aJy)
THEN

S = ~F Wa +j 11§ O

SOLVE FOR cyy (OR &)
FROM Q(S‘) =0

THE DESIRED DAMPING CONSTANT
/

C =

Ply)
C>0 IF 5 IS REALIZABLE




SYNTHESIS OF MULTIPLE
DAMPERS

CHARACTERISTIC EQUATION IS5
fts) = det (I + sR(s) é)
= P(s,¢) +j0(3;£) =0
CASE 1
SPECIFY nc &'s
THEN SOLVE FOR
(4 =[ €12Ca5es Cae JT

AND
@, 5 Wny 5, D,

FROM THE 2nc EQS
P(s,,g) =0
0 (S“ Q) =0

FOR (=] TO nc

CASE2
SPECIFY E &'S WITH E<nc

THEN € AND Gy @, yey Gng
CAN BE FOUND FROM

ne
MINIMIZE T = 3 c; + lﬁ' [F(s))

WITH ¢ >0
wWr 20
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RANK OF SOME TWO DAMPER LOCATIONS

ACCORDING T0 MCFC

MPER CORRESPONDING
OCATIONS LOWEST CONSTRAWED RANK
FREQUENCY )
I,88 45 8 PRAOD/SEC [
1,50 6.89 3
1,58 7.50 4
34,44 6.54 2

DAMPING CONSTANTS REQUIRED TO
ACHIEVE &4 =0.6

OAMPER LOCATION REQUIRED
NO. 1 NO.2 <, Cz G*rCz
! 86 0.296 | 0.136 0.432
/ 50 0.262 | 1.024 /. 286
n" 58 0.3 1.130 1.44/
34 44 0.498) 0.565 1.064

THREE DAMPER EXAMPLE

DAMPER

[#) W ~a,
LOCATIONS |19 s

lws ~asl

/, 50,88 062) 1313 11.56 4.8
44,78 | s.40| 735 |48 | 789

MAXIMUM DAMPING ACHIEVED IN FIRST
TWO VIBRATORY MODES

(WITH SAME DAMPING CONSTANT AT ALL
LOCATIONS)

DAMPER

DAMPER $
4 VALUE

DAMPER g
LOCATIONS s

VALUE

1,50,88 | 0.95| 034 |o.05 | 0.48
44,78 | 060} 0.3! |046 | 034
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CONCLUSIONS

o CRITERIA FOR SELECTION OF
OPTIMAL DAMPER LOCATIONS
PRESENTED

o DAMPING SYNTHESIS PROBLEM
FORMULATED AND APPLIED
T0 NASA GRILLAGE MODEL

DAMPING SYNTHESIS
EXAMPLE 1

DESIRED &, =06
£ =05

DAMPER LOCATIONS :
DO.F 1,44,78

RESULTS :
LOCATION GAIN
/ 0.272
44 0514
78 0.269
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DAMPING SYNTHESIS EXAMPLE 2
DESIRED &, =07

E =06
USE 6 DAMPERS AT D.O.F :
I, 11, 34, 50, 78, 88
RESULTS :

] 0.2/ 0.2490
1 0.25 0.240
39 0.20 0.13!
50 0.20 0.131
78 0.20 0.247
88 0.2/ 0.245

ACHIEVED DAMPING
=07 &=
£,=059 &-
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