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A PROPOSED APP..OACH TO THE
APPLICATION OF NONLINEAR IRREVERSIBLE THERMODYNAMICS
TO PRACTURE IN COMPOSITE MATERIALS
by Paul H. Lindenmeyer

SUMMARY

We have shown that the fracture criteria upon which most fracture mechanizs is
based (i.e. some modification of Griffith erack theorv) are not appropriate criteria for
the fracture of viscoelastic materials such as polymer matrix composites. Griffith
crack ‘heory is an equilibrium thermodynamic theory based upon an energy balance in
which time plays no role. A viscoelastic material is by definition time degendant and
consequently requires a nonequilibrium theory based upon a power balance. We have
proposed such a criterion based upon a reformulation of the second law of thermo-
dynamics. We have defined two experimentally measureable functions, the uncompen-
sated dissipation of energy, £, and its time rate of change,é . Measurement of these
functions does not require a knowledge of crack length or orientation and can account
for strain hardening due to molecular orientation or dislocation pile-up as well as
strain softening due to the formation and propagation of cracks. Our fracture
criterion is a eritical value of the change in excess energy, A8, given by the definite
integral of Eover time and volume. This critical value, A&,, occurs when the first
variation,6@equals zero and the second variation,8% is negative. Thus our failure
.criterion involves. intcgration over both the time required to fracture and the volume
involved in irreversible deformation. We have propesed methods for experimentally
measuring and calculating these parameters. The integral of £ over time and the
thickness of the specimen may be shown to be equivalent to Rice's J integral if the
only irreversible change involves the propagation of a single crack completely through
the thickness. In a similar manner, it reduces to the Irwin strain energy release rate if
the sarple is assumed to be completely elastic.
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INTRODUCTION

This report represents the final summary of a nineteen month study on the
application of nonlinear irreversible thermodynamics (NiT) to composite materials,
The general objective of this study was to explore the application of some recently
discovered thermodynamic principles (1) to the characterization and testing of
composite materials. More specifically our immediate objective was to use these
principles in ar: attempt to develop screening tests for the measurement of toughness
in viscoelastic matrix materials for use in high modulus graphite fiber composites.

This project represents only a part of a program much larger in scope in which
the principles of NIT are applied to a wide variety of measurements, accelerated aging
and control of the effect of various environments on the piroperties of materials and
systems of materials (see Appenlix A). In brief this more general program involves a
reformulation of the second law of thermodynamics in which the concept of entropy is
replaced by the concept of excess energy. The principal advantage of this
reformulation is that while entropy can only be calculated indirectly from static
measurements made on systems presumad to be at equilibrium, excess energy can be
directly obtained from dynamic messurements on systems that are not necessarily at
equilibrium. In effect this reformulation has shifted the burden of accounting for the
time evolution of thermodynamic systems from the increase in entropy of isolated
systems - which can only be approximated in real life - to the change in excess energy
of real systems that may be open or closed with respect to the exchange of energy and
matter. Thus we suggest that "it is the minimization of the uncompensated dissipation
energy of the system of interest - not the increase in entropy of the universe - that
represents the practical embodiment of the second law." The uncompensated
dissipation of energy is defined as the change in the internal energy minus the change
in excess energy. The excess energy is in turn defined as the total Legendre transform
of energy with respect to all extensive properties.

This reformulation of the second law has made possible an exnperimental
approach to NIT using dynamic measurements and real time data processing that has
only become feasible with the advent of microprocessor control of experimentation
and computer processing of data in real time.
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ASSESSMENT OF TFE PROBLEM

Modern graphite fiber-organic matrix composites offer great potential for use in
the aerospace industry since the strength to weight and modulus to weight ratios of
these materials can substantially exceed those of the metals now in use. The design of
reliable structures using such materials has not been sble to make use of much of this
potential as a consequence of the fact that the failure modes of composites are
substantially different from the metals they might replace. In particular the impact
failure and the compressive failure of composites occur by substantially different
mechanisms than the corresponding failures in metals. Since these failure modes are
not well understood, designers must rely on ultimate properties rather than modulus or
fracture toughness in order to design reliable structures. This tends to wipe out much
of the apparent advantage of composite materials.

Two approaches are available for improving this situation. First, one can
atiempt to chemically (or physically) modify the properties of both the fiber and the
matrix to increase the ultimate strength and elongation without sacrificing the
modulus. Alternately, one can attempt to measure the fracture toughness by
modifications of conventional fracture mechanics techniques. It has been shown by 1.
Wolock and his colleagues (2) that such measurements, while possible, are quite
complex and cannot be reduced to a single number probably due to the high anisotropy
of local regions and the multiple cracking which frequently exists even in a
macroscopically isotropic structure.

Clearly new measurement techniques are called for since even in the first
approach one requires some measure of toughness to use in screening the various
possible chemical and/or physical modifications that one might make. Since this
contract was funded by a group having responsibility for the first approach, our
primary effect was devoted to obtaining such a qualitative screening test. However,
since fracture toughness has proven so successful in designing with some materials it is
important that the relationship between any qualitative screening test and the
conventional fracture toughness parameters be established as well as possible.

Two conditions were accepted by all concerned at the beginning of this project.
First, it was agreed that any screening test must be made on a composite laminate



rather than the neat resin since there is considerable evidence both theoretical and
experimental that the morphology and consequently the properties of the matrix might
be substantially modified by the presence of a large fraction of high modulus fibers.
The second condition was that any test must take into account the inherent
viscoelastic nature of polymeric material. Thus the newly discovered principles of NIT
(1) were a logical starting point.

FRACTURE CRITERIA

The fracture criteria used in fracture mechanics are all either modifications of
Griffith crack theory or can be directly related to it. Thus these criteria are all
dependant upon some sort of energy balance and are based upon an equilibrium
thermodynamics in which time plays ne¢ role. The original Griffith theory was applied
to brittle ceramic or glassy materials in which the energy required to propagate a
crack was balanced by the energy required to create the new surfaces. Thus failure
was presumed to occur whenever G, the strain energy release rate per unit crack
length and thickness, equaled or exceeded twice the surface energy

(G-2v)2 0 (1)

The critical value, G, where the above expression equals zero would thus appear to be
a material parameter which need be determined only once for each material. While
this might be approximately the case for the very brittle materials which Griffith
considered, application of these-ideas to metallic systems soon showed that additional
energy was required and that this additional requirement could be attributed to the
energy necessary to plastically deform the material at the tip of the propagating
crack. A number of ways have been suggested to theoretically derive or experi-
mentally measure the critical strain energy release rate, G, or its conjugate
parameter the stress concentration factor, K. We shall not discuss these methods
which can be found in standard textbooks on fracture mechanics.(3) Rather we only
point out that they all involve some assumption or experimental measurement of the
length and orientation of the propagating crack. Furthermore, these methods all
assume that the difference between plastic and elastic deformation is obvious and
requires no definition. Thus, plastic deformation is permanent and irreversible,
whereas elastic deformation is reversible and returns to its initial state when the
stress is removed. The fracture toughness of a material as measured by G, or K, is
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thus the total amount of irreversible work that may be done on the material before
catastrophic failure occurs.

We shall retain this definition of toughness and its relationship to the usual
pacameters Go and Ko and explore other means of measuring the amount of
irreversible work that can be done on a material prior to catastrophic failure. In
particular we need measurement techniques which are applicable to polymer matrix
composites. Except in very unusual cases (e.g., delamination), the fracture of such
composites does not occur by the propagation of a single crack in a given direction.
Rather one observes multiple cracks in different directions over a volume of the
material. Consequently, a parameter suitable for measuring the fracture toughness of
a composite should involve an energy per unit volume rather than the energy per unit
area.

We must emphasize two fundamental differences between polymeric composites
and the metals they may hope to replace. These differences are critical in under-
standing fracture phenomena. The first of these is the fact that such composites
exhibit a very high degree of local anisotropy. As far as crack propagation is
concerned, (his anisotropy is not removed by the symmetry of the lay-up. Thus, even
the simplest unidirectional composite has tetragonal symmetry requiring six elastic
constants for its complete description at the local or crack-tip level and typical
composite lay-ups may require up to the full 81 constants of triclinic symmetry. The
extreme comple,ity of such a situation serves to emphasize the difficulty and the
approximate nature of any application of the traditional fracture mechanics para-
meters such as G, or Ke.

The second and even more important difference is the fact that this multiplicity
of elastic "constants" are not at all constant but are functions of both time and
temperature, changing by as much as two to three orders of magnitude over the range
of times and temperatures encountered in practice. For example, Figures 1 and 2
display the elastic and the loss moduli of a typical composite laminate deformed in a
bending mode. These measurements were made by the Dynastat Viscoelastometer
operating in the very low amplitude region (~25 microns) where linear viscoelastity
clearly applies. These figures are by the courtesy of Professor S. Sternstein. Thus,
polymer composites are clearly viscuelastic and any reasonable fracture criterion must
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OF POOR QUALITY
involve the time over which fracture occurs as well as the volume over which the

specimen undergoes irreversible defo.mation.
NONEQUILIBRIUM FRACTURE CRITERIA

The idea of applying a nonequilibrium thermodynamics to fracture criteria is not
new since it is obvious that fracture is a nonequilibrium process. Rice(4) has proposed
that the Griffith fracture criterion, equation (1), should be modified by multiplying by
the velocity of crack propagation.

(c-w)-g:‘;; 0 (2)

He bases his further development upon crack propagation via a "q:asi-static" mecha-
nism which makes his approach compatible with both of the two principle schools ~f
thought on nonequilibrium thermodynamiu.(f’) However, this restricts his reasoning to
the region very close to equilibrium where one can only apply linear nonequilibrium
thermodynamics and it is quite generally agreed that instability phenomena such as
fracture require nonlinear conditions.

We have proposed a novel approach to a nonlinear irreversible thermodynamics
(see Appendix A) which introduces the excess energy functional, 8,

8 -ff £ ava (3

where § represents the Eulerian time derivative of the specific Lagrangian (i.e. the
difference between the kinetic and the potential energy per unit volume and unit
time).

We now suggest that fracture occurs when this excess energy changes hy some
critical amount. This critical value occurs when the change in excess energy over a
definite volume and a definite interval of time reaches a positive maxirmum.
According to the calerius of variations, such a maximum will occur when the first
variation of the excess energy, 6(‘;, vanishes and its second variation, 628, is negative~
definite for all possible changes in the nature of the extremizing function §.
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Before showing how one can experimentally measure this extremizing function
end its time derivative, we first show that the excess energy functional can be reduced
to the Rice J-intergral under special conditions.
The change in excess energy is a functional dependant upon time, t, measured in
units of the nbservers time scale and the position vector, r, measured over a volume

determined by the observers distance scales (see Appendix A) so that equation (3)
becomes

Jnfféﬂdt-ff(g% 075%)“« (4)

But & has been defined (see Appendix A) as follows:

Err = Rt)- o) (5)

so that,

J-Iﬂ%i--vx%]dm
-I[J‘%dv -fvi-%qv]dt

Now by Green's theorem we can convert the second integral from a volume to a

(6)

surface integral so that
Srt) = f[ Rav . [az. o0 A L at (7
' vd dt J

where N is the vector normal to a simple convex surface, A, surrounding the volume,
v.



We now assume the special case where the system is elastic-plastic rather than
viscoelastic. That is to say, we assume that the time scale of the observer is such that
creep and stress relaxation are negligible small. We then remove the time dependency
and write the volume as a triple integral over the cartesian coordinates, x, y, z.

ORIGINAL PAGE S
g(x.y,z) 's fffﬁ dxdydzs - an-drdA OF POOR QUALITY
(8)

If the only contribution to the excess energy is a single crack of length, a, in the
x direction extending through a plate of constant thickness, b, in the z direction, we
can carry ot't the integration over y and z, divide by b and differentiate with respect
to a. The result is an expression for the excess energv change as a surface energy
change per crack length and per unit thickness

w -jicy -j.'..x«g;a.
if X oy -ni-g{' ds
r

(9)

where irtegration is now over an arbitrary curve I in the x, y plane surrounding
the crack t'p and dr, becomes dy the displacement normal (> the curve. I{ we now
identify & with the strain energy function, W andn& with the traction vector, T, our
excess energy per unit surface with a crack of length, a, becomes

"
<~

10) -fr Way - 7. o

(10)

which we recognize as the Rice J-integral. It is weli known (3) that if the additional
assumption of linear elastic behavior is made, the J-integral becomes equivalent to the
Irwin strain energy release rate, G.



Thus we have shown that our excess energy functional is a more general
formulation, applicable to viscoelastic materials with multiple cracks, that reduces to
J for elastic-plastic materials with a single crack and to G for linearly elastic
materials. The fracture criterion, A8c, is the maximum value of the excess energy
functional and represents the total amount of irreversible work which can be done on a
system with a definite volume over a definite period of time. It covers any
irreversible process including strain hardening caused by molecular orientation or
dislocation pile-up as well as the usual strain softening due to the formation and
propagation of cracks.

INSTABILITY CRITEAIA

The fracture criterion suggested in the previous section is a more general
measure of fracture toughness that includes the usual fracture toughness parameters
as special cases. Fracture is in turn a special case of a thermodynamic system driven
to the point of instability by the flow of energy and/or matter to or from its
environment. By considering the more general thermodynamic instability criteria we
can include all environment influence on the system of interest, not just the
mechanical field.

The thermodynamic instability criteria proposed by Glansdorff and Prigogine(6)
are expressed in terms of the second variation of entropy 628 and its time rate of
change. These criteria have been criticized by several authors(5,7,8) primarily
because the first variation of entropy represents a force holding the system from
equilibrium and consequently cannot vanish. We do not wish to take either side in this
polemic. Instead we have reformulated the second law of thermodynamics by taking
the total Legendre transform. A Legendre transform may be understood as the
transformation that changes a function from a set of moving coordinates to a set of
fixed coordinates or vise versa. In our case, it changes the independant variables from
the extensive properties (i.e., moving or Lagrangian coordinates) to the intensive
properties (fixed or Eulerian coordinated The total Legendre transform of energy is
called an excess energy and vanishes at equilibrium.
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By taking the total Legendre transform we have shifted the burden of accounting
for the time evolution of thermodynamic systems from an increase in the entropy of
an isolated system - that can only be approximated in real life - to the change in the
excess energy of real systems which may be either open or closed. Since energy is e
conservative quantity, it is easier to think of it as moving from one point in space to
another, as well as increasiug and decreasing in various parts of the system. Thus, we
have avoided the use of the concept of entropy production and entropy flow. Entropy
will only be considered as a property of the total system of interest when it has
reached a state of equilibrium where it can be rigorously defined. If the system is not
at equilibrium, any entropy associated with it will be considered as a virtual entropy.
That is to say, the virtual ontropy of a nonequilibrium system at any instant of time
will be the entrcpy that the system would have if it were isolated at that instant of
time and allowed sufficient time (infinite if necessary) to come to equilibrium. In
order to deal with such a virtual entropy we need to define its conjugate variable (i.e.,
temperature) as the instantaneous space average temperature T (read T hat).

ctually, we need to define a space average for all intensive quantities that are
environmental variables (see Appendix A). -

However, by far the most important consequence of this reformulation is
experimental rather than theoretical. Entropy can only be calculated indirectly from
static measurements made on the surface of systems that are at equilibrium. With the
help of modern microprocessor technology and the computer analysis of data, we can
not only directly measure the change in excess energ'y,A& but we can experimentally
obtain an approximation to its variation,§ &, by dynamically fluctuating one or more
intensive properties and measuring the response of the systems extensive properties.
Thus we have the means to convert irreversible thermodynamics from an esoteric
theoretical science to an experimental science that offers many practical possibilities.

THE EXTREMIZING FUNCTION,

Recall our definition of fracture toughness as the total amount of irreversible
work that can be done on a material by a given mode of deformation prior to failure,
If this deformation is applied by means of a dynamic force, each complete cycle will
carry the material through a thermodynamic cycle back to the same apparent state.
Any irreversible work done upon the material will manifest itself as a change in the
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internal energy of the system. We propose to measure this change in internal energy
by measuring the response (i.e. displacement) of the system to the dynamic furce and
separating the work (i.e, force times displacement) into an in-phese and an out-of-
phase portion. The in-phase or conservative portion is the reversible work and the out-
of-phase portion is the dissipative or irreversible work. This separation is arbitrarily
dependant upon the time scale of the observer as determined by the frequency of the
¢‘ynamic force.

During the first half of such a cycle the environment does work on the material,
energy flows from the environment to the system. Some of this .nergy (i.e., elastic
strain energy) is stored by the system. But sin_e energy has flowed, some part of it
must also have to be dissipated in the form of heat which flows back to the
environment. During the second half of the cycle, the elastic strain energy stored in
the system during the first half cycle flows back to the environment as the system
does work on the environment. But this flow of energy also dissipates energy in the
form of heat that flows back to the environment. At the end of a complete cycle, the
net amount of work done on the system by the environment may be equal to, greater
than, or less than the amount necessary to compensate for the dissipation of energy.
If it is exactly equal, the system may be said to have been driven through & reversible
thermodynamic cycle by the environment. All the energy dissipated during the cycle
has been compensated by work done on the system by the environment a.d the system
is unchanged by the fact that it has been driven through a reversible cycle. There is
no uncompensated dissipation of energy.

On the other hand if the work done on the system is either greater or less than
the amount of energy dissipated, the interaal energy of the system is changed. If the
work done is less than the energy dissipated, the internal energy is decreased, and we

ve, for example, the release of frozen strains. If the work done is greater than the
energy dissipated, the internal energy is increased, and we have, for example, strain
softening or the creation and propagation of cracks.

MEASUREMENT OF THE EXTREMIZING FUNCTION

‘The extremizing function, £ , is important theoretically since it provides a
specifically defined function of time and space that can be differentiatec with respect
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to both time and location within the system subject to the time and distanca scales of
the observer (see Appendix A), However, its most significant property is the fact that
both it and its derivative with raspect to time can be experimentally measured using
dynamic techniques. A general description of this procedure is as follows:

(1)

(2)

(3)

(4)

(5)

(6)

Drive the load in a sinuscidial manner with contro’led amplitude an. fraquency.
Measure the displacement of the system in response to this load.

Calculate the in-phase or conservative power (load times displacement per unit
time) and integrate over a complete cy le.

Calculate the out-of-phase or dissipative power (displacement times load per
unit time) and integrate over a complete cycle.

Add the change in the conservative energy per cycle to the ~henge in the
dissipative energy per cyzle. The result is an experimental measuremen: of the
extremizing function, £ (i.e., the uncompensated diss.pation of energy) for the
particular time and distances scales as well as the level of dynamic power used.
As long as the amplitude of the fluctuuting loed is small enough for the linear
appreximation to be valid within experimental measurement prec.sion, the result
will te zero.

If there is no ineasurable value for the extremizing function, it will be necessary
to increase the amplitude until a finite or measurable value is obtained. The
minimum power level at which a measurable value for the extremizing function
may be obtained is the onset of measurable irreversibility (see next zection).
The change in the measured value of extremizing function from one cycle tc the
next is a measure of the time derivative of the extremizing function, (i.e., é).

It may be desirable to carry out the integrations in steps (3) and (4) over successive
half cycles and calculate their sum over half cycles as well as full eycies. This

information is useful in determining the onset of asymmetry, to be +->uss~d in a

latter section.



THE ONSET OF IRREVERSIBILITY

When the amplitude of our dynamic fluctuation is small enough so that the
displacement can be approximated as a linear function of the load, the cunservative
energy change in the first half cycle will be equal and of opposite sign to the
conservative energy change in the second half cycle so that the conservative energy
per cycle vanishes., On the other hand, the change in dissipative energy is equal and
opposite in sign to that of the conservative anergy so that in the linear approximation
the sum of the conservative and the dissipative energy changes per half cyele vanish
and there can be no uncompensated dissipation of energy in the linear approximation.

However, .as the amplitude of the fluctuating load is increased, a point will be
reached where the linear approximation fails and it becomes possible to measure an
uncompensated dissipation of energy. This is the onset of measurable irreversibility.
We siggest that this represents an important measurable parameter that can be used
to compare materials systems. We recognize that such a parameter will be dependant
upon the time and distances scales as well as the measurement precision of the
observer, never the less, it will provide a relative numnber that can be used to rank
materials according to their response to various kinds of load.

Once one has a measurable value for the extremizing function, one can proceed
in various ways. For example, one can change the frequency (i.e., the time scale) of
the fluctuating load and observe the effect on the uncompensated dissipation of
encrgy. By this means, one can obtain the maximum change in the system's response
either by finding the "resonance" frequency if it lies within the experimentally
available range or by using the maximum or minimum available frequency.

THE ONSET OF ASYMMETRY

After one has a measurable onset of irreversibility an? perhaps has adiusted the
frequency to obtain the most sensative detection of uncompensated dissipation of
energy, the next step is tv expiore the infor.:ation that one can deduce from this
mees'rement. First of all the sign of £ is significant.
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If the system is initially in equilibrium with its environment, a sinusoidal
.auctuation of the load will tend to drive the system away from equilibrium. That is to
say, the uncompensated dissipation of ener;y will be positive, the dissipative energy
per cycle exceeds the conservative energy and the excess energy of the system
increases. For example, this might correspond to a release in elastic strain enerygy due
to crack propagation.

On the other hand, if the system is not a true equilibrium structure, for example,
a polymeric glass or a metal with frozen-in strain energy, then fluctuating the load
may cause the system to approach equilibrium. In this case, the extremizing function
is n.gative and the excess energy of the system decreases.

Pinally, we recall that no uncompensated dissipation of energy is measurable as
long as the system obeys the linear approximation within the measurement precision.
However, the depariure from linearity can occur in a number of different ways. In
particular, our proposed measurements will permit us to distinguish between a
measurable nonlinearity in the dissipative energy and one in the conservative energy.
Recall that in the linear case the dissipative energy averages to zero for each half
cycle whereas the conservative energy vanishes when averaged over one cycle.
Consequently, a nonlirearity in the dissipative energ’ which yields a measurable value
for £, will be symmetric. That is to say, equal amounts of uncompensated dissipation
of energy will occur in the positive and negative halves of the cycle. However, if the
nonlinearity causing the uncompensated dissipation occurs in the conservative energy,
it must be asymmetri~ s> that more uncompensated dissipation of energy occurs in one
half cycle than in the other.

The difference between a symmetric and an asymmetric extremizing function is
very significant. A symmetric function does not necessarily result in any permanant
change in the excess energy of the system. The extremizing function may remain
constant from one cycle to the next so that E = 0. However, a nonlinearity in the
conservative energy that results in a measurable asymmetric extremizing function
produces a measurable change in excess energy for each cycle.

15



Thus, the onset of measurable asymmetric represents the second parameter
which we may use to characterize our system. Fluctuating the load at an amplitude
sufficient to show asymmetry will accelerate the approach to equilibrium or the
deviation from equilibrium depending upon sign of the uncompensated dissipation of
energy. This kind of accelerated change is particularly useful since it occurs without
any change in the average environmental properties since they are varied sinusoidially
about their average value.

THE ONSET OF INSTABILITY

As we have indicated earlier, the stability of a nonequilibrium thermodynamic
system has been the subject of a long standing polemic in the literature. We do not
propose to take either side in this argument. Rather, we suggest that our dynamie
methods provide an experimental approach to actually driving the system farther and
farther from equilibrium until instability can be experimentally observed. We believe
that once the experimental measurement of instability has provided a sufficient
number of examples, it may be possible to resolve the differences between the various
proposed criteria.

Based on very limited measurements from mechanically stressed systems, we
have suggested that the instability resulting in fracture may be characterised by a
critical valus of the change in excess energy,A&,. This critical value occurs when the
variation in excess energy vanishes and the second variation become negative. See
Appendix A for an explanation of how an approximation to the first and second
variations of a functional may be obtained experimentally.

16



SUMMARY

We have derived a nonequilibrium fracture criterior based upon a reformulation
of the second law of thermodynamies. This criterion is particularly applicable to
polymeric composites or other viscoelastic materials where conventional fracture
criteria are most seriously in error. Our fracture criterion is the critical value of the
excess energy functional that occurs when the excess energy, which involves an
integral over both time and the volume of the material, reaches a maximum. We have
shown that in the special case of a single crack propagating in a nonlinear plastic-
elastic material, our excess energy functional reduces to the Rice J-integral. Thus our
fracture criterion is clearly a more general criterion, applicable to viscoelastic
materials and which contains all of the conventional criteria as special cases.

However, the most important accomplishment was the definition of an
experimentally measurable function and its time derivative which should make it
possible to measure experimentally the excess energy functional and its variations.
These experimental measurements do not require s knowledge of the length or
orientation of the crack or cracks involved in the failure inuchianism. FPurthermore,
important parameters related to this fracture criterion can be measured without
fracturing the specimen. One therefore has the possibility of making successive
measurements on the identical specimen after subjecting it to various treatments that
may effect its performance.

RECOMMENDATIONS

In order for these measurements to result in useful criteria for the design of
composite structures it will be necessary to build up a date base of experience. This
will involve computer programs to measure these functions, reduce the data in real
time, and feed backthe results to the measuring device in order to control the
frequency and amplitude of the dynamic fluctuations which make possible this novel
dynamic approach to a truly dynamic thermodynamies.

17



Cleacly the next step to be taken involves programming these calculations intc a
computer controlled MTS testing machine so that these measurements can be made in
real time. This will make it possible to independently control the frequency, the
amplitude and the average load while observing the effect on the measured values of £
and its time rate of change.

We are convinced that this approach to dynamic testing of materials may
represent an important breakthrough in predicting and improving the long term
performance of materials since it offers a means of predicting failure without actually
failing the specimen. One therefore has the possibility of making successive
measurements on the identical specimen after subjecting it to various treatments
which may effect its performance.
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APPENDIX A

A Novel Approach Toward a Truly Dynamic Thermodynamics

by Paul H. Lindenmeyer
The Boeing Company
Seattle, Washington 98124

"Two Koads diverged in a Wood, and |
I took the one less traveled by
And that has made all the difference”

Robert Frost

INTRODUCTION

It has long been recognized that the usual equilibrium thermodynamies should more
appropriately be called thermostatics, since the only dynamic processcs it can describe
are the so-called "quasi-static" processes, which proceed so slowly that each point on
the path between states can also be considered an equilibrium state. Our objective is
to develop a truly dynamic thermodynamics that will permit the treatment of the
overall kinetics of a complex process in a manner analogous to the way the usual
thermodynamic potentials treat the overall energetic averages. This dyramic
thermodynamics will encompass the kinetics of the overall chemical and structural
changes occurring within the system and will reduce to the usual equilibrium thermo-
dynamics and the nonequilibrium thermodynamics of linear processes as special cases.

The usual approach to the development of a nonaquilibrium thermodynamics involves
either the assumption of local equﬂibrium(1v2v3) or the use of the Clausius-Duhem
inequality as a constraint upon the constitutive equations of a continuum mechanics.(4)
For an excellent, up-to-date review of these different approaches, see Lavenda.(5) All
of these approaches involve an entropy balance equation that introduces time and
space dependence into the concept of entropy by means of an entropy production and
an entropy flow. Without in any way questioning the validity of these approaches, we
only point out that this marks the "divergence i1 the road," and we shall have no
occasion to use an entropy production or an entropy flow. Our motivation for this is a
very practical one—it is not possible to directly measure entropy. We suggest that the
concept of entropy is difficult enough for most people to understand without intro-

ducing the temporal and spatial derivatives of this nonconservative concept.
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EQUILIBRIUM AND NONEQUILIBRIUM THERMODYNAMICS

A rigorous experimentally based thermodynamics permits one to use the thermo-
dynamic properties o>tiined from static measurements made on the surface of two
systems at equilibrium to predict the thermodynamic properties of the combined
system once it has again attained equilibrium. In practice one of the two equilibrium
systems, called the environment, is presumed to be very large so that iis tiiermo-
dynamic properties do not change by a measurable amount. Note, however, that the
environment must be a uniform equilibrium system in order that a rigorous equilibrium
thermodynamics may be applied.

In an exactly analogous manner we shall propose a way to make dynamic
measurements on systems that are not at equilibrium and to predict the dynamic
thermodynamic properties of the combined systems as a function of time. This
dynamic thermodynamics encompasses the kinetics of the overall chemical and
structural changes within the system and reduces to the usual linear/nonequilibrium
thermodynamics as the amplitude of our dynamic measurements are reduced and to
equilibrium therinodynamics as the amplitude becomes zero.

The basic difference between equilibrium and nonequilibrium thermodynsmics, as we
perceive it, is that in the former, energy (and, in some cases, matter) can flew only in
one direction as the system approaches equilibrium. In contrast, nonequilibrium
thermodynamics permits the flow of energy (or matter) both into and out of (i.e,
through) the system. That is to say it can flow either from the system to the
environment or from the environment to the system but never both ways. This tiow
can occur either continuously, in at one point in space and out at another or
alternately in at one time and out at another, depending upon the nature of the
environment in contact with the system of interest.

The rate of energy flow plays no role in determining the state of the system in
equilibrium thermodynamics. On the other hand, if the environment is nonuniform
either in space or time, so that energy can flow through the system, then the rate of
flow (i.e., power) plays a determining role. It may determine not only the state, but
also the path by which it moves toward this state. Thus power, rather than energy, is
the sine qua non of nonequilibrium thermodynamies.
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TIME AND DISTANCES SCALES

Having thus distinguished between equilibrium and nonequilibrium thermodynamics,
our next major point is the assertion that this distinction is arbitrarily dependent upon
the time and distance scales adopted by the observer. All thermodynamic quantities
represent averages over a very large number of complex processes occurring within
the system of interest. An average can be taken only over a definite interval of time
or space (distance). As a practical minimum, thermodynamic quantities must be
considered as being averaged over the time required to make a measurement and the
space occupied by the measuring device. The practical upper bound to these time and
distance scales is given by the size of the system and the time it is under observation.
If the system is at equilibrium, these time and distance scales may appear to be of no
importance, since an equilibrium system is both homogeneous (or at most composed of
a limited number of homogenecus phases) and time independent. But a little thought
will allow one to realize that the definitions of both homogeneity and time
independence are also arbitrarily dependent upon the time and distance scales adopted
by the observer.

The ability of the observer to arbitrarily define the time and distance scales has
suggested a whole new series of dynamic measurements that have only become
experimentally feasible with the advent of modern microprocessor technology. These
measurements involve driving the system through a series of closed thermodynamie
cycles by causing the environmental variables to fluctuate in a sinusoidal manner. The
frequency of these dynamic measurements fixes the time scale; the size of the system
or the distance between measuring devices determines the distances scales and the
amplitude of the fluctuations controls the power that passes through the system with
each cyecle,

THE GIBBS ASSUMPTION AND ".EGENDRE TRANSFORMS

Since most other approaches to nonequilibrium thermodynamics employ some sort of a
generalized Gibbs equation, it is instructive to review this most valuable contribution
to thermodynamics. Gibbsian thermodynamics is based upon the assumption that the
energy of a system can be expressed as a linear homogeneous function of its extensive
variables. This is equivalent to the additivity postulate or the assumption that all
contributions to energy scale linearly with size. This assumption is always valid when
the system is sufficiently macroscopic and at equilibrium. When it is also isolated, the
A-3
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approach of such o system to equilibrium is determined by the maximization of the
entropy function. If, instead of being isolated, the system is able to ex~hange energy
(or matter) of a given kind with a uniform environment, the extensive variable
appropriate to this kind of energy becomes dependent upon its conjugate intensive
variable, which is controlled by the environment. The systems approach to equilibrium
then is determined by the minimization of the appropriate partial Legendre transform
with respect to the extensive variable. A Legendre tramsform may be thought of as a
cocrdinate transformation from a set of moving (Lagrangian) coordinates to a set of
fixed (Eulerian) coordinates, or vice versa. In this respect, extensive thermodynamic
variables are analogous to Lagrangian and intensive ones to Eulerian coordinates.
Thus, in an isothermal system, temperature becomes an independent variable control-
led by the environment and the partial Legendre transform with respect to entropy—
better known as the Helmholtz free energy—becomes the function that must be
minimized as the sysiem approaches equilibrium. Similarly, the Gibbs free energy,
which is the partial Legendre transform with respect to entropy and volume, is the
function that must be minimized as an isothermal-isobaric system approaches
equilibrium.

If the Gibbs assumption is valid, the total Legendre transform with respect to all the
extensive pronerties vanishes, yielding the Gibbs-Duhem relationship. This relation-
ship can be solved for one of the extensive properties, usually volume or mass. This
may be used as a scale factor to convert the other extensive properties into densities
or specific quantities. Only when one has such a scale factor is it possible to express
energy or entropy as a density or a specific quantity and to speak of their derivatives
with respect to time and/or space. That is to say, only when the time and distance
scales adopted by the observer (who defines the system and determines the measure-
ment precision) are such that the Gibbsian assumption can be made is it possible to
convert extensive properties to intensive properties and express them as functions of
time and space. This is probably why most authors have chosen to generalize the
Gibbs equation and the Gibbs-Duhem relationship as a means of introducing time and
space into equilibrium thermodynamiecs.

We shall not make the Gibbs assumption, but rather we follow the example of Hill,(6)

who showed that when the system becomes small there are a number of contributions

to the energy that do not scale linearly with size and hence cannot be neglected. As a

consequence, energy cannot be expressed as a linear homogeneous function cf the

extensive variables, the total Legendre transform does not vanish, and there is no
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Gibbs-Duhem relatioiiship to provide a scale factor. Instead, we shall assume that, in
general, every thermodynamic system may have a nonlinear term or excess energy
given by the total Legendre transform of energy, and we shall attribute all variation in
time and space to this excess energy. Following Hill, we use the symbol § for this
excess energy. However, we do not restrict our system only to equilibrium states, as
did Hill. Thus, in addition to the small cystems effects, which may become negligible
as the system increases in size, our excess energy includec all possible contributions to
the nonlinear or heterogeneous nature of the system. For example, it includes
gradients in the intensive properties, which may be introduced or maintained by
nonuniform environments or by pseudothermodynamic fields (i.e., mechanical,
electrical, or magnetic). In addition, this excess energy may include gradients in
intensive properties that are no longer maintained by a nonuniform environment or an
external force, but have not yet dissipated. That is to say, they agpear to be frozen
into the nonequilibrium structure as a consequence of the time scale of the observer.
In effect, the total variation of energy with time and space is contained in this excess
energy, so that the evolution of the system with time is shifted from the concept of
entropy to that of excess energy. As we shall see, this gets around the most difficult
problem in nonequilibrium thermodynamics—namely, how to define entropy when the
system is not in equilibrium.

REFORMULATION OF THE SECOND LAW OF THERNODYNAMICS

The essential feature of our approach to a nonlinear irreversible thermodynamics is a
reformulation of the second law in which the concept of entropy is replaced by the
concept of an excess energy. Thus we propose that "t is the minimization of the
uncompensated dissipation of energy within the system of interest - not the increase in
entropy of the universe - that represents the practical embodiment of the second law".
The uncompensated dissipation of energy is defined as the change in the internal
energy of the system minus change in the excess energy of the system. The excess
energy is in turn defined as the total Legendre transform of energy with respect to all
of its extensive properties., Note that if the system of interest is isolated, the dissi-
pation of energy and the increase in entropy become synonymous and the excess
energy vanishes as the system approaches equilibrium.

The principle advantage of this reformulation is that while entropy can only be

caiculated indirectly from static measurements made on systems presumed to be at

equilibrium, the change in excess energy can be directly obtained {from dynamic
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measurements made on systems that are not necessarily at equilibrium. In effect this
reformulation has shifted the burden of accounting for the time evolution of thermo-
dynamic systems from the increase in entropy of isolated systems - that can only be
approximated in real life - to the change in the excess energy of real systems thet may
be open or closed with respect to the interchange of energy and/or matter with their
environments,

In contrast to entropy, ernergy is a conservative quantity that can easily be visualised
as moving from one point in space to another. Thus we shall completely avoid the use
of the concept of entropy production and entropy flow. Entropy will only be
considered as a property of the system of interest when it has reached a state of

equilibrium. Under these conditions entropy has been rigorously defined in terms of
static measurements. If the system is not at equilibrium any entropy which we
associate with it will be considered to be a virtual entropy. That is to say, the virtual
entropy of a nonequilibrium system at any instant in time will be the entropy that the
system would have if it were isolated at that time and allowed a sufficient time
(infinite, if necessary) to come to equilibrium. In order to deal with such a virtual
entropy, we need to define its conjugate variable (i.e. temperature) as the
instantaneous space averaged temperature, ? (read T hat) at the same instant for
which the virtual entropy is desired. Actually we will need both space averages, X and
time averages X (read X bar) for all intensive thermodynamic properties.

Since eauilibrium thermodynamic systems are by defimtion homogeneous and time
independant, the basic problem in developing a formalism for & nonequilibrium
thermodynamies is how to introduce time and space coordinates into the
thermodynamic quantities. We shail always express all extensive thermodynamic pro-
perties as their instantaneous value for the total system of interest. Thus the total
instantaneous energy of a nonequilibrium system is given by

E(t)= X;(t} aglt) +§lt,8)

where we have relegated all influence of past history, as well as all unhomogeneities,

gradients etc., to the excess energy which we express as a functional.
THE EXCESS ENERGY FUNCTIONAL

Recall that we have defined the excess energy as the total Legendre transform of the
energy of the system of interest with respect to all its extensive properties. The
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excess energy may vary with both time and locatior in space within the system. That
is ‘0 say, the excess energy of 3 nonequilibrium system is manifest as gradients in the
intensive properties of the system. In order to find the total excess en.'3Jy of a
system we must integrate over the volume of the system as well as over a definite
interval of time. The integral over time covers the complete history of the system
from the time it was last in a state of equilibrium, to, until the time of observation, t.
Thus excess energy is not just a thermodynamic function of time and space but it is
actually a functional involving & definite integrs over both the volume of the system
and the time since it was last at equilibrium.

In the most general terms we can write the excess energy functional as
& = [f Zlrteve]ray

where T is a position vector with respect to a set of fixed spacial coordinates,g is the
Lagrangian specific power density function, £ is the extremizing function and VE and
E its spacial and temporial derivatives.

Now according to our reformulation of the second law, this functional will always
assume a minimum value subject to the constraint that there must always be a balance
of power between the system and its environment. The calculus of variations tells us
that a necessary condition for a functional to assume a minimum value is that its first
variation 68 must vanish

§8=6[f@ avar =0

end a necessary and sufficient condition that the first variation of a functional shell
vanish is given by the Euler-Lagrange equation

(#)-T368) oo

Two possibilities exist, either & attains a stationary state in the time interval t-t, and
over the volume V or it does not. If it does the first variation vanishes and we have a
variational problem with fixed limits. If it does not then our problem becomes one of
predicting the time t when the functional will reach a steady-state, that is to say we
have a variational problem with an undetermined upper limit. Both of those situations
can be approachecd via the calculus of variaticns. Whether or not solutions exist will
depend upon the nature of the Lagrangian specific power density function, & and the
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constraints placed upon it by the necessity that there must be a balance of power
vetween the system and its environment at any stationary state.

The technique for introducing a constraint into a variational problem by means of a
Lagrangian undetermined multiplies is well known provided one has a suitable equation
for describing the constraint. To put it briefly one simply defines a new Lagrangian as

Z* =@+ )\(Power Balance Equatin)

where A is the undetermined multiplyer. Since the power balance equation is equal to
zero, this additional term will not influence the vaine of the functional but it will
influence its variation and A must be determined in a manner that causes the
variation to vanish.

The necessary and sufficient requirement that the Fuler- Lagrauge equstion shall have
a unique solution is that all terms in the Lagrangian must bc the drivative of some
f.unction. If the specific Lagrangian power density function, &, is a linear function of
E, the equations have a unique solution, independent of the choice of E. That is to say
the excess energy depends only upon the in. egration limits. Under these conditicns the
system will' evolve to a stationary state via the by now well estabiished linear
nonequilibrium thermodynamics, where Onsager's reciprocal relations apply, the
dissipative forces may be drived from a potential, and Prigogines principle of minimum
entropy production remains valid.

However, in the more general case, where the power balance constraint cannot be
expressed as the Jerivative of some potential function the Euler-Lagrange equation
cannot be integrated and the excess energy functional is not stationary but continues
to evolve with time. It is in this most general case that our experimental approach
becomes most unique. Instead of attempting to devise vector or local potentials or
some other means that will yield an analytic solution to the Euler-Lagrauge equations,
we nropose an experimémal approach in which the extremizing function, § is defined
as the uncompensated dissipation of energy. That is to say E represents the
difference between the intensive variables averaged over an experimentally
determined volume at a given time and the same variables averaged over an
experimentally determined interval of time at a given point within the system. With
this definition of the extremizing function the constrained Lagrangian specific power
density function, @+ ecomes the Eulerian time derivative of the extremizing
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function, d£/dt = ﬁ where both Eand émay be meusured experimentally for a variety
of time scales (dotermined by the frequency of dynamic measurements) and distance
scales (determined by the distance between measuring devices) or sample sizes.

‘THE EXTREMIZING FPUNCTION

We begin by defining an n-dimensional vector X whose components include el! of the
intensive thermodynamic variables, as well as the components of any pseudothermo~
dynamic fields, a reaction parameter for each possible reaction, and the necessary
ordcr parameters for any structural transitions. Each of these components is assumed
to be a function o. :ime and space, so that X = X(p,t) where r is the position vector in
a fixed coordinate system. Although X is a function of ‘:me and space, it cannot be
differentiated, since its components must be averaged over either time or space
before taking an infinitesimal limit. To get around this difficulty, we define two
different kinds of averages:

a space or "hat" average o . v
X(t) = X(r,t)av
e
and a time or "bar" average X(r; 85“,’7 X(e,t)at
=T

and we further define their differences as
et = X(t) - X(v) (s)

In contrast with X, £ is a continuous funétion with continuous derivatives with respect
to both time and distance. It is an all-inclusive representation of the heterogeneities
in the system. Note that the value of this function depends upon the time scale t°= f—_;',
and the distance (or volume) scale as well a5 the precision of measurement; all of
which may be controlled by the observer. Thus § (r,t) becomes operationelly equal to
zero whan the time and distance scales of the observer causes the differencc between
the ha! and the bar averages to become less than iiic measurement precision. We
submit 1hat any thermodynamic quantity depends upon the time and distance scales as
well as the measurement precision of the observer. :’e have simply made these
explicit instead of following the usual Gibbsian assumpiion which implicitly assumes
that the time and distance scales are large enough so that the measurement precision
A-9



has no influence on the results. Since £ explicitly involves time and distance scales,
it can be used to operationally define the various states of a thermodynamic system,
as illustrated in Figure 1.

OPERATIONALLY DEPINED THERMODYNAMIC STATES

If the observed change in & with both time and distance is less than the measurement
precision, the system is operationally in equilibrium. If the change with time is less
than the measurement precision, but its change with distance is not, the system is
operationally in a steady state. Similarly, if the change with distance is less than the
measurem .nt precision, but the change with time is not, the system is operationally in
a homogeneous but unequilibrated state. However, the most interesting and unusual
case occurs when the hat and bar averages are both changing, but their difference
(i.e., §) remains a nonzero constant. This is an oscillating state and represents the
true dissipative structure a la Prigogine. Such a structure is formed, stabilized, and
controlled by the interaction between the flow of energy and the motion of matter.
From this point of view, one can recognize a steady state as a time-degenerate
dissipative structure. An inhomogeneous "steady-state" structure may exist even after
the isolation of the system has removed the external forces that caused it to form if
the time scale of the observer is too short to allow measurement of changes in the hat
averages, It is ir this sense that we have proposed(7) that all morphology in polymeri~
solids can be considered as frozen or time-degenerate dissipative structures a la
Prigogine.

This E function plays the central role in our approach to nonequilibriuin thermo-
dynamics. The astute reader will already have noticed the similarity in our definition
of { and the "error in the ergodic hypothesis." Many other analogies exist. Since this
function must vanish or become negligibly small as the system approaches equilibrium,
we may also think of it as representing a quantitative measurement of the deviation of
the system from equilibrium. Thus, we are assured that our nonequilibrium thermo-
dyraniics merges smoothly into equilibrium thermodynamiecs as the system approaches
equilibrium.

Still more insight can be gained on how the measurement precision and the time and

distance scales of the observer can influence his preception of the thermodynamic

states by considering the Lagrsngian specific power density function. This specific

power density function,&(r,t), regresents the rate at which the system is changing at a
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point in both space and time (where time and space are measured in units of the
observers time and distance scale). It corresponds to an ‘"infinitesimal
phenomenological equation." If integrated over the volume of the system, it
represents an instantaneous rate of energy flow (power) throught the system, and if, in
addition, it is integrated over some period of time, it represents the total change in
energy of the system during that time; thus:

8 'f_[ £(rg) av at (6)

Here & represents the total Legend: » transform or excess energy that the system has
because either (1) it is constrained from equilibrium by contact with a nonuniform
environment or a pseudothermodynamic field, or (2) it contains heterogenaeities of time
and space that do not scale lineurly with the time and distance scales of the observer.

The integrand of equation (6) can be expanded in terms of the partial derivatives of
time and space as

o)

at *

f o 36 Lgp. & 3K _ o3
= v - x'v
§ at § t -V (7

L3

where V is the baryocentric velocity, drydt. We now see that there are four different
ways in which equation (7) can vanish. If all three components become less than the
measurement precision, and § also vanishes, the system is operationally at equilibrium.

When the first term becomes less than the measurement precision, we have an
operational steady state when either the gradient, VX or the velocity, V becomes less
than the measurement precision. Thus, in principle the steady-state may exist in two
extremes, in the first there ure measurable gradients in the intensive properties but no
measurable flow and in the second there is measurable flow but no measurable
gradients. TFinally, we have the [ussibility of measurable values for all three
components but with the derivative of the space average always being equa! io the
product of the gradient of the time average times the velocity so that £ is a nonzero
constant but E vanishes. These conditions are summarized in Table I.
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THE PRINCIPLE OF MINIMUM DISSIPATION OF ENERGY OF POOR QUALITY

The principle of minimum dissipation of energy has been known for many years. In
fact in the form that we shall use it, \his principle can be considered as simply another
form of Hamilton's principle of varying action which states that the integral over time
of the Lagrangian has a stationary value provided the forces can be drived from a
potential. In which case the variation of the action integral vanishes, so that

g'ﬂ:d'fl.dt:o

where the Lagrangian, L, is the difference between the kinetic and the potential
energy of the system. Since we have defined the dissipation of energy as the change in
the excess energy, the principle of minimum dissipation of energy can be expressed as

88 =8ffPavat =0

whereupon we can identify the excess energy, &, with the Eulerian time derivative of
the Hamiltorian action,.,d and Lagrangian specific power density function, &, with the
Eulerian time derivative of the Lagrangian, L. expressed ss a specific energy density.

Thus the principle of minimum dissipation of energy, as we have formulated it, states
that the difference between the change in specific kinetic energy density and the
change in specific potential energy density will evolve to a stationary state when
integrated over a definite volume and a definite interval of ime, always provided that
all constraints on the system may be derived from potentials.

The condition that all forces on the system be derivable from potentials or the
exsctness conditions of integrability on all differentials represents a limit on the
validity of the theory (see Lavenda (5)). It is the existance of this limit which has
restricted the practical applicability of nonequilibrium thermodynamies to situations

sufficiently close to equilibrium where Onsager's reciprocial relations are valid.

But we have defined a constrained Lagrangian specific power density function as

@ = E =dX/dt - gx-V
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which is experimentally measurable regardless of the nature of the constraints.
However, it does depend upon the time and distance scales of the observer as well as
his measurement precision. We are therefore able to adjust the time and distance
scales to operationally define the state of the system.

Of still more importance we can adjust the rate at which energy is caused to flow
through the system. We do this in two different ways (1) by contacting the system
with an environment that is nonuniform in space so that energy flows in at one point
and out at another or (2) by an environment that is nonuniform in time so that energy
flow undergoes dynamic fluctuations. The two ways are analogous to the direct
current and alternating current flow of electrical energy.

By controlling the level of power flowing through the system we have a means of both
measuring the dynamic changes occuring within the system and to some extent
actually controlling what these chaages will be.

VARIATIONS OF THE EXCESS ENERGY FUNCTIONAL

We carefully distinguish between the change in the value of the excess energy
functional and its variation in the mathmatical sense as used in the calculus of
variations. In the latter sense the variation of a functional is a virtual change
corresponding to a change in the nature of the extremizing function in all possible
directions. In the calculus of variations we are interested in this virtual variation only
as a criterion for determining the stationary state of the functional. The first term in
a Taylor expansion of the functional about such a stationary state is called the first
variation, § , and the second term is called the second variation 82.

A necessary and sufficient condition for a functional to have a stationary state is that
its first variation shall vanish. However this is not a sufficient condition for the
functional to have a minimum value since the first variation will also vanish for a
maximum and even for the equivalent of a "horizontal tangent” or "saddle point". A
second necessary condition for a functional to have a minimum is that its second
variation shall be positive semidifinite. The corresponding condition for a maximum is
that the second variation be negative semidefinite. These criteria are still not
sufficient in a rigorous mathmatical sense but they will suffice for our purposes.
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We also must point out that from a practical point of view a functional may have a
value that does not correspond to a stationary state where the first variation does not
vanish because it is restricied by the boundary criteria on the independant variables.
Consequently the excess energy functional, integrated between definite limits of time
and space, will either be at a stationary state, in which case its first variation vanishes
or its value will be determined by the limits on the integrals and the total variation
will determine whether this represents an apparent maximum or minimum,

Regardless of whether or not the first variation vanishes, the sign of the total
variation is an important criterion in determining the state of a nonequilibrium
system. Thus it would be very desirable to have an experimental procedure for
approximating at least the sign of the total variation in excess energy.

DYNAMIC MEASUREMENT OF THE VARIATIOM IN EXCESS ENERGY

We propose that one can measure the sign of the total variation in excess energy in a
manner directly analogous to the way cne would measure the sign of the differential of
an ordinary function. One changes the value of the independant variable by an amount
sufficient to cause a measurable change in the function. Now the variation of a
functional is caused by the change in the extremizing function rather than a change in
the variables since their influence on the functional is fixed by the limits as the
integral. Furthermore, the variation of the extremizing function must be in all
possible directions (unlike the differential which corresponds to a change in the
variables in a definite direction). We propose to simulate the variation in the
extremizing function by driving the independant variable in a cyeclic fashion. By
changing the variables through a complete cycle, we will have caused the extremizing
function to have varied in all possible directions without changing its average value
and we can measure the effect of this variation on the excess energy functional. Just
as in experimentally determining the sign of a differential of an ordinary function
where it was necessary to change the variable by an amount sufficient to cause a
measurable change in the function, the amplitude of the cyclic change must be
sufficient to cause a measurable change in the excess energy functional. Now since
we cannot cause an instantaneous cyclic change in the variables, the variation will be
experimentally determined over a period of time, determined by the cyclic frequency.
Likewise the results or change in the excess energy must be measured over some
distance, determined by the separation of the measuring devices. Thus our
experimentally determined variation of the excess energy functional will be for a
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given time and distance scale as well as at an amplitude sufficient to exceed the
measurement precision.

In order to describe these dynamic measurements we shall collectively designate the
independant or controlled intensive variables as the "load" and the measured or
dependant extensive properties as the "displacement" as would be the actual case if
one only considerec the pscudo thermodynamic mechanical force field. Now snergy ie
given by the product of the load times the displacement but the instantaneous power is
composed of two terms: (1) the load times the derivative of the displacement with
respect to time and (2) the displacement times the derivative of the load with respect
to time. The first of these power terms represents the negative of the change in the
potential energy and is functionally dependant upon position whereas the second term
is the change in kinetic energy and is functionally dependant upon time. Thus the
Lagrangian power density function is given by the sum of these two power terms.

Now if the cyclic load is sinusoidial the two power termis can be readily separated
since the time derivative of the load is always 90 degree out of phase so that the
change in potential energy or conservative power represents the in-phase power
whereas the change in kinetic energy or dissipative power is 90 degrees out-of-phase
with respect to the applied load. Integrating these two powers over a comnlete cycle
and taking their sum provides an experimental measurement of the specific Lagrangian
energy density which can also be interpreted as the variation in excess energy per
cycle and for the unit volume defined by the separation of the measuring devices.

Note that in the linear approximation (i.e., when the dissipative forces are a linear
function of the velocity and the conservative forces are linear (unctions of the
displacement and the acceleration) the sum of the two power terms integrated over a
complete cycle vanish. Thus only when the amplitude of the cyclic load is sufficient
~ to produce nonlinear responses will it be possible to measure even the sign of the
variation in excess energy.

We shall designate this experimentally measurable variation by the symbolA6 in direct
anology to the use of A for a finite value of the differential. Thus, just asd+d in the
limit of infinitesinal changes in variables so Ap& as the amplitude of our cyclic
fluctuating varibles is decreased.




But we nave defined & as the extremizing function of the constrained Lagrangian, @*,
and by our cyclic fluctuation of the independant variables we have imposed an
additional constraint on the system. The experimentally measurable approximation tc
the variation of the origionally constrained extremizing function, As§ is identical to
the extremizing function of the Lagrangian which has the added constraints
determined by the additional alternation power applied to the system. Thus
A6€.‘-: {{Q{,A}where A is the amplitude of the fluctuation.

These additional fluctuating constraints not only permit us to determine the sign of
the variation in excess energy but by adjusting the level of this alternating power (i.e.,
by changing its frequency and amplitude) we can accelerate the rate it is changing. Of
even more impotance by adjusting the frequency and amplitude to increase the power,
the system may become unstable and one obtains the dissipative structures to be
described in the next section. Application of alternating thermodynamic and pseudo
thermodynamic forces at the resonance frequency of various thermodynamic systems
represents an important new practical application of this nonequilibrium
thermodynamics and will not be discussed further due to pending patent action.

DISSIPATIVE STRUCTURES AND STABILITY CRITERIA

Prigogine (2) coined the word "dissipative structure" in order to distinguish the
structure of systems that have formed in the region far {rom equilibrium where the
environmental conditions are such as to drive the system of interest to the point of
instability. His stability criteria (1) which are formulated in terms of the second
variation of entropy production and its time rate of change have been the subject of
criticism.(5) We shall not comment further on this controversy since our experimental
approach effectively side-steps the issue rather than contributing to one side or the
other. Regardless of the resolution of this polemic, we believe that Prigogine and his
colleagues have made a substantial contribution to science in simply calling attention
to the funduin.ital difference between an equilibium structure and a dissipative
structure.

A dissipative structure will form whenever the environmental conditions surrounding a
system are such that the relationship between the flow of energy and the motion of
matter is sufficiently noniinear so that some sort of rotary motion can decrease the
dissipation of energy within the system. Since a rotational motion is involved there
will be at least one characteristic distance and one characteristic time.
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Our interest in these dissipative structures (7) origionated from the realization that if
such structures occured during the solidification process, the rotational motion would
be frozen. That is to say the characteristic time becomes infinite in the time scale of
the observer but characteristic size(s) would remain as a permenant feature of the
solid. Thus we suggest that the theoretical basis for understanding and controlling the
morphological structure of inost solid materials in general and polymeric solids in
particulai is much more nearly related to these frozen dissipative structures than to
equilibrium (i.e., crystal) structures. The nonequilibrium thermodynamic theory of
dissipative structures therefore represent the key to a theoretical understanding of
solid state morphology.

In the usual approach to nonequilibrium thermodynamics the entropy of a
nonequilibrium system is not defined and only its change with time is expressed as the
sum of the entropy that flows into or out of the system and the entropy produced
within the system. In contrast to this approach we have defined the instantaneous
entropy of a nonequilibrium system as the sum of its virtual entropy and an entropy
deficiency defined as the negative of the excess energy divided by the space averaged

~

temperature, T.

The thermal energy of ary system at time, t is an invarient given by

Tsity =TSt - &it,t)

but since the virtual entropy is an equilibrium entropy by definition, its first variation
must vanish and its second variation must be negative semi-definite by the second law
(i.e., the entropy of an isolated system at equilibrium is a maximum). Since the
instantaneous thermal energy is invarient, the variation of the excess energy must be
the negative of the variation of the virtual entropy times the space averaged
temperature. It follows that since the virtual or equilibrium thermal energy is always
a maximum, the excess energy can never become a maximum. Thus the stability
criterion for any thermodynamic system is that its excess energy (i.e., its totel
Legendre transform with respect to all extensive properties) shall have a non-negative
second variation. That is to say the first variation of the excess energy always tends
to zero and if the second variation becomes negative the excess energy has reached a
maximum and must decrease. If the second variation of the excess energy becomes
negative definite the decrease is catastrophic (i.e., the system is unstable).
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In contrast te theoretically derived stability criteria, the experimentally measured
values of the extremizing function and its rate of change per cycle permits an
unequivocal determination of operational stability criteria. For example, if the
measurable extremizing fuaction is positive and does not change by & measurable
amount from one cycle to the next then the system is operationally at a stable
minimum. If the measurable extremizing function is positive and decreases from one
cycle to the next the system is asymptotically approaching e steble minimum, that is
to say the excess energy is positive but is becoming less positive under the total
constraints on the system. These stability criteria are summarized in Table II.
Although the excess energy can be positive or negative, examples c. negative excess
energy are rarely encountered in nature, but they may exist (e.g., super heated crystal
or one with less than the equilibrium concentration of defects). If one has an
asymptotically unstable maximum it will ultimately become unstable with the
formation of a dissipative structure. The length of time required for this to occur
then becomes a prcolem in variational calculus with an undetermined upper limit.

SUMMARY AND CONCLUSIONS

By taking the total Legendre transform of energy with respect to all the extensive
variables we have reformuiated the second law of thermodyne.nic so that the burden
of accounting for the time evolution for a thermodynamic system is shifted from the
coneept of entropy, which can only be rigorously defined for an isolated system at or
near equilibrium, to the concept of an excess energy functional that is applicable to
open or closed systems as well. We proposed that "It is the minimization of the
uncompensated dissipation of energy within the system of interest — not the increase
in entropy of the universe — that represents the practical embodiment of the second
law." By defining the uncompensated disipation of energy, as ihe change in the
internal energy of the system minus the change in excess energy we can equate the
second law to the variational principle of minimium dissipation of energy. This
principle can, in turn, be shown to be the Eulerian time derivative of Hamilton's
principle of varying action. The difficulty in applying this principle to a system that
can exchange energy or matter with its environment, comes in applying the necessary
constraint that at a stetionary state there must be a balance of power between the
system and its environment. If the nature of the environment is such that this
constraint can be expressed as the derivative of some function, the excess energy
evolves to a stationary state by the usual linear nonequilibrium thermodynamics where
Onsager's reciprocal relations apply and all forces can be derived from a potential. In
A-18
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the more general case, the Euler-Lagange equations cannot be integrated, the excess
energy functional is not stationary but will continue tc evolve with time.

We have approached this more general case by taking advantage of the fact that the
time and distance scales of the observer as well as his measurement precision, may be
combined to determine the state of the system from an operational point of view. By
defining the extremizing function as the difference between the intensive variables
averaged over an experimentally determined volume at a given time and the same
variables averaged over an experimentally determined interval of time at a given
position within the system, we obtain a function that is both differentiable and
experimentally measurable.

Using this function and its Eulerian time derivative we can approximate the variation
of th2 excess energy functional in a manner exactly analogous to the way one can
experimentally approximate the differential of an ordinary function. The procedure
involves driving one or more of the intensive environmental variables in a cyclic
manner and measuring the response of the systems extensive properties. The
frequency and amplitude of this eyeclic fluctuation provides an additional constraint on
the system so that these dynamic fluctuations not only yield an estimate of the state
of the system and how it is changing because of the initial constraints but by
increasing the amplitude and varying the frequency it is possible to accelerate these
changes or influence the state to which the system is changing.

This treatment allows for the possibility of actually driving the system to an
instability or a maximum in the excess energy (a concept that does not occur in the
entropy production and entropy flow treatments). In addition, by controlling the
frequency of the fluctuation we can effect some control over the particular
nonequilibrium state to which the system evolves when driven beyond instability.
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TABLE I

OPERATIONALLY DEFINED THERMODYNAMIC STATES

d -

atx v X V= a? e E
Equilibrium State 0 0 0
Steady-State 0 =0 0 ® 0 0

0 0 #0 %0
Uequilibrated-State #0 0 #0 20 #0
Oscillating-Staie [ dX = VUX-.v ] #0 0
dt

Unsteady-State %0 #0 #0 %0 %0
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TABLE I
EXPERIMEMTALLY DETERMINED STABILITY CRITERIA

IF £> 0and £ =0then & > 0,8820,6°8>0

and we have an operationally stable minimum
1IF € >0and £ <othen& > 9, §8&+ 8§8<0

and we have an asymptoticaily stable minimum
IPE >0and £ >0thend >0,88 + 88> 0

and we have a asymptotically unstable maximum
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