
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 





A PROPOSED APK!OACH TO THE
APPLICATION OF NONLINEAR IRREVERSIBLE THERMODYNAMICS

TO FRACTURE IN COMPOSITE MATERIALS
by Paul H. Lindenmeyer

SUMMARY

We have shown that the fracture criteria upon which most fracture mechanics is
based (i.e. some modification of Griffith crack theor-.9 are not appropriate criteria for
the fracture of viscoelastic materials such as polymer matrix composites. Griffith
crack Theory is an equilibrium thermodynamic theory based upon an energy balance in
which time plays no role. A viseoelastic material is by definition time dependant and
consequently requires a nonequilibrium theory based upon a power balance. We have
proposed such a criterion based upon a reformulation of the second law of thermo-
dynamics. We have defined two experimentally measureable functions, the uncompen-
sated dissipation of energy, C, and its time rate of change, i . Measurement of these
functions does not require a knowledge of crack length or orientation and can account
for strain hardening due to molecular orientation or dislocation pile-up as well as
strain softening due to the formation and propagation of cracks. Our fracture
criterion is a critical value of the change in excess energy, awO, given by the definite
integral of tover time and volume. This critical value, A& occurs when the first
variation,48equals zero and the second variation,61 is negative. Thus our failure
.criterion involves-integration over both the time required to fracture and the volume
involved in irreversible deformation. We have proposed methods for experimentally
measuring and calculating these parameters. The integral of a over time and the
thickness of the specimen may be shown to be equivalent to Rice 's J integral if the
only irreversible change involves the propagation of a single crack completely through
the thickness. In a similar manner, it reduces to the Irwin strain energy release rate if
the sariple is assumed to be completely elastic.
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INTRODIICTION

This report represents the final summary of a nineteen month study on the

application of nonlinear Irreversible thermodynamics MT) to composite materials.
The general objective of this study was to explore the application of some recently
discovered thermodynamic pri pciples ( 1 ) to the characterization and testing of
composite materials. More specifically our immediate objective was to use these
principles in an attempt to develop screening tests for the measurement of toughness
in viscoelastic matrix materials for use in high modulus graphite fiber composites.

This project represents only a part of a program much larger in scope in which

the principles of NTT are applied to a wide variety of measurements, accelerated aging

and control of the effect of various environments on the properties of materials and
systems of materials (see Appendix A). In brief this more general program involves a
reformulation of the second law of thermodynamics in which the concept of entropy is
replaced by the concept of exam energy. The principal advantage of this
reformulation is that while entropy can only be calculated indirectly from static
measurements made on systems presumed to be at equilibrium, excess energy can be

directly obtained from dynamic measurements on systems that are not necessarily at
equilibrium. In effect this reformulation has shifted the burden of accounting for the
time evolution of thermodynamic systems from the increase in entropy of isolated
systems - which can only be approximated in real life - to the change in excess energy
of real systems that may be open or closed with respect to the exchange of energy and
matter. Thus we suggest that "it is the minimization of the uncompensated dissipation
energy of the system of interest - not the increase in entropy of the universe - that
represents the practical embodiment of the second law." The uncompensated

dissipation of energy is defined as the change in the internal energy minus the change
in excess energy. The excess energy is in turn defined as the total Legendre transform
of energy with reject to all extensive properties.

This reformulation of the second law has made possible an experimental
approach to NTT using dynamic measurements and real time data processing that has

only become feasible with the advent of microprocessor control of experimentation
and computer processing of data in real time.
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ASSESSMENT OF WE PROBLEM

Modern graphite fiber-organic matrix composites offer great potential for use in
the aerospace industry since the strength to weight and modulus to weight ratios of

these materials can substantially exceed those of the metals now in use. The design of
reliable structures using such materials has not been able to make use of much of this
potential as a consequence of the fact that the failure modes of composites are

substantially different from the metals they might replace. In particular the impact
failure and the compressive failure of composites occur by substantially different
mechanisms than the corresponding failures in metals. Since these failure modes are

not well understood, designers must rely on ultimate properties rather than modulus or

fracture toughness in order to design reliable structures. This tends to wipe out much
of the apparent advantage of composite materials.

Two approaches are available for improving this situation. First, one can
attempt to chemically (or physically) modify the properties of both the fiber and the
matrix to increase the ultimate strength and elongation without sacrificing the
modulus. Alternately, one can attempt to measure the fracture toughness by

modifications of conventional fracture mechanics techniques. It has been shown by I.
Wolock and his colleagues (Z) that such measurements, while possible, are quite

complex and cannot be reduced to a single number probably due to the high anisotropy
of local regions and the multiple cracking which frequently exists even in a
macroscopically isotropic structure.

Clearly new measurement techniques are called for since even in the first
approach one requires some measure of toughness to use in screening the various
possible chemical and/or physical modifications that one might make. Since this

contract was funded by a group having responsibility for the first approach, our
primary effect was devoted to obtaining such a qualitative screening test. However,

since fracture toughness has proven so successful in designing with some materials it is
important that the relationship between any qualitative screening test and the
conventional fracture toughness parameters be established as well as possible.

Two conditions were accepted by all concerned at the beginning of this project.
First, it was agreed that any screening test must be made on a composite laminate
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rather than the neat resin since there is considerable evidence both theoretical and
experimental that the morphology and consequently the properties of the matrix might
be substantially modified by the presence of a large fraction of high modulus fibers.
The second condition was that any test must take into account the inherent
viseoelastic nature of polymeric material. Thus the newly discovered principles of NIT
(1) were a logical starting point.

FRACTURE CRITBRIA

The fracture criteria used in fracture mechanics are all either modifications of
Griffith crack theory or can be directly related to it. Thus these criteria are all
dependant upon some sort of energy balance and are based upon an equilibrium
thermodynamics in which time plays no role. The original Griffith theory was applied
to brittle ceramic or glassy materials in which the energy required to propagate a
crack was balanced by the energy required to create the new surfaces. Thus failure
was presumed to occur whenever G, the strain energy release rate per unit crack
length and thickness, equaled or exceeded twice the surface energy

(G - 2Y) s 0	 (1)

The critical value, Ge, where the above expression equals zero would thus appear to be
a material parameter which need be determined only once for each material While
this might be approximately the case for the very brittle materials which Griffith
considered, application of these-ideaa to metallic systems soon showed that additional
energy was required and that this additional requirement could be attributed to the
energy necessary to plastically deform the material at the tip of the propagating
crack. A number of ways have been suggested to theoretically derive or experi-
mentally measure the critical strain energy release rate, Ge, or its conjugate
parameter the stress concentration factor, Kc. We shall not discuss these methods
which can be found in standard textbooks on fracture mechanies.( 3) Rather we only
point out that they all involve some assumption or experimental measurement of the
length and orientation of the propagating crack. Furthermore, these methods all
assume that the difference between plastic and elastic deformation is obvious and
requires no definition. Thus, plastic deformation is permanent and irreversible,
whereas elastic deformation is reversible and returns to its initial state when the
stress is removed. The fracture toughness of a material as measured by Gc or Kc is

k`
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thus the total amount of irreversible work that may be done on the material before

catastrophic failure occurs.

We shall retain this definition of toughness and its relationship to the usual
parameters Ge and Ke and explore other means of measuring the amount of
irreversible work that can be done on a material prior to catastrophic failure. In

particular we need measurement techniques which are applicable to polymer matrix

composites. Except in very unusual cases (e.g., delamination), the fracture of such

composites does not occur by the propagation of a single crack in a given direction:
Rather one observes multiple cracks in different directions over a volume of the
material. Consequently, a parameter suitable for measuring the fracture toughness of
a composite should involve an energy per unit volume rather than the energy per unit

area.

We must emphasize two fundamental differences between polymeric composites

and the metals they may hope to replace. These differences are critical in under-
standing fracture phenomena. The first of these is the fact that such composites
exhibit a very high degree of local anisotropy. As far as crack propagation is
concerned, u^is anisotropy is not removed by the symmetry of the lay-up. Thus, even

the simplest unidirectional composite has tetragonal symmetry requiring six elastic

constants for its complete description at the local or crack -tip level and typical

composite lay-ups may require up to the full 81 constants of triclinic symmetry. The
extreme eompleAty of such a situation serves to emphasize the difficulty and the

approximate nature of any application of the traditional fracture mechanics para-

meters such as Ge or Ka.

The second and even more important difference is the fact that this multiplicity

of elastic "constants" are not at all constant but are functions of both time and
temperature, changing by as much as two to three orders of magnitude over the range
of times and temperatures encountered in practice. For example, Figures 1 and 2
display the elastic and the loss moduli of a typical composite laminate deformed in a
bending mode. These measurements were made by the Dynastat Viscoelastometer

operating in the very low amplitude region (-25 microns) where linear viscoelastity

clearly applies. These figures are by the courtesy of Professor S. Sternstein. Thus,
polymer composites are clearly viscoelastic and any reasonable fracture criterion must
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ORIGINAL PA'G" IS
OF POOR QUALITY

involve the time over which fracture occurs as well as the volume over which the

specimen undergoes irreversible deformation.

NONEQUMMRIUM FRACTURE CRITERIA

The idea of applying a nonequilibrium thermodynamics to fracture criteria is not

new since it is obvious that fracture is a nonequilibrium process. Rir;e (4) has proposed
that the Griffith fracture criterion, equation (1), should be modified by multiplying by
the velocity of crack propagation.

	

CG_ 2Y) A Z 0	 (2)

He bases his further development upon crack propagation via a "q ,̂;asi-static" mecha-
nism which makes his approach compatible with both of the two principle schooLs rf

thought on nonequilibrium thermodynamics. (5) However, this restricts his reasoning to
the region very close to equilibrium where one can only apply linear nonequilibrium

thermodynamics and it is quite generally agreed that instability phenomena such as
fracture require nonlinear conditions.

We have proposed a novel approach to a nonlinear irreversible thermodynamics

(see Appendix A) which introduces the excess energy functional, 91

	

d s 
ff
 dVdt	 (3)

where ^ represents the Eulerian time derivative of the specific Lagrangian (i.e. the
difference between the kinetic and the potential energy per unit volume and unit
time).

We now suggest that fracture occurs when this excess energy changes by some
critical amount. This critical value occurs when the change in excess energy over a

definite volume and a definite interval of time reaches a aositive maximum.

According to the calculus of variations, such a maximum will occur when the first
variation of the excess energy, d 49, vanishes and its second variations 61oe, is negative-
definite for all possible changes in the nature of the extremizing function C.
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Before showing how one can experimentally measure this extremiaing function

and its time derivative, we first show that the excess energy functional can be reduced
to the Rice J-intergral under special conditions.

The change in excess energy is a functional dependant upon time, t, measured in

units of the observers time scale and the position vector, r, measured over a volume

determined by the observers distance scales (see Appendix A) so that equation (3)
becomes

	

if a f j dVdt . f f(	 p	 1 dVdt	 (4)

But C has been defined (see Appendix A) as follows:

9 (r.t) s 2(t) - x(r)	 (S)

so that,

n 	
data - 

V$ J dVdt
dt

(6)

dV -Vi dV dt,If J

Now by Green's theorem we can convert the second integral from a volume to a
surface integral so that

S(r,t) .r	 dV - 	
dt dA dt	

(7)f L f it
t	 y	 A

where n is the vector normal to a simple convex surface, A, surrounding the volume,

V.
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We now assume the special case where the system is elastic-plastic rather than

viseoelastic. That is to say, we assume that the time scale of the observer is such that

creep and stress relaxation are negligible small. We then remove the time dependency

and write the volume as a triple integral over the cartesian coordinates, x, y, z.

UH1G11't1%L PALE iS
^(x,y,$) = fff dxdyds — I n$ • dr dA OF POOR QUALITY

(8)

If the only contribution to the excess energy is a single crack of length, a, in the
x direction extending through a plate of constant thickness, b, in the z direction, we

can carry ot•t the integration over y and z, divide by b and differentiate with respect

to a. The result is an expression for the excess enPrr► change as a surface energy

change per crack length and per unit thickness

8W=fdy-

A

r

I al - R- do
•

n 7C •	 ds

(9)

where irtegration is now over an arbitrary curve r in the x, y plant surrounding

the crack tx.p and dr, becomes d4 the displacement normal Lz, the curve. Ii we now

identify R with the strain energy function, W and n3t with the traction vector, T, our
excess energy per urdt surface with a crack of length, a, becomes

8(a) sJ W dy —. T• ag ds = J
r	 (lo)

which we recognize as the Rice J-integral. It is well known ( 3 ) that if the additional
assumption of linear elastic behavior is made, the J-integral becomes equivalent to the

Irwin strain energy release rate, G.
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Thus we have shown that our excess energy functional is a more general

formulation, applicable to viscoelastic materials with multiple cracks, that reduces to

J for elastic-plastic materials with a single crack and to G for linearly elastic

materials. The fracture criterion, b8c, is the maximum value of the excess energy
functional and represents the total amount of irreversible work which can be done on a
system with a definite volume over a definite period of time. It covers any

irreversible process including strain hardening caused by molecular orientation or

dislocation pil,rup as well as the usual strain softening due to the formation and

propagation of cracks.

RMABMITY C RrM aIA

The fracture criterion suggested in the previous section is a more general

measure of fracture toughness that includes the usual fracture toughness parameters

as special cases. fracture is in turn a special case of a thermodynamic system driven

to the point of instability by the flow of energy and/or matter to or from its
environment. By considering the more general thermodynamic instability criteria we

can include all environment influence on the system of interest, not just the

mechanical field.

The thermodynamic instability criteria proposed by Glansdorff and Prigogine(6)

are expressed in terms of the second variation of entropy 62S and its time rate of
change. These criteria have been criticized by several authors (5 1 7 9 8) primarily

because the first variation of entropy represents a force holding the system from
equilibrium and consequently cannot vanish. We do not wish to take either side in this

polemic. Instead we have reformulated the second law of thermodynamics by taking
the total Legendre transform. A Legendre transform may be understood as the
transformation that changes a function from a set of moving coordinates to a set of
fixed coordinates or vise versa. In our case, it changes the independant variables from

the extensive properties (i.e., moving or Lagrangian coordinates) to the intensive

properties (fixed or Eulerian coordinate) The total Legendre transform of energy is

called an excess energy and vanishes at equilibrium.

l7f p^, .. ; .
	 y ^,

	

Fitt (iL1 -JL!?'y	 10



By taking the total Legendre transform we have shifted the burden of accounting
for the time evolution of thermodynamic systems from an increase in the entropy of

an isolated system - that can only be approximated in real life - to the change in the

excess energy of real systems which may be either open or closed. Since energy is a
conservative quantity, it is easier to think of it as moving from one point in space to
another, as well as increasing and decreasing in various parts of the system. Thus, we
have avoided the use of the concept of entropy production and entropy flow. Entropy

will only be considered as a property of the total system of interest when it has
reached a state of equilibrium where it can be rigorously defined. If the system is not

at equilibrium, any entropy associated with it will be considered as a virtual entropy.
That is to say, the virtual entropy of a nonequilibrium system at any instant of time

will be the entrr^py that the system would have if it were isolated at that instant of
time and allowed sufficient time (infinite if necessary) to come to equilibrium. In

order to deal with such a virtual entropy we need to define its conjugate variable (i.e.,
A

temperature) as the instantaneous space average temperature T (read T hat).
A--tually, we need to define a space average for all intensive quantiti6s that are
environmental variables (see Appendix A).

However, by far the most important consequence of this reformulation is

experimental rather than theoretical. Entropy can only be calculated indirectly from

static measurements made on the surface of systems that are at equilibrium. With the

help of modern microprocessor technology and the computer analysis of data, we can
not only directly measure the change in excess energy,A8, but we can experimentally
obtain an approximation to its variation,64f, by dynamically fluctuating one or more

intensive properties antl measuring the response of the systems extensive properties.

Thus we have the means to convert irreversible thermodynamics from an esoteric
theoretical science to an experimental science that offers many practical possibilities.

TBE EZTREMIZING FUNCTION,

Recall our definition of fracture toughness as the total amount of irreversible

work that can be done on a material by a given mode of deformation prior to failure.
If this deformation is applied by means of a dynamic force, each complete cycle will
carry the material through a thermodynamic cycle back to the same apparent state.
Any irreversible work done upon the material w :1 manifest itself as a change in the

d
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internal energy of the system. We propose to measure this change in internal energy

by measuring the response (i.e. displacement) of the systern to the dynamic f,Nrce and

separating the work (i.e. force times displacement) into an in-phase and an out-of-

phase portion. The in-phase or conservative portion is the reversible work and the out-
of-phase portion is the dissipative or irreversible work. This separation is arbitrarily
dependant upon the time scale of the observer as determined by the frequency of the

eynamie force.

During the :first half of such a cycle the environment does work on the material,

energy flows from the environment to the system. Some of this k ,nergy (i.e., elastic

strain energy) is stored by the system. But sin. :e energy has flowed, some part of it
must also have to be dissipated in the form of heat which flows back to the
environment. During em second half of the cycle, the elastic strain energy stored in
the system during the first half cycle flows back to the environment as the system

does work on the environment. But this now of energy also dissipates energy in the
form of heat that flows back to the environment. At the end of a complete cycle, the
net amount of work done on the system by the environment may be equal to, greater
than, or less than the amount necessary to compensate for fle dissipation of energy.
If it is exactly equal, the system may be said to have been driven through a reversible

thermodynamic cycle by the environment. All the energy dissipated during the cycle

has been compensated by work done on the system by the environment &id the system

is unchanged by the fact that it has been driven through a reversible cycle. There is
no uncompensated dissipation of energy.

On the other hand if the work done on the system is either greater or less than

the amount of energy dissipated, the internal energy of the system is changed. If the
work done is less than the energy dissipated, the internal energy is decreased, and we

have, for example, the release of frozen strains. If the work done is greater than the
energy dissipated, the internal energy is increased, and we have, for example, strain
softening or the creation and propag;.Von of cracks.

MEASUREMENT OF THE EXTREMIZING FUNCTION

The extremizing function, ^ , is important theoretically since it provides a
specifically defined function of time and space that can be differentiated with respect.
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to both time and location within the system subject to the time and distanc o: scalds of

the observer (see Appendix A). However, its most significant property is the NO that

bosh it and its derivative with raspect to time can be experimentally measured uiing

dynamic techniques. A general description of this procedure is as follov►s:

(1) Drive the load in a sinuscidial manner with controlled amplitude an , , frequency.

(Z) Measure the displacement of the system in response to this load.

(3) Calculate the if.-phase or conservative power (load times displacement per unit

time) and integrate over a complete aye -le.

(4) Calculate the out-of-phase or dissipative power (displacement times load per

unit time) and integrate over a complete cycle.

(5) Add the change to the conservative energy per cycle to the ^.henge in the

dissipative energy per cycle,. The result is an experimental measurement of the

extremizing function, E (i.e., the uncompensated diss:petion of energy) for the

particular time and distances scales as well as the level of dynamic power ussd.

As long as the amplitude of the fluctuating loed is small enough for the linear

approximation to be valid within experimental measurement prcc:eion, the recalt

will be zero.

(6) If there is no treasurable value for the extremizing function, it will be necessary

to increase the amplitude until a finite or measurable value is obtained. The

minimum power level at which a measurable value for the extremizing function

may be obtained is the onset of measurable irreversibility (see next :section).

f	
The change ire the measured value of extremizing function from one cycle to the

E	 next is a measure of the time derivative of the extremizing function, (i.e.,t

It may be desirable to carry out the integrations in steps (3) and (4) ovEr successive

half cycles and calculate their sum over half cycles as well as full cyci ;. This

information is useful in determining the onset of asymmetry, to be 44 -uss-d in a

latter section.
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THE ONSET OF IRREVERSIBILITY

When the amplitude of our dynamic fluctuation is small enough so that the

displacement can be approximated as a linear function of the load, the conservative

energy change in the first half cycle will be equal and of opposite sign to the

conservative energy change in the second half cycle so that the conservative energy

per cycle vanishes. On the other hand, the change in dissipative energy is equal and

opposite in sign to that of the conservative energy so that in the linear approximation

the sum of the conservative and the dissipative energy changes per half cycle vanish

and there can be no uncompensated dissipation of energy in the linear approximation.

However, as the amplitude of the fluctuating load is increased, a point will be

reached where the linear approximation fails and it becomes possible to measure an

uncompensated dissipation of energy. This is the onset of measurable irreversibility.

We st!a—crest that this represents an important measurable parameter that can be used

to compare materials systems. We recognize that such a parameter will be dependant

upon the time and distances scales as well as the measurement precision of the

observer, never the less, it will provide a relative number that can be used to rank

materials according to their response to various kinds of load.

Once one has a measurable value for the extremizing function, one can proceed

in various ways. For example, one can change the frequency (i.e., the time scale) of

the fluctuating load and observe the effect on the uncompensated dissipation of

energy. By this means, one can obtain the maximum change in the system's response

either by finding the "resonance" frequency if it lies within the experimentally

available range or by using the maximum or minimum available frequency.

THE ONSSRT OF ASYMMETRY

After one has a measurable onset of irreversibility a.1 i perhaps has adjusted the

frequency to obtain the most sensative detection of uncompensated dissipation of

energy, the next step is to explore the information that one can deduce from this

mees, trement. First of all the sign of C is significant.
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If the system is initially in equilibrium with its environment, a sinusoidal

,fluctuation of the load will tend to drive the system away from equilibrium. That is to

say, the uncompensated dissipation of enery will be positive, the dissipative energy

per cycle exceeds the conservative energy and the excess energy of the system
increases. For example, this might correspond to a release in elastic strain energy due

to crack propagation.

On the other hand, if the system is not a true equilibrium structure, for example,

a polymeric glass or a metal with frozen-in strain energy, then fluctuating the load
may cause the system to approach equilibrium. In this case, the extremizing function

is n4ative and the excess energy of the system decreases.

Finally, we recall that no uncompensated dissipation of energy is measurable as

long as the system obeys the linear approximation within the measurement precision.
However, the departure from linearity can occur in a number of different ways. In
particular, our proposed measurements will permit us to distinguish between a

measurable nonlinearity in the dissipative energy and one in the conservative energy.

Recall that in the linear ease the dissipative energy averages to zero f^,r each half
cycle whereas the conservative energy vanishes when averaged over one cycle.
Consequently, a nonlinearity in the dissipative energ;r which yields a measurable value

for y, will be symmetric. That is to say, equal amounts of uncompensated dissipation

of energy will occur in the positive and negative halves of the cycle. However, if the
nonlinearity causing the uncompensated dissipation occurs in the conservative energy,
it must be asymmetric so that more uncompensated dissipation of energy occurs in one
half cycle than in the other.

The difference between a symmetric and an asymmetric extremizing function is
very significant. A symmetric function does not necessarly resLd^, in any permanant

change in the excess energy of the system. The extremizing function may remain
constant from one cycle to the next so that S = 0. However, a nonlinearity in the
conservative energy that results in a measurable asymmetric extremizing function

produces a measurable change in excess energy for each cycle.

15



Them, the onset of measurable asymmetric represents the second parameter
which we may use to characterize our system. Fluctuating the load at an amplitude
sufficient to show asymmetry will accelerate the approach to equilibrium or the
deviation from equilibrium depending upon sign of the uncompensated dissipation of
energy. This kind of accelerated change is particularly useful since it occurs without
any change in the average environmental properties since they are varied sinusoidially
about their average value.

THE ONSET OF INSTABE TTY

As we have indicated earlier, the stability of a nonequilibrium thermodynamic
system has been the subject of a long standing polemic in the literature. We do not
propose to take either side in this argument. Rather, we suggest that our dynamic
methods provide an experimental approach to actually driving the system farther and
farther from equilibrium until instability can be experimentally observed. We believe
that once the experimental measurement of instability has provided a sufficient
number of examples, it may be possible to resolve the differences between the various
proposed criteria.

Based on very limited measurements from mechanically stressed systems, we
have suggested that the instability resulting in fracture may be characterised by a
critical valu3 of the change in excess energy,. This critical value occurs when the
variation in excess energy vanishes and the second variation become negative. See
Appendix A for an explanation of how an approximation to the first and second
variations of a functional may be obtained experimentally.
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SUMMARY

We have derived a nonequilibrium fracture criterion based upon a reformulation

of the second law of thermodynamics. This criterion is particularly applicable to

polymeric composites or other viscoelastic materials where conventional fracture
criteria are most seriously in error. Our fracture criterion is the critical value of the

excess energy functional that occurs when the excess energy, which involves an
integral over both time and the volume of the material, reaches a maximum. We have
shown that in the special case of a single crack propagating in a nonlinear plastic-

elastic material, our excess energy functional reduces to the Rice J-integral. Th%z our

fracture criterion is clearly a more general criterion, applicable to viscoelastic
materials and which contains all of the conventional criteria as special cases.

However, the most important accomplishment was the definition of an

experimentally measurable function and its time derivative which should make it
possible to measure experimentally the excess energy functional and its variations.

These experimental measurements do not require At knowledge of the length or

orientation of the crack or cracks involved in the failure snu--iianism. Furthermore,

important parameters related to this fracture criterion can be measured without
fracturing the specimen. One therefore has the possibility of making successive
measurements on the identical specimen after subjecting it to various treatments that

may effect its performance.

RWOMVENDATIONS

In order for these measurements to result in useful criteria for the design of
composite structures it will be necessary to build up a date base of experience. This
will involve computer programs to measure these functions, reduce the data in rend
time, and feed backthe results to the measuring device in order to control the

frequency and amplitude of the dynamic fluctuations which make possible this novel
dynamic approach to a truly dynamic thermodynamics.
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Clearly the next step to be taken involves programming these calculations into a

computer controlled MTS testing machine so that these measurements can be made in

real time. This will make it possible to independently control the frequency, the

amplitude and the average load while observing the effect on the measured values of

and its time rate of change.

We are convinced that this approach to dynamic testing of materials may

represent an important breakthrough in predicting and improving the long term

performance of materials since it offers a means of predicting failure without actually

failing the specimen. One therefore has the possibility of making successive

measurements on the identical specimen after subjecting it to various treatments

which may effect its performance.

i

18



REFERENCES

1. P. H. Lindenmeyer, "Principles of Nonlinear Irreversible Thermodynamics

Applied to The Testing of Materials," Boeing Document D18025582-1 (1980).

2. I. WallIck, et. al, ACS Meeting, August 1981. See also "Fracture Criteria for

Composites," by P. M. Mast et al in "High . erformance Composites and

Adhesives for VSTOL Aircraft," ed by L. B. Lockhart Jr. NRL Report 4005,

May 1979.

3. J. F. Knott, "Fundamental of Fracture Mechanics," Butterworths, London (1973).

4. J. R. Rice, "Thermodynamics of the Quasi-Static Growth of Griffith Cracks," J.

Mech. Phys. Solids, 26, 61, (1978).

5. B. H. Lavenda, 'Thermodynamics of Irreversible Processes," Halsted-Wiley, N.Y.

(1978).

6. P. Glansdorff and I. Prigogine, "Thermodynamic Theory of Structure, Stability

and Fluctuations," Wiley, N.Y. (1971).

7. J. Keizer and R. F. Fox, "Qualms Regarding the Range of Validity of Glansdorff-

Prigogine Criterion for Stability of Nonequilibrium States," Proc. Nat. Acad. Sci.

USA, 71, 192(1974).

8. R. Landauer, "Inadequacy of Entropy and Entropy Derivatives in Characterizing

the Steady State," Phys. Rev., Al2, 636(1975).

19



APPENDIX A

A Novel Approach Toward a Truly Dynamic Thermodynamics

by Paul H. Lindenmeyer

The Boeing Company

Seattle, Washington 98124

"Two Roads diverged in a Wood, and I

I took the one less traveled by

And that has made all the difference"

Robert Frost

INTRODQCPION
It has long been recognized that the usual equilibrium thermodynamics should more

appropriately be called thermostatics, since the only dynamic processes it can describe

are the so-called "quasi-static" processes, which proceed so slowly that each point on

the path between states can also be considered an equilibrium state. Our objective is

to develop a truly dynamic thermodynamics that will permit the treatment of the

overall kinetics of a complex process in a manner analogous to the way the usual

thermodynamic potentials treat the overall energetic averages. This dynamic

thermodynamics will encompass the kinetics of the overall chemical and structural

changes occurring within the system and will reduce to the usual equilibrium thermo-

dynamics and the nonequilibrium thermodynamics of linear processes as special cases.

The usual approach to the development of a nonequilibrium thermodynamics involves

either the assumption of local equilibrium (1 9 2 ,3) or the use of the Clausius-Duhem

inequality as a constraint upon the constitutive equations of a continuum mechanics.(4)

For an excellent, up-to-date review of these different approaches, see Lavenda.(5) All

of these approaches involve an entropy balance equation that introduces time and

space dependence into the concept of entropy by means of an entropy production and

an entropy flow. Without in any way questioning the validity of these approaches, we

only point out that this marks the "divergence i ►: the road," and we shall have no

occasion to use an entropy production or an entropy flow. Our motivation for this is a

very practical one—it is not possible to directly measure entropy. We suggest that the

concept of entropy is difficult enough for most people to understand without intro-

ducing the temporal and spatial derivatives of this nonconservative concept.
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EQUMBRIUM AND NONEQUU.JBRIUM THERMODYNAMICS

A rigorous experimentally based thermodynamics permits one to use the thermo-

dynamic properties Otsined from static measurements made on the surface of two

systems at equilibrium to predict the thermodynamic properties of the combined

system once it has again attained equilibrium. In practice one of the two equilibrium

systems, called the environment, is presumed to be very large so that iib thei•necr

dynamic properties do not change by a measurable amount. Note, however, that the

environment must be a uniform equilibrium system in order that a rigorous equilibrium

thermodynamics may be applied.

In an exactly analogous manner we shall propose a way to make dynamic

measurements on systems that are not at equilibrium and to predict the dynamic

thermodynamic properties of the combined systems as a function of time This

dynamic thermodynamics encompasses the kinetics of the overall chemical and

structural changes within the system and reduces to the usual linear/ nonequilibrium

thermodynamics as the amplitude of our dynamic measurements are reduced and to

equilibrium thermodynamics as the amplitude becomes zero.

The basic difference between equilibrium and nonequilibrium thermodynamics, as we

perceive it, is that in the former, energy (and, in some cases, matter) can flow only in

one direction as the system approaches equilibrium. In contrast, nonequilibrium

thermodynamics permits the flow of energy (or matter) both into and out of (i.e.,

through) the system. That is to say it can flow either from the system to the

environment or from the environment to the system but never both ways. This Low

can occur either continuously, in at one point in space and out at another or

alternately in at one time and out at another, depending upon the nature of the

environment in contact with the system of interest.

The rate of energy flow plays no role in determining the state of the system in

equilibrium thermodynamics. On the other hand, if the environment is nonuniform

either in space or time, so that energy can flow through the system, then the rate of

flow (i.e., power) plays a determining role. It may determine not only the state, but

also the path by which it moves toward this state. Thus power, rather than energy, is

the sine qua non of nonequilibrium thermodynamics.
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TIME AND DISTANCES SCALES

Having thus distinguished between equilibrium and nonequilibrium thermodynamics,
our next major point is the assertion that this distinction is arbitrarily dependent upon
the time and distance scales adopted by the observer. All thermodynamic quantities
represent averages over a very large number of complex processes occurring within
the system of interest. An average can be taken only over a definite interval of time
or space (distance). As a practical minimum, thermodynamic quantities must be

considered as being averaged over the time required to make a measurement and the
space occupied by the measuring device. The practical upper bound to these time and
distance scales is given by the size of the system and the time it is under observation.
If the system is at equilibrium, these time and distance scales may appear to be of no
importance, since an equilibrium system is both homogeneous (or at most composed of

a limited number of homogeneous phases) and time independent. But a little thought
will allow one to realize that the definitions of both homogeneity and time
independence are also arbitrarily dependent upon the time and distance scales adopted
by the observer.

The ability of the observer to arbitrarily define the time and distance scales has
suggested a whole new series of dynamic measurements that have only become
experimentally feasible with the advent of modern microprocessor technology. These
measurements involve driving the system through a series of closed thermodynamic
cycles by causing the environmental variables to fluctuate in a sinusoidal manner. The

frequency of these dynamic measurements fixes the time scale; the size of the system
or the distance between measuring devices determines the distances scales and the
amplitude of the fluctuations controls the power that passes through the system with
each cycle.

THE GIBBS ASSUMPTION AND UGENDRE TRANSFORMS

Since most other approaches to nonequilibrium thermodynamics employ some sort of a
generalized Gibbs equation, it is instructive to review this most valuable contribution
to thermodynamics. Gibbsian thermodynamics is based upon the assumption that the
energy of a system can be expressed as a linear homogeneous function of its extensive
variables. This is equivalent to the additivity postulate or the assumption that all

contributions to energy scale linearly with size. This assumption is always valid when
the system is sufficiently macroscopic and at equilibrium. When it is e'.so isolated, the
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approach of such a system to equilibrium is determined by the maximization of the

entropy function. If, instead of being isolated, the system is able to exchange energy

(or matter) of a given kind with a uniform environment, the extensive variable

appropriate to this kind of energy becomes dependent upon its conjugate intensive

variable, which is controlled by the environment. The systems approach to equilibrium

then is determined by the minimization of the appropriate partial Legendre transform

with respect to the extensive variable. A Legendre tranform may be thought of as a

coordinate transformation from a set of moving (Lagrangian) coordinates to a set of

fixed (Eulerian) coordinates, or vice versa. In this respect, extensive thermodynamic

variables are analogous to Lagrangian and intensive ones to Eulerian coordinates.

Thus, in an isothermal system, temperature becomes an independent variable control-

led by the environment and the partial Legendre transform with respect to entropy—

better known as the Helmholtz free energy—becomes the function that must be

minimized as the system approaches equilibrium. Similarly, the Gibbs free energy,

which is the partial Legendre transform with respect to entropy and volume, is the

function that must be minimized as an isothermal-isobaric system approaches

equilibrium.

If the Gibbs assumption is valid, the total Legendre transform with respect to all the

extensive properties vanishes, yielding the Gibbs-Duhem relationship. This relation-

ship can be solved for one of the extensive properties, usually volume or mass. This

may be used as a scale factor to convert the other extensive properties into densities

or specific quantities. Only when one has such a scale factor is it possible to express

energy or entropy as a density or a specific quantity and to speak of their derivatives

with respect to time and/or space. That is to say, only when the time and distance

scales adopted by the observer (who defines the system and determines the measure-

ment precision) are such that the Gibbsian assumption can be made is it possible to

convert extensive properties to intensive properties and express them as functions of

time and space. This is probably why most authors have chosen to generalize the

Gibbs equation and the Gibbs-Duhem relationship as a means of introducing time and

space into equilibrium thermodynamics.

We shall not make the Gibbs assumption, but rather we follow the example of Hill,(6)

who showed that when the system becomes small there are a number of contributions

to the energy that do not scale linearly with size and hence cannot be neglected. As a

consequence, energy cannot be expressed as a linear homogeneous function cf the

extensive variables, the total Legendre transform does not vanish, and there is no
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Gibbs-Duhem relatioi►=hip to provide a scale factor. instead, we shall assume that, in

general, every thermodynamic system may have a nonlinear term or excess energy

given by the total Legendre transform of energy, and we shall attribute all variation in

time and space to this excess energy. Following Hill, we use the symbol j for this

excess energy. However, we do not restrict our system only to equilibrium states, as

did Hill. Thus, in addition to the small systems effects, which may become negligible

as the system increases in size, our excess energy, include all possible contributions to

the nonlinear or heterogeneous nature of the system. For example, it includes

gradients in the intensive properties, which may be introduced or maintained by

nonuniform environments or by pseudothermodynamic fields (i.e., mechanical,

electrical, or magnetic). In addition, this excess energy may include gradients in

intensive properties that are no longer maintained by a nonuniform environment or an

external force, but have not yet dissipated That is to say, they appear to be frozen

into the nonequilibrium structure as a consequence of the time scale of the observer.

In effect, the total variation of energy with time and space is contained in this excess

energy, so that the evolution of the system with time is shifted from the concept of

entropy to that of excess energy. As we shall see, this gets around the most difficult

problem in nonequilibrium thermodynamics—namely, how to define entropy when the

system is not in equilibrium.

REFORMULATION OF WE 3RCOND LAM OF TWERNODYNANK 3

The essential feature of our approach to a nonlinear irreversible thermodynamics is a

reformulation of the second law in which the concept of entropy is replaced by the

concept of an excess energy. Thus we propose that "It is the minimization of the

uncompensated dissipation of energy within the system of interest - not the increase in

entropy of the universe - that represents the practical embodiment of the second law".

The uncompensated dissipation of energy is defined as the change in the internal

energy of the system minus change in the excess energy of the system. The excess

energy is in turn defined as the total Legendre transform of energy with respect to all

of its extensive properties. Note that if the system of interest is isolated, the dissi-

pation of energy and the increase in entropy become synonymous and the excess

energy vanishes as the system approaches equilibrium.

The principle advantage of this reformulation is that while entropy can only be

calculated indirectly from static measurements made on systems presumed to be at

equilibrium, the change in excess energy can be directly obtained from dynamic
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measurements made on systems that are not necessarily at equilibrium. In effect this
reformulation has shifted the burden of accounting for the time evolution of thermo-
dynamic systems from the increase in entropy of isolated systems - that car, only be
approximated in real life - to the change in the excess energy of real systems that may
be open or closed with respect to the interchange of energy and/or matter with their

environments.

In contras. to entropy, energy is a conservative quantity that car. easily be visualised

as moving from one point in space to another. Thus we shall completely avoid the use
of the concept of entropy Production and entropy flow. Entropy will only be
considered as a property of the system of interest when it has reached a state of

equilibrium. Under these conditions entropy has been rigorously defined in terms of

static measurements. If the system is not at equilibrium any entropy which we

associate with it will be considered to be a virtual entropy. That is to say, the virtual
entropy of a nonequilibrium system at any instant in time will be the entropy that the
system would have if it were isolated at that time and allowed a sufficient time

(infinite, if necessary) to come to equilibrium. In order to deal with such a virtual

entropy, we need to define its conjugate variable (i.e. temperature) as the
instantaneous space averaged temperature, T (read T hat) at the same instant for
which the virtual entropy is desired. Actually we will need both space averages, X and
time averages X (read X bar) for all intensive thermodynamic properties.

Since equilibrium thermodynamic systems are by definition homogeneous and time

independant, the basic problem in developing a formalism for a nonequilibrium
thermodynamics is how to introduce time and space coordinates into the
thermodynamic quantities. We shall always express all extensive thermodynamic pro-
perties as their instantaneous value for the total system of interest. Thus the total
instantaneous energy of a nonequilibrium system is given by

E(t)- ki(t) ai(t) +9(t-Q

where we have relegated all influence of past history, as well as all unhomogeneities,

gradients etc., to the excess energy which we express as a functional.

THE EXCESS ENERGY FUNCTIONAL

Recall that we have defined the excess energy as the total Legendre transform of the

energy of the system of interest with respect to all its extensive properties. The
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excess energy may vary with both time and location in space within the system. 'rhat

is '.o say, the excess energy of s nonequilibriurn system is manifest as gradients in the
intensive properties of the system. In order to find the total excess en' ^ Ty of a

system we must integrate over the volume of the system as well as over a definite
interval of time. The integral over time covers the complete history of the system

from the time it was last in a state of equilibrium, to, until the time of observation, t.
Thus excess eningy is not just a thermodynamic function of time and space but it is
actually a functional involving a definite integral over bath the volume of the system

and the time s'.nce it was last at equilibrium.

In the most general terms we can write the excess energy functional as

= If ^C^•t•F.J dtdV

where r is a position vector with respect to a set of fixed spacial coordinates,QT is the

Lagrangian specific power density function, Cis the extremizing function and a& and

& t its spacial and temporial derivatives.

Now according to our reformulation of the second law, this functional will always

assume a minimum value subject to the constraint that there must always be a balance
of power between the system and its environment. The calculus of variations tells us
that a necessary condition for a functional to assume a minimum value is that its first

variation 69 must vanish

611 'a 6 ff a dV dt a 0

and a necessary and sufficient condition that the first variation of a functional shall

vanish is given by the Euler-Lagrange equation

(I)_Eaa
 (11

)=o
	 a= ^,t

a	 a

Two possibilities exist, either 9 attains a stationary state in the time interval t-to and

over the volume V or it does not. If it does the first variation vanishes and we have a

variational problem with fixed limits. If it does not then our problem becomes one of

predicting the time t when the functional will reach a steady-state, that is to say we

have & variational problem with an undetermined upper limit. Moth of those situations

can be approaches via the calculus of variations. Whether or not solutions exist will

depend upon the nature of the I.agrangian specific power density function,.Tand the
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constraints placed upon it by the necessity that there must be a balance of power
between the system and its environment at any stationary state.

The technique for introducing a constraint into a variational problem by means of a
Lagrangian :undetermined multiplies is well known provided one has a suitable equation
for describing the constraint. To put it briefly one simply defines a new Lagrangian as

(Power Balance Equati )n)

where X is the undetermined multiplyer. Since the power balance equation is equal to

zero, this additional term will not influence the vague of the functional but it will

influence its variation and X must be determined in a manner that causes the

variation to vanish.

The necessary and sufficient requirement that the R ailer- Lagrauge equation shall have

a unique solution is that all terms in the Lagrangian must be the drivntive of Some
function. If the specific Lagrangian power density function,, is a linear function of
t, the equations have a unique solution, independent of the choicA of C. That is to say
the excess energy depends only upon the in, egration limits. Under these conditions the

system will- evolve to a stationary state via the by now well established linear

nonequilibrium thermodynamics, where Onsager's reciprocal relations apply, the
dissipative forces may be drived from a potential, and Prigogines principle of minimum
entropy production remains valid.

However, in the more general case, where the power balance constraint cannot be
expressed as the derivative of some potential function the Euler--Lagrange equation
cannot be integrated and the excess energy functional is not stationary but continues
to evolve with time. It is in this most general case that our experimental approach
becomes most unique. Instead of attempting to devise vector or local potentials or
some other means that will yield an analytic solution to the Euler-Lagrauge equations,
we propose an experimental approach in which the extremizing function, C is defined
as the uncompensated dissipation of energy. That is to say & represents the
difference between the intensive variables averaged over an experimentally

determined volume at a given time and the same variables averaged over an
experimentally determined interval of time at a given point within the system. With

this definition of the extremizing function the constrained Lagrangian specific power
density function, J' becomes the Eulerian time derivative of the extremizing
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function, d[;/dt = t where both Cand t may be measured experimentally for a variety

of time scales (determined by the frequency of dynamic measurements) and distance

scales (determined by the distance between measuring devices) or sample sizes.

01E EXTRI3MIZING FUNCTION

We begin by defining an n-dimensional vector X whose components include r1 cf the

intensive thermodynamic variables, as well as the components of any pseudothermo-
dynamic fields, a reaction parameter for each possible reaction, and the necessary
order parameters for any structural transitions. Each of these components is assumed
to be a function o,' Jme and space, so that X = X(r,t) where r is the position vector in

a fixed coordinate system. Althougr, X is a function of 'me and space, it cannot be
differentiated, since its components must be averaged over either time or space

before taking an infinitesimal limit. To get around this difficulty, we define two
dif f erent kinds of averagedi:

a space or "hat" average

and a time or "bar" average

•
V

X(t)	 fX(rgt)dV
V

(r: W

WAO

X(r,t)dt

-Ma

and we further define their differences as

t (r, t) = X(t) - R(r)
	

(5)

In contrast with X, & is a continuous function with continuous derivatives with respect

to both time and distance. It is an all-inclusive representation of the heterogeneities
in the system. Note that the value of this functions depends upon the time scale t°-10'ff,
and the distance (or volume) scale as well Ps the precision of measurement; all of
which may be controlled by the observer. Thus ^ (r,t) becomes operationally equal to
zero when the time and distance scales of the observer causes the difference between

the ha` and the bar averages to become less than iLe measurement precision. We
submit g hat any thermodynamic quantity depends upon the time and distance scales as

well as the measurement precision of the observer. ;'e have simply made these

explicit instead of following the usual Gibbsian assumption which implicitly assumes

that the time and distance scales are 1F:rge enough sr that the measurement precision
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has no influence on the results. Since C explicitly involves time and distance scales,
it can be weed to operationally define the various states of a thermodynamic system,
as illustrated ire Figure 1.

OPERATIONALLY DEFINED i HERMODYNAMIC STATES

If the observed change in & with both time and distance is less than the measurement
precisiu,w the system is operationally in equilibrium. If the change with time is less
than the measurement precision, but its change with distance is not, the system is

operationally in a steady state. Similarly, if the change with distance is less than the

measurement precision, but the change with time is not, the system is operationally in
a homogeneous but unequilibrated state. However, the most interesting and unusual.

case occurs when the hat and bar averages are both changing, but their difference
(i.e., C) remains a nonzero constant. This is an oscillating state and represents the
true dissipative structure a la Prigogine. Such a structure is formed, stabilized, and
controlled by the interaction between the flow of energy and the motion of matter.

From this point of view, one can recognize a steady state as a time-degenerate
dissipative structure. An inhomogeneous "steady-state" structure may exist even after
the isolation of the system has removed the external forces that caused it to form if
the time scale of the observer is too short to allow measurement of changes in the hat
averages. It is it this sense that we have propos4 7 ) that all morphology in polymers!
solids can be considered as frozen or time-degenerate dissipative structures a la
Prigogine.

This C function plays the central role in our approach to nonequilibrium thermo-
dynamics. The astute reader will already have noticed the similarity in our definition
of & and the "error in the ergodic hypothesis." Many other analogies exist. Since this

function must vanish or become negligibly small as the system approaches equilibrium,
we may also think of it as representing a quantitative measurement of the deviation of
the system from equilibrium. Thus, we are assured that our nonequilibrium thermo-
dynam ics merges smoothly into equilibrium thermodynamics as the system approaches
equilibrium.

Still more insight can be gained on how the measurement precision and the time and
distance scales of the observer can influence his preception of the thermodynamic
states by considering the LagraY, j;, 4n specific i,awer density function. This specific
power density function,E(r,t), represents the rate at which the system is changing at a
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point in both space and time (where time and space are measured in units of the
observers time and distance scale). It corresponds to an "infinitesimal
phenomenological equation." If integrated over the volume of the system, it
represents an instantaneous rate of energy flow (power) throught the system, and if, in
addition, it is integrated over some period of time, it represents the total change in
energy of the system during that time; thus:

I off 4 (at) dV 
dt	 (6)

Here & represents the total Legends! transform or excess energy that the system has

because either (1) it is constrained from equilibrium by contact with a nonuniform
environment or a pseudothermodynamic field, or (2) it contains heterogeneities of time

and space that do not scale lin p Arly with the time and distance scales of the observer.

The integrand of equations (6) can be expanded in terms of the partial derivatives of
time and space as

where V is the baryocentrie velocity, dsrfdt. We now see that there are four different
ways in which equation (7) can vanish. If all three components become less than the
measurement precision, and C also vanishes, the system is operationally at equilibrium.

When the first term becomes lass than the measurement precision, we have an
operational steady state when either the gradient, p R or the velocity, V becomes less
than the measurement precision. Thus, in principle the steady-state may exist in two
extremes, In the first there are measurable gradients in the intensive properties but no
measurable flow and in the second there is measurable flow but no measurable
gradients. Finally, we have the p%ssibility of measurable values for all three
components but with the derivative of the space average always being equal to the
product of the gradient of the time average times the velocity so that C is a nonzero
constant but 4 vanishes. These conditions are summarized in Table I.

r

A-11



ORIGINAL PAuE 11

THE PRINCIPLE OF MINIMUM DISSIPATION OF ENERGY OF POOR QUALITY

The principle of minimum dissipation of energy has been known for many years. In
fact in the form that we shall use it, this principle can be considered as simply another
form of Hamilton's principle of varying action which states that the integral over time
of the Lagrangian has a stationary value provided the forces can be drived from a
potential. In which case the variation of the action integral vanishes, so that

8 .4 _ 6I L dt = 0

where the Lagrangian, L, is the difference between the kinetic and the potential
energy of the system. Since we have defined the dissipation of energy as the change in
the excess energy, the principle of minimum dissipation of energy can be expressed as

ad= 6ff.T dv dta0
whereupon we can identify the excess energy, 9, with the Eulerian time derivative of
the Hamiltonian action, and Lagrangian specific power density function,, with the
Eulerian time derivative of the Lagrangian, L expressed as a specific energy density.

Thus the principle of minimum dissipation of energy, as we have formulated it, states

that the difference between the change in specific kinetic energy density and the
change in specific potential energy density will evolve to a stationary state when

integrated over a definite volume and a definite interval of ime, always provided that
all constraints on the system may be deriv i:d from potentials.

The condition that all forces on the system be derivable from potentials or the
exactness conditions of integrability on all differentials represents a limit on the
validity of the theory (see Lavenda (5)). It is the existence of this limit which has
restricted the practical applicability of nonequilibrium thermodynamics to situations
sufficiently close to equilibrium where Onsager 's reciprocial relations are valid.

But we have defined a constrained Lagrangian specific power density function as

- ^ = d X
A
/ dt - 0 X - V
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which is experimentally measurable regardless of the nature of the constraints.
However, it does depend upon the time and distance scales of the observer as well as
his measurement precision. We are therefore able to adjust the time and distance
scales to operationally define the state of the system.

i Of still more importance we can adjust the rate at which energy is caused to now

through the system. We do this in two different ways (1) by contacting the system
with an environment that is nonuniform in space so that energy flows in at one point
and out at another or (2) by an environment that is nonuniform in time so that energy
now undergoes dynamic fluctuations. The two ways are analogous to the direct
current and alternating current now of electrical energy.

By controlling the level of power flowing through the system we have a means of both

measuring the dynamic changes occuring within the system and to some extent
actually controlling what these changes will be.

VARIATIONS OF TBE EXCESS ENERGY FUNCTIONAL

We carefully distinguish between the change in the value of the excess energy

functional and its variation in the mathmaticsl sense as used in the calculus of
variations. In the latter sense the variation of a functional is a virtual change
corresponding to a change in the nature of the extremizing function in all possible
directions. In the calculus of variations we are interested in this virtual variation only

as a criterion for determining the stationary state of the functional. The first term in
a Taylor expansion of the functional about such a stationary state is called the first
variation, d , and the second term is called the second variation 62.

A necessary and sufficient condition for a functional to have a stationary state is that
its first variation shall vanish. However this is not a sufficient condition for the
functional to have a minimum value since the first variation will also vanish for a

maximum and even for the equivalent of a "horizontal tangent" or "saddle point". A
second necessary condition for a functional to have a minimum is that its second
variation shall be positive semidifinite. The corresponding condition for a maximum is
that the second variation be negative semidefinite. These criteria are still not
sufficient in a rigorous mathmatical sense but they will suffice for our purposes.
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We also must point out that from a practical point of view a functional may have a
value that does not correspond to a stationary state where the first variation does not
vanish because it is restricted by the boundary criteria on the independant variables.
Consequently the excess energy functional, integrated between definite limits of time
and space, will either be at a stationary state, in which case its first variation vanishes
or its value will be determined by the limits on the integrals and the total variation
will determine whether this represents an apparent maximum or minimum.

Regardless of whether or not the first variation vanishes, the sign of the total
variation is an important criterion in determining the state of a nonequilibrium
system. Thus it would be very desirable to have an experimental procedure for
approximating at least the sign of the total variation in excess energy.

DYNAMIC MEASUREMENT OF THE VARIATION IN EXCESS ENERGY

We propose that one can measure the sign of the total variation in excess energy in a
manner directly analogous to the way one would measure the sign of the differential of
an ordinary function. One changes the value of the independant variable by an amount
sufficient to cause a measurable change in the function. Now the variation of a
functional is caused by the change in the extremizing function rather than a change in
the variables since their influence on the functional is fixed by the limits as the
integral. Furthermore, the variation of the extremizing function must be in all
possible directions (unlike the differential which corresponds to a change in the
variables in a definite direction). We propose to simulate the variation in the
extremizing function by driving the independent variable in a cyclic fashion. By
changing the variables through a complete cycle, we will have caused the extremizing
function to have varied in all possible directions without changing its average value
and we can measure the effect of this variation on the excess energy functional. Just
as in experimentally determining the sign of a differential of an ordinary function
where it was necessary to change the variable by an amount sufficient to cause a
measurable change in the function, the amplitude of the cyclic change must be
sufficient to cause a measurable change in the excess energy functional. Now since
we cannot cause an instantaneous cyclic change in the variables, the variation will be
experimentally determined over a period of time, determined by the cyclic frequency.
Likewise the results or change in the excess energy must be measured over some
distance, determined by the separation of the measuring devices. Thus our

experimentally determined variation of the excess energy functional will be for a
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given time and distance scale as well as at an amplitude sufficient to exceed the
measurement precision.

In order to describe these dynamic measurements we shall collectively designate the
independant or controlled intensive variables as the "load" and the measured or
dependant extensive properties as the "displacement" as would be the actual case if

one only considered the p3cudo thermodynamic mechanical force field. Now energy it

given by the product of the load times the displacement but the instantaneous power is
composed of two terms: (1) the load times the derivative of the displacement with
respect to time and (Z) the displacement times the derivative of the load with respect
to time. The first of these power terms represents the negative of the change in the
potential energy and is functionally dependant upon position whereas the second term
is the change in kinetic energy and is functionally dependant upon time. Thus the

Lagrangian power density function is given by the sum of these two power terms.

Now if the cyclic load is sinusoidial the two power terms can be readily separated
since the time derivative of the load is always 90 degree out of phase so that the
change in potential energy or conservative power represents the in-phase power
whereas the change in kinetic energy or dissipative power is 90 degrees out-of-phase

with respect to the applied load. Integrating these two powers over a com plete cycle
and taking their sum provides an experimental measurement of the specific Lagrangian

energy density which can also be interpreted as the variation in excess energy per
cycle and for the unit volume defined by the separation of the measuring devices.

Note that in the linear approximation (i.e., when the dissipative forces are a linear
function of the velocity and the conservative forces are linear functions of the
displacement and the acceleration) the sum of the two power terms integrated over a
complete cycle vanish. Thus only when the amplitude of the cyclic load is sufficient
to produce nonlinear responses will it be possible to measure even the sign of the
variation in excess energy.

We shall designate this experimentally measurable variation by the symbolle d in direct
apology to the use of A for a finite value of the differential. Thus, just ass+d in the
limit of infinitesinal changes in variables so4 6-6 as the amplitude of our cyclic
^actuating varibles is decreased.
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But we nave defined': as the extremizing function of the constrained Lagrangianj*,

and by our cyclic fluctuation of the independant variables we have imposed an
additional constraint on the system. The experimentally measurable approximation to
the variation of the origionally constrained extremizing function, 66 C is identical to
the extremizing function of the Lagrangian which has the added constraints
determined by the additional alternation power applied to the system. 	 Thus

t A^where A is the amplitude of the fluctuation.

These additional fluctuating constraints not only permit us to determine the sign of

the variation in excess energy but by adjusting the level of this alternating power (i.e.,

by changing its frequency and amplitude) we can accelerate the rate it is changing. Of
even more impotence by adjusting the frequency and amplitude to increase the power,

the system may become unstable and one obtains the dissi pative structures to be
described in the next section. Application of alternating thermodynamic and pseudo

thermodynamic forces at the resonance frequency of various thermodynamic systems
represents an important new practical application of this nonequilibrium
thermodynamics and will not be discussed further due to pending patent action.

DISSIPATIVE STRUCTURES AND STABILdTT CMTERIA

Prigogine (Z) coined the word "dissipative structure" in order to distinguish the
structure of systems that have formed in the region far from equilibrium where the
environmental conditions are such as to drive the system of interest to the point of
instability. His stability criteria (1) which are formulated in terms of the second

variation of entropy production and its time rate of change have been the subject of
criticism . (5) We shall not comment further on this controversy since our experimental
approach effectively side-steps the issue rather than contributing to one side or the
other. Regardless of the resolution of this polemic, we believe that Prigogine and his
colleagues have made a substantial contribution to science in simply calling attention
to the funatim%;. 3 al difference between an equilibium structure and a dissipative
structure.

F	 4 dissipative structure will form whenever the environmental conditions surrounding a

F
system are such that the relationship between the flow of energy and the motion of

F matter is sufficiently nonlinear so that some sort of rotary motion can decrease the

dissipation of energy within the system. 'ince a rotational motion is involved there
will be at least one characteristic distance and one characteristic time.
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Our interest in these dissipative structures ( 7) origionated from the realization that if

such structures occured during the solidification process, the rotational motion would
be frozen. That is to say the characteristic time becomes infinite in the time scale of
the observer but characteristic size(s) would remain as a permenant feature of the
solid. Thus we suggest that the theoretical basis for understanding and controlling the
morphological structure of most solid materials in general and polymeric solids in

particular is much more nearly related to these frozen dissipative s+*uchirP^ thAn to
equilibrium (i.e., crystal) structures. The nonequilibrium thermodynamic theory of
dissipative structures therefore represent the key to a theoretical understanding of
solid state morphology.

In the usual approach to nonequilibrium thermodynamics the entropy of a
nonequilibrium system is not defined and only its change with time is expressed as the

sum of the entropy that flows into or out of the system and the entropy produced

within the system. In contrast to this approach we have defined the instantaneous
entropy of a nonequilibrium system as the sum of its virtual entropy and an entropy
deficiency defined as the negative of the excess energy divided by the space averaged
temperature, T.

The thermal energy of any system at time, t is an invarient given by

TS(tI z TSft,to } - 491 t,ta}

but since the virtual entropy is an equilibrium entropy by definition, its first variation

must vanish and its second variation must be negative semi-definite by the second law

(i.e., the entropy of an isolated system at equilibrium is a maximum). Since the

instantaneous thermal energy is invarient, the variation of the excess energy must be

the negative of the variation of the virtual entropy times the space averaged

temperature. It follows that since the virtual or equilibrium thermal energy is always

a maximum, the excess energy can never become a maximum. Thus the stability

criterion for any thermodynamic system is that its excess energy (i.e., its total

Legendre transform with respect to all extensive properties) shall have a non-negative

second variation. That is to say the first variation of the excess energy always tends

to zero and if the second variation becomes negative the excess energy has reached a

maximum and must decrease. If the second variation of the excess energy becomes

negative definite the decrease is catastrophic (i.e., the system is unstable).
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In contrast to theoretically derived stability criteria, the experimentally measured
values of the extremizing function and its rate of change per cycle permits an
unequivocal determination of operational stability criteria. For example, if the
measurable extremizing function is positive and does not change by a measurable
amount from one cycle to the next then the system is operationally at a stable
minimum. If the measurable extremizing function is positive and decreases from one
cycle to the next the system is asymptotically approaching a stable minimum, that is
to say the excess energy is positive but is becoming less positive under the total
constraints on the system. These stability criteria are summarized in Table II.

Although the excess energy can be positive or negative, examples c, negative excess
energy are rarely encountered in nature, but they may exist (e.g., super heated crystal

or one with less than the equilibrium concentration of defects). If one has an
asymptotically unstable maximum it will ultimately become unstable with the

formation of a dissipative structure. The length of time required for this to occur

then becomes a prcolem in variational calculus with an undetermined upper limit.

SUMMARY AND CONCLUSIONS

By taking the total Legendre transform of energy with respect to all the extensive
variables we have reformulated the second law of thermodynamic so that the burden

of accounting for the time evolution for a thermodynamic system is shifted from the
concept of entropy, which can only be rigorously defined for an isolated system at or
near equilibrium, to the concept of an excess energy functional that is applicable to
open or closed systems as well. We proposed that "It is the minimization of the
uncompensated dissipation of energy within the system of interest — not the increase
in entropy of the uni^ ,erse — that represents the practical embodiment of the second
law." By defining the uncompensated disipation of energy, as the change in the
internal energy of the system minus the change in excess energy we can equate the
second law to the variational principle of minimium dissipation of energy. This

principle can, in turn, be shown to be the Eulerian time derivative of Hamilton's
principle of varying action. The difficulty in applying this principle to a system that
can exchange energy or matter with its environment, comes in applying the necessary
constraint that at a stationary state there must be a balance of power between the

system and its environment. If the nature of the environment is such that this
constraint can be expressed as the derivative of some function, the excess energy
evolves to a stationary state by the usual linear nonequilibrium thermodynamics where
0, nsager's reciprocal relations apply and all forces can be derived from a potential. In
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the more general case, the Euler-Lagange equations cannot be integrated, the excess
energy functional is not stationary but will continue to evolve with time.

We have approached this more general case by taking advantage of the fact that the

time and distance scales of the observer as well as his measurement precision, may be
combined to determine the state of the system from an operational point of view. By
defining the extremizing function as the difference between the intensive variables
averaged over an experimentally determined volume at a given time and the same
variables averaged over an experimentally determined interval of time at a given
position within the system, we obtain a function that is both differentiable and
experimentally measurable.

Using this function and its Eulerian time derivative we can approximate the variation

of th2 excess energy functional in a manner exactly analogous to the way one can
experimentally approximate the differential of an ordinary function. The procedure
involves driving one or more of the intensive environmental variables in a cyclic
manner and measuring the response of the systems extensive properties. The
frequency and amplitude of this cyclic fluctuation provides an additional constraint on
the system so that these dynamic fluctuations not only yield an estimate of the state
of the system and how it is changing because of the initial constraints but by

increasing the amplitude and varying the frequency it is possible to accelerate these
changes or influence the state to which the system is changing.

This treatment allows for the possibility of actually driving the system to an

instability or a maximum in the excess energy (a concept that does not occur in the
entropy production and entropy flow treatments). In addition, by controlling the
frequency of the fluctuation we can effect some control over the particular
nonequilibrium state to which the system evolves when driven beyond instability.
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TABLE Q

EXPERIMEPTALLY DETERMINED STABILITY CRITERIA

IF C > 0 and S = 0 then if > 0, 68 s 0,6 1f >0

and we have an operationally stable minimum

IF C> 0 and a< 0 then 9 > 0, d 00 + 6'9< 0

and we have an asymptotically stable minimum

IF E > 0and t >0 then OF >0,68 +d:9 >0

and we have a asymptotically unstable maximum
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