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INTRODUCTION 

l Modeling of large space structures (LSS) in terms of elastic wave propagation 

l Scale effects on structural damping 

l "Loss coefficients" of monolithic LSS 

l Wave propagation in nondispersive and dispersive media (1-D and 2-D) 

l Spectral separation of system response: 

x(s) = H(s)[u(s) + iC(s)l z )k(s)[u(s) + iC(s)l 

+ [H(s) T HR(d 1 hF(S) + "F(d 1 

correction term 

where HR(s) is a reduced-order transfer function 

l Reflection of waves from boundaries 

l Modeling of discrete structures as equivalent continuous structures 

@Dynamics of networks of elastic waveguides 

l Control of systems with wave-related time delays 

@Application to a 1-D system under active control: 0.12-set lag predicted with 
Timoshenko beam idealization'and empirically determined shear rigidity 

l significance of passive damping (ref. 1): 

1. A L93 with exactly zero damping is uncontrollable unless sensors and 
actuators are all collocated (often impractical) 

2. Even very small amounts of damping are important to practical success 
of control 

*Some approximate effects of LSS linear scale L on a typical modal damping 
ratio 5: 

1. For a "monolithic" element, c is proportional to material damping and 
decreases with decreasing frequency w (i.e., with increasing L) 

2. Viscous friction dominates at joints; thus 5 - l/L 

3. Coulomb frection at 
rate Q + 5 - (QL)2 

joints and joint preload is dependent on rotational 

4. All sources active * 5 between a constant and -L -1 
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STUDY OF INTRINSIC DAMPING IN MONOLITHIC METALLIC STRUCTURE 

l Two "semi-reversible" mechanisms seem feasible for LSS: 

1. Thermal relaxation 

2. Grain boundary relaxation (can give large values of 5 but required 
temperatures may be too high) 

l Work in progress on thermal damping 

l properties of thermal damping 

1. Involves coupling between mechanical and entropy waves; e+g., for 
isotropic solid with T = To + AT and displacement 3 Z ui + vj + wz, 

$ V2(AT) - cv% - 

- v(cT 
au - YY 

+ ozz> 

ax= E* = aAT + E 

. 

aa a> a0 -g+*+*= a2u 
. a,2 . 

2. < is configuration-dependent (e.g., 10 -2 to 10 -3 for beams and plates, 
lo-7 to 10 -8 for bars and rods). Composite beams are under study. 

3. The value of 5 depends on frequency w and material properties. E.g., for 
a rectangular beam of depth b: 

T 
b 

insulated4 
1 

TOW2 
5 f 0.55 - w 

PCV 1 1 w2 + u2 

with 1-1 q 
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Metal (R.T.) b, cm 

Al and alloys 10 
5 
1 

cu 10 
Ltiw-carbon steel 10 
Ti and alloys 10 
Ni and alloys 10 
Be 10 
Mg 10 
Al at 1000 K 10 

5 max X 10 -3 T ( 
1.53 0.083 
1.53 2.08 
1.53 8.31 
0.73 0.112 
0.675 0.0225 
0.18 0.0075 
0.79 0.0141 
0.5 (est.) 0.061 (est.) 
1.35 0.0844 
4.12 0.0755 

ti for 5 rad set -1 
max' 

a/ t 

Timoshenko beam waves. 
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Thermal damping theory compared with recent tests on 
free-free Al beams in vacua. 
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