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EQUATION OF MOTION FOR DISTRIBUTED SYSTEMS 

Differential equation: Lu(P,t) + M(P)J*u(P,t)/x* = f(P,t) , P E D 

Boundary conditions: Biu(P,t) = 0, 1=1,2,,,,,~ , P (: S 

u(P,tI = displacement at point P 

L, Bi = differential operators (L is self-adjoint of order 2~) 

M = mass density 

f(P,t) = distributed control force 

EIGENVALUE PROBLEM 

Differential equation: L+=AM+ 

Boundary conditions: Bi+= 0, i = 1,2,,,,,1) 

Solution: eigenvalues Ar =oF , eigenfunctions $- (r=l,*,,,,> 

Because L is self-adloint, eigenfunctions are orthogonal 

L is generally positive semidefinite+;\, are all nonnegative 

%- = 0 for rigid-body modes 

c+ =Jq = natural frequencies 

Orthonormality conditions: ID MS+,- dD = srs J ID +sLf'r dD = 'rgrs 
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MODAL EQUATIONS 

Expansion theorem: u(P,t) = g1 +,(P)u,w 

u,(t) = modal coordinates 

Modal eauat ions : ii,(t) + o$,(tl = f,(t) , r=l,*,,.. 

Modal controls: f,(t) =jD+,-(P)f(P,t)dD , r=1,2,,,. 

Coupled controls: f,(t) = f,(q, i,, u2, ir,,...) , r=1,2,". 

Independent modal-space control (IMSC): f,(t) = f,(u,,~,), r=1,2,111 

CONTROL IMPLEMENTATION 

Distributed actuators: f(P,t) = gl M(P)+,(P)f,(t) 

Coupled controls: unable to design distributed controls 

IMSC: design modal controls first, then use above formula 
no control soillover 

Discrete actuators: f(P,t) = j?l @j(t) s(P-Pj) = 

f,(t) = j~l +r(Pj) Fj (t) = ffl BrjFj(t) J r=l,*,,,,,n 

n = number of controlled modes 

,F = [Fl F2 04, FmI;T J = [fl f2 *aa fn]T B = Brj 

Coupled controls: 
IMSC: lk&gn 

Ff 

Design E(t) so as to.ensure controllability 
(t) so+as to coprol a given number of modes 
t) = B f(t) B = Pseudo-Inverse of B 

To a;o?d oseudozinvekses, let m = n, or the number of actuators 
must equal the number of controlled modes, 
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CONTROL IMPLEMENTATION (CONT’D) 

Distributed measurements: 

Measurements: u(P,t), ir(P,tI for all P and at any t 

Then, modal coordinates and velocities, u,(t) and i,(t), are computed 

by using the modal filters 

u,(t) = I, Id(P) +,(P)u(P,t)dD, c,(t) = 1 
D 

M(P)+,(P)fi(P,t)dD, r=1J2J111 

Discrete measurements: 

Measurements: Yj(t) = U(Pj,t), $j(t) = i(Pj,t), 1 = 1’2’0, ,,k 

k = number of sensors 

Standard approach: Use Luenberger observer to estimate state 

Discrete measurements treated as distributed: 

Use interpolation functions to compute estimate Z(P,t) of u(P,t) 

Then, use modal filters to compute estimates z,-(t) of u,(t) 

Divide structure into s segments (elements) 

Approximate displacement: “u(P,t> = jzl lJ(P)_vj(t) = 

!!j = measurements at the boundaries of j’th interval 

Q = vector of interpolation functions (from the finite element method> 

Estimated modal coordinates: 

G,(t) = {Dl.l(P)+r(P) j?l lJ~j(t)dD = f &jzj(t), = 
r = l,Z,,,.,n 

Similarly 2,(t) = 2 I *i/.(t) j=l -t-J-J 

Lrj = jDM(P,9r(P)cj(P)dD = const 

~rj are computed off-line, in advance, 
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CONTROL IMPLEMENTATION (CONT'D) 

Rearrange Lrj such that 

ii,(t) = ,el CrjYj(t) J 2,(t) = k Crj !ij(t) 
f = 1 

Let 

$1 = [til i&“’ 5,JT’ tjw = [e, 3, I I I aJT 
C = Crj J r=1,2,..,,n; j=1,2,..,,k 

i(t) = [yl ‘y2 III YklT’ j(t) =[Jil $2 1” $(jT 

G_(t) = cly ' ;ct, = cjct, 

The way C is assembled depends on the nature of the interpolation 

functions (see example later), 

THE LANGLEY BEAM EXPERIMENT 

Free-free beam controlled by using 4 actuators and 9 sensors 

Use IMSC to control four modes, two rigid-body and two elastic modes 

Actuator forces F,(t) = $, (B-')rjfr(t), j = 1'2'3'4 

Modal forces: 

1) For rigid body modes 

Tr = 1 firI + 1 Ti,l/c, , r=l,* 

cr = weighting factor 

if lr < d,, then f, = 0 

if 7r > d, and 

i) fir> 0, Er ~0, or 6, > 0 >b, and IGr)<Lr, then f, = -k, 

ii) G, K 0, $-' 0, or f, 4 0 4 b, and I?$<+ then f, = k, 

d, = magnitude of the deadband region 

'r = threshold velocity, k, = modal control force 

115 



THE LANGLEY BEAM EXPERIMENT (CONT'D) 

2) for elastic modes 

f,(t) = -k, , I;,-\ 3 d, and zr 2 0 

0 ' -d, 4 2, < d, 

For simulation 

for rigid-body 

Actuator locat i 

E(t) = B-‘f(t) 

Actual control 

Actuators ava 

to each modal 

a linear comb 

kr J /fir1 2 d, and E,< 0 

purposes, the response is 

and elastic modes, 

ons immaterial when IMSC i 

available in closed form both 

s used, 

Fj(t) = r$l (B-')jrfr(t) j=1,2,3,4 

forces are a combination of on-off functions of the type 

lable at LARC have four components, which can be assigned 

control force, As a result, each actuator command becomes 

nation of 4 modal on-off control forces, 
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THE LANGLEY BEAM EXPERIMENT (CONT'D) 

Sensors measure displacements alone, Ideally, for bending they should 

measure displacements and slopes (velocities and slopes of velocities too) 

Divide the beam into four equal segments (elements) and measure displacements 

at the ends and middle Point of the element, so that the nine sensors are spaced 

at equal intervals, 

As interpolation functions use 

L. = 
NJ [ t k(2 -1) 4kC 1-L) l-32+ 2L2JY 0 < t, < 1 

where L is a local coordinate related to the global coordinate x by 

L=j- Fx, in which j is the segment number 

The C matrix is assembled from Lri tensor as 

crp ; I ;,2,, I I .n J n=4 
P = 1,2 ,,,.,k, k = 9 

2 = index denoting the interpolation function 

j = index denoting the element number 

Because velocity measurements are not available estimate velocities by using the 

relation 

SI 
u,(jT) = 

$(lT, - G,(~T-T) 

T 

T= same ling time = l/33 sec. 

Or, one could use a modal Luenberger type observer, Because the controls 

are nonlinear, the convergence of the observer can only be determined by trial 

and error, 
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THE LANGLEY BEAM EXPERIMENT (CONT'D) 

Parameters associated with the beam: 

L = 12 ft. cross-section = 6 x 3/16 in 

6061 aluminum: p = 0,l lb/in3 E = 1 x lo7 lb/in2 

The free-free, uniform beam admits a closed-form solution. The 

transcendental equation was solved numerically to yield the eigenvalues 

01 = 0 

02 = 0 

w3 = 11,47979 rad/s 

O4 = 31,64450 rad/s 

0 5 = 62.03526 rad/s 

"6 = 102,5484 rad/s 

o7 = 153,1897 rad/s 

Simulation of the Beam motion: 

The first 7 modes are included in the simulation: 4 controlled + 3 

residual modes 

Control Gain Parameters: 

dl = d2 = 0,002 , d3 = d4 = 0,0005 

kl = k2 = 0,3 , k3 = 0,12, k4 = 0.03 

El = E2 = 0.01 

lr = IG,I + Ii?,1 710 , r=1,2 

Sampling time = l/33 set, 

Viscous damping was added to each flexible mode 

Damping factor tr = 0,002 , r=3,4,5,6,7 

Disturbance of the beam was taken in the form of a unit impulse of magnitude l/12 lb 

applied at x0 = 0,67L, 

The displacement of the beam cannot exceed 1 in at any time because of the location of 

the sensors and actuators in the experimental setup, 
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RESPONSE OF THE LANGLEY BEAM 
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THE LANGLEY BEAM EXPERIMENT (CONT'D) 

Results 

. The main contribution to the response is from the rigid-body modes, 

l The second elastic mode shows noticeable participation, This participation will 
eventually disappear due to internal damping, 

l Control of the second elastic mode can be enhanced by sensing velocities, or 
estimating velocitites via a Luenberger observer, 

l Observation soillover (which may arise from the need of more sensors) was found 
to be negligible, So was the control spillover into the residual modes, 
Simulations of the beam with and without the residual modes indicated that 
soillover effects are infinitesimal, The reasons for this are: 

1) IMSC is used 
2) Nodal filters are used 
3) Residual modes have very high frequencies 

Conclusion 

The IMSC method in conjunction with on-off modal controls does a good job 
in controlling the motion of the beam, where the motion consists primarily of the 
riqid-body modes, 
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