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	 DitTeremce between property of saturated liquid and saturated vapor at the some
temperature and pressure

D	 Total dewar

i	 Initial state

T	 Total

B	 Base or starting point

P	 Thruster supply delivery point; porous plug

CR1T	 Porous plug critical flow rate point
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ATTITUDE CONTROL AND DR" COMPENSATION PRWULSION SYSTEM
FOR THE GRAVITY PROBE-B SPACECRAFT

1. INTRODUCTION

The on-board propulsion system for the Gravity Probe-B waft must provide attitude control
plus thrust to effectively cancel the atmospheric drag encountered at the relatively low orbit dictated by
current shuttle capability. A propulsion system was desired which would utilize the boiloff of helium
gas from the experiment package dewar as propellant. This helium bclloff would normally be vented
non-propulsively and, thus, in a sense be "wasted." A system was devised which could rye tt^e
thrust requirements and the available helium boiloff to provide 100 percent drag free coal of the
vehicle.

Derivation of the necessary thermodynamic equations is shown and a computer code for a rela-
tively rigorous simulation of the two-phase helium dewar is provided along with details of the delivery
line pressure loss calculation. These mathematical models were used to estimate the dewar pressure and
temperature as a function of time during the predicted extremes of thruster demand and dewar heat
absorption.

11. SYSTEM REQUIREMENTS AND DESIGN FACTORS

The requirements for the propulsion system were established by the need to provide precise
attitude control and to provide an additional thrust vector to effectively cancel the vehicle drag incurred
by the spacecraft. The thrusters are paired back -to-back with clusters of two pairs located at the ends
of the four solar array spars for a total of 16 individual thrusters. Their location relative to the vehicle
is illustrated in Figure 1. Each of the thrusters consists of a flow control valve and nozzle and is required
to produce a maximum thrust of 650 dynes with a thrust tolerance of t2 percent of the open loop
commanded value. The desired transient response of the thruster to a step input thrust command is that
of an underdamped second-order system

-awn t
F/FCOM - 1 + 

e	
sin (w n t [1 - t2 - a)

71-7-7
where

a = cos 1 (4) in radians

t = time in sec

F - delivered thrust
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Fcom a command thrust	 .0-44"k PP.QV is

W n - undamped natural frequency radieWsec	
Of P00,q guftrij

r - damping fwtw

with the values of natural frequency, w n ,and damping fWtOf- t, Oct at 10 Hz (62-8 RAD/860 And &707
respectively.

The thruster flow control valve is requirod to reqmd to thrust command changes a small as
0.1 dynes in the closed loop mode. This very small thrust tolerance is necessary to maintain the Vehicle
within the acceleration limit of 10' I0 s (this assume& two thrusters are operating together for drag
makeup).

The maximum total thrust required at any one time is set at 1300 dynes. Although 
this 

thrust
happen to be equal to twice the maximum thrust of two nozzles, as many as eight duuftn could be
operating simultaneously at lea than their maximum values. This maximum thrust is set by the maxi-
mum atmospheric density expected during a 90 min orbit. The required thrust will statistically vary as
shown in Figure 2.

100

90•

80.

70-

1;w

so.

L-4i	 I	 I	 I

Soo	 700	 900	 1100	 1300

MWIMO TOTAL THWT — OMS

Figure 2. Orbital variation of required total thrust

3



The constraints widdn which the helium boftoff duuster system and operate are set by
experiment paduve dowar dam, the 1 year Ufa ngvk maot, and the soke but pkkw Copmblity of
the helium delivery lines. The beat leak into the dswar (which	 as lad 300 ks Ioad of Whim
In a saturated liquid form) is expected to wo fmm a low of 0.1849 to a high of 0.2326 W. A naimbd
dewar temperature of 1.6°K with an allowable tolennoe of t1.I'K was conddned qty to pro-
vide the supedluid helium II condition required by the expo invent package. The aolsr heat picked up
by the boiloff helium as it cook the dower thermal shields and Uww m the lines leadingto the
modules at de ends of the solar array spars raises its temperature to between 300' and 37M Ffady,
the vehicle solar array and power supply system indicate a power/w ht penalty of I.S kg/W. Thsaa
requirements are summarized in Table 1.

TABLE 1. SYSTEM REQUIREMENTS AND DESIGN FAM)RS

Satellite Life (minimum)	 I 1 year

Orbit Period	 ! 90 min

Dewar Initial Helium Load	 1 300 ks

Maximum Thrust per Nozzle 	 1 650 dynes

Thrust Tolerance Open Loop	 1 12 percent of commanded value

Transient Response Parameters 	 Damping Factor - 0.707
1 Natural Frequency =10 Hz

Sensitivity (minimum thrust increment) Closed Loop 	 0.1 dynes

Allowable Unbalanced Drag Acceleration 	 1 1010 S

Maximum Total Thrust Required 	 1 1300 dynes

Helium Dewar Heat Leak Range	 i 0.2326 to 0.1849 W

Nominal Dewar Temperature	 I 1.6°K

Allowable Dewar Temperature Range 	 1 1.5 to 1.7°K

Boiloff Delivered Temperature Range 	 ( 300° to 375°K

Power Penalty (system man per W)	 1.5 kg/W



111. HELIUM THRUSTER PERFORMANCE

The ideal (one-dimensional, frictionless) vacuum qpecific Impute of a 
helium nozzle at an area

ratio of four was calculated using the ODE computer program (1 I for a cumber temperature and
of 3WK and 3 torr, respectively. This ylekled a characteristic velocity of 3566 ft*c sad a vacuum
specific impulse of 168.9 lbf sec/lbm. However, at the lbw dumber pressures and small Most dame-
ten, the throat Reynolds' number will be quite low (approximately 100) and there will be uvnide able
friction loss. Testy conducted at Stanford University (2) on a 20 deg half angb conical node with a
1.37 mm (0.054 in.) diameter throat, and area ratio and chamber conditions as above, gave vacuum
specific impulse figures of approximately 130 lbf sec/lbm. This specific impulse efficiency of maul-
mately 0.77 has been substantiated in wyet unpublished testa at MSFC with a nozzle of simile geometry
but a larger throat diameter of 5.01 mm (0.196 in.). It therefore appeeva that a specific impulse of
130 lbf sec/Ibm, or possibly larger, is attainable for the planned prom system. However, for the
system developed in this report, a value of 11 S lbf sec/1bm was used for the specific impube to provide
some contingency. Even this conservative value is very good in comparison with alternative propellants,
particularly when it is available as a waste gas from the dewar boiloff.

IV. PROPULSION SYSTEM DESCRIPTION

The main problem to be overcome on the supply side of the propulsion system is in accom-
modating (with minimum waste) the inequality between the boiloff produced by an arbitrarily varying
heat leak into the dewar and the on-demand varying flow rate required by the thrusters. Comers of
the maximum dewar boiloff due to heat leak (0.2326 W) and the maximum required thrust (1300 dynes
at 115 lbf sec/lbm specific impulse) into helium flow rates gives values of 9.75 and 11.S3 mg/sec, respec-
tively, and there is no guarantee that the maximum heat leak would occur at the same time as the maxi-
mum thruster requirement. Obviously, at other times the thruster demand would be lea than the avail-
able boiloff and a surplus of propellant would be available.

A system which could save or store the excess flow to be used to cover the periods of deficiency
is most desirable, especially if it can be accomplished without a weight or power penalty. Such a Wstem
is made possible by exploiting the small, but significant temperature range allowable for the dewar. The
large specific heat capacity, low heat of vaporization, low heat leak, and large helium mass relative to
the thruster demand flow rate all combine to cause even extremes in the thruster demand and heat leak
to result in very small dewar temperature changes over long periods of time. This allows variations in
flow rate and heat leak to average out, thus minimizing any dewar vetting or hating. Averaging the
heat leak extremes gives an average boiloff of 8.75 mg/sec and using Figure 2 gives an orbit avenge
demand of approximately 4.44 mg/sec (500 dynes weighted average thrust at 115 lbf see/lbm specific
impulse). Therefore on a per orbit basis there should be ample propellant boiled off. A schematic of
the system capable of accomplishing this is shown in Figure 3. The dewar temperature would be con-
trolled within the allowable range of 1.5° to 1.7°K by activation of a heater on the tank at the low
temperature limit and venting non•propulsively at the high temperature limit. The heater would require
negligible power due to the very small mass flow rates required and the low latent heat of vaposizaticn
of helium. The non-propulsive vent logic would be combined with the attitude control/din makeup
system. When the high temperature limit is approached and venting needed, the controller would select
a thruster which was not at full thrust and increase its thrust and that of the opposite one of the back-
to-bad pair an equal amount. This would effectively vent the extra helium boiloff without the cost

ik
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Figure 3. Helium propulsion system schematic.

and complexity of an additional non-propulsive vent valve and lines. Although temperature is indicated
as the control variable, pressure could be substituted as the measured variable since it is related to the
temperature by the two-phase conditions existing inside the dewar.

A sketch of the distribution system from the dewar to the thrusters is shown in Figure 4. The
helium exits the dewar through a porous plug which acts as a phase separator, keeping the liquid helium
inside the dewar and allowing the vapor to escape. After the helimum leaves the porous plus, it cools
the dewar heat shields wing the four cooling rings located around the neck tube and exits the dewar
into a 1.75 in. OD supply line. This line carries it doam the side of the dewar to the support ring (with
both sides coupled by the cross braces) which is used as a manifold to distribute the helium to the insid
of the four solar array spars. A cluster of four thrusters is fed from the end of each spar. Solar heating
of the dewar heat shields, lines and spars raise s the helium temperature to at last 300° K by the time it
reaches the thrusters. Use of the support ring and solar array spars to deliver the helium Sava the weight
of additional lines and the large size both reduces pressure lost and provides volume (approximately 117
liters) to reduce pressure transient fluctuations.
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Figure 4. Helium distribution system.

V. SYSTEM ANALYSIS AND SIMULATION

To properly evaluate the flow averaging effect of allowing the dewar temperature to vary to effec-
tively store liquid helium along with enerrj to convert it to vapor on demand, a relatively rigorous
thermodynamic analyses of two-phase helium storage was completed. This analysis included heat addition
to the dewar; vapor remoc-a `ar thruster demand; changes in the temperature, pressure, and deco ty of
the stored helium; and transition from one phase to the other. Details of the derivation of the equations
and representation of the thermodynamic properties are covered in Appendix A.

A pressure loss equation for the helium gas delivery system Is derived in Appendix B and includes
use of an average density through each individual flow _resistance. A constant temperature is assumed to
exist across each resistance element although the temperature can vary from element to element.
Chet-king the Knudsen number, N Kn , inside the 1 in. OD (0.02 in. wall) dewar tube which is the most
stringent point in the delivery system; (Le., where the highest Knudsen number+~ would b , expected);



-•'

AMIGMMI PAN 13
QIJM ti'1fNKa =	 K T	 - 2.85 x 10'3

P+rl;2r

when

K - Boltzmann constant - 1.38 x 10.16 nrK

T - temperature = 213°K

P = pressure = 3.0 torr

d - molecular diameter (helium) = 2.18 x 10 cm

r = tube inside radius = 1.22 cm

verifies the use o the eont 4nuum equations since the transition range from continuum to free molecular
flow is usually ao;epted as

0.01<NKn<10

The resistance factors for use iii the delivery system pressure ion calculation are determined in
Appendix C. Details on line sizes and lengths can also be found in that section along with flow curves
for the ►orous ph ig at the dewar exit.

A computer simulation bated on the equations and factors developed in the three appendices is
presenter in Appendix D, along witA% a sample case. THe code was used to evaluate the temperature
changes at the extreme (worst case) conditions and the results are shown in Table 2. The first two cam
explore tie extremes of heat leak and thruster demand for the full dewar with owes three and four the
same, but with only 5 percent of the helium remaining. Case five was used as the sample case in
Appendix D to get larger, more obvious changes and has a very small amount of helium and an unreal-
istica:ly low (Le.' 0.0) heat leak coupled with maximum demand. All of these cases show ghat 150 min
of extreme conditions can be tolerated before a temperature limit condition is even approached (starting
from a nominal 1.6°K condition). This means that temperature fluctuations during more than one 90
min orbit can be averaged out. Pressure loss through the distribut;an system at the maximum thruster
demsnd rate of 0.01153 g/sec, and at a low dewar pressure of 4.20 toff (1.533°K saturation temperature)
was found to be 0.385 toff which is considered satisfactory.

CONCLUSIONS

A propulsion system utilizing the boiloff helium gas from the experiment package dewar can be
made fearible by exploiting the small allowable temperature range of the two-phase helium dewar. S'hh ►
small temperature fluctuation allows liquid helium and sufficient heat to vaporize it to be stored in the
dewar for later use when a high thruster demand flownte is required. r !empesat rye limits of 1.5°
to 1.7°K allow a sufficient range to average the expacted variations in ht.at  leak and thruster demand over
more than one 90 min orbit even under worst case conditions.

8



TABLE 2. COMPUTER SIMULATION RESULTS FOR EXTREME CONDITIONS

Initial Temperature 1.6°K

Saturation Pressure 5.689 toff

Conditions Results @ 150 min

Initial Helium Saturation
Mass Demand Flow Heat Leak Temperature Pressure

Case (grams) (B/sec) (w) (OK) (ton)

1 300,000 0.0 115 3 (Max) 0.1849 (Min) 1.598 5.650

2 300,000 0.00	 (Min) 0.2326 (Max, 1.605 5.800

3 15,000 0.01153 (Max) 0.1849 (Min) 1.588 5.388

4 15,000 0.0	 (Min) 0.2326 (Max) 1.634 6.561

5 550 0.01153 (Max) 0.0 (Below 1.533 4.204
Min.)

ORIGINAL PAGE 19
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OMOM PAGE 0

APPENDIX A	 OF POOR QUALITY

HELIUM DEWAR THERMODYNAMIC DERIVATION

P
Vv
NV ur	hr

V 
q	 ML UL

First law energy balance (neglecting potential and kinetic energy):

SQ - S W +(u+Pv)in 6Mjn-(u+Pv)Out8MOut=dU

or in time rate of change with S W and S Min equal to 0.

qdt - hv	dt=dU
out

q - hv d
The dewar internal energy, U, is the sum of the vapor and liquid portions

U=Mvuv+MLuL

Substituting the following equalities

M=pV

u = h Pv

p=1/v

VV =VD - VL

by = hL + hfg



z
MM

and roanwqft Ova an expression for the internal wmV in properties dependant on the satmt ka, T,
and a time dependent variable, the liquid volume, VL.

U-VI,, (PV OL+hfg)"P)`VL (PV (hL +W -PLhL)

Functionally then, U depends only on dower temperature and time

U = RT,t)	 ORMO L. PAGE NOF POOR QUALITY
in differential form

dU = atIT dt + aT dT
 t

and the time derivative of the internal energy is

dU _ aU + BUdT	
(2)

dt at IT aT t dt

Evaluating the time partial using the expression for internal energy above gives

av
au = - (p v (hL + hfg) - PL hL) at

T

An expression for the liquid volume was found as follows (assuming the mass in the tank exceeds P V VD).
The total mass is the sum of the mass of the vapor and liquid

MT =PV VV+PLVL=PV (VD -VL)+PLVL

and solving for liquid volume

V _ MT - P V VD
L	 (PL - PV)

12



If the thruster demand, W, is constant, the existing man in the dewar at any time is the initial lolled
mar less the flow rate times the elapsed time

MT=Mi-Wt

Substitution gives the desired liquid volume relationship
4RiGUW1L PAGE 63OF POOR QUALITY

VL = Mi - Wt - P V VD

(°L - pV)

and the time partial derivative of the liquid volume is

aVL	 W

at (PL - pV)

giving the time partial derivativg for internal energy below

aU p V hfg	 (3)

at IT	 (PL - PV) _ h
l W

The temperature partial derivative for the internal energy was found similarly

8U	 aP V	 L

aT = (VD - VL) (hL + hfg) aT + I(PL - PV) hL - 
pV hfg] 

aV

VtaT

hLLP+ [PV VD + (P L - P V) VLI aT + PV (VD - VL
) OT - VD	 8T

and, from the expression for liquid volume, the temperature partial derivative for liquid volume is

aVL Mi - Wt - P V VD	VD	 aPV

aT(pl _ PV)2	 ( - pV) aT

13
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After substitution and simplifying, the temperature pwdd derivative for internd eater is iii below

aul	 aP V [ I +	 )2] + p !h%1 + .
L - PV l)
P V . _ 8P COWTT t hfg aT	 p L- p V	 Y aT	 (P	 aT	 1 DJ

+ ahL	
PV ahf-	

g _ hfg	 IpV	
PV	1 	 •

aT (P - P ) aT (P - P ) aT 
11 + ^ (Mi - Wt)

L V	 L V	 L VJ

Rearranging equation (2) to get the dewar saturation temperature time derivative

dT a a T [q - (hL + hfg) W]	
PV

 
hfg - hL W

_	 l

(p L

V)
dt	 au I	 au

TT— t	 Wit
ORIGINAL PAGE N'

abbreviating equation (4) into	 OF p00R QUALITY

au
a. = Ifl (T)l I VD + I f2J)I 2 (Mi - Wt)

t

and substituting, gives an expression to be solved for the dewar saturation temperature as a function of
time with given initial condition and constant thruster demand, W.

•	 PV

dT q -gW [1+(PL-PV)

at	 Ifl(T)] I VD + If2(T)l2 (Mi - Wo

Since the variables could not be separated, a numerical integration was required. The properties were
defined by curve fits over the range of 1.4 to ! .8°K. Methods and constants follow:

q = Const = input — heat leak, I/sec (W)

W - Const - input -- demand flow rate, g/sec

Ti = Const - Input — initial dewar temperature, °K

(4)

(S)

3
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Mi = Coen = input - initial helium ma k 8

Yp = Cant = input - dewar voltune, L

pL = Coat = 145.1 g/L - halium liquid deneity, WL

Helium vapor is assumed to obey the perfect gas lap

Pv a RT g/L

Omm . Ras W.
OF	 QUAUIY

M, torr; rK)	 (6)

R = 15,5938	
I K

OPv . PP + 1 aP	
^—	 (P. torn; T. °K: aP . r)	 (7)BT	 RT2 YT aT	 L K	 8T K

P = e(Co + CIO/T) + C2 T2)	 tar (r, K)	 (8)

Co = 7.5959

C l = 9.9416 °K

C2 = 0.13913 OK-2

aP = i- C
l (1/T2) + 2 C2Tj e(CO + CIO/T) + C2 T2) torrrK	 (T°K)	 (9)

aT

Using the Claushm Clapeyron relationship to get hfg

dInP
C

= g =- 1 +2C2T
dT WT-2 T2

hf, _ (- Cl R + 2 C2 RT3) Conv l	J/g	 (T°K)	 (10)

bhfg = (6 C2 RT2) Conv,	 VeK	 (TO K)	 01)

IS



T	 ORIGMAL PAGIE IS
hL m hLbm + f dhL 	 OF POOR QUALITY

TB

!dhL = cp dT - [T ( av—TL ) - vL] Corw I dP
P 

Since PL gg COnst, avL/aT a 0

and
 ^

PW
vL dP is neglinegligibleb

B 

T

hL - h 
Lbaw +

	

	
Cp dT

B

with

Cp = co +c l T+C2T2

Let hLbase = 0. @ Tbase - 1.60K, then

C ' 2 + C2 T3hL COT + 2 T	
3	

+ D J/g (T,*K)	 (12)

Co 8.1071 i1eK

c, -13.2199 J/g *K2

C2 5.7071 J/g *K3

D -3.842 J/g

ML
aT ' co+c

i T+ C2 T2	 J/g OK	 (TIOK)	 (13)

Cony I - 0.13331 
J/L

torn

16



ORRWM PAGE 13
OF POOR QUALITY APPENDIX S

HELIUM DELIVERY PRESSURE LOSS DERIVATION

AP

It 	 R2	 R3	 P4

The pressure losses are a combination of frictional lows and expanson /contraction type losses
and the loss for each section can be expressed as the sum of these two,

AP= fL 
W2 

+K 
W2

D A2 p 2gc	 A2 p 2gc

Since the flow is laminar, the friction factor, f, may be expressed as

_ 64.	 64

f NRe D^A µµ

and the average density, p, can be related to a nominal density, p o, at a nominal pressure, Po, and the
average pressure, P, by assuming it obeys the perfect gas law P - p RT, and the temperature is constant
across the resistance element.

p—poPo

Combining and rearranging

64 g L Po 	K Po
PAP =W+	 W2

A 2gc D2 po	 A2 2gc Po

Applying this equation to a line represented by four sections as an example

i
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P1 API = K11 'V  K21 W2	
POOR QUALITY

P2 AP2 =KIZW+K22W2

P3 AP3 =K13W+K23W2

P4 AP4=K14W+K24*2

Summing

(Fl API+P2 AP2 +P3 AP3 +P4 AP4)=(K11+K12+K13+K14)W+(K21+K22

+ K23 + K24) W2 = KIT W + K2T yy2

The average pressure at each section is the upstream pressure at that section leas half the pressure on
for that section

P 1 = (PD -API/2)

P2 = (PD - AP I - AP2/2)

P3 = (PD - AP I - AP2 - AP3/2)

P4 s (PD - AP I - AP2 - AP3 - AP4/2)

and substitution into the above equation gives

AP l 2 Ap 2
K 1T W + K2T W2 ' PD API - 2 + PD AP2 - AP I AP2 - 22 + PD AP3 - AP I AP3

AP3 2	Ap 2
- AP2 AP3 - 2	 + PD AP4 - AP I AP4 -AP3 AP4 -

18



f

ORKWM PAGE M f ,
Reanmnging and factoring 	 OF PQ4R quAL"y

KIT W + K2T W = PD (API + AP2 + AP3 + Ap4) - 2 (API + AP2 + AP3 + AP4) (API

+ AP2 + AP3 + AP4)

Recognizing that the bracketed ternna are the overall loan, AP T, the expo aimpHfin to

KIT W + K2T W2=PDAPT-2APT2

Salving the quadratic in W gives

-KIT + K IT2 -4K2T(ZAPT2 -PD APT)
W=

2 K2T

or alternately for APT

APT =PD - D2-2 (K IT W +K2TW2)

.

19
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APPENDIX f	 OF POOR QUALITY

HELIUM DELIVERY PRESSURE LOSS
RESISTANCE FACTORS DETERMINATION

Raistance Factors for Porous Plug

Flow characteristics (Fig. S) for the porous plug were obtained from Reference 3. The dwrp
change of dope of these saves was referred to as the "critical mass flow rate" point and bemm of it the curve
required two resistance representations. The unit area of the tested pW& Ap, was the sanw as that to be wed on
the GPB dewar. Temperature range for than equations is 1.6 <T < 1.8 °K.

The dividing line for "alcital" flow was estimated to be

Wit - [ 0 + 10 (T - 1.65)l x 10-3	g/sac	 (T, °K)

The premmfiow relationship for flow below critical, i.e., low resistance, was

AP - 0.5769 W torn	 * g/sec)

FAP-0 .5769FW .

IfP'wPD

P oP - 0 .5769 PD 'V 	 (1^V, g/sec; PD, tort)

with

K 1 i - 0.5769 PD .

Above critical flow, i.e., high resistance,

W - 1.65 + 2-0 [T - 1.651 +	
3.65	

A  x 10.3 	g/sec	 (T, °K; DP, torn)0.2	 x'.50 x 10"3

0 - 1.233 W - 1.233 [1.6S x 1(T 3 (1 + 9.S (T/ 1.65 - 1))[

20



DIAL PAQE_W

elelle LISK	 To • LIGK

n

To a IJK

To m LOOK

AP ftx

Figure S. Porous plug flow venm prenure drop.

FAP - 1.2337	 1.233 F 11.65 x I(r3 (I + 9.5 (T/1.63 - 1))l

If	 PD

P AP - 1.233 PD iV - 1.233 PD 11.65 x 1 0-3 (1 + 9.5 (T/1.65 - 1))]	 tor,2

a K I I W + c	 (PD,tom TOK)

where

K I I - 1.233 PD

C - -1.233 PD (1.65 x 10*3 (1 + 9.5 (T/1.65 - 1))l

21
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Equation for Helium Delivery System Pressure Lou Simulati:xn for Computer Program

* g/sec

AP and PD toff

aP=PD - V PD2-2(KITW+K2T W2 +C)

W above Wait

C = - 1.233 PD (1.65 x 10-3 (1 + 9.5 (TD/ 1.65 - 1))]

K IT = 121.97 + 1.233 PD

K2T =605.6

W below *crit

C=0.0

K IT = 121.97 + 0.577 PD

K2T = 605.6

where

Wait = (1.5 + 10 (T - 1.65)) x 10-3	 g/sec

23
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ELE -
IE11T ELENEMT

IN

h

IN
CONTR- EXPAN-

K
i

- _2 C

^• I ACTION SION SE

PLUG BELOW GRIT - - - 0.5769PI - 0.
RP 1

PLUG ABOVE CRIT - - - - - 1.233 P - A

RL1 2 POROUS PLUG CONNECTOR 6 .335 .0881 - .66 0.862 60.8

RR1 3 COOLING RING #1 27.3 .500
2*

- - 6.861 -

RL2 4 RING CONNECTOR 8 .460 .1662 .29 ,63 7.146 139.9

RR2 5 COOLING RING #2 27.5 .625 3906 - - 16.881 -

RL3 6 RING CONNECTOR 3.5 .585. .40 .66 7.127 185.0

RR3 7 COOLING RING #3 27.9 .875 2*7656 - - 11.633 -

R14 8 RING CONNECTOR 2.6 .710-3959 .55 ,65 6.368 174.4

RM 9 COOLING RING #4 28.1 1.000 000 - - 10.722 -

10 .96 .724 .28 .47 11.437 42.6
RL5 10 SUPPLY LINE

95 1.71 2.297 - .29 19.143 2.3

RSR 11 SUPPORT RING 132 1.25

13.9

2**7 - .33 23.29 .6

R16 12 SPAR 135 11295 - - .503 -

BELOW CRITICAL FLOW .576 605.6 0

ABOVE CRITICAL FLOW 1.233P 605.6

25



ORIGINAL PAGE 13
APPENDIX D	 OF POOR QUAI-try

COMPUTER SIMULATION

The results of the derivations and constants from Appendices A, B, and C were coded into the computer
program shown in this section.

Input

NT Total number of time increments —

NP Number of time increments between printouts —

DTM Time increment for integration step Sec

WI Initial helium mass in dewar (liquid t vapor) gram

WDT Demand flow leaving dewar gram/sec

Q Heat leak into dewar watts

VD Dewar volume liters

TK Upper temperature limit of helium in dewar °K

TL Lower temperature limit of helium in dewar °K

TI Initial temperature of helium in dewar °K

output

Line 1 Input

DTM WI WCT Q VD TH TL TI

Time Initial Demand Heat Dewar Hi Temp Lo Temp Initial
Increment Mass Flow Leak Vol Limit Limit Temp
sec I gnus G/sec Watts Liters °K °K °K

Line 2 Initial Property Values

PD RG PP PRV DH PDH H PHL

Sat Sat. Vap. aP/ aT a pV/aT Latent ahfg/aT Liq. ahL/aT
Press. Density Heat Enthalpy
P PV

°K °K
hg
tJf °K

h
J^G °Kton G/L ton/ G/L J/G J/G

Line 3 Initial Pressure Loss

DELP
Delivery system pressure loss
at initial conditions
torr

26
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A

Line 4 Initial Thruster Pressure

PV
Pressure delivered to thruster
at initial conditions
torr

Line S Current Property Values

As line 2 without PD

Property values at
(current time - 1 time increment)

Line 6 Current Dewar Conditions

TM PD	 T DTDTM W

Elapsed Sat.	 Dewar Temp. Rate Helium Mass
Time Press.	 Temp. of Change (Liq + Vap)
t P	 T dT/dt
sec torr	 °K °K/sec gram

Successive Line Pairs

Lines 5 & 6 Repeated

Next to Last

Same as Line 3
for Final Conditions

Last

Same as Line 4
for Final Conditions

OINOM PAW IN
(W PON QUAUI'fY



0111NWM PAGE 19
C DEFINE PROPERTY FUNCTIONS	 OF POOR QUALITY

P(T) = EXP(CO + Cl/T + C2*T**2)
RV(T) . P(I)/.(R*T)
PPNT(T) _ (2.*C2*T —•CVT**2)*P(T)
PRVPT(T) = ( —P(T)/T + PPPTIT))/(R*T)
UHFO(T) _ (2.*C2*R*I**3 — CI*R)*CVI
PDHPT(T) = CVi*6.*C2*R*T**2
HLtT) = D + SCO*T + (SCI/2.)*T**2 + (SC2/3.)*T**3
PHLPT(T) a SCO + SCI*T + SC2*T**2

C
READ(7912) NT
READ.(3 9 12) NP
READ(3 9 11) DTM
READ17 9 11) MI
READ.( 3 9 11) MDT
READ(.7, I 1 ) 0
READ(3 9 11) VD
READ (7.11) TH
READ(7. 11) TL
READ(7 9 11) TI
WRITE(2.10) DTM.MII.wDT.O.VD.TH.TL.TI

C SET UP CONSTANTS
CV 1 a-0.13331
R = 15.594
CO •.7.5959
Cl = —9.9416
C2 a-0.13913
SCO = 8.1Q71
SCI = -J3.2199
SC2_ = 5.7071
D = -3.842

C
N=NT/NP

C
RL * 145.1

C	 INITIALIZE
TM = 0.0
T = TI

C PRINT INITIAL PROPERTY VALUES
PD .= P(T)
RG = RV(T)
PP .= PPPT(T)
PRV = PRVPT(T)
DH = DHFG(T)
PDH = PDHPT(T)
H s HL(T)
PHL = PHLPT(T)
VIRITE.(2 9 10) PD.RG.PP.PRV.DH.PDH,H.PHL

C CALC. PRESS. LOSS TO THRUSTER PLENUM
PD = P(T)

_	 CALL PLOSS(wDT.PD.T)



C INTEGRATE TEMP. RATE. OF CHANGE FUNCTION	 OF	 '`RwA M
UOl I= I .N	 POOR QUALln
DU 1 Ja i ow
DH = DHFG(T)
PRY =.PRVN.T(T)
PDH = PDHPI(T)
RG = RV(T)
NHL = PHLPT(T)
RR = RG/(RL - RG)
M =41 - MDT*TM
IF(RG*VD.GE.M) 00 TO 4
BI = VD*-(DH*PRV*(1. * RR**2) + R0*
02 = PHL - RR*POH - DH*PRY*(1. + R
DTDTM = (0 - DH*(1. + RR)*NDT)/(Bi
T i T DTDTM*DTM
PD • P(T)
TM TM + DTM
IF (T -TH) 39394

3 IF. (TL - T) i p l p4
1 CONTINUE
MRITE12..10) RG•PP.NRY.DHgPDH.H.PHL

2 MRITE.(2 9 10) TM.PD.T.DTDTM.M
4 CALL PLOSS(MDI•ND.T)
10 FORMAT(JX9y(IX.E12.5))
11 FORMATM 0.5)
12 FORMAT(I6)
_ . STOP

END
C
C

SUBROUTINE PLOSS(WDT.PD.T)
WDSO = ADT
MDCRTs (1.5•+ 10.*(T - 1.65)) *1.0E-3
CK2T s 605.6
IF(MDBO -.MDCRT) 19292

C FLOW RATE BELOW CRITICAL
i	 C s 0.0

CK 1 T = .121.97 + ( 5.77E-1) *PD
00 TO 3

C FLOW RATE ABOVE CRITICAL
2	 C : -1 .233*PD*(1.65E-3*(1. + 9.5*dT/1.65

. CK 1 T . m 121.97 + 1 .233*PD
3	 .. DELP s PD - SQRT(PD**2 - 2.*(CKI T*MDBO ♦. CK2T*MDBO**2 + 0)

PV = PD - DELP
MRITE(2 9 4) DELPgPY

4	 FORMAT(I1412.5)
-RETURN
END

PDH*(i. + RR) - CVI*PPPT(T))
R)/(RL - RG)
+ 82*M )

29
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