RESEARCH ON ELASTIC LARGE SPACE STRUCTURES

AS "PLANTS" FOR ACTIVE CONTROL

H. Ashley and A. von Flotow

Stanford University
Stanford, California

73



INTRODUCTION

e Modeling of 1la
® Scale effects on structural damping

® "Loss coefficients" of monolithic LSS

e Wave propagation in nondispersive and dispersive media (1-D and 2-D)
® Spectral separation of system response:

x(s) = H(s)[u(s) + iC(s)] = H.(s)[u(s) + 1C(s)]

+ [H(s) - HR(S)][uF(S) + iCF(S)]
e

correction term
where HR(s) is a reduced-order transfer function
® Reflection of waves from boundaries
® Modeling of discrete structures as equivalent continuous structures
® Dynamics of networks of elastic waveguides
e Control of systems with wave-related time delays

® Application to a 1-D system under active control: 0.1l2-sec lag predicted with
Timoshenko beam idealization and empirically determined shear rigidity

e Significance of passive damping (ref. 1):

1. A L8388 with exactly zero damping is uncontrollable unless sensors and
actuators are all collocated (often impractical)

2. Even very small amounts of damping are important to practical success
of control

® Some approximate effects of LSS linear scale L on a typical modal damping
ratio Z:

1. For a "monolithic" element, 7 is proportional to material damping and
decreases with decreasing frequency w (i.e., with increasing L)

2. Viscous friction dominates at joints; thus 7 ~ 1/L

3. Coulomb frection at joints and joint preload is dependent on rotational
rate Q > ¢ ~ (QL)2

4, All sources active - [ between a constant and ~L—1
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STUDY OF INTRINSIC DAMPING IN MONOLITHIC METALLIC STRUCTURE

e Two "semi-reversible'" mechanisms seem feasible for LSS:
1. Thermal relaxation

2. Grain boundary relaxation (can give large values of [ but required
temperatures may be too high)

® Work in progress on thermal damping
® Properties of thermal damping

1. Involves coupling between mechanical and entropy waves; e,g., for
isotropic solid with T = T0 + AT and displacement § = ui + vj + wk,
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2. ¢ is configuration-dependent (e.g., 10_2 to 10_3 for beams and plates,

10_7 to 10-8 for bars and rods). Composite beams are under study.

3. The value of 7 depends on frequency w and material properties. E.g., for
a rectangular beam of depth b:
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Metal (R.T.) b, cm Cmax X 10.-3 w for Cmax’ rad sec
Al and alloys 10 1.53 0.083
5 1.53 2.08
1 1.53 8.31
Cu 10 0.73 0.112
Low-carbon steel 10 0.675 0.0225
Ti and alloys 10 0.18 0.0075
Ni and alloys 10 0.79 0.0141
Be 10 0.5 (est.) 0.061 (est.)
Mg 10 1.35 0.0844
Al at 1000 K 10 4.12 0.0755
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Timoshenko beam waves.
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Thermal damping theory compared with recent tests on
free-free Al beams in wvacuo.
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