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CHAPTER 1

INTRODUCTION

Advanced fiber-reinforced composite materials such as

boron/epoxy and graphite/epoxy have been successfully

empioyed as structural materials in aircrafts,.missiles and

space vehicles in recant years, and the performance of these

composites has shown their superiority over metals in

appiications requiring high strength, high stiffness as well

as iow weight. The advantages of these composites, however,

are overshadowed by their relatively poor resistance to the

impact loadings, which has prevented the application of

these materials to turbine fan bladings. Many other reports

dewing with the responses of advanced composites to various

typos of impact have further increased the need for a better

understanding of the problem so that the survivability of

these composites can be improved.

It is obvious	 that	 impact	 produces	 damage	 and

con:3equently reduces the strength of composite materials.

The	 damage modes	 usuilly	 include	 local	 permanent

deft>rmations, breakage of fibers, delaminations, etc..

While the cause of these damages are still unkr'^,)wn and may

not be simple in nature, in general, the impact of a soft

object could give a longer contact duration, and the dynamic

x

i

Fkl
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response of the whole structure is of Importance. The hard

object impact usually gives a short contact time and results

in the initial transmisson of impact energy Into a local

region of the structure. This initial energy will propagate

Into the rest of the structure In the form of stress waves,

Far field damage away from the impact area could result from

the reflection of stress waves. It is generally agreed that

the cause of the sudden failure must be examined from the

point of transient wave propagation phenomena.

Flexural waves induced by dynamic loads in laminated

composites are more complicated than those in homogeneous

and	 isotropic	 plates	 due	 1.0	 the	 anisotropic and

nonhomogeneous properties in the laminate. Moreover,

because of the low transverse shear modulus in fiber

composites, the effect of transverse shear deformation

becomes	 significant	 and should be considered in the

formulation.	 In Chapter 2, the laminate theory which

Includes  the transverse shear deformation effect Is

reviewed, and harmonic waves in a graphite/epoxy laminated

piate are studied. The propagation of wave front which, for

a given time after impact, bound the stressed region

surrounding the impact point, is also investigated.

A survey of wave propagation and impact in composite

materials has been given by Moon (1]. Many analytical C2--

51, numerical [6-7] and experimental {8-101 methods have

been employed to study the transient impact problems. 	 The
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respone of a laminated plate can be analyzed using these

methods provided the applied load history is prescribed. i

Idowover if the dynamic load results from an impact of an

obj(., ct on the laminated plate, then the resulting contact

forge must be determined first. An accurate account of the

con 1,:act behavior becomes the most . important step in

analyzing the impact response problems.

A classical contact law between two elastic spheres was

derived by Hertz [11]. When letting the radius of one of

the spheres go to infinity, one obtains the contact law

between an elastic sphere and an elastic half-space. Many

authors have used the Hertzian contact law for the study of

impact on metals and composites. [12-13]. Recently, Yang and

Sun [14] performed statical indentation tests on graphite/

epo:;y composite laminates using spherical steel indenters of

dlf.'erent sizes and found that the Hertzian law of contact

was, not adequate. In particular, they found that

significant permanent indentations existed and that the

unloading paths were very different from the loading path.

Not;ng that energy dissipation takes place during the

process of impact, Yang and Sun [14] suggested that this

energy is responsible for the local damage of the target

materials. The unloading curves and permanent indentations

obtained from the statical indentation tests may provide a

usef=ul information in estimating the amount of damage due to

impact since this energy Is simply the area enclosed by the
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loading-unloading curves. In this study,

indentation tests were conducted and

pre;;ented in Chapter 3.

similar statical

the results are

t,

Wang [15] has performed a number of impact tests on

graphite/epoxy laminated beams and plates. It was shown

the,: the strain responses calculated using finite element

metkod and the statically determined contact laws from [141

agreed with the experimental measurements quite well. This

indicates that the statical indentation law is reasonably

adequate in the dynamical impact analysis.	 It was also

suggested that the contact force should be measured

experimentally to provide an additional basis for comparison

with the finite element solution which could allow further

evaluation the applicability of the contact laws in impact

analysis.	 Chapter 4 describes an impact experiment on

graiihite/epoxy laminated plate using an impact-force

transducer with a spherical steel cap as the impactor. The

contract force history and strain responses at various points

on the plate were measured by means of tho transducer and

surrace strain gages, respectively, and were compared with

the	 predictions of finite element analysis using the

statically determined contact law.

Chapter 5 summarizes the results obtained in Chapter 2, 3

and 4.
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CHAPTER 2

STRESS WAVE IN A LAMINATED PLATE

A l am i natod pl ate  theory which includes  the effects of

transverse shear deformation and rotatory inertia was

developed by Yang, Norris and Stevsky 061 in a way

suggested by Mindlin [171 for homogeneous Isotropic plates,

It was shown that the frequency curves for the propagation

of harmonic waves I n an infinite two-laver Isotropic plate

in plane sprain agreed with the predictions of the exact

so lution obtained from theory of elaasticity vary wall. A

similar laminated plate theory was developed by Whitney and

Pagano (181 and was employed In the study of static bending

and vibration for antisymmetric angle ply composite plates

with particular layer properties. It was found that the

effect of shear deformation can be quite signifi cant  for

composite plates with span-to-depth ratio as high as 20.

Good agreement was also observed in numnrical results for

plate bending as comparing with 	 exact	 solutions	 of

eI nsticity. In this study, the lami nate theory developed by

Whitney and Pagano was used for Its simplicity yet quite

satisfactory In describing the harmonic wave propagation

[19).

u
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2.1 Laminate Theory with Transverse Shear Effects

2.1.1 Lamina Constitutive Equations	 !F ,r

A laminated plate of constant thickness h consists 	 of	 a

number	 of thin laminas of unidirectionaliy fiber-reinforced

composite perfectly bonded	 together.	 Each	 lamina,	 whose {	 1
^Y

fiber may orient	 in any arbitrary direction, can be regarded

as a homogeneous orthotropic solid,	 Consider a typical k-th

lamina.	 A coordinate system (x 1 , Xz, X 8 )	 is chosen	 in such

a way that the X 1 -x 2 plane coincides with	 the	 midplane	 of

lamina,	 and X 1	 and X2 axes are parallel	 and perpendicular to

the fiber direction; respectively.	 it	 a	 state	 of	 plane
L 5

stress	 parallel	 to the x 1 -x2 plane is assumed, 	 then the In-

plane stress-strain relations are given by
I,

k	 k
0, 11 	 0-11	 Q1 2 	 C	 611 p

a22 	 Q12 Q22 0	 622	 (2^1)

r12	 O	 0	 Q66	 N12 ilk

The transverse shear stress-strain relations are given by

k	 k

T 20	 Q44 I	 120
(2-2)

T i s 	 C	 QGGj 1 11 3

in which

M
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Q22 " E2/(1`v12v21)

Q1J m v12E2/(1-v12v21) m V 21 E 1 /( 1 - v 12 V 2 0

Q66 ' G12

Q44 , G23

Qss = GIs

(2-3)

are the so-called reduced stiffnesses, where E, G and v are

Young's modulus, shear modulus and Poisson's ratio,

respectively, and subscripts 1 and 2 denote the directions

parallel to x 1 and x2 axes, respectively.

The coordinate system for an arbi trar ily oriented lamina

does not, in general, coincide with the reference axes

(x,y,z) of laminated plate (see Figure 2.1). Using the

coordinate transformation laws for stress and strain, we

obtain the stress-strain relations in laminate reference

system as

k k
11	 '712	 (116	 0	 0 Exx

I

OI xx

ar yy

T X Y I

^12 '̂ 22 "C26 0	 0 Eyy

° X16 ^26 16s	 0

70^

^xy (2-4)

Tyz 0	 0	 0	 1744 C46 Nyz

7 XZ 0	 0	 0	 1745 '6s 'Jxz

in which i^jj are given by

K11 = Q11m4+2(0-12+2Q6s)m2n2+Q22n4



Z., X3

X2

X

8

1P
	 M
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(XI ,X2.X3) — Lamina Reference Axes

(X i Y, Z ) —Laminate Reference Axes

Figure 2.1 Lamina reference axes and laminate reference
axes
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.(222 " Q„ n4+2(Q1 2+2Qee )m2n2+Q22m4

12 * (Q11 +Q22 -4Qee)m 2 n 2 +Q12(m 4 +n 4 )`^ 

`11e - (Q11-Q12-2Qee )min+(Q12-Q22+2Qea)mna

*

Q20 - (Q11—Q12 -2Qse)mnl +(Q, 2-Q22+2Qse)m$n

I

LO - (Q11+Q22-2Q12-2Q66)m2n2+Q66(M4+n4)

"C44  - Q44m2+QS6n2

*(245 = (Q4'4-Qee)mn

'CBS = Q44n' +Qcsm2

(2-5)

where

m = cose	 n = sin8

and 8 is the angle between x-axis and x l -axis measured from

x to x, counterclockwise as shown in Figure 2.1.

2.1.2 Plate Strain-Displacement Relations

The displacement components of the laminated plate are

assumed to , be, of the form [ 161

u(x,y,z) = u°(x,y) + zo.(x,y)

v(x,y,z) = v°(x,y) + ZO V (x,y)	 (2-6)

w(x,y,z)	 w°(x,y) = w(x,Y)

where u°, v° and w° are the midplane displacement components

in the x-, y- and z-directions, respectively, and 0. and 0.
f;

are rotations of cross-sections perpendicular to x- and y- 	 l

axis, respectively (see Figure 2.2). In Equation (2.6) we

3i
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Initial Configuration of Normal
—""" k to Midplane

Deformed Contiquration of Normal

z

Figure 2.2 Laminate displacement components for a cross--
section perpendicular to the y-axis
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have assumed that u and v vary linearly In the thickness

direction, while w is constant through the thickness.

The strain components for a point in k-th lamina of the

laminated plate with a distance z from the midplane can be

computed as

6xxk = 6x0 'f

6yy k = 6 V 0 +

-̂ Xy k = '1jxy0+

0+ y z k = aw/ay

'Y x z k = aw/aX

zKx

ZK y

ZKXV

+ av/az = awa y + ¢y = J V z

+ au/0z = Wax + ox = Nxzo

(2-7)

where

IX0 = au0 /ax

'Y y 0 = av0/ay
	

(2-s)

N Xy o= a u 0 /ay + av0 /ax

are the in-plane strain components of midplane, and

kx = a4x/ax

k y = aoy/ax
	

(2-9)

iCxy= aox/ay + aoy/ax

are the rotation gradients.

In Equation (2-7), since w, $ x and 0. are independent of

z, it follows that the transverse shear strains are constant

through the thickness of the plate.
	 z

1
i
l
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Equation (2-7) can be written In concise matrix form as

k'
6x	 6x0	 K 

k	 is V	 e y°	 Ky	 0
6 j e j

Nxy I Ky + Z K K y	 +zJ K J
	 (2-10)

y yx	 NyZ0	 0

Nxz	 Yxz0
	

•0

Thus, the strain components at any point in the plate can be

determined from the extensional strain components of the

midpiine, the rotation gradients of the plate and the

d i s tartce Z from the m i dp 1 ane .

2.1.3 Stress-Resultants and Laminate Constitutive Equations

Substitution of Equation (2-10) in Equation (2-4) gives

the stress components for a point in the k-th lamina as:

k
a xx 11	 ^712	 1^16	 0	 0 6x° Kx

01 y ^212 ^222	 `L26	 0	 0

11 -yXY10 1

Gyp Ky

T xv = q16 q2EI Z0 6 0	 0 + Z Kx y

71 Z 0	 0	 0	 ^q44 Z46 Ny Z 0 0

T xz 0	 0	 0	 046 Z56 (Nxz o 0
v r

fi

The stress-resultants acting on a laminate can be

obtained by integration of the stresses in each lamina	 r^

through the laminate thickness. Specifically, the in-plane

^a

m ^s ^

t	 '.S

4

(2-19>	 `K
rl
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stress-resultants are given by

k
Nx	 o'x x	 h	 ax x
Nv	 ^h /2 ayy dz	 2	 k	 o'yy dz	 (2-12)

h/2	 k®,1	 hk„^

N xY	 VXY	 lor, Y

the stress couples are given by

k
M x 	 orxx	

N	 r.k	
orxx

MY	
- J n/2 (IYV zdz	 2 f h	 a.Y zdz	 (2-13)

k 1	 k- 1
	IMXY-11XY	 rXY

and the transverse shear forces are given by

k
h

QY _ ^hix I-ryzl
dz -	 J k

	 rYZ dz
	 (2-14)

IQX
	 h/^ 

rxZ	 k=1	 h k -^ rxz

The sign convention for these stress-resultants along

with the geometry of a typical N-layer laminated plate are

shown in Figure 2.3.

Substituting Equation (2-11) into the right hand sides of

the above three equations and performing the integrations,

we obtain

i

4
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(a) STRESS RESULTANTS OF A LAMINATE

(b) GEOMETRY OF AN N-LAYER LAMINATE

'Figure 2.3 Stress-resultants and geometry of a typical
N-layer laminate
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i

N x A11 A l2 A 1 4 e x° git B 12 Big Kx

Ny Al 2 A 22 A28 ' Cyo + B 1 2 B 22 B24 Ky

B 66.,19Xyl

(2-15)

N,vj A1 4 A 24 A44 -/ x y° BI 8 B 24

M x B11 B 12 B I G ' Ex° g11 Di2 16D i e ' Kx

iN y

Im yy

re B 12 B 22 B 26 Ey° * g 12 g 22 D 24 K y (2-16)

B 1e B ;6 B ea. / x y° g16 g 24 d44 Kxy

where

{►(A jj, B jj, D ,J) ^`	
h/2

"^,r I ^ (1,z,z 2 )dzh12 

and

n/2
T

A*IJ	
f h12 , j dz	 i,J a 4,5

i , j = 1 , 2, 4".	 ( 2-18)

(2-19)

Equations (2-15) through (2-17) are usually written

symbolically as

N A B 0 E°

M= B D 0 K

Q 0 0 A* N

(2-20)

which is the laminate constitutive equation with transverse

shear effect included.
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The stress-equations of motion for the k-th lamina are
L,

given by
R

Crxx ► x + rxY ► y + r xx ► z O° pu

r„y ► x + ayy ► y + r Y z , z M pv	 (2-21)	 4v

rxz ► x + ryz ► v + azz ► z m pw

where p is the mass density. 	 Integrating Equation (2-21)

	

through the thickness of laminate and then substituting	 i

Equation (2-12), (2-14) and (2-6) in, we obtain

N x , x + Nx ysy - P'u'° + R^6x
k

Nxytx + Nv ► v - PV-#0 + Re v	 (2"22)

Qx ► x + QY ► y +	 PW

where q is the normal traction on the plate. Multiplying

the first two equations of Equation (2-21), integrating

through the thickness of laminate and then substituting

Equations (2-13), (1-14) and (2-5) in, we obtain

i

Mx ► x + Mx y , y 	 Qx	 Ru° + I^x
(2-28)

M x Y O X + My ► y " Q V 	RV--o + ICY	 ?r
F

in which P, R and I are defined as
t	 i

(P,R,I) _ ^'_	 p(1 ,z ) z 2 )dz	 (2-24)
{	 h/ 2

j' 	 S M

€ js	 p

. x. Equations (2--22) and (2-2a) are the plate equations of
f 4i

^^	
p

a

1

F
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motion. Substitution of Equation (2-20) and then the

strain-displacement relations in these two equations yield

the equations of motion in terms of midplane displacements

and rotations of the plate.

A graphite/epoxy laminated plate provided by NASA Lewis

Research Center was used throughout this study. This

laminate is a [0 0 /45 0 /0 0 /-45 0 /0 0 ] 2S graphite/epoxy composite

with 0.0053 inch ply thickness and the following ply

properties (151:

E1 = 17.5 X 10 1 psi.

E2 = 1.15 X 10 6 psi.

G12 = G 13 = G23 = 0.8 X 10 1 psi.	 (2-25)

V 12	 0.30

p	 = 0.000148 lb-sec2/in4

For symmetrically laminated composite plate, B ij = 0 and

R = 0. In addition, by choosing the x-axis of the laminate

reference system to coincide with the 0 0 fiber direction, we

obtain A1s = A26 = 0 and D IG = D 26 , Further, in this study,

we assume G18	 G 2 3 = G92 1 and consequently, A* 46 - 0 and

A * 44	 =	 A* 16.	 For	 this	 particular	 laminate, the

displacement-equations of motion are given by

A 11 a 2 u°/ax e + As	 + (Al2 + Ass) a 2 v°/axay = Pu°

(A l2 + Ass)	 + Assa 2 v°/ax e + A22 a 2 v°/a 2 = pv°v

I
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1 ^3	
u 1

D I1 a 2¢x /ax e + 2D jS a 20x/ax8y + D66a20X/3y2

+ r)1 6 (a 2 0 V /ax e 4, 0 2 0y /ay 2 ) + ( D12 + D 66 ) a2cpy/axay

—A* 44 (aw/8x + ¢ x ) - I ^x	 (2-26)

D16(a20X /axe + aox / ay e ) + (D 12 + DB6)020x/ax0y

+ D 66 a 2¢ y /ax e + 2D 16 a 20y/axay + D2282,oY /aye

—A'"
44 (aW/8Y + 0y) - Icy

A* 44( 82W/ axe + a 2w/ay e + aox/ax + a¢./ay) + q = ibw

In Equation (2-26), the first two equations govern the

in-plane motion while the last three equations govern the

flexural motion.

2.2 Propagation of Harmonic Waves

Consider a infinitely large laminated plate governed by

the equations of motion (2-26). We assume plane harmonic

waves In the form

f;

if

a

t ^a

u° = U exp[lk(n - ct)]

'	 v° = V exp[ik(n - ct)]

w = W exp[ik(n - ct)]

Ox = §^X exp[ik(n - ct)]

O y = ily exp[ik(n - ct)]

^f

4„k

s

(2-27)

7
w

propagating over the plate, where U, V, W, lx and ky are
	 <1y

constant amplitudes, k is the wave number, c is the phase 	 1
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velocity and n Is givon by	
0-IRIGINAL

n ft x co? a + Y $too	
0^ P004' QUALrry	

(2-28)

In which of Is the angle between the direction of wave

propagation and x-axis.

Substitution of Equation (2-27) Into Equation (2-26) with

q- 0 yields a system of five homogeneous equations for the

five constant amplitudes, In order to have a nontrIviol

solution, the determinant of the coefficient matrix Is set

equal to zero. Since the equations are uncoupled Into two

groups, the determinantal equation can be separated into two

equations as

l e t i I 
- 0
	

(2-29)

for the In-plane extensional and In ... plane shear waves, and

Jb ij I - 0
	

(2-30)

for the flexural waves. In Equations (2-29) and (2-30) the

coefficients m ij and b jj are given by

a il " A l1 cos 2v + Asesin la - PC'

0 12 M a2l " ( A l2 + Aaa)sInacoso
	

(2-ai )

8 22 " Aaacos 2u + A 22 sln 2 u — PC'

and

b ij * D il k 2 cos O u + 2D 1O k 2 sInacosN + 06610stn2o

+ A* 14 — 11<202
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(2-52)

t4
?AI

rt

ii u

a
^S U

f ,'
^	 1
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b j R " 42, a p i gk2cosPot + Wj 2 + DoeWsi nocosa

+ Diik2sin2oc

b i s - be, = iA*44kcosa

b 22 - De ek'ooS 2 * + 2Dj 6 k 2 $ i nucosa + b 2 20s i n2v

+ A* 4 4 -, I k' c'

beg - bp 2 A IA*44ksino

boo - -A* 44 k' + Pk2c2

i~xponding Equation (2--29) wo obtain a quadratic equation

In c 2 as

0 4 - d l c 2 + d2 * 0	 (2-3a)

where

d, w (A ti cos 2 a + A22 sin 2 a + A66)/P

(2-34)

A ti cos 2o + Aaasin'a	 (A l p + A6g)slnacosa
d^

(A,x + Ae G )sinocosu	 Ascoos'o + A22sin2o;

It 'is noted that the phase velocity c duos not depend on

the wave number k, thus these waves are nondispersive. In

studying of transverse impact problem where in-plane

deformation is negligible, this. nondispersive property ties

no si gn ificant aff act, Should In-plans deformation become

important,	 higher order approximation of displacement

„n

4 "

4
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components u and v must be assumed and the dispersive

property of these in-plane waves could be included.

From Equation (2-34) it is evident that there exist two

phase velocities corresponding to two modes of wave.

Although these two waves involve both in-plane extensional

deformation as well as in-plane shear,, from the eigenvectors

we are able to tell which one is dominant. Thus we label

the two waves as in-plane extensional wave and in-plane

shear wave accordingly.

The determinental equation given by Equation (2-30)

yields three positive roots in c 2 indicating that three

flexural waves exist. These phase velocities are functions

of the wave number k, thus they are dispersive. Among these

three modes of wave, only the lowest one corresponding to

the transverse shear wave has a finite velocity as k-0 or as

the wave length becomes infinite. The dispersion curves for

the waves of the lowest mode propagating in the directions

of 0 11 , 45 0 and 90 0 respectively are plotted in Figure 2.4

with the non-dimensional phase velocity vs. 	 the non-

dimensional wavelength h/h.	 It can be seen that they all

approach the value of /G 1 a/p as the wavelength becomes

shorter.	 The phase velocities for the two higher modes,

however, approach different values indifferent propagation

directions when A-0.	 For laminated composite which are

anisotropic in general, the phase velocity varies from one

direction to another.	 As a result the wave surface will

F
E
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Figure 2.4 Dispersion curves for plane harmonic waves
propagating in the 0 0- 45 0 - and 900-
directions
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become a rather complicated shape as it propagates. 	 This

will be discussed in the next section.
i

Substitution of w - kc in Equation (2-32) yields a set of

frequency equations for flexural waves.. Figure 2.5 shows

the frequency curves of these waves for a - 0 0 , 45 0 and 900,

respectively, with the non-dimensional frequency vs. the

non-dimensional wavelength. The cutoff frequencies for the

two higher modes have a value of v12G1a/p/h. Comparing with

the exact cutoff frequency ( n1h)JG 19 1p, it can be seen that

If the shear correction factor n 2 /12 is introduced, this

theory will predict the correct cutoff frequency.

2.3 Propagation of Wave Front

Impact of foreign objects on a laminated plate with a
r

very short duration could generate weak shock waves which

will propagate Into the rest of the structure with finite

velocities, and the positions of the wave fronts define the

regions being disturbed at any Instant after impact.

Damages to the laminated plate may possibly occur as the

first wave front hits the weakest part.	 It Is hence

important to investigate the propagation of these shocks in

the	 plate.	 There have been works dealing with the

propagation of wave front: in anisotropic elastic media [20-

221.	 Moon [23] presented an analysis of wave surfaces in a

F	 laminate by treating It as art equivalent 	 homogeneous

L
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9- 
MODE 3

8- r	 ,►,"t
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r	 j^

r	 MODE 2
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 5	 /	 f
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,j

r a
2	 a= 

45

.j
0
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h/X

Figure 2.5 Frequency curves for flexural waves
pr°opagat i ng In the Q°- 45 0 - and 900--
^Irections
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orthotroplc plate. The acceleration waves and their wave

fronts were investigated. The propagation of shock waves in

more general laminates which exhibit the bending-extensional

coupling were studied by Sun (2).	 The ray theory w*s

employed to construct the wave front surface. The growth

and decay of the shock strength were also discussed.	 In

this section, the analytical procedures developed by Sun [21

were applied on a (0 0 /45 0 /0 0 /-45 0 /0 0 1 2 s	 graphite/epoxy

laminated plate.

1

2.3.1.	 Kinematic Conditions of Compatibility on the 'Nave

Front

A wave front, which will be denoted by n, is defined as a

surface	 travelling	 over	 the	 plate	 as time varies

continuously, and across which there may exist a

discontinuity in the stress, particle velocity and their

derivatives.

Consider a discontinuous 	 surface	 it	 passing	 some

observation point in a medium at a certain time t. Let f-

be the value of a field function f(x „t) (e.g.	 stress,

particle velocity, etc.) behind the surface Q, and f+ be

the value of f in front of it, then the discontinuity of

function f can be expressed as

l
	

[fa = _+	 f -
	

(2-35)
	

t

	 a

E

i
r

hL
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In	 which the right hand side is to be. evaluated at the times
us

and location on n passing the observation	 point, and	 the

Jump across the wave front is denoted by square bracket.
U

Surface	 0 may be expressed mathemat.icaily by an equation
r	 ','

of the form
u ti

it

sk(x, ' t)	 0 (2w-36)

or,	 by making t explicit, as

9I(x i , t)	 - F(x,)	 - t	 0 (2-37) ^Y 1

rv;
which represents a family of surfaces in x,-space with t as

a parameter. B3, evaluating f' and f- at t - F (x,), the Jump

of f across the wave front becomes

Cf(x,A = f*(x,,F(x,)) - f-(x,,F(x,)) 	 (2-38)

The rate of change of [f] for an observer moving with 0

is given by

o u

d[f3/dt m (Of'*/ax, - af-/ax,) dx,/dt + (af + /at — af-/at)
k

c, Caf /ax,'3 + c af/ate	 ( 2-39)	 F

	where t = F(x,) is substituted, and c, = dx,/dt are velocity 	 J

components of wave front relative to the material.

If the laminate theory introduced in previous section is

used, then the plate displacement components are u°, v°, w, u

0, and 0,,, whine the spatial variables are x, " x and x2

y.	 It is assumed that.the integrity of the material is not

ORIGINAL PAC-23 GU
OF POOR QUALITY

F
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affected by the propagation of the stress wave front:, then

these	 displacement	 components will remain continuous.

Consequently, we have

Eu°a - Ev°i - Ew] oc Eox3 - roo - o	 (2-40)

across the wave front. Applying the-general condition of

Equation (2-33) on u°, together with Equation (2-40), we

obtain

Eau°/ax i lc i + Eu°, = 0	 1 - 1 "..	 (2-41)

Let c„ and nj be the normal velocity and the unit normal

on the wave front, respectively, it follows that

n j c j = c„	 (2-42)

and Equation (2-41) becomes

Eau° /axA = -E6 0 3n i /c,, 	 .i = 1,2	 (2-43)

Similar	 relations	 can	 be	 derived for the other

displacement components v°, w, Ox and 0y. Together they

specify the kinematic conditions of compatibility on the

wave front.

2,3.2 Dynamical Conditions on the Wave Front

Consider a finite volume V of a material. medium and

denoted by S the boundary or surface of V. For a continuous

and differentiable function f(x i ,t) in V, it can be shown

4.	
t
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f vf(x i , t)dV . f " f,, dV + f.GfdS	 (2-44)

	under deformation of the medlum, where G is the normal	
1.

velocity of the surface S. In the case where the

deformation of the volume V is determined solely by the

motion of material particles, we have

G - 6 1 n, » On	 (2-4$) r
lt`

uv

where u l is the displacement components, n l is the outward

nnrmn 1	 nn C	 marl i 1	 1 c i+ha r%^e"r to 1 va 1 nrl i Mao ^f rrioi-an i 1I !v 1 G 1	 vi 1	 V	 c.1 1v	 -I n	 1 P	 N; !v fowl 111-1 — T W— 1 UT V	 111a. 1+V 1 Gi

particle on S. If there exists a discontinuity surface (or

wave front) travelling with velocity c l in the medium, by

shoosinog this surface as the boundary of V, we have

G = c 1 n, r, On	 (2-46)

where On is the normal velocity of wave front.

Suppose that a volume V whose motion is determined by the

deformation of the material medium, is divided by a

travelling surface n into two volumes V- and V* as shown in

Figure 2.6. The surface S is also divided into two portions

S- and S* which form parts of the boundaries of V'- and V*,

respectively. The remaining part of the boundary is formed

by no which is a segment of n. In Figure 2.6, n, denotes

the unit normal of n In the direction of travelling, and n,*

tward normal of S.

r^

ni
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travellingsurface n
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Taking f w p6 l In Equation (2-44) and using equation (2-

45) and (2-46), we obtain

-Af%,.p6TdV w fv. (p6T) i tdV + f 
4.
6;pO-dS + fcmp6'j d0 (2-47)

P	 -	 0	 -48)

r.

Af,p6+dv - L(put), tv + fo+ 'oTdS f crjp6+d	 (2
a.

where OT and 6+ are the velocity components of material

particle In V- and V + , respectively. Combining the above

two equations gives

p6 l dV	 f, (pCj l ) o t dV + fG Cj;p6+dS + f Cj + PC, +n	 IAfV	 0+dS

+	 (2-49)

From theory of elasticity we have

a$f ,P6,dV - f (r lj n j dS	 (2-50)

If we let the volume V approach zero at a fixed time In such

a way that it will pass Into Qoj then the volume Integral In

Equation (2-49) will evidently approach zero; however

fQ+6+p6+dS	 6+p6+d0

aII

I a
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(2-52)

fa o, I  j nj dS --	 fsw(rr4 j -- a ) n j dQ
	

(2-53)

where a j and a"j are the stress components on the sides of

0 0 , respectively.

Substituting Equations (2-50) 	 through	 (2--53)	 into

Equation (2-49) gives

r (d'1 j -rti j ns	 D6	 6,	 ^-)dn = r	 (c.-6, 	 f.pu; (cn-u„)dn (2-54)
no%F no

Using Ea I l and [6 I 3 to represent the ,Jumps of stress and

particle velocity across the wave front, and utilizing the

fact that cn >? 6n, we obtain

fnaCa'I j Snj di`2 = _ foopc n C6 I 1dn	 (2-55)

Since this condition is independent of the extent of the

surface integration Sip, it follows that

roIJInj = - pcn[u l l	 (2-56)

In the case of laminated plate, 1 = x,y,z and J = x,y.

Substitution of Equation (2-6) into Equation (2-56)

yields
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OF POOR QUALITY[o', i ] ni - ,- pc { [u°] + z[fix] }

Ea2j3nj = -' pen{ [V°] + z[O.ya }

E a sA ni - - pcn [w]

(2-57)

Integrating Equation (2-57) over the thickness of plate

gives

[Nx] nx + [Nx y7 ny = - Pc n [U 0 ] — Rc n. Cdj
[Nxy,nx + [Ny]ny = - Pc,[v°] - Rcn[^y]	 (2-58)

[Qx] n x + [Qy3 ny = -- Pc n IA

Multiplying the first two equations of Equation (2-57) by z

and then integrating over the thick- mess, we obtain two more

equations

[M x 7n x + [Mxy ]ny = - Rcn[u°] - Icn.[0x]	
(2-59)

[Mx y ]nx + [My3ny = - Rcn[v°] - Icn[^y]

where P, R and I have been defined in Equation (2-24)

The five equations given by Equations (2-58) and (2-59)

are the dynamical conditions on the wave front for the

laminated  p1ate.

2.3.3 Propagation Velocity of the Wave Front

Across the wave front, 	 the	 laminate	 constitutive

relations given by Equation (2-20) can be written as
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1Q3	 0 0 A* 113

Weeh r	 ^

{ [N3 I T = { tNx3 , [N y3 , [Nxy3 }
It

{ [M3 I T = { [Mx 3 , [My3 , [Mxy 3 }	 (2-61)
r

{1Q3} T = { [rx 3,[Qy3}

are the Jumps of the stress resultants, and

(W IT = { lau° /ax3 , [av° /ay3 , tau°/ay3 +tav° /ax3 }

{ [K] IT	 { [ao x /ax3 , [ ao y /ay3 , [ao x /av3+[ ao x /ax3 } ( 2-62)	 k ._l

{ [-V3 } T = { taw/ay3 , [aw/ ax3 }

are the Jumps of the strain components. In Equation (2-62),

the conditions 100 = 10y3 = 0 are substituted.

Substituting of Equation (2-43) and the similar relations
^	 k

for other kinematic variables in Equation (2-60), we can

express the Jumps of the stress resultants in terms of the

Jumps of the time derivatives of the displacement components

U 0 , v°, w, ox and ¢ y . These relations are then substituted

in Equations (2-58) and (2-59), which results In five

homogeneous equations. For [0 0 /45 0 /0 0 /-45 0 /0 0 3 2S graphite/

epoxy laminated plate which is symmetrical and balanced

(i.e. B i g = 0, A16 = A26 = 0, R = 0 and D 16 = D 26 ), these
i

five equations are uncoupled into three groups as

it

j,
k.

li

t	 ^	

i

i

t
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«p

Cali] 10031 a 0
Cb I j IM
	

d
^^Y7

(A* 4 4 `^ Pc,r 2 ) V1 W O

In which Ca i j ) and [b, j )	 are both	 two	 by	 two	 sytwietr i e
matrices, and their entries are given by

a ll	 nx 2A11 '+' n v 2Aa4 	 Pcna

e 12	 X21 - n„nv(A t a + A$ e)	 (2-66)

022 	 n x 2A a 6 '+' n, aA O a — Pcr12

b 1 1 `" n, 2Dj 1 + 2nxn.D 1 a + nY2ass — Icna

b 12 "' ba1 * D 16 + nxnv (p12 + Q 64 )	 (2-67)

boa °" nx 2 066 `+' 2nxn,D 1 a * n„ 2 D 22 — 7on2

It can be seen that Equati on (2-69) descr ibes the In-

plane extens ional and the 1n-plane shear wave fronts,

Equat ion (2-64) describes the bending moment and the

twisting moment wave fronts and Equation (2-6a) describes

the transverse shear wave.. front.

From Equat ion (2-65), we obta i n the normal velocity with

which the transverse shear wave front propagates as

an t . A* 44 /P	 (2-66)

It	 i s noted	 that	 this velocity is independent of the

direction of	 propagation, and	 is called	 dlrectionaliy

,

a

^a
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isotropic  waave front.

Equations (2-63) and (2-64) yield non--trivial solutions

only if the determinant of the coefficients matrices vanish,

i.e.

	

aril 0- 0	 (2-69)

	

JbIjI . 0	 (2-70)

Each of the above equations can be expanded Into a

quadratic equation of cr, 2 ,	 For	 [00/450/00/--4SQ/00]u8

graphite/epoxy laminated plate, the normal velocities of

wave fronts corresponding to the in-plane modes and flexural

modus are plotted in Figure 2.7 and 2.8, respectively. It

Is noted that the normal velocities of the	 in-plane

extensional and in-plane shear modes are symmetrical about

x--axis and y-axis, while there is no such symmetry for the

bending moment and twisting moment modes,

2.3.4 Wave Surface and Ray

From Figure  2,7 and 2.8 , It can be seen that for

laminated composites which are anisotropic In generai, the

In-plane  and flexural  wave fronts travel with different

normal velocities In different directions, in other words,

the initial shape of as wave surface will be distorted after

It propagates. However, Equaations (2-66) and (2-67) show
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Figure 2.7 Normal velocities of'ln-plane wave fronts
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that for any fixed normal direction n it On is a constant.

Connecting the points having the same unit normals to the

travelling wave f=ront surface, we obtain a family of lines

which are called rays. Thus, along a ray, the normal

velocity of wave front remains unchanged. By using the ray

theory which has been well established in the field of

geometrical optics, we are able to construct the wave front

surface

Recall Equation (2.37)

F(xj)-t = 0	 1 = 1,2
	

(2-37)

which represents a family of wave fronts propagating over

the plate with t as a parameter. It follows that

dF/dt = (aF/8x i )(dx i /dt) = (aF/ax i )c i = 1

By putting

p i - aF/axi = VF

Equation (2-71)  becomes

p i c i = 1

(2-71)

(2-72)

(2-73)

Since p i is normal to the surface F, it can be written as

pi = 1 p il n i
	

(2-74)

where 1p i j denotes the length of pi. Combining (2-73) and

(2-74), we obtain

r
k
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p , " nl /cn
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(2-75)

(2-76)

In Equation (2-76), p, is called the slowness vector

which has the direction normal to the wave front with the

magnitude being equal to the inverse of normal velocity cn.

Subsitituting Equation (2-76) in Equation (2-69) and (2-

7®;, we obtain two equations In terms of p,

	

1

n 2A,; + ny2A.a — P	 p x p y(A l2 + Ao6)j

pxpy(Al2 + A66)	 p x 2 A66 + p v 2A 2 2 - P

p x 2D , 1 +2p x p Y D ,6 +p v 2D 66 - I	 D16+pxpv(D,2+D66)
p

D 16 +p x p y( D 12 +D 66 ) 	px2D66+2pxpVD,6 +pY2D22 ~I

which can be written in a general form as

	g(pi) - 0	 1 - 1,2	 (2-77)

4
In view of Equation (2-72), we recognize that Equation

(2-77) may be regarded as a set of first-order partial

differential equation for F. A standard method of solving

first-order partial differential equation is by means of

characteristics [24], which reduces the equation to a system

of first-order ordinary differential equations. 	 In our

case, Equation (2-77) then is equivalent to the following

I
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dx/ds " a9/apx	 dy/ds w ag/apY	 (2-78)

dpx/ds	 --ag/8x
	

dp i,/ds w -ag/ay
	

(2-79)

where s is a parameter. These equations together with

Equation (2-77) describe the ray geometry and the normal

direction of the wave front propaq-ting along the ray.

From Equation (2-78), we have

dy/dx - (ag/ap Y) /(ag/ap x) 	(2-80)

Since the normal direction of wave front along •a ray is

constant, it can be seen from Equation (2-76) that p i is

also constant along a ray. For laminated composite which is

assumed to have homogeneous material properties, Equation

(2-77) shows that g(p i ) does not depend on x j , consequently,

ag/apx and ag/ap Y are all constants along a ray. Thus, the

solution of Equation (2-80) is then given by

y - r(x - xo) + y o	 (2-81)

where xo and yo are the initial values of x and y at t = 0,

and r _ (ag/ap Y ) /(ag/ap x ). This equation shows that the

rays in a homogeneous solid are straight lines.

From Equations (2-73) and (2-77), we have

c,dp, = o
	

(2-82)

dg = (ag/ap i ) dp i ^ 0	 (2-83)

I^

^^ I

r ,^

n^:
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i	 Eliminating dp, from these equations yields

dx,/dt = cr w (ag/ap,)/(pjag/apj)
	

(2-84)

where summation over j is understood.

Equation (2-84) can be solved to obtain the position of

wave front at time t. Again, since ag/ap, and p, are all

constant along a ray, we obtain the solution of Equation (2-

i	 84) as

x = (ag/apx)t/(p j ag/app) + xo
	

(2-85)

r m ($g/ apy)t/(pjag/ A^j) + yo
	

(?-A6)

where xo and yo denote the initial wave position at t = 0.

u
Consider at t = 0, a wave front forms a circle given by

xo = h cosy	
( 2-87)

yo =hsinu

At this instant, the normal directions to the wave front

coincide with the radial directions. Due to the different

velocities of propagation in directions, this initial shape
w	 would be distorted. By using Equations (2-85) and (2-86),
E

the subsequent positions of the wave front can be

determined. Figures 2.9-2.12 show the wave front positions

at two consecutive instants after t = 0 for the in-plane
}

	

	 extensional, in-plane shear, bending moment and twisting

moment modes, respectively, for the [00/4SO/00/-450/0012S

41
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graphite/epoxy	 laminated	 plate.	 It	 is	 noted	 that	 for

symmetrical	 laminates, the in--plane modes are uncoupled from

the	 bending	 modes.	 The	 rays	 along	 which	 the	 normal

directions	 to	 the	 wave	 front	 are	 0 0 45 0	and	 900,
`I

respectively, are also shown in the 	 figures,	 It	 Is	 seen

that the wave Fronts of the in-plane extensional and the In-

plane shear modes possess symmetry with	 respect	 to	 x-axis

and	 y-axis.	 The	 wave	 fronts of the bending and twisting ?j

moments, however,	 lose their original	 symmetry with	 respect w

to	 x-axis	 and	 y-axis.	 This	 is	 an	 indication	 that	 In

performing	 analysis	 of	 flexural	 deformation	 of	 thisr

laminate,	 one	 can	 not	 take	 a	 quadrant	 for analysis, a

practice followed by many authors dealing	 with	 homogeneous
^ l

and isotropic plates.

From	 Figures	 2.9-2.12,	 it	 is also interesting to note

that ray geometries for these two groups of wave fronts 	 are L 

quite	 different.	 For the in-plane extensional 	 and in-plane

shear	 wave	 fronts,	 the	 rays	 coincide	 with	 the	 normal "' Ỳ

directions when o - 0 0 and 90 0 .	 Along other directions, 	 the

direction of the ray deviates from the normal 	 direction	 of

the	 wave front.	 It was discussed in [2] that the degree of

spreading of rays is proportional 	 to the decay of the stress
k

amplitude	 at	 the	 wave	 front.	 Thus, from Figures 2.9 and

2.11, one can conclude that the 	 strength	 of	 the	 in-plane

extensional	 and	 bending	 moment	 wave	 fronts	 decay	 more

rapidly	 in the y-direction than in the x-direction. t14
m.

^m
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A photoelastic study of anisotropic waves In a fiber

reinforced composite has been done by [tally et al. [9].

The waves was produced by a explosive charge in a small hole

on the plate. The result showed clearly an elliptic—like

stress wave front pattern. This indicates that stress waves

in anisotropic materials propagate with different velocities

in different directions.

a
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STATICAL INDENTATION LAWS

A brief introduction of the historical development on

Impact problem involving homogeneous isotropic materials was

given by Goldsmith [123, Hertz [111 was the first to obtain

a satisfactory solution on contact law for two isotropic

elastic spherical bodies. When letting the radius of one of

the spheres go to infinity, this law then describes the

contact behavior between a sphere and an elastic half-space.

The Hertzian law, in spite of being static and elastic in

nature, has been widely applied to impact analyses where

permanent deformations were produced. The use of this law

beyond the elastic limit has been ,justified on the basis

that it appears to predict accurately most of the impact

parameters that can be experimentally verified.

In studying impact responses of laminated composites, the

problem becomes extremely complicated. One may easily

realize that the Hertzian contact law which was derived

based on homogeneous isotropic materials may not be adequate

In describing the contact behavior of laminated composites

due to their anisotropic and nonhomogeneous properties.

Moreover, most of the laminated composites have finite

thickness which can not be represented by a half-space. 	 In

t^
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many existing analytical works [253, loadings to the

laminates wera assumed known, and the responses of the

laminates were assumed elastic.

Willis (26] obtained exp i i t? '-, formulas for Hertz i an

contact law for transversely isotropic half—space pressed by

a rigid sphere, and extended it to the application of impact

problems. It was shown that

F = kan	 (3-1)

with n = 3/2 is valid for the contact force F and the

indentation u, where k is a contact coefficient whose value

depends on the material properties of the target and the

sphere, and the radius of sphere.

A modified contact law with

k = (4/3)

	 RS1/2	

(3-2)
1 — v S 2 	 1

Es	 Et:

was used [ 131 In an analytical study on i mpact. of laminated

composites. In Equation (3-2), Rs,vs and Es are the radius,

Poisson's ratio and Young's modulus of the sphere,

respectively, and E b is the Young's modulus of the laminates

in thickness direction. It was also suggested by Sun et al.

[27] that the value of k can be experimentally determined.
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Recently Yang, and. Sun [143 have conducted static

indentation te4ts on the [0 1/45 0 /0 0 /-,45 1/0 1 ] 2S graphite/

epoxy laminates using spherical steel indenters of 0.25 in.

and 0.5 in. diameters The results were fitted into

Equation (3-1) and were found that the 3/2 power is valid.

In addition, i.t was also observed that even for small

amounts of load there. were significant permanent

indentations.. This implies that the unloading curve has to

be different from the loading curves.. In order to account

for the permanent deformation,; the equation

N	 ... ap. \4:
F = F,,,	 (3-3)

0(m,	 010

h

proposed by Crook [28], was used to model the unloading path;

where Fm is the contact force at which unloading begins, am

, is the indentation corresponding to Fm, and ao denotes the

permanent indentation in an unloading cycle. Equation (3- 3) 7

can be rewritten as

a,

F _ s(a	 ao) a 	(3-4)	 a

r	 in which i

S= Fm/ (am - a 1) 4	 ( 3-5)	 a<=	 I

J^
a

u a

is called unloading rigidity.	 In order to simplify the	 ti
.p,

modeling of the unloading law, it was assumed [141 that the	 n

valueue of s for all the unloading curves remains the ,*ame .

s

w.
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Consequently, a constant N., given by

01c  = k/s
	

(3-6)

was introduced. It was also shown that q=5/2 fitted the

unloading path very well, and the permanent indentation «o

was then related to v,,, by

«o /oem 	1	 (01c, /atm)2 /5 as V".' y acr	
(3-7)

cc o = 0	 as Um :5 U, r

The value of U,r was found to be independent of the size

of tha indenter and hence can be regarded as a material

constant.

It was also mentioned in [143 and [29] that there were

some practical difficulties in performing the tests. Since

the indentation was measured step by step using a dial gage

and readings on the gage were taken about 10 to 20 seconds

after the load was increased by one step, the creep effect

may cause an appreciable error to the results. Another

important problem was that it was almost impossible to

measure the permanent indentation accurately using the dial

gage. In order to overcome these problems, a Linear

Variable Differential Transformer (LVDT) was used in this

study to measure the indentation.

The LVDT is an electromechanical transducer that produces

an electrical output proportional to the displacement,
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Connecting this output and the one from the strain Indicator

which 1s used to measure the applied loading to a XMY

'plotter, one can obtain a continuous loading--unloading

curve. By changing the loading rate which can be applied as

fast 'as 50 lb./sec., it is possible to examine they

significance of creep effect on the contact law. The

starting point and final point of a loading-unloading cycle,

which riipresent respectively the instants of contact and

separation of the indenter and the specimen, can be easily

determined from the curve. Thus, the measurements of

permanent indentations are much more accurate than those

using the dial gage.

3.1 Specimens and Experimental Procedure

Two groups of test specimens were prepared from a C00/

45 0 /0 0 /-45 0 /0 0 1 25 graphite/epoxy laminate. They were cut in

the way such that the longitudinal axis of the beam specimen

of the first group Was parallel to the 0 0 fiber direction

while the second one was perpendicular to it. The latter

then becomes [90 0 /45 0 /90 0 /-45 0 /90 0 ] 2S laminated beams. The

thickness of the beam was 0.106 In. and the width was

approximately 1.25 In.. In all tests, the specimens were

clamped at both ands. It was shown in [141 that the span of

the specimen In the range of 2 in. to 6 In. has little

effect on the contact law. Fence, only one span, i.e. 2

in., was used in the test.

d
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The experimental set--up is shown schematically rn Figure

3.1. LVDT was mounted on a 'C' bracket fitted to the loading

piston so that only the relative movement between the

indenter and the specimen was recorded. The load was

applied pneumaticalit by a plunger and it was measured using

a load cell and a strain indicator. Outputs from L.VDT and

strain indicator were fed into an X-Y plotter so that a

continuous force--indentation curve can be obtained. Two

spherical steel indenters of diameters 0.5 in. and 0.75 In.

were used.

3.2 Experimental Results

3.2.1 Loading Curves

The experimental curves were first digitized into some

discrete data points and then fitted into Equation (3-1)

using least-squares method. 	 Figures 3.2 and 3.3 show the

test data and the fitted curves for 0.5 in. 	 diameter

indenter. It can be seen from these figures that the 3/2

power index gives very good results. However, the contact

coefficient It of [0 0 /45 0 /0 0 /-45 0 /0 1 1 2S specimen is less than

the one of [90 1 /45 0 /90 0 /-45 0 /90 0 ] 2S specimen by about 7
li

During the test, larger deflections were observed for the

second group of specimen due to their lower flexural
rigidity.	 This means that the contact area is also larger

and the indentation under same amount of loading should be
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smaller comparing with the first group of specimens.

Consequently, the higher value of k for the [90°/45°/90°/-

45°/90°] 2 ~ specimens is reasonable.

The results for 0.75 in. diameter indenter are presented

in Figures 3,4 and 3.5. Again, good agreement between the

experimental data and fitted curves indicates that the 3/2

	

4	 power index for loading law is valid. The values of k for

both indent rs are summarized in Table 3.1, It should be

.x noted that tha average value of k obtained from the two

groups of specimens was used later in a finite element

analysis of Impact responses.

3.2,2 Unloading Curves

By choosing a suitable value for q, it can bs seen from

Equation (3-5) that once the relation between ao and am is

established, the unloading rigidity s is then determined.

T,6±. results show that the ,permanent Indentations ao and the

corresponding maximum Indentations am exhibit a rather

linear relationship. The equation given by

Q0 = Sp (am - up)	 (3-8)

is obtained from the test data for both 0.5 in. 	 and 0.75

In.	 indenters using least-squares fitting method, and are

plotted in Figure 3.6. In Equation (3-8), u p can be

considered as a critical value of indentation. Once the

amount of indentation exceeds u p , permanent deformation will
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Table 3.1
Contact coefficient k of loading  l aw F 	 koc l,r

Size of
Indenter(ln) 0.5 0.75

Specimen Group 1 + Group 2# Group 1 + Group 2t

k (1 b/ i n'' r ) 1.284x106 1.376x10 6 1.833x10 6 1 .990x106

Average k 1.330x106 1.912x106

Ref . [ 14] 9.694x10

+ [0 0 /4,5 0 /0 0 /-45 0 /0 0 ] 2 . specimens
* [90 0 /45 0 /90 0 /-45 0 /90 0 1 .2 s specimens
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Substitution of Equation ($-8) and (3-1) Into Equation

(3-5) yields

i

kamS 2
s

[(1	 sp)am + sp ap l. a

kam8 ^2

U rn p

If am ^: ap	 (3-9)

if am < ap	 (3-'10)

These two equations along with Equation (3--4) are then used

to fit the experimen.tol unloading curves in finding the

value of q.

M Yang [141 ha5 shown that q = 2.5 fits the test results

for both 0.2$ in.	 and 0,5 in. Indenters quite well. in

this study, however, the. values of 2,2 and 1.8 were four` d to

give the best fitting for 0,5 in. and 0.75 in. indenters,

respectively using the aforementioned method (Figures 3,7-

3.10),	 For convenience, q = 2,5 was used for 0.5 in.

indenter while q = 2,0 was chosen for 3/4 in. indenter.

The results. of the curve-fitting are presented in Figures

3.11^3.14.. Further discussions on the unloading law will be

F	 given in Section 3,3,
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3.2.3 Reloading Curves	 OF POOR QUALITY

The equation

F m k, (ot --oto) p
	

(3-11)

suggested by Yang (141 was used to model the reloading

curve, where k, is called reloading rigidity and p w 3/2 was

found to fit the experimental dote quite well. It was also

observed that the reloading curves always returns to where

the unloading began, and hence the reloading rigidity can be

determined by

k, ~ Fm/(um ~ p )'-"-	 (3-12)

In other words, the reloading test is not necessary provided
a

the unloading •condition is specified. Some reloading curves

obtained following Equations (3-11) and (3-12), and the

experimental data are presented in Figures 3.15~3.18.

3.3 Discussion

As mentioned before, due to creep the loading rate may
i

affect the contact law (i.e. the values of k). A series of

tests with different loading rates was performed to examine

this point. The maximum loading rate the test equipment can
t

apply without exceeding it's capacity is about 50 lb/sec..

It was found that in the range of 5 lb/sec. to 50 lb/sec.,

the values of k showed very little  scat• t er, and the effect

e
4	 y

a	

N
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r,..-

Al

due to local material nonhomogeneity in the composite may be

even greater than the one due to the loading rate. However,

an appreciable decrease of the value k was observed when the

loading rate was lower than 1 ib/sec.. In some extreme

cases where loadings were applied as slow as 10 lb/min., the

average value of k for , 0.5 in. indenter was very close to

the one obtained previously by Yang [141 using dial gage to

measure the • indentation. In this study, the loading rates

for all tests were approximately equal to 10 lb/sec..

Unlike the exponent n of the loading law for which the

value of 3/2 seems to yield good agreement with all

experimental data, the exponent q of the unloading law

(Equation 3-3 or 3-4) reveals much wider deviation for

different sizes of indenter. Value of q = 3/2 corresponding

to an elastic recovery according to the Hertzian theory was

previously used by Crook [281 in a study of impacts between

metal bodies. The experimental results from [141 and

present study show that the value of q varies from 1.5 to

2.5. Local plastic deformation, anisotropic properties of

composite material and unloading rate are all possible

causes for this deviation. Obviously, an analytical study

to determine the value of q as function of aforementioned

factors is impracticable. Since the purpose of this study

is to establish a contact law that can be used in the

analysis of impact, the validity of this law must be

verified from impact experiment. This will be investigated

ORIGINAL PAGE gg
OF POOR QUALITY

C9 t1	 !ia

N

a ^r



77

in the next chapter.
ORICINAL PAGE 19
OF POOR QUALITY

From Equation (3-3) or (3-4), it can be seen that ao

plays an essential role in the unloading law and hence the

value of it mint be estimated accurately. Both of Equation

(3-7) used by Yang (14] and Equation (3-8) used in this

study for calculating ao were obtained experimentally, in

which acr and u p ire considered to be material constants and

were determined using ao and am from test data. However, it

was pointed out in r 143 that the values of ao might not be

the true permanent indentations. They were the values which

could make the power law given by Equation (3-4) fit the

total data under the unloading path. In fact, the load

corresponding to the value of U r-r = 3.16x10"' 3 in.	 obtained

in (141	 is about 200 lb. for 0.5 in.	 Indenter, which is

apparently too high. The value of u p = 6.564x10- 4 in.

obtained in this study, which corresponds to about 20 lb of

loading, seems more reasonable as a criticai value in

indentation. For comparison, the relations between

unloading rigidity s and maximum indentation am using

Equation (3-7) with a r ,. = 3.16x10- 3 in. and Equation (3-8)

with u p = 6.564x10' 4 in., respectively, are plotted in

Figure 3.19.	 It is Interesting to see that these two

equations give almost the same values of s up to am = 4x10'3

In. which Is approximately the maximum indentation before

failure could occur to the specimen. The advantage of using

Equation (3-7) for the formulation of the unloading law is
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that the value of s is constant for any am once the the

indentation passes a,,., and only one unloading test is

necessary to determine a,r provided the load is high enough

to produce permanent indentations. The use of Equation (3-

9) needs performing many tests to obtain a propor relation

between ap and a,, according to Equation (3-8). However, it

should be noted that Equation (3-7) is valid only if q = 5/2

is used in the unloading equation (3--4), while Equation (3-

8) has no such restriction.
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CHAPTER 4

IMPACT EXPERIMENTS

High velocity impacts usually result in very small

	

contact time and the material under impact loadings may 	 41

	

behave differently from static contact due to the strain
	

4 1r

rate effect.	 The statically determined	 contact	 laws

presented in the previous chapter thus must be verified
b 9

	experimentally before it can be applied to the impact	 ^t

analysis. Wang [151 has conducted many impact experiments

on laminated composite beams and plates using spherical

steel balls as impacters. The strain response histories at

various points on the specimens were recorded and compared

with the finite element analysis with which the contact laws

obtained by Yang [14] was incorporated. The results showed

	

that the test data agreed with the predictions using the	 ua

statical indentation laws quite well. In this chapter, an

attempt was made . to measure the contact force directly so

that the applicability of statical contact laws in impact

analysis can be further evaluated.
+i

4iV

K J

iyydt 
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OF POOR Q-,','A TY
4.1 Experimental Procedure

A 6 in. by 4 in. laminated plate out from a [0 0 /45 0 /0 0 /-
45 0 /0 0 3 2S graphite/epoxy panel was used as the impact

target. The 0 0-direction was arranged to parallel the long

side of the plate. Seven strain gages (Micro Measurement

Company TYPE EA-13-062 AQ 350) were placed at different	 t,

locations as shown in Figure 4.1 to record the dynamic,

strain histories.	 One of the gages was placed on the

surface directly opposite to the impact point to trigger the

oscilloscope.	 This plate was hung with two strings at two

corners to achieve the free boundary condition.

The projectile was made of an impact-force transducer

with a spherical steel cap of 0.75 inch in diameter glued on

the impact side and a steel rod of 5/8 inch in diameter

glued on the other side as shown in Figure 4.2. It was then

attached to a thin rod to form a pendulum which could

produce impact velocities up to 150in/sec. The total mass

of the projectile is 0.000181 lb-sec t /in .

The schematic diagram for this impact experimental set-up

is shown in Figure 4.3. Signals from gages and transducer

were amplified by a 8A9 Textronix amplifier and displayed on

the screen of an oscilloscope.
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Figure 4.1 Laminate dimension and strain gage locations
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(a) Impact-Force Transducer
	 (b) Projectile

Figure 4.2 Graphical Illustration of Impact projectile
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4.2 Ca i 1 brat i on of Impact-Force Transducer 	 ORIGINAL	 tQ
OF Poon QUALIT^

The	 impact-force transducer used was Modal 20OA05

marketed by PCS Piezotronics Inc. Some of it's

specifications are shown in Table 4.1 [301, The structure

of this transducer contains two thin quartz disks operating

in a thickness compression mode and sandwiched between

hardened steel cylindrical members. A built-in amplifier

can reduce the high impedance of the voltage from the quartz

element and provides an output voltage which can be read out

on oscilloscope, recorder, etc., The impact force is then

computed using the equation,

F o VF/c F	 (4-1)

where V F is the output voltages and O F is the sensitivity of

the transducer. Since the value of OF in Table 4.1 was

obtained under quasi--static condition [301, it must be

verified under impact condition first so that later the

results from impact experiment can be correctly interpreted.

A circular cylindrical steel rod of 2 inch in diameter

and 1.19 inch long hung on strings was used as the impact

target to calibrate the transducer. The acceleration of the

rod was measured by using a Model 302A accelerometer which

was mounted on the end of the rod opposite to the impacted

end as shown in Figure 4 .4. The total weight of the target

is 1.105 lb.

t`
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Table 4.1
Specifications for Model 200A05 Impact-Force Transducer

Range,	 Compression
(5V output) lb. 5,000

Maximum Compression lb. 10,000

Resolution (200 AV p-p noise) lb. 0.2

Stiffness lb/µin 100

Sensitivity mV/ib 1.0

Resonant Frequency
(no	 load) Hz 70,000

Rise Time µsec 10

Discharge Time Constant
(T.C. ) sec :;',000

Low-Frequency (--5%) Hz 0.0003

Linearity,B.F.S.L. % 1

Output Impedance ohms 100

Excitation	 (thru C.C.diode) VDC/mA +13 to 24/2 to 20

Temperature Coefficient %/°F 0.03

Temperature Range OF -100 to +250

Shock (no load) g 10,000
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9
	

Using Equation (4-1) and

a = VD/00	 (4-2)

F=ma
	

(4-3)

t

we obtain

CF = (C./m)(VF /Vo)
	

(4-4)

1
i

3

where V. and c a are the output voltage and the sensitivity

of the accelerometer, respectively, a is acceleration of the

target, and m is the mass of the target.

When impacting a metal projectile on a metal target with

no pad on the impact surface, a high frequency ringing can

be seen at the output of the transducer. In order to obtain

smooth output curves, a soft pad was placed on the impact

region of the target to eliminate the high frequency

ringing. The cause of this ringing phenomenon will be

discussed later. Typical output voltages of transducer and

accelerometer read from the oscilloscope are shown in Figure

4.5. Values of V F were plotted vs the corresponding values

of V. taken from these two curves at several discrete points

in time and then fitted into a straight line as shown in

Figure 4.6. The slope of this line represents the ratio of

V F/V ,1 which is then substivuted in Equation (4-4) to

calculate the sensitivity CF'

a
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Figure 4,5 Typical output voltages from transducer and
accelerometer
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Assuming the sensitivity of the accelerometer cp is

correct, and using Equation (4-4) and the test data, the

average value of O F calculated was 0.494 mV/lb.. A

comparison wlth the value of 1.0 mV/ib from Table 4.1 shows

that the test result has more than 50/ error, However,
since the quartz elements are located at the center of the

projectile while the impact force is applied at the end, we

were not certain that the force history picked up by the

quartz elements did represent the real history of the impact

force.	 The following simple analysis was performed to

exasnine this uncertainty.

Consider a 1 in. long steel rod with free-free boundary

conditions. For a impulse loading given by

F(t) = Fo EXP(-(t-r) 2 /4b a ))
	

(4-5)

at one end, the force history at the midpoint of the rod,

Fm(t), was computed and plotted in Figure 4.7 together with

the applied force history. It should be noted that the

values of F 0 = 1000 lb., r = 200x10" 6 sec. and b = 40x10`6

sec. were chosen in Equation (4-5) so that the applied

force history is similar to the experimental loading

histroy. From Figure 4.7, it can be seen that F,,,(t) is only

about half of the applied force F(t). The average ratio of

Fm(t)/F(t) was obtained to be 0.498, which is very close to

the value of OF obtained previously. The accelerations at

the two ends and the midpoint of tho rod were also

,I
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Figure 4.7 Assumed exponential iivnpulsiwe loading and the
response history at the midpoint of the rod
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calculated and plotted in Figure 4.8. It shows that the

magnitudes of acceleration at any position of the rod have

virtually	 no	 difference.	 This	 indicates	 that the

accelerometer did measure the real acceleration of the

target while the impact-force transducer only picked up the

force history at the point of it's own position. In other

words, the wave motion in the projectile can not be

neglected, hence it must be treated as an elastic body.

Repeating the previous analysis by changing the impulse

loading of Equation (4-5) to

F(t) m Fosin(nt/b)
	

(4-6)

end letting Fo - 1000 lb. and b - 400x10` 6 sec., we obtain

the force history at the midpoint of the rod as shown In

Figure 4.9. Comparing Figure 4.9 with Figure 4.8, it is

clear that the Initial slope of the impulse forcing function

would affect the amplitude of ringing.	 The steeper the

Initial slope is, the higher the amplitude of ringing will

be. When impacting the steel projectile on graphite /epoxy

surface, this ringing phenomenon was also observed.



92

ORIGINAL PAGE 13
OF POOR QUALITY

.4000

C)
,-4 .3000
X

U
LLJ
V)

.2000

CC
Q!
U.j
-j
U.J 1000
U
U
cc

,0000
100.10	 200.0	 1100.0	 400.0

TIME(/4SEC.)

Figure 4.8 Accelerations of rod for assumed exponential
Impulsive loading

it

ti

A



93
0,PmNo",
OF14^;-,WZZ,

POOR

1200.

I-- I I n

F (t)*-- 
=

m

(Eq,4- 6) 

ii

1000.

800.

cn

Ljj UOOO.
L)
rill
ED
U-

1100.

200.

0.

FM

FM W

.0	 100.0	 200.0	 300.0	 400.0TIME(IiSEC.)

Figure 4.9 Assumed sine-function Impulsive loading and
the response history at the midpoint:of the
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4.3 Finite dement Analysis

4.3.1 Plate Finite Element

ORiMM PAGE 19
OF POOR QUALITY

W

f

ri«

l

r

u L

A 9-node isoporametric plate finite element (see Figure

4,10) developed by Yang [313 based upon the laminate thocry

of Whitney and Pagano (18] was used-to model the dynarlel,

motion of the laminated plats. At each node there are five

degrees of freedom. /among them, u°, v° and w are

displacement components of mid-plane in the x-,y- and z--

direction, respectively, and ¢x and 0„ are rotations of the

cross-sections perpendicular to 	 the x-	 and y-axis,

r°apYCt 1vely. For symmetrI e laminates; the flexural

deformation is uncoupled from the in-plane extensional and

shear deformations, and hence, the degrees of freedom

corresponding to u° and v° con be neglected in 	 the

transverse impact problem.

The lsoparametric plate finite element is developed using

the following shape functions;

For corner nodes;

S^=(1/4)(1+o)(1+na)(:;Q +no"°1) +(1/4)(42)( 4 -772) 	(4-7)

For nodes at 0 = 0 and rt i1

S,=(4/2)(1 -12)(77Q+72) 	 (4-8)

For nodes at e = t1 and n = 0!

4w
µ 0

gg	 ,

ll k

a

rt=^
i

f
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Figure 4.10 9-node isoperametric plate element
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Sa-(1/2)(io+0 2 )(1-n 2 )

For the center node;

oWGINAI- P J\11a 13

Cdr Vt1OR QUA'
(4-9)

S I -0/2) (1-C2 ) (1-77 2 )
	

(4-10)

In the above shape functions,	 and n are normalized

local coordinates, and

eo " r e i ,	 no - nn,	 (4-11)

where el and n j are the natural coordinates of node i

(Figure 4.10).

Using the shape functions, the plate displ-acements w, 0.

and 0. are approximated by

w
9

)x '^ i1 Cs ] (q p }
m

oy

(4-12)

where {q p ), is the nodal displacement vector at node i and

3x3
[S], _ S, [I]
	

(4-13)

The stiffness and mass matrices are obtained by numerical

integration using Gauss quadrature. Following standard

finite element procedures, the system stiffness matrix [K.)

and mass matrix [M p ] are assembled from the element

matrices. The equations of motion are expressed in matrix
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form as	
OF pooq t ^^Ai-t'i+Y

[Mpl(gp) + [K p l{g p } - {pp}
	

(4-14)

where

{P p ) r .. (0,..,,F,.,.lo0}	 (4-15)

is the force vector in wh ► ch F is the contact force

associated with the degree of freedom corresponding to the

w-displacement at the impact point. The subscript p in

Equations (4-12) through (4-15) denotes those are quantities

corresponding to laminated plate.

4.3.2 Modeling of Projectile

t

In Section 4.2 we showed that in order to interpret the

r	
experimental transducer response, it is necessary to treat

the projectile as an elastic body. 	 A higher order rod

t	 finite element developed by Yang and Sun (321 was used to

model the projectile.	 This element has two degrees of
i

freedom at each node, namely the axial displacement u and

it's first derivative 8u/ax. It has been shown that this

	

higher order element is far more superior than the elements 	 a

with less degrees of freedom in the analysis of dynamic

problems. The displacement function is taken as

'	 u = a i + azx + agx 2 + aax e	(4-16)
i

Y

ypy

	
^ 

ggH
T	 ^

!t
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where	 a, I	are	 constant	 coefficients.	 Solving these

coefficients In terms of the nodal degrees of freedom and

substituting into Equation (4-16), we obtain

u - {N}T{gr)o
	 (4--17)

where

{ q r } a 7 - {(t^) 	 MWeX)J i (u) 2 0 (Ou/aX)2)
	

(4-18)

is the vector of element nodal degrees of freedom, and

{N } r - {f,(x), f 2 (x), fs(x), f.,(x)}
	

(4-19)

in which

f i (x) = (1 - x/0 2 (1 + 2x/L)

f 2 (x) - x(1 - x/L)2

fa (x) m x 2 /1- 2 (8 -^ 2x/L)

f 4 (x) = x 2 /L(x/L - 1)

are shape functions. The subscript r in Equation (4-17)

denotes quantities corresponding to the rod.

Using variational principle, the equations of motion for

one element are obtained as

[mr] {qr}m + [k r ]{q r } o ", {pr}m	 (4-20)

{	 where	 {Pr}- is the vector of the generalized forces

associated with the nodal degrees of freedom {gr le, [Mr] is

j	 the element mass matrix whose entries are given by
I'F

OF POOR QUALITY
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(m,. ) Ij = pAf f i f j dx i,,,r = 1,2,3,4	 (4-21)
0

and [k,] is the element s;iffness matrix whose entries are

given by	 4

(kr) I J = EAf L f i 'f j 'dx i,,J = 1,,2,3,4 	 ( 4-22)
0

In Equations (4-21) and (4-22),, p, E and A are mass density,

Young's modulus and cross-sectional area of the projectile,

respectively, and L is the length of the element. 	 The

explicit forms of [k r ] and (M r ] are given by

36	 3L	 -36	 3L

EA 3L	 4L 2 -3L -1-2
(k,.] = (4-23)

30L_ -36 -3L	 36 -31-

3L -L 2	-3L	 4L2j

and

156	 22L	 54	 -13L

pAL 22L	 4L 2	13L -31-2
[mr]	 _ (4-24)

420 54	 13L	 156 -22L

-13L -3L 2 -22L	 4L2

Following the usual manner, the system stiffness and mass

matrices are assembled from the element stiffness and mass

matrices, and the system equations of motion are expressed

as



[Mrl{gr} + LKrl{gr} = { pr}
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where

{pr }s	 {F,p,...^p}	 (4-26)

in which F is the contact force applived at the impacting end

of the projectile.

4.4. Results and Discussion

The 6 in. by 4 in. graphite/epoxy laminate was modelt,\d

by'140 (14 x 10 mesh) plate elements while the projectile

was modeled by 20 rod elements (see Figure 4.11). The tM'-)

sets of equations (4-14) and (4-25) along with the contact

laws, given by Equations (3-1), (3-3) and (3-11) were solved

simultaneously. The finite difference method with At = 0.2

;sec.. was used to integrate the time variable. A coarser

finite element mesh for plate was used and it was found that

the present mesh yielded converged solutions. A 3-

Dimensional analysis using 112 axlsymmetric finite elements

to model the projectile was also performed, and the results

showed the the response at the midpoint.of the projectile to

have no significant difference comparing with the one

obtained by using rod elements.

^Q

it kl

4:r

U

♦ s

r;

q_

	An impact velocity of 115 in/sec was used in the
	 rz ^

experiment.	 Figures 4.12-4.17 show the strain response

histories at the six locations picked up by the strain
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gages.	 The results obtained using the finite element

methods and the contact laws are also shown in these

figures.	 It is evident that the finite element .solutions

agree with the experimental date very well.

In Figure 4.18, the experimental transducer responses and

the computed transducer responses using finite element are,

plotted against time as curve I and curve II, respectively.

The computed contact force history is also plotted as curve

III. It can be seen that the magnitudes of curve I and

curve II agree fairly well. The frequencies of ringing for

these two curves, however, are quite different. For the

finite element results, the time interval between two

consecutive peaks of ringing is approximately equal to the

time that the longitudinal stress wave needed to travel the

distance between two ends of the projectile. This indicates

that the ringing is simply caused by the transient wave

travelling back and forth in the profiictile.

From Figure 4.18 we can see that curve 1 has exact 9

peaks in 180 microseconds, and the time interval between two

consecutive peaks is about 20 microseconds. it is noted

that this transducer has a rise time of 10 microseconds (see

Table 4.1), which is the time it needs to reach the maximum

response.	 Any input signal with period smaller than twice

.r
of this value will be smoothed out by the transducer, and

the output signal may appear-to have lower frequency. In

other words, the period of the output signal will be at

yam._

__1

n:=n

r°
;i

t
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least 20 microseconds. This might explain the lower

frequency of ringing in the output voltage from the

transducer.

The total duration of contact for this impact test is

about 800 microseconds, and multiple contact 	 is	 also

observed	 from the test data.	 Figure 4,19 shows the

experimental transducer responses and the computed

transducer responses up to 800 microseconds. Although these

two results do not matched very well after the end of the

first contact, it is evident that the finite element

analysis does predict the multiple contact phenomenon, and

the	 calculated	 total	 duration	 of	 contact is also

approximately the same as the test result,

Figure 4.20 presents a number of deformed configurations

of the laminated plate after impact. It is seen that at the

point of impact, there is a strong discontinuity in slope of

the transverse displacement indicating the presence of a

significant transverses shear deformation.
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CHAPTER 5

SUMMARY AND CONCLUSION
E

a

	

	 The laminate theory developed by Whitney and Pagano was

employed for studies of harmonic wave and propagation of

wave	 front	 in	 a [0 0 /45 0 /0 0 /-45 1 /0 0 1 25 graphite/epoxy

laminate. The dispersion properties of flexural waves were

investijated. The wave front surface was constructed using

ray theory. It was shown that due to the anisotroplc

properties of composite laminate, the transient wave would

propagate with different velocities in different directions.

The growth and decay of the wave front strength were also

discussed.

The contact laws between 0.5 inch and 0.75 inch spherical

steel	 indenters	 and the graphite/e,.poxy lr-aminate were
1

determined experimentally by means of a statical indentation

test,	 Loading, unloading and reloadl.ng curves were fitted
i
G

into .power ecruat t ons . Linear  relation was found between the
r

permanent	 indentation	 and the maximum indentation at
ry

unlozading, which is seen to be independent of the size of

indenters.	 This relation was then used to determine the
g.

coefficient of the unloading law. It was demonstrated that

there was no need to perform reloading experiments once the

loading and unloading laws were established.	 Test results d

ii
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showed loading and reloading curves followed the power laws

with power indices of 1.5 very well, while the power indices

for unloading curves varied from 1.5 to 2.5.

The statically determined contact laws were incorporated

into an existing 9-node isoparametric plate finite element

program to study the dynamic response of a graphite,/epoxy

laminated plate subjected to impact of a hard object. An

impact experiment was conducted to verify the validity of

statical contact laws in the dynamical impact analys ?s. It

was shown that the strain responses predicted using the

finite element method agreed with the test results very

well. The contact force history of the impact test was

measured by an impact-force transducer, which was also seen

to match the finite element result in magnitude as well as

contact duration.

The indentation tests have been used ever since the

beginning of the century tQ determine the static and dynamic

hardnesses of metals in'terms of the applied loading, the

size of the indenter, and the chordal diameter of the

permanent indentation (331. If similar systematic

indentation tests are performed on the laminated composite

materials, then the relations between contact coefficients

and the sizes of the indenters could be determined more

rigorously, and the usefulness of the contact laws could be

further extended.
ORIGINAL PAaE 6.'
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As the verification of the contact laws has been limited

to low velocity impacts in this study, their accuracy under

high velocity impact conditions is not clear, Besides the
i

contact behavior which may be significantly different from

the static one, the damage induced by waves could be quite

extensive which needs to be included In the analysis. While

a	 the present study tried to establish experimentally contact
i

laws which can be used in the analysis of low velocity
4

impact, the damage of laminate due to im4aact loading has not

been discussed, It is apparent that more work needs to be

t done so that the failure mechanism to laminated compositesF,

due to impact can be better understood. 	 Stress waves

In thickness direction which m ay be responsiblepropagating  ^ Y onsiblep

for the delamination of laminates, is one of the important

subjects that should be investigated, Strength and fatigue

life degradations of laminates after Impact, which have been

examined briefly by Wang [153, also need more extensive

study.

Y

1 h
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APPENDIX

COMPUTER PROGRAM AND USER INSTRUCTIONS

The computer program used in this research was written

following the program by Professor R. L. Taylor [34] with

some necessary modification in order to solve the impact

problems of laminated plates, A brief instruction of the

input data for solving the impact problem specified in

Chapter 4 of this report is given in this apppendix. The

detailed descriptions of data input as well as the macro

instructions for solving various types of problems can be

found in [34). The listing of input is shown at the end of

this appendix, followed by the listing of program.

I. Title and control information:

I. Title card-Format(20A4)

Columns Description

	1-4	 Mu t contain FECM

	

5-80	 Alphanumeric information to be printed with

output as page header.

2. Control information card-Format(6I5)

Columns Description

	1-5	 Number of nodes (NUMNP)

	

6-10	 Number of elements (NUMEL)
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1620	 Spatial dimension (NDM)

21-25	 Number of unknowns per node (NDF)

2630 Number of nodes per element (NEN)

H. Mesh and initial information:

The input of each segment in this part of dato is

controlled by the alphanumeric value of macros, which must,

be followed immediately by the appropriate data. Except for

the END card which must be the last card of this part, the

data segemnts can be in any order. Each segment is

terminated with blank card(s). The meaning of each macro is

given by the following:

Macro	 Data to be input

COOK	 Coordinate data

ELEM	 Element data

BOUN	 Boundary condition data

MATE	 Material data

ROD	 Initial condition of ti=ae project ile

EXPE	 Experimental indentation laws data

END	 Must be the last card of this part, terminates

mesh and initial information input.

1. Coordinate data-Format(215,2F10.0)

Columns Description

	

1-5	 Nodal number

	

6-10	 Generation Increment
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	21-30	 Y-coordinate

2. Element data-Format(11I5)

Columns Description

	

1-5	 Clement number

	

6-10	 Node 1 number

	11-15	 Node 2 number

etc.

46-50 Node 9 number

	

51-55	 Generation increment

3. Boundary condition d,ta-For=t;?I'S)

Columns Description

	

1-5	 Node number

	

6-10	 Generation increment

11-15 DOF 1 boundary code

16-20 DOF 2 boundary code

21-25 DOF 3 boundary code

26-30 DOF 4 boundary code

31-35 DOF 5 boundary code

4. Initial condition of the projectile-Format(2I5,F10.0)

Columns Description

	

1-5	 The node at which the projectile hits

	

6-10	 DOF corresponding to the direction of impact

	

11-20	 Initial impact velocity
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5. Experimental indentation laws data-Format(4F10-0)

Columns Descri2tion

	

1-10	 Contact coefficient k

1120	 Critical indentation up

	

21 -30	 Constant s p of Equation 3 -9

	

31--40	 power Index q of the unloading law

6. Material data

Card 1-,format(3I5,F10,0)

Columns Description

	1-5	 Order of Gauss quadrature for the numerical

integration of he Wbondingi energy

6-10 Order of Gauss quadrature for the numerical

integration of the transverse shear energy

	

11-15	 Order of Gauss quadrature for strain outputs

at Gauss points If >0

at nodal points if ^0

16-25 Total thickness of the laminate

Card 2--Format(7F10.0)

Columns Oe scr i pt i can

	

1-10	 Mass density

	

11-20	 Poisson's ratio V12

	21-30	 Longitudinal Young's modulus ET

31-40 Transverse Young's modulus E2

	

41-50	 Shear modulus G,_,

	

11-20	 Shear modulus GIs

1 120 Shear modulus G29

a
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k
Card 3 f 4 i -•• Format(I5 f F5.0 f F10.0)^ 

Columns Description	 ORIGINAL PAL;"; ;f

f	 1-5	 Layer number	 OF POOR QUALITY

6-10 Fiber angle

11-20 Thickness of the layer

III. Macro instructions:

F^	
The first instruction must be a card with MACR in columns a

1 to 4. The macro instructions needed to solve the problem

specified in Chepter 4 of this report are shown in the

listing of input.. Cards must be input in the precise order.

The followi ng      i s the expl ana tion      of ear. h macro

Columns Columns Columns
1-4	 5-10	 11-15	 Description

'	 9

WAS	 Lumped mass formulation

DT	 V	 Scat time increment to value V

LOOP	 N	 Execute. N times the instructions

between this macro and macro NEXT

TIME	 Advances time by DT value

3 	 RODP	 N	 Integration of the equations of

motion using the finite difference

k	 method. Contact force, Indentation

and element strain will be stored

stored every N steps in loop

DISP	 N	 Nodal displacements will be stored
a

every N steps in loop

NEXT	 End of loop instructions

I`

1
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END	 End of macro program Instructions

IV, Termination of program execution

A cord with STOP In columns I to 4 must be supplied nt

the end of the Input dnto In order to prQpor*-Iy terminnto the

exacwtion.

The values of contact force, Indentation, element *train,

nodal dispinoement and the response of the projeotilo at

epoh requested output time step are storeid in program fllcr^

which can be saved (say, copy to * magnetic tape) at the end

of exev.,, t I on.	 Thi-es., program 14 
1

1 as j 1 , e	 tap e3, tvape$ and

tope9 are used for date soving.-,

Tape3: Nodal displacement - Format(6E12.4)

Nodal displacements, from node I to node NUMNP, are saved

on tope3 at each requo4ted output time stop according to the

format.

Tape$: Element strain , Format(216,5E12.4)

Element strains, , from element I 
to element NUMEL, and

then from node 1 to node NEN of each element, are saved on

on tapP8 at each requested output time step.

Columns Date saved

	

1"6	 Element number

	

7-12	 Node number of element

1$-24 Bending strain xx

25-36 Bending strain x.

fi

4 k



125

	

37-48	 Sending strain kxy

49-60 Transverse shearing strain 1yx

49-60 Transverse shearing strain lxz

Tape9: Contact force, indentation and the rosponse of the

projectile - Format(6E12,4)

The following information is saved on tape9 at each

requested output time step:

Columns Data saved

	

1-12	 Contact force

	

13-24	 Indentation

	

25-36	 'Transducer' response (see Chapter 40

	

37-48	 Displacement of the projectile at the impacted end

	

37-48	 Velocity of the projectile at the impacted end

	

37-48	 Acceleration of the projectile at the impacted end
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c`1
4 i

u

w:

t.;

at y

^a

6	 Rte

u ..

l

^u

^t

w^

FECM	 *LOW VELOCITY IMPACT OF LAMINATED PLATE**
609 140 20	 2 5	 9

f	
COOK

1 1 060 000000
7 1 1.5 0.0000

23 1 4.5 0.0000
Ea as 0 6.0 0.0000

30 1 010 0.2:500
36 1 1.S 0.M2500

lj	 Be 1 4.5 0 62500
so 0 6.0 0.2500
Be 1 010 0.5000
65 1 1.5 0.5000
81 1 4.5 0.5000
87 0 G.0 0.5000
83 1 0.0 0.6875
94 1 1.5 0.6875

110 1 4.5 0.6875
116 0 6.0 006875
117 a 0.0 0.8750
123 1 1.5 0.8750
139 1 4.5 0.8750
145 0 6.0 0.8750
140 1 0.0 1.0625
152 1 1 5 1.0625
168 1 4.5 1.0625
174 0 9.0 1.0625

} 175 1 0.0 1.2500
181 1 1.5 1.2500
197 1 4.5 1.2500
203 0 6.0 1.2500
204 1 0.0 1.4375
210 1 1.5 1.4375
226 1 4.5 1.4375
232 0 6.0 1.4375

t	 233 1 0.0 1.6250
239 1 1.5 1.6250
255 1 4.5 1.6250
261 0 6.0 1,.6250
262 1 0.0 1.8125
268 1 1.5 1.8125
284 1 4.5 1.8125
290 0 6.0 1.8125
291 1 0.0 2.0000
297 1 1.5 2.0000
313 1 4.5 2.0000
319 0 6.0 2.0000
320 1 0.0 2.1875
32G 1 1.5 2.1875
342 1 4.5 2.1875
348 0 G.0 8.1875
349 It 0.0 2.3750
355 1 1.5 2.3750
371 1 4.5 2.3750
377 0 6.0 2.3750
378 1 060 2.5625
384 1 1.5 2.5625
400 1 4.5 2.5625
406 0 6.i0 2.5625
407 1 0.0 2.7500
413 1 1.5 2.7500
429 1 4.5 2.7500
435 0 G.0 2.7500
436 1 0.0 2.9375
442 1 1.5 2.9375

3
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OF poop QUALITY

K/

^^ [

^	
^ 1 4.5 2~

n G.0 2.9375
1 0,0 3.1250

0 471 1 1"5 3.1250
^ 487 1 4.5 3.1250

V 6.0 3.1250
{ 494 1 0.0 3.3125

U 500 1 1,5 3.3125^	 ^ 51G 1 4.5 3.3125
` 522 O G.O 3,3125

523 1 0.0 3.5000
528 1 1.5 3.SOOU 
545 1 4.5 3.5000

^ 551 0 G,0 3.5000
^ 552 1 0^0 3^7500' 558 1 1^5 3.7500
- H 574 1 4.5 8.7500

8 580 U G.V 3.7500
581 1 0.0 4.0000' 58? 1 1.5 4.0000

, G03 1 4.6 4.0000
«

G08 0 8.0 4.0000
,

ELEM
| 1 1 3	 81 SS	 2 32 80 30 31

^ 15 53 G1	 119 117	 G0 90 118 88 88
V 28 117 119	 177 175	 118 148 176 146 147

43 175 177	 235 233	 17G 208 234 204 205` 57 233 235	 293 291	 234 264 282 2G2 2G3
71 291 293	 351 349	 282 322 350 320 321'	 y 85 348 351	 409 407	 350 380 408 378 378

|	 8 SD 407 408	 4S7 4G5	 408 438 466 436 437
. 113 4G5 4G7	 525 523	 466 496 524 494 495

127 523 525	 583 581	 524 554 582 552 553

^ BOUM
. 1 1 -1	 -1 0	 0 0
` GOS 0 1	 1 0	 0 8

^ 8 ROD
305 3 115.8

i^ EXPE
1912000. O.00Og5G4 0.094 2.0 

^ MATE
3 3 -3 .106

' .0.000148 .0 ^ 1^GV0O0U . 1150O0U . 8^OD0U ,
^ 1 0. 0.0053

.	 ~  2 45. 8.0053`	 | 3 0. 0.0053
i 4 -45. 0.8053

5 O. 0.0053
G O. 0,0053
7 45. 0.0053
8 O ^ 0.0053
S -45. 0.0053

^ 10 O. 0.0053^ 11 8. 0,0053
12 -45. 0.0053
13 U. 0.0053

^ 14 45. 8-0053
^ 15 0. 0.0053

1G O. 0.0053
17 -45. 0.0053

. 18 O. 0.0053
^  13 45. 0.8033^ 20 O. 0.0053 

END

^}	 l

2
2
2
2
2
2
2
2
2
2

800000.	 800000.
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MACR
LMAS
DT
LOOP
TIME
RODP
DISP
NEXT
END
STOP

ORIGINAL
OF POOR QUALITY.2E—S

10
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OF POOR QUALITY
LISTING OF PROGRAM

PROGRAM MAIN(INPUT ► OUTPUT ► TAPES=INPUT ► TAPES==OUTPUT ► TAPE2 ► TAPE3 ► 	 MAIN 1
b	 1	 TAPESPTAPE9) MAIN 2

C**%.*	 MAIN PROGRAM MAIN 3
LOGICAL PCOMP MAIN 4
COMMON /PRSIZE/ MAX MAIN 5
COMMON /CTDATA/ QIHEAD(20)#NUMNP ► NUMEL ► LAYERPNEO ► IPR MAIN 6
COMMON /LABELS/ PDIS(6) ► A(6) ► BC(2) ► DI(6) ► CD(3) ► FD(3) MAIN 7
COMMON /LODATA/ NDF ► NDMoNEN ► NSTPNKM MAIN 8
COMMON /PARATS/ NPAR(14) ► NEND MAIN 9
DIMENSION TITL(20) ► WD(3) MAIN 10
COMMON G(39000) MAIN it
DIMENSION M(39000) MAIN 12
EQUIVALENCE (G(1) ► M(1)) MAIN 13
MAX=39000 MAIN 14
WD(1)=4HFECM MAIN 15
WD(2) =4HMACR MAIN 16
WD(3)=4HSTOP MAIN 17

999 READ(5P1000) TITL MAIN 18
IF(PCOMP(TITL(l) ► WD(1))) GO TO 100 MAIN 19
IF(PCOMP(TITL(1) ► WD(2))) GO TO 200 MAIN 20
IF(PCOMP(TITL(1)oWD(3))) STOP MAIN 21
GO TO 999 MAIN 22

100 DO 101 I=1020 MAIN 23
101 HEAD(I)=TITL(I) MAIN 24

READ(5o1001) NUMNP ► NUMELoLAYER ► NDM ► NDF ► NEN MAIN 25
WRITE(6r2000) HEAD ► NUMNP ► NUMEL ► LAYER ► NDM ► NDF ► NEN MAIN 26
PAIS(2)=A(MDM) MAIN 27
NST=NEN*NDF MAIN 28
DO 110 I=1,14 MAIN 29

110 NPAR(I)=1 MAIN 30
NPAR(1) = 1 MAIN 31
NPAR(2)=NPAR(1)+3*NST*IPR MAIN 32
NPAR(3)=NPAR(2)+NDM*NEN*IPR MAIN 33
NPAR(4)=NPAR(3)+NST MAIN 34
NPAR(5)=NPAR(4)+NST*IPR MAIN 35
NPAR(6)=NPAR(5)+NEN*NUMEL MAIN 36
NPAR(?)=NPAR(6)+NDF*NUMNP MAIN 37
NPAR(B)=NPAR(7)+NDM*NUMNP*IPR MAIN 38
NPAR(9) =NPAR(B)+NDF*NUMNP*IPR MAIN 39
NPAR(10)=NPAR(9)+NDF*NUMNP MAIN 40
CALL SETMEM(NPAR(9)) MAIN 41
CALL PZERO(G(1)PNPAR(9)) MAIN 42
CALL PMESH(M(NPAR(3)) ► G(NPAR(2)) ► M(NPAR(5)) ► M(NPAR(6)) ► MAIN 43

1	 G(NPAR(7)) ► G(NPAR(8)) ► M(NPAR(9)) ► NDF ► NDM ► NENPNKM) MAIN 44
NPAR(10)=NPAR(9)+NEQ MAIN 45
NPAR(11)=NPAR(10)+NDF*NUMNP*IPR MAIN 46
MEND=NPAR(11)+NEQ*IPR MAIN 47
NE=NEND MAIN 48
CALL SETMEM(NE) MAIN 49
CALL PZERO(G(NPAR(10))oNE—NPAR(10)) MAIN 50
GO TO 999 MAIN 51

200 CALL PMACR(G(NPAR(1)) ► G(NPAR(2)) ► M(NPAR(3)) ► G(NPAR(4))o MAIN 52
1	 M(NPAR(S)) ► M(NPAR(6)) ► G(NPAR(7)) ► G(NPAR(9)) ► M(NPAR(9)) ► MAIN 53
2	 G(NPAR(10))oG(NPAR(li))oG(NE) ► NDFoNDM ► NEN ► NST) MAIN 54
CALL PZERO(G ► MAX) MAIN 55
GO TO 999 MAIN 56

1000 FORMAT(2OA4) MAIN 57
1001 FORMAT(16I5) MAIN 58
2000 FORMAT(1H1.2OA4// MAIN 59

1	 SXPOC 0 N T R 0 L	 I N F O R M A T I O N SO// MAIN 60
2	 IOX935HNUMBER OF NODAL POINTS	 =016/ MAIN 61
3	 10Xo35HNUMBER OF ELEMENTS 	 =oI6/ MAIN G2
4	 1OXo35HNUMBER OF MATERIAL LAYERS 	 =PIG/ MAIN 63
5	 IOX935HDIMENSIOP) OF COORDINATE SPACE	 =9I6/ MAIN 64
6	 IOXP35HDECREES OF FREEDOM FOR EACH NODE 	 = ► IG/ MAIN 65
7	 IOXP35HNODES PER ELEMENT (MAXIMUM)	 =+IC; MAIN 66
END MAIN 67
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C
BLOCK DATA BLOC	 1

C**** BLOCK DATA BLOC
COMMON /CTDATA/ OPHEAD(20)#NUMNP#NUMELPLAYERtNEOPIPR BLOC	 3
COMMON /LABELS/ PDIS(S)#A(S)PBC(2)#DX(S)PCD(3)PFD(3) BLOC	 (I
DATA O/IHI/PIPR/l/ BLOC	 0
DATA PDIS/4H(II0p2Hp	 v4HF13.#4H4o	 t4HGE1394H.4) BLOC

	
0

DATA A/2Htlp2Hp2p2Ho3p2Ht4p2HFSp2HoS/ BLOt,
DATA BC/4H B.Cp2H. BLOC
DATA DI/4H DISv2HPL#4H VELp2HOCv4H ACCoelqEL/ E^0!^

DATA CD/4H COOv4HRDXNp4HATES/ ILOU 10
DATA FD/4H FORv4HCE/Dv4HISPL/ BLOC 11
END BLOC I L)

I

SUBROUTINE PMACR(IJLPXL,LDPPPIXFIDPXoFPJDIAGPDRBPCTPNDFPNDMP FIVIAC	 I
i

A	 NENPHST) Pr. Wic	 2
C**** MACRO YNSTRUrTION ROUTINE PHI)c	 3

LOGICAL Pu,,*illP
COMMON G(I)
DIMENSION M(l) FMAC	 6
EQUIUALENCE pKilC	 Y

COMMON /CTDATA/ O#HEAD(20)PNUMNPPNUMELPLAYERPNEOPIPR P N A 1:	 E 3
COMMON /PROLOD/ PROP PMAC	 0

COMMON /TMDATA/ TIMC,DTtDDT#FORCE#ALPHA PMAC 10
COMMON /ISWIDX,,' 1SW PHAC 11
COMMON /PARATS/ NPAR(14)PNEND FMAC 1p
COMMON /RQDPTA/ VRPIQPNDS PMAC 13
DIMENZ31ON UL(I)PXL(I)oLD(I)PP(I)PIX(I)PXD(I)PX(l),F(I)o PMAC 14

JDIAr;^I)pDR(I);;B(I) PMAC lu
DIMENSION WD(8),CT(4,IS)#LUE(9) PMAC 16
DATA AD/4HLOOP,4HNEXTo4HDT	 P4HPROPp4HLMASt4HRODP, PMAC IF

I	 4HSTREp4HDISPo4HCHEC/ PMAC is
DATA NWD/9/vENDM/4HEND PMAC 19

Co.$# INITIALIZATION PMAC 20
DT	 = 0.0 PMAC 21
PROP = 1.0 PMAC 22
TIME = 0.0 PMAC '123
NNEO = NDF*NUMNP PMAC 24
NPLD = 0 FMAC 2S
FORCE= 0. PMAC 26
ALPHA= 0. PMAC 2?
WRITE(GP2001) OPHEAD PMAC as
LL = I PNAC 29
LMAX = IS PMAC 30
CALL SETMEM(NEND+LMAX*4*IPR) PMAC 31
CT(Ipl)	 = WD(l) PMAC 32
CT(3#1) = 1.0 PMAC 33

100 LL = LL + I PMAC 34
XF(LL.LT .LMAX) GO TO 110 PMAC 35
LMAX = LNAX + 16 P111AC 3G
CALL SETMEM(NEND+LMAX*4*IPR) PMAC 3?

110 READ(SPIOOO)	 (CT(J,LL)PJ=lo4) PHAC 36
WRITE(GF2000)	 (CT(JpLL)vJ=Iv4) PMAC 39
IF(-NOT.PCOMP(CT(IvLL)pENDM)) GO TO 100 PMAC 40
CT(loLL) = WD(2) PMAC 41
NEND = NEND +LMAX*41flPR PMAC 42
LX -- LL — I PMAC 43
DO 230 L=I,LX PMAC 44 W- 'A

IF(.NOT.PCOMP(CT(IPL)PWD(l))) GO TO'230 PMAC 45
j = I PMAC 46
K = L + I PMAC 4?
DO 210 I=I(PLL PMAC 48
IF(PCOMP(CT(IvI),WD(I))) J	 J + I PMAC 49
IF(J -GT- 9) GO TO 401 PMAQ, F10

IF(PCOHP(CT(IrI),WD(2)))	 J	 J	 I PHAC 1-1).
210 XF(J.E0,0) GO TO 220 pHr-If.,	 5;2

GO TO 400 plincl.	 11113

220 CT(49I) = L pillpic	 t i 11 1

CT(4vL) = I PMAC 55
230 CONTINUE PMAC SG

14"	 Lj
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PMAG 57
PMAC 58
PMAC 33
PMAC GO
PMAC 61
PMAC 62
PMAC C3
PMAC 64
PMAC GS
PMAC C8
PMAC 67
PMAC 60
PMAC 89
PMAC 70
PMAC 71
PMAC 72
PMAC 73
PMAC 74
PMAC 75
PMAC 70
PMAC 77
PMAC 78
PMAC 79
PMAC 80
PMAC 81
PMAC 82
PMAC 83
PMAC 84
PMAC 85
PMAC BG
PMAC 87
PMAC 88
PMAC 89
PMAC 90
PMAC 91
PMAC 92
PMAC $3
PMAC 94
PMAC 95
PMAC 90
PMAC 57
PMAC y8
PMAC 99
PMACIOO
PMAC1Dl
PMAC102
PMAC103
PMAC104
PMAC105
PMACIOG
PMAC107
PMACIOB
PMAC109
PMAC110
PMAG111
PMACIIR
PMAC113
PMAC114
PMAC115
PMACIIG
PMAC117
PMAC118
PMACIIS
PMAC120
PMAC121
PMAC122
PMAC123
PMAC124
PMAc125
PMACl2G

DO 240 L*► 1 ► LL
IF(PCOMP(CT(I#L) ► WD(1))) J m J + 1

240 IF(PCOMP(CT(1 ► L)vWD(2))) J a J -- 1
LU(J,NE.0) GO TO 400

L r 1
295 DO 300 Jm1 ► NWD
300 IF'(PCOMP(CT(I ► L) ► WD(J))) GO TO 310

GO TO 330
3101 m L — 1

GO TO (1e 2r3v4vv ► Gr7v(3 ► 9) ► J
C«...	 SET LOOP START INDICATORS

1 LU - LV + i
LX R CT(4 ► L)
LVE(LV) m LX
CT( 3 ► LX) n 1.
GO TO 330

C..v.	 LOOP TERMINATOR CONTROL
S N = CT(4 ► L)
GT(3aL) a CT(3 ► L) + 1.0
IF(CT(3vL).GT.CT(3vN)) LV a LU -- 1
IF(CT(3 ► L).LE.CT(3 ► N)) L	 N
GO TO 330

C....	 SET TIME INCREMENT
3 DT c CT(3 ► L)

DDT :: DT*DT
GO TO 330

C....	 INPUT PROPORTIONAL LOAD TABLE
4 NPLD_ n CTQ3 L)
PROP = PROPLD(0. ► NPLD)
GO TO 330

Co. * .	 FORM LUMPED MASS MATRIX
S IS1403

CALL KMLIB
GO TO 330

C....	 IMPACT
G NDS=CT(3vL)

IF(NDS.EQ.0) NDSml
CALL RODIPCT
GO TO 330

C....	 PRINT STRESS/STRAIN VALUE
7 ISW=4
LX - LVE(LV)
IF(APIOD(CT(3tLX)vAMAXI(CT(3 ► L)91.))) 330P71P330

71 CALL FSTRLA(UL ► XLv LDP Pv IXvID ► X ► F ► JDIAG ► DR ► By NDFvNDM ♦ NEN ► NSTvNNEQ)
GO TO ;330

C....	 PRINT DISPLACEMENTS
0 LX r2 LVE(LV)Ir( AtIOD(CT(3 ► LX)vAP1AX1(CT(3vL) ► I.))) 330P81030

01 CALL FRTI)IS (UL ► IDv Xv D ► Fv DI; ► NDtl# NDF )
GO TO :330

C.v..	 CHECK
J WRITCi(6v5001) NENDvJDIAG(NEQ)

RETURN
330 LPL:.+1

IF(L-GT.LL) I CTURN
GO TO R99

C....	 PRINT ERROR FORMATS
'+00 WRITE(Gv44000)

RETURN
401 IIRITE(6v 4001)

RETURN
C....	 INPUT/OUTPUT FORMATS
1000 FORMAT(Alp 1XvA4r1X ► 2FS.0)
2000 FOF MAT(IOXvA4v 1X ► A4p1Xr2G1S.S)
2001 FORMAT(Alv2OA4//v5X ► 18HMACRO INSTRUCTIONS/rSX ► 15HMACRO STATEMENT

► SX ► 10l-lVARIABLE lv SXv 10HVARIABLE 2)
4000 FOI.MAT(SX ► 46H'^RPMACR ERROR 01** UNBALANCED LDOPrkLXT MACROS
4001 FORMAT(5Xv4SH**P11ACR ERROE 0200 LOOPS NESTED DEEPER THAN 8)
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5001 FORMAT(lHl ► ///"5Xv32HCHECK MESH DATA AND MEMORY SPACE// PMAC127
A lOXv12H	 NEND	 a t IlOe'ollOXv12HJDIAG(NEQ) wp IlO) FMAC128

END PMAC129
C

SUBROUTINE PZERO(V#NN) Pi"LER I
C**** ZERO REAL ARRAY PIER 2

DIMENSION V(NN) KER 2
DO 100 Nn 19NN p t-̂ U^r 4

100 V(N)	 Im,	 0,0 f,2LI, b
RETURN 2, KR G
END PEEP,

C
SUBROUTINE SETMEM(J) SETM I

Coo** MONITOR AVAIABLE MEMORY IN BLANK COMMON SETM P

COMMON /PRSIZEol MAX SETM 3
K = J SETM it
IF(K.LE.MAX) RETURN SLTH b,
14RITE(GolOOO) Kr MAX SETM G
STOP SET11

im rORMAT(5X#49H**SETMEM ERROR 01** INSUFFICIENT STORAGE IN BLANKt smi (I
A	 CH COMMON //17XpllHRL0UlRLD	 m,X(3/l7X#llHAVAILADLE =i IS) b 1%, T I I i

END W
C

LOGICAL FUNCTION PCOMP(APD) PCON 1
C*"*# LOGICAL COtIPAR.TSCN PCOM 10

IF(A—B)	 lOvROPIO PCOM J
10 PCO11P =	 FALSE. PCOM 4

RETURN PCOM 5

20 PCOMP u .TRUE. PCOM 6
PETURN pcorl T
END PCOM 6

C
SUBROUTINE ACTCOL(AtBPJDXAGPNEO#AFACPBACKPISS) ACTO I

C*"*f► ACTIVE COLUMN PROFILE SYMMETRIC EQUATION SOLVER ACTT' 4
LOGICAL AFACPBRCK#FLAG ACTC 3
DIMENSION
	

u
ACTC 4

C.... FACTOR A TO UTAD*Ut REDUCE B ACTC 15
FLAG=.FALSE. ACTC 13
JR at 0 ACTC 7
DO SOO J=lsNEQ ACTC 0
JD = JDIAG(J) ACTC 8
JH = JD	 JR ACTC 10
IS = J	 JH + 2 ACTC 11
IF(JH-2) GOO ► 300PI00 ACTC 12

100 IF(.NOT.AFAC) GO TO 500 ACTC 13
IE = j — I ACTC 14
K Im JR + 2 ACTC 15
ID = JDIAG(IS-1) ACTC 16

C.... REDUCE ALL EQUATIONS EXCEPT DIAGONAL ACTC 17
Do ROO ltx lsp IC ACTC 18
IR = ID ACTC 10
ID a JDIAG(I) ACTC RO
IH = MINO(ID — IR— lpI — IS+l) ACTC 21
IF(IH.GT.0) A(K)=A(K) —DOT(A(K— IH)PA(ID—IH)#IH) ACTC 22

200 K - K + 1 ACTC 23
Co. ** REDUCE DIGONAL TERM ACTC 24

300 IF(.NOT.ArAC) GO TO 500 ACTC 25
IR - JR + I ACTC 86
IE = JP	 - I ACTC V7
K a J — JD ACTC 28
DO 400 I=IRoIE ACTC 29
ID = JDIAG(K+I) ACTC 30
IF(A(ID)) 30I ► 400 * 301 ACTC 31

301 D = A(I) ACTC 32
A(I)	 A(I)/A(XD) ACTC 33
A(JD) w A(JD) — D*n(l) ► CTC 21

400 CONTINUE ACTC *,'s 7
IF(A(JD))450#45OoS00 ACTC 30

450 IF(ISS.NE.0) GO TO 500 ACTC 37
IF(FLAG) GO TO 4GS ACTC 38

F 4t
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WRITE(6r460) ACTC 39
460 FORMAT(//50H**ACTCOL ERROR 01** STIFFNESS MATRIX NOT POSITIVE r ACTC 40

1	 8HDEFINITE) ACTC 41
FLAG=.TRUE. ACTC 42

405 WRITE(Gr460) J ► A(JD) ACTC 43
4GG FORMAT(32H NONPOSITIVE PIUOT FOR EQUATION v14v5Xv7HPOVIT =r ACTC 44

E20.10) ACTC 45
C.... REDUCE RHS ACTC 46

500 IF(BACK) B(J) = B(J) _ DOT(A(JR+1) ► B(IS-1) ► JH-1) ACTC 47
600 JR = JD ACTC 48

IF(FLAG) STOP ACTC 49
IF(.NOT.BACK) RETURN ACTC 50

Co.. * DIVIDED BY DIAGONAL PIVOTS ACTC 51
DO 700 I=1 r PIEQ ACTC 52
ID = JDIAG(I) ACTC 53
IF(A(ID)) 65OP70OP650 ACTC 54

650 B(I) = B(I)/A(ID) ACTC 55
700 CONTINUE ACTC 56

C.... BACK SUBSTITUTE ACTC 57
J = NEQ ACTC $8
JD = JDIAG(J) ACTC 59

800 D = B(J) ACTC GO
J = J - 1 ACTC 61
IF(J.LE.0) RETURN ACTC 62
JR = JDIAG(J) ACTC 63
IF(JD—JR.LE.1) GO TO 1000 ACTC 64
IS = J — JD + JR + 2 ACTC 65
K = JR ° IS + 1 ACTC 6B
DO 900 i=IS ► J ACTC 67

900 B(I) = B(I) — A(I +K)*D ACTC 68
1000 JD = JR ACTC 69

GO TO 800 ACTC 70
END ACTC 71

C
SUBROUTINE ADDSTF(ArSrPrJDIAGrLDrNSTrNELrFLG) ADDS 1

C*saga* ASSEMBLE GLOBAL ARRAYS ADDS 2
LOGICAL FLG ADDS 3
DIMENSION A(1)rS(NST ► 1)rP(1) ► JDIAG(1)rLD(1) ADDS 4
DO 200 J=1 ► NEL ADDS 5
K = LD(J) ADDS 6
IF(K.EQ.0) GO TO 200 ADDS 7
IF(FLG) GO TO 50 ADDS 8
A(K)=A(K)+P(J) ADDS 9
GO TO ROO ADDS 10

50 L = JDIAG(K) — K ADDS 11
DO 100 I=1rNEL ADDS 12
M = LD(I) ADDS 13
IF(M.GT.K .OR. M.EQ.0) GO TO 100 ADDS 14
M = L + M ADDS 15
AQl)=A(M)+S(I ► J) ADDS 16

100 CONTINUE ADDS 17
200 CONTINUE ADDS 18

RETURN ADDS 19
END ADDS 20

C
FUNCTION DOT(A ► B ► N) DOT 1

C**** VECTOR DOT PRODUCT DOT 2
DIMENSION A(1) ► B(1) DOT 3
DOT = 0.0 DOT 4
DO 100 I=1,N DOT 5

r	 100 DOT = DOT + A(I)*B(I) DOT G
RETURN DOT 7
END DOT 8

C
SUBROUTINE PLOAD(IDrF,BrNN ► P) PLOA 1

C**f:* FORM LOAD VECTOR IN COMPACT FORM PLOA 2
DIMENSION ID(1),F(1) ► D(1) PLOA 3
DO 100 N=1 ► NN PLOA 4
J=ID(N) PLOA 5

100 IF(J.GT.0)	 B(J)=F(N)-::•P PLOA 6

.
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RETURN PLOA T
END P40A Q *^

C
FUNCTION PROPLD(T,J) PROP 1

C*it** PROPORTIONAL. LOAD TABLE (. ONE LOAD CARD ONLY) PROP a
COMMON /CTDATH/ OP HEAD(20) r NUMNPrNUMEL r LAYER ► NEOPIPR PROP 3
DIMENSION A(S) PROP '}
IF (J . LE. 0) GO TO 200 PRIOP :i }l

C.... INPUT TABLE OF PROPORTIONAL LOADS PROP G
3^I-1 PINOP ,'

READ(5r1000)	 Kt4vTMINvTMAXr(A(KKK)rKKK=1r5) PROP 8 a
WRITE(5P2000) O,HEADPIPKPLPTMINrTMAX P (A(KKK)rKKK=1 r 5) PROF Q
RETURN PLOP 10

C.... COMPUTE VALUE AT TIME T PROP 11 ^}

200 PROPLD = 0.0 R^R:OP IR
IF'(T.LT.TMIN .OR. T.GT TMAX) RETURN PROP 1:
L = MAXO(Lr 1) PROP 14 Pi
PROPLD = A( 1)+A(2)4}T+A(3);+(SIN(A(4)*T+A(5)))**I. PRV,
RETURN PROP iU : a

1000 FORtlAT(2I5r7F10,0) PROP i? ''
N8000 FORMAT(A1r2OA4//SXr23HPROPORTIONAL LOAM TABLE/41H 	 NUMBER	 r PROP 10

1	 43H TYPE	 EXP.	 MINIMUM TIME	 MAXIMUM TIR1Er13Xr8HA1r13Xr PROP a>I ^r
2	 2HA2r13Xr2HA3r13?4,8HA4r13Xr2HA5/0I8 ► 7G15.5)) PROP c̀.'.O I

END PRUP i'! PC
SUBROUTINE PRTDIS(ULrIDrXrBoF ► TrNDMrNDF) PRTD 1

C**if* OUTPUT NODAL VALUES PRTD 2
LOGICAL PCOMP PRTD 3
COMMON /PROLOG/ PROP PRTD 4 ;a

COMMON /CTDATA/ OPIIEAD(20)PNUMNP,NUMELPLAYERPNEOPIPR PRTD 5
COMMON /LABELS/ POIS(B) ► A(S),BC(8)rDI(S)PCD(3)rFD(3) PRTD Q
COMMON /TTDATA/ TIMEvDTrDDTrFORCErALPHA PRTD ?

4^'DIMENSION X(NDMr1)rB(1)rUL(S)FID(NDFrI)rF(NDFr1)rT(1) PRTD 8
DATA BL/4HBLAN/ PRTD 5
DO 102 N=IPNUMNP PRTD 10
IF(PCOMP(X(1 ► N),BL)) GO TO 101 PRTD 11 #'
DO 100 I=IPNDF PRTD 12
UL(I) = F(IrN)*PROP PRTD 13
K = IABS(ID(IPN)) PRTD 14

100 IF(K.GT.0) UL(I)=B(K) PRTD 15
T(N)=UL(3) PRTD 1G '~

101 CONTINUE PRTD 17
102 CONTINUE PRTD 18

WRITE(3r2001)	 (T(I)rI=1rNUMNP) PRTD 19 _,	 {
RETURN PRTD RO

2001 FORMAT(GE12.4) PRTD 21
END PRTD 22.

C
SUBROUTINE FSTREA( ULrXL,LD ► PtIXPIDr XPF ► JDIAGrAR r )3rNDFrNDMrNEN r FSTR 1 . °

NST:► NNEO) FSTR 2 IseC**** ELEMENT ROUTINE FSTR 3 A,..
COMMON /CTDATA/ O,HEAD(RO),NUMNPrNUMELPLAYERrNEOPIPR FSTR 4
COMMON /EL.DATA/ N, NELrMCT FSTR 5
COMMON /XSWIDX/ ISW FSTR; G
COMMON ,'P`?DLQD/ PROP FSTR 7
DIMENSION UL(NDF ► 1)PXL(NDMiI)PLD(NDFr1)PP(1)rIX(NENr1)r FSTR 8

1	 ID(NDFPI)PX(NAMr1)rF(NDFr1)PJDIAG(1),DR(1) ► B(1) ► S(1) FSTR 9
IF(ISW.E0.5) CALL PLOAD(IDPF,DRrNNEOPPROP) FSTR 10
MCT=O FSTR 11;
DO 110 N=1,NUMEL FSTR 12
CALL PFORM(UL ► XLPLDrIXPID ► XrFrBrNDF#NDMPNENPISW) FSTR. 13
CALL ELMT01(UL,XL.IX(1pN),P,NDF,NDM,NST,ISW) FSTR 14
IF(ISW.NE .4) CALL ADDSTF(DR,S,PPJDIAGrLD91rNEL*NDFr.FALSE,) FSTR 15

1 1 0 CONTINUE FSTR IG
RETURN FSTR2
END FSTR? 1'w

C
SUBROUTINE PFORN(UL,)(L, LDr IXv ID, Xr l", Ur NDFo NDM, NEN, ISW) PFOr; i,

C**** FORM LOCAL ARRAYS PFOR: 2
COMMON /ELOA `I'A/ Nr I1rEL ► MCT PFOR 3
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COMMON /PROLOD/ PROP PFOR 4
DIMENSION UL(NDF ► 1) ► XL(NDM ► 1) ► LD(NDF,l) ► IX(NEN,I) ► ID(NDF,I) ► PFOR 5

X(NDM ► 1),F(NDF ► 1) ► U(i) PFOR 6
DO 108 I-19 NEII PFOR 7
II = IX(ION) PFOR 8
IF(II .NE. 0) GO TO 105 PrOR 9
DO 103 J=1 ► N0M PFOR IO

103 XL(J, I) -. 0. PFOR 11
DO 104 J^1 ► NDF PFOR 12
UL(JoI) = 0. PFOR 13

104 LD(J,I)	 0 PFOR 14
GO TO 100 PFOR 15

105 IID = II#NDF — NDF PFOR 16
NEL = I PFOR 17
DO 106 J=1,NDM PFOR 18

106 XL(J ► I) = X(J,II) PFOR 19
DO 107 j=1,NDF PFOR 20
K = IABS(ID(J ► II)) PFOR 21
UL(J,I) = F(J ► II)*PROP PFOR 22
IF(K.GT.0) UL(J ► I)=U(K) PFOR 23
IF(ISW.EQ.G) K=IID+J PFOR 24

107 LD(Jol) = K PFOR 25
108 CONTINUE PFOR 26

k RETURN PFOR 27
END PFOR 28

C
SUBROUTINE ELMTOI(UL ► XLrIX ► PrNDF ► NDM ► NST,ISW) ELMT 1

C**** LINEAR ELASTIC IN—PLANE ^ BENDING ELEMENT ROUTINE ELMT 2
LOGICAL TAN ELMT 3

u COMMON/ELDATA/ N ► NEL ► MCT ELMT 4
COMMON ,MTDATt;/ RHG;UU12:E1;_rarrl2,Gin,G23 ► THK,WIDTH ELMT 5
COMMON /COMPST/ ABD(6 ► 6),DS(2 ► 2) ► QBR(3 ► 3 ► 25)oQBS(2 ► 2 ► 25)o ELMT 6

TH(25)#ZK(25) ELMT 7
COMMON /DMATIX/ D(10) ► DB(6,6) ► LINT ELMT 8
COMMON /TMDATA/ TIME ► DT ► DDT ► FORCE ► ALPHA ELMT 9
COMMON /GAUSSP/ SG(16) ► TG(16),WG(15) ELMT 10
COMMON /EXTRAS/ TAN ELMT 11
DIMENSION UL(NDF ► 1), XL(NDh1 ► 1),IX(1) ► P(1)oSHP(3 ► 12)o ELMT 12

1	 SIGT(3),SIGB(3)rSIGS(2)PEPT(3) ► EPB(3) ► EPS(2) ELMT 13
1 C ELMT 14

DO 20 L=IP NST ELMT 15
20 P(L) = 0.0 ELMT 16

C.... COMPUTE NEUTRAL STRAINS AND STRESS RESULTANTS ELMT 17
}( L : D(1) ELMT 18

IF(I5I1.EQ.4) L=D(3) ELMT 19
u CALL PGAUSS(L,LINT) ELMT 20

DO 600 LGI,LINT ELMT 21
C	 .. COMPUTE ELEMENT SHAPE FUNCTIONS ELMT 22

CALL SHAPE(SG(L) ► TG(L) ► XLrSHP,XSJ#NDM ►NEL#IX,.FALSE.) ELMT 23
C	 .. COMPUTE STRAINS AND COORDINATES ELMT 24

DO 410 I=103 ELMT 25
EPT(I) = 0.0 ELMT 28

410 EPB(I) = 0.0 ELMT 27
DO 420 I=1 ► 2 ELMT 28

4vo FPS(I) = 0.0 ELMT 29
XX = 0.0 ELMT 30
YY = 0.0 ELMT 31

q DO 430 J=I#NEL ELMT 32
XX = XX + SHP(3 ► J)*XL(1,J) ELMT 33

G YY = YY + SliP(3r J)OXL(2, J) ELMT 34
C	 ,. IN—PLANE STRAINS ELMT 35

EPT(1) = EPT(1) + SHP(I#J)oUL(19J) ELMT 36
EPT(2) = EPT(2) + SHP(2 ► J)*UL(2 ► J) ELMT 37
EPT(3) = EPT(3) + SHP(1 ► J)+,'UL(2rJ) + SHP(2 ► J)*UL(I ► J) ELMT 38

C	 .. BENDING CURUATURES ELMT 39
EPB(i) = EPB(1) — SHP(I#J)*UL(4 ► J) ELMT 40
EPB(2) = EPB(2) — SSIP(2rJ)0UL(SoJ) ELMT 41

J; EPB(3) = EPB(3) — SHP(I#J)*UL('S,J) — SHP(2,J)*UL(4,J) ELMT 42
C	 .. SHEARING STRAINS ELMT 43

EPS Q) = EPS(1) + SHP(1,J)*UL(3,J) — SHP(3oJ)*UL(4,J)

n

ELMT 44
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430 EPS ( 2) w EPS(2) + SHP ( et J)*UL (3eJ) - 5HP ( 3rJ)*UL (S#J) ELMT 45
IF(ISW.EO.S.AND.TAN) ELMT 46
WRITE ( 9 ► S001) NrLr(EPD(II) ► IIw1" 3)r(EP5 ( II)PIN1#2) ELMT 4r

5001 FORMAT (2IG#3E12 .4) ELMT 4F)
C	 ..	 COMPUTE STRESS RESULTANTS ELMT 49

DO 440 I=103 F( t15' :Iqo .it)
SIGT(I) a 0, ULNT ',I
SIG13(I)	 a 0. LLNT
DO 440 Ji+193 El,t1't
SIaT(I) - SIGT ( I) + ADD(I ► J)*CPT(J) + ADD(I,J+3)*EP13 ( J) FLU)

440 SIGD(I)	 SIGD(I) + ADD(I+3 ► J)*EPT(J) + ADD(I+3rJ+3)*EPB(J) LLtiT °J
DO 450 I=1 ► r? ULM T
SIGS(I)	 0. FL11T tj
DO 450 J=1o2 (Lt1T <13 ^(

450 SIGS ( I) = SIGS ( I) + DS(I ► J)VEPS(J) L 1 i'iT ma t 4 u E

IF(ISW.GT .4) GO TO 020 t111T Oil
C	 ..	 OUTPUT STRESS RESULTANTS AND STRAINS ELUT BY

MCT = NCT — 2 FLNT tM
IF(MCT.GT.0) GO TO 470 ELMT t',a
WRITE(G, 2001) TIME ELMT (, I
MCT = 50

SIDS
ELHT
Ett)1

(!1
L';470 WRITE; ( R* 1 002) N ► XX, YYP EPTr EPD, EPS, SILT, SIGBt j

GO TO 600 Et, 11 1 G?
C....	 COMPUTE INTERAL FORCES ELMT !ai

620 DU - XSJoWG (L) ELMT (,9)
J1 = 1 ELMT PV
DO G10 J=1 # NEL ELt1T 'PI
P(JI	 )	 P(J1	 ) — (SHP(1eJ)*SIGT(1)+SHP(2 ► J)*STGT(3))*DU ELMT FR !
P(J1+1)	 P(J1+1) - (SHP(2 ► J)*SIGT(2)+SHP(1 ► J)*SIGT(3))*DU ELNf 73
P(J1+2) •` P(Jl-")	 (SnP(i,J3 •=^aIGS(	 )TSHP (c^J)RS GS(2) 	 uv ELMT 74
P(J1+3)	 P(J1+3) + (SHP(loJ)*SIGD ( 1)+SHP ( 2 ► J) OSIGD (3)+SHP (3.J) ELMT 76[

+• *SIGS(I) )*DV ELMT 76
P(JI+4)	 P(J1+4) + ( SHP(2 ► J)++SIGD ( 2)+SHP ( I#J)++STGB ( 3)4,SHP(3,J) ELMT 7(' ?€

*SIGS(2)) #DU ELMT Ea

610 J1 = J1 + NOF EL11T r'.)
600 CONTINUE

RETURN
ELMT
ELMT

86
01

C ELMT UP
a

2001 FORMAT(1H1// ELMT 83
A	 5Xo6HTIME = ► E12.3//5Xr33HELEMENT STRAINS/STRESS RESULTANTS// ELMT 84
1	 8H ELEMENT,3X,7HI-COORDr3Xr7H2—COORDr4X,SHXX—STRAIN, 4X ► ELMT 05
2	 9HYY—STRAINr4X+SHXY- •STRAINr3X#IOHKXX-'STRAIN , 3X. ELMT 86 ^L
3	 10HKYY—STRAIN.3X ► 10HKXY-STRAIN,4Xr9HSX—STRAIIlt4Xr ELMT E3'r'
4	 SHSY^STRAIN/28Xr8(6X ► 7H- 'STRESS )/) ELMT 83

2002 FORMAT(IB,5F10.4.8C13.4/28X ► 8E13.4) ELMT 89
END ELMT 90 k

C
SUBROUTINE PGAUSS(LL#41NT) PGAU 1

C****	 GAUSSIAN POINTS AND WEIGHTS FOR TWO DIMENSIONS PGAU 2
COMMON /GAUSSP/ SG(16),TG(16),WG(16) PGAU 3
DIMENSION t_R(S) rLZ.. (S) ► LW(9),WR(2)PGR(2)#CC(2) PGAU 4
DATA LR/^1rlrlv - 1 ► Oolo0, -1r0/,L2/-1,-1r1+1,--1,0 p 1,0F0/ PGAU 5
DATA LW/4*eS, 4+ 40, 64/ PGAU 6
DATA GR/O.8G113G3ll594053t0 .339981043584856/ PGAU 7
DATA GC/1.0r0.3333333333/ PGAU 8
DATA 14R/0.34785484S13Z454 ► 0.GS2145154862546/ PGAU 9
LINT = LL*LL PGAU 10
L=IADS(LL) PGAU 11 .'x

GO TO (1,2,3 ►4),L PGAU 12
C....	 1X1 INTEGRATION PGAU 13

1 SG(1) = 0. PGAU 14
TG(1) = 0. PGAU 15
WG(1) = 4. PGAU 10
RETURN PGAU 17^

Co. **	 RX2 INTEGRATION PGAU 10
2 G = 1./SQRT(3.) PGAU 19

IF(LL.LT.0) GA1. PGAU CO,
DO 21 11,4 PGAU Vi

=GSG(I) =*LR(I) PGAU 72

TG(I) = G*LZ(I) PGAU 23

^r

IN
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t 21 WG(I) * 1. PGAU 24
RETURN PGAU 25

' C.... 3X3 INTEGRATION PGAU 26
3 G = SORT(0.6) PGAU 27

IF(Lt..LT.0) Col. PGAU 28
H = 1./81. PGAU 29
DO 31 Iw1 ► 9 PGAU 30
SG(I) m G*LR(I) PGAU 31
TG(I) = G*LZ(I) PGAU 32

31 WG (I ) = H O+LW( I ) PGAU 33
RETURN PGAU 34

C.... 04 INTEGRATION PGAU 35
4 Do 41 I=194 PGAU 36

+Mond +lr2)
I2 a I PGAU 38
IF(I.GT.2) 12 = 2 PGAU 39
DO 41 J=Lr4 PGAU 40
JJ a (1-1)*4+J PGAU 41,y
SG(JJ) m LR(J)*GR(I1) PGAU 42
IF(LL.LT.0) SG(JJ) a LR(J)*GC(I1) PGAU 43
TG(JJ) a LZ(J)*GR(12) PGAU 44
IF(LL.LT.0) TG(JJ) - LZ(J)*GC(I2) PGAU 45

41 WG(JJ) = WR(11)*WR(I2) PGAU 46
RETURN PGAU 47
END PGAU 48

C
SUBROUTINE SHAPE(SS,TTrXrSHPrXSJ ► NDM ► NELrIX ► FLG) SWAP 1

C***# SHAPE FUNCTION ROUTINE FOR TWO DIMENSIONAL ELEMENTS SHAP 2
LOGICAL FLG SHAD 3
DIMENSION SHP(3 ► 4),X(NDMr1) ► S(4)9T(4) ► Xi(292) p 9X(2p 2)o!X'tS) S)HAP 4
DATA S/-0.50.50 .S0-0.S/ ► T/-0.59-0.5 ► 0.5v0.5/ SHAP 5

C.... FORM 4-NODE QUADRILATERIAL SHAPE FUNCTIONS SHAP 6
DO 100 I=1 ► 4 SNAP 7
SHP(3 ► I) = (O.S+S(I)iOSS)*(O.S+T(I)*TT) SNAP 8
SHP(1 ► I) = S(I)*(O.S+T(I)*TT) SHAP 9

{ 100 SHP(2.I) = T(I)*(0.5+S(I)*SS) SHAP 10
IF(NEL.GE.4) GO TO 120 SNAP 11

C.... FORM TRIANGLE BY ADDING THIRD AND FOURTH TOGETHER SNAP 12
DO 110 1=103 SHAP 13

110 SHP(I ► 3) = SHP(1r3)+SHP(I ► 4) SHAP 14
C.... ADD QUADRATIC TERMS IF NECESSARY SHAP 15

120 IF(NEL.GT.4 .AND. NEL.LT .10) CALL SHAP2(SSrTTrSHP ► IXrNEL) SHAP 16
C.... ADD CUBIC TERMS IF NECESSARY SHAP 17

IF(NEL.GT.9) CALL SHAP3(SS ► TTrSHP ► IXONEL) SHAP 18
C.... CONSTRUCT JACOBIAN AND ITS INVERSE SHAP 19

DO 130 I=1,NDM SHAP 20
DO 130 J=1 ► 2 SHAP 21
XS(I ► J) = 0.0 SHAP 22
AO 130 K=1,NEL SHAP 23

130 XS(I,J) = XS(IrJ)+ X(J ► K)*SHP(I ► K) SHAP 24
XSJ = XS(1 ► 1)i^XS(2 ► 2)^XS(192) 4 XS(2 ► 1) SHAP 25
IF(XSJ .GT. 0.00000001) GO TO 135 SHAP 26
WN'ITE( Go2000)	 T;{

C SHAP 28
135 IF(FLG) RETURN SNAP 29

S)t(1,1) = XS(292)/XSJ SHAP 30
SX(2 ► 2) = XS(191)/XSJ SHAP 31'
SX(1,2) = —XS(1r2)/XSJ SHAP 32

k SX(291)= —X(2 ► 1)/XSJ SHAP 33
' C.... FORM GLOBAL DERIVATIVES SHAP 34

DO 140 I=1,NEL SHAP 35
' TP	 = SHP(IrI)*SX(Irl)+SHP(2rI)*SX(2r1) SHAP 36

F	 `' SHP(2 ► I) = SHP(1 ► I)*SX(1 ► 2)+SHP(2 ► 1)*SX(2,2) SHAT' 37
140 SHP(1,I) = TP SHAP 30

RETURN SHAP 39
' 2000 FORMAT(5X,G7H***SHAPE ERROR Ol it* ZERO OR NEGATIVE JACOBIAN DET. FOR SHAP 40

^ELEMENT NODES:/20X ► t214)
SHAP 41

C
SUBROUTINE SHAP2(SrT ► SHP ► IX ► NEL) SHAP 1

d
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SHAP 3
SHAP 4
SHAP 5
SHAP 0
SHAP 7
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SHAP 8
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C****	 ADD QUADRATIC FUNCTIONS AS NECESSARY
DIMENSION IX(S)PSHP(3012)
Se	 (1.—S*S)/2l
T2	 (I*—T*T)/2,
DO 100 Iw5pNEL
DO 100 JuIP3

100 SHP(JPI) w 0*0
clasp	 MIDSIDE NODES (SERENDIPITY)

IF(IX(5).EO.0) GO TO 101
SHP(I ► S) m —S*(I.—T)
SHP(2#5) w —S2
SHP(3 ► 5) a S2*(I.—T)

101 IF(MEL.LT-6) GO TO 107
IF(IX(G).EQ.0) GO TO 102
SHKI ► S) w TR
SHP(R ► G) = —T*(I.+S)
SHP(306) a T2*(I.+S)

102 IF(MEL.LT.7) GO TO 107
IF(IX(7).EQ.0) GO TO 103
SHP(1 ► 7) = —S*(I.+T)
SHP( ► ) - SE
SHP(3 ► 7) = SR*(1.4-T)

103 IF(NEL.LT .8) GO TO 107
IF(IX(8).EO.0) GO TO 104
SHP(1#8) = —TR
SHP(2 ► 8) a —Tit(I.—S)
SHP(3 ► 8) = TR*(L.—S)

C....	 INTERIOR NODE (LAGRANGIAN)
104 IF(NEL.LT .S) GO TO 107

IF(IX(9).EQ.0) GO TO 107
SHP(l ► S) = -4.*5*T2
SHP(2vS) = —4.*T*S2
SHP(3 ► S) = 4o*52*Te

C$ * $.	 CORRECT EDGE NODES FOR INTERIOR NODE(LAGRANGIAN)
DO 10B J=IP3
DO 105 1=1#4

105 SHP(J ► I) = SHP(J ► I) — 0.25OSHP(J ► S)
DO 106 1=508

106 IF(IX(I).N5.0) SHP(Jol) = SHP(Jpl) —O.S*SHP(JPS)
C....	 CORRECT CORNER NODES FOR PRESENCE OF MIDSIDE NODES
107 K 8

DO 109 I=I04
L I + 4
DO 108 J=I ► 3

108 SHP(J ► I) = SHP(JPI) — 0.5*(SHP(J0K)+SHP(J0L))
109 K = L

RETURN
END

C
SUBROUTINE SFIAF3(S ► TPSHPPIX#NEL)

C****	 ADD CUBIC FUNCTION AS NECESSARY (SERENDIPITY)
DIMENSION IX(12)oSHP(3012)
DO 100 I=5 ► NEL
DO 100 J=IP3

100 SHP(J ► l)=O.O
IF(IX(5).E0.0) GO TO 101
S1=—i. /3.
Tl=—I.
CALL CSHAPE(S ► T ► SIPTIPSHP ► IPS)

101 IF(IX(G).EQ,O) GO TO 102
Sl=l.
Tl=—I./3.
CALL CSHAPE(S0TvS10T1 ► SHP ► 2 ► 6)

102 IF(IX(7).E0v0) GO TO 103
Sl=l./$o
Tl=l.
CALL CS-HAPE(S0T ► SlpTlpSHPv107)

103 IF(IX(8).EQe0) GO TO 104
Sl=—I.
Tl=l./3.
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CALL CSHAPE(S ► TtSI ► TI ► SHP ► 2 ► 8) SHAP 22
104 IF(IX(9).EO,0) GO TO 105 SHAP 23

Sl-^l • SHAP 24
T1M-1./3. SHAP 25
CnLL CSHAPE(S ► TtS1tT1tSHP,2t9) SHAP 26

105 IF(NEL.LT .10) GO TO 200 SHAP 27
IF(IX(10).EO.0) GO TO 106 SHAP 28

SHAP 29
1`1=^-1 • SHAP 30
CALL CSHAPE(S ► TrS1rT1rSHPrlrl0) SHAP 31

106 IF(NEL.LT.11) GO TO 200 SHAP 32
IF(IX(11).EQ.0) GO TO 107 SHAP 33
Sla t. SHAP 34
Tl=l,/3. SHAP 35
CALL CSHAPE(StT9S1 ► TI,SHPv2ril) SHAP 36

107 IF(NEL.LT .12) GO TO 200 SHAP 37
IF(IX(12).EQ.0) GO TO 200 SHAP 38

' S1=-1./3, SHAP 39
T1=1. SHAP 40
CALL CSHAPE(S,T ► SltTI,SHPt1,12) SHAP 41

C.... CORRECT CORNER NODES SHAP 42
200 DO 210 I=1,4 SHAP 43

I1=I+4 SHAP 44
Ic2=I+8 SHAP 45
IF(I.EQ.1) I3-I+7 SHAP 46
IF(I.GT.1) I3=I+3 SHAP 47
IF(I.LT.4)	 I4=I+9 SHAP 48
IF(I,EQ.4) I4=I+5 SHAP 49
DO 210 J=1,3 GUAM 50r 210 SHP(J,I) =SHP(J,I)-2./3.*(SliP(Jtll) +SHP(JtI;^')) —l. /3.*(SHP(J ► I3) SHAP 51

+SHP(J,I4)) SHAP 52

END
URN

SHAP 54

y
C

SUBROUTINE CSHAPE(S,T,S1 ► T1tSHP ► K ► L) CSHA 1
C**** SUPPLEMENTAL ROUTINE FOR THE SHAPE FUNCTIONS CSFIA 2

DIMENSION SHP(3,12) CSHA 3
C=9./32. CSHA 4
GO TO (1,2),K CSHA 5

IJa
1 SHP(1,L)=C*(1.+T1*T)*(9.*S1-2.*S-27.*S1*S*S) CSHA 6
SHP(2,L)=C*Ti*(1.—S*S)*(1. +9.*S1*S) CSHA 7
SHP(39L)=C*(1.+T1*T)*(1.—S*S) *(1.+9.*S1*S) CSHA 8
RETURN CSHA 9j

2 SHP(1 ► L)=C*S1*(1.—T'tT)+t(l.+S.*T1*T) CSHA 10
SHP(2,L)=C*(1.+S1*S)*(9.*T1-2.;tT-27.*T1*T*T) CSHA 11
SHP(3tL)=C*(1.+S1*S)*(1.-T*T)++(1.+9.*T1*T) CSHA 12
RETURN CSHA 13
END CSHA 14

C SUBROUTINE PMESH(IDL,XL,IYtIDtXPF,JDIAG,NDF,NDMtNENtNKM) PMES 1
C**** I N P U T	 MESH	 DATA

LOGICAL PRT,ERR,PCOMP
PMES
PMES

2
3

COMMON /CTDATA/ OtHEAD(20) ► NUMNP,NUMEL.,LAYER,NEO,IPR PMES 4
COMMON /MTDATA/ RHO? UU12,Ei ► E2,G12PG13,G23oTHK,WIDTH PMES 5
COMMON /LABELS/ PDIS(6) ► A(6)PBC(2) ► DI(6)FCD(3) t FD(3) PMES 61 C011MON /EXDATA/ OLAW(4) PMES 7
COMMON /RODATA/ UR,IQ,NDS PMES 8
DI1ENSION IDL(6),XL(7) ► IX(NEN,1)PID(NDF,1),X(NDM,1), PMES 9

F(NDF,1),DUh1(1)tWD(13),JDIAG(1) PMES 10
` DATA WD/4HCOORt4HELEMr4HMATEr4HBOUNr4HFORCr4HROD , PMES 11
k A	 VEND ,4HPRINv4HNOPRv4HPAGE,4HEXPE/ PMES 12

DATA DL/4HBLAN/ ► LIST/11/,PRT/.TRUE./ PMES 13
C.... INITIALIZE ARRAYS PMES 14

ERR = .FALSE. PMES 15
DO 501 I=10 PMES 16

501 QLAW(I)=0. PMES 17
DO 502 N=1,NUMNP PMES 18
DO 502 I=1,NDF PMES 19
ID(X,N) =0 PMES 20

k' F(I,N)=0. PMES 21

^f:
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502 CONTINUE PMES ee
cost& READ A CARD AND COMPARE WITH MACRO LIST PMES 23

10 READ ( 5 ► 1000) CC PMK^i 1'24
DO 20 I=lvLIST PMEU FS

20 IF(PCOMP(CC#WD(l))) GO TO 30 PMFIS IS
GO TO 10 PMES V?

30 GO TO PMES '('a
coso. NODAL COORDINATE DATA INPUT pm_"S d')

I DO 102 N=IPNUMNP PH ES IS 0
102 X(l ► ll)- BL Fliplii III

CALL GENVEC(NDMP XLP XP CDP PRTP ERR) P1.10 :10)
GO TO 10 PIIES 03

C000k ELEMENT DATA INPUT WEll 34
2 LocO Ales 25

DO 806 I=1PNUMELP50 Filrm 36
IF(PRT) WRXTVG)R001) OPHEADF	 (KPK=I ► NEN) FME.3 3*e

J a MINO(NUMELPI+49) Flil, V^ _43
DO 206 N=IfJ F m, iL- i J of
IF(L-N) 200P202#203 PME61, lio

200 READ(5P1001) L#(IDL(K)oK=lPNEN)tLX PINES li
IF(L.FQ.0) L=NIJMEL+l pmes 42
IF(LX,EO.0) LXw l FtIzS "3
IF(L—M) 201P202P203 P10ti 44

201 WRITE(6#3001) LPN PMES 43
ERR =	 TRUE. PMES 4G
GO TO 2OG P11ES 47

202 NX = LX PMES 43
DO 807 Km l ► NEN PMES 49

207 IX(K ► L) = IDL(K) PMES 60
GO TO 205 PMES 51

-203 =	
Ln	 11r.	 0 1 1— 'b

PMES 5 v
130 204 

K= 
IoNEN Pm5s 53

IX(KPN) = IX(KPN-1) + NX PMES 54
204 IF(IX(K#N-1).EO.0)	 IX(KPN'	 0 PMES 55
20S IF(PRT) WRITE(G ► 2002) N ► (IX(K,N) ► K=I,NEN) PMES 56
20G CONTINUE PMES t37

GO TO 10 PMES 53
ct. ** MATERIAL DATA INPUT PMES 50

3 WRITE(G ► 2004) OPHEAD PMES 60
CALL MATLIB PMES G1
GO TO 10 PMES 82

Co.$ * READ IN THE RESTRAINT CONDITIONS FOR EACH NODE PMES 63
4 IF(PRT) WRITE (6P2000) O ► HEADP(I#BC ► l=l ► MDF) PMES 64

N = 0 PMES 05
NG = 0 PMES as

420 L = N PMES 67
LG = NG PMES US
READ(5P1001) NPNGPIDL PMES as
IF(N.LE.0 .OR. N.GT.NUMNP) GO TO 50 PMES 70
DO 41 I=IPNDF PMES 71
ID(IPN) = IDL(I) PMES 72

41 IF(L-NE.0 -AND.,	 IDL(l). EQ.O 	 AND.	 ID(% ► L).LT*O)	 ID(IPN)=—i PMES 73
LG	 ISIGN(LGoN—L) PMES 74

42 L	 L+LG PMES 75
IF((N—L)"LG	 LE. 0) GO TO 420 PMES 76
DO 43 I=lvNDF PMES 77

43 IF(ID(IoL—LG)	 LT.	 0)	 ID(ItL) = — 1 PMES 70
GO TO 42 PMES ?a

50 DO 48 N=IPNUMNP PMES 80
DO 4G I=IPNDF PMES IS I

4G IF(ID(IPN). NE. 	 0)	 GO TO 47 PMES 82
GO TO 48 PMES 83

47 IF(PRT) WRITE(SP2007) N,(ID(loN)vI=loNDF) PMES 84
48 CONTINUE PMES 85

GO TO 10 PNES GO)
cef0 00 FORCE/DISPL DATA INPUT PMES 87

5 CALL GENVEC(NDF ► XLtF,FD,PRT,ERR) PMES 88
GO TO 10 PMES 89

C# * . * END OF MESH DATA INPUT PMES 90
C.... COMPUTE THE PROFILE OF GLOBLE ARRAYS PMES 91

LS

Tp
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PMES 92
PMES 93
PMES $4
PMES as
PMES as
PMES $7
PMES 00
PMES 99
PMES100
PMES101
PME$102
PMES103
PMES104
PMES105
PMES106
PMES107
PMES108
PHESIDS
PMES110
pliEsill
PMES112
PMES 113
PMES 1 14
PMESIIS
PMESIIG
PMES 117
PMESI is
PMES I IS
PMES120
p^mn % 131"QArza
PMES122
PMESle3
PMES124
PMESIes
PMES12G
PMES127
PMES128
PMES129
PMES130
PMES131
PMES132
PMES133
PMES134
PMES135
PT'llES13G
PMES137

GENU I
GENU 2
GENU 3
GENU 4
GENU 5
GENU 6
GENU 7
GENU 8
GENU S
GENU 10
GENU 1l
GENU 12
GENU 13
GENU 14
GENU 15
GENU 16
GENU I?
GENU 18
GENU 19
GENU 20
GENU 21
GENU 22
GENU 23

mm" -

ov

7 Ir(ERR) STOP	

()f pooll- uALITY

CALL PROFI4(JUXAGPXDPXX#,HDFoNENPNKMtPRT)
RETURN

Cobvi	 PRINT OPTION
0 PRT = TRUE,

GO TO 10
Co...	 NOPRINT OPTION

9 PRT r4 FALSE.GO 
TO 10

C * 446	 READ IN PAPER EJECTION OPTION
11 READ(5o1000) 0

(1'0 TO 10
c0 * 64	 INPUT EXPERIMENTAL INDENTATION LAW

12 READ(5tI007) (QLAW(Vol"10)
14RITE(Oo2008) O ► HEAD#(QLAW(I)sI#lt4)GO 

TO 10
COR* lb 	 INPUT INITIAL IMPACT CONDITION

6 WRITE(Go8009) OPHEAD
READ(SoI002) NO# INDFPVR
WRITE(So2010) NDPINDFPUR
F(INDrpNQ)m1.0
IOnlD(INDF#NU)
GO TO 10

Cefet	 INPUTe'OUTPUT FORMATS
100(1 FOrMAVA4#7S8iAl)
1001 FORMAT(1GIS)
1002 FURMATMISPF10.0)
1007 rORMAT(V10.0)
2000 FORMAT(Aloe0A4//SX#10HNODAL D.C#v7X//GXtSHNODEUPS(17oA4oA2) 3 IX)
2001 rORMAT(OIPEOA4//5XogliELEMENTSe/3X#7HELEi!ENTo

1 ,1(13FSH NODC) 3 (20Xp14'(I3pSH NODE)))
2008 FORMAT(I10vl4I8/(l0X#lQ8))
2004 FORtIAT(AloROA4//58t1SHMATElqj.HL. MUMN.1'IES)
2007 FORMAT(IlOoSX13)
2008 FORtIAT(AI,ROAtl//SXPteEXPERXhlEtITAL INDENTATION LAWO3/

I	 IOXPOCUNTACT CDCPFICIENTI 	 ;do ElR, 43
2	 IDX#OCRITICAL INDENTATION:	 C12.43
3	 IOX#OCONSTANT S: 	 E12.4/
4	 108 * 0POWER INDEX Or UNLOADING LOW!O F12.3)

3001 FORMAT(SXtLIGHOOPMESH ERROR 01*0 ELEMENTol%
A 22H APPEARS AFTER ELEMENTo 15)

2009 FORMAT(A1p20A4? 3/5Xv0IMPACT OF LAMINATED PLATER)
2010 FORMAT(/el0Xp;e THPACT NODAL POINTY	 ;do 110/

A

	

	 10Xpe-111PACT D.O.F.: 00110",
l0Xv;4XNITIAL IMPACT UELOCITYtOPE12.4)

EN D
C

SUBROUTINE GENQCC(NDMpXLvXoCDwPRTpLRR)
c****

	

	 GENERATE: REAL DATA ARRAYS BY LINEAR INTERPOLATION
LOGICAL PRT,ERRoPCOMP
COMMON /CTI)ATAo' O#HEAD(20)oNUMNP#NUMCLoLAYERPNEGolPR
DXMENSION X(NDMf1)oXL(7)oCD(3)
DATA I L/4HBLAN/
Nt,0
N G ,-- 0

102 LmN
1-0-NG
READ(5o1000) NtNOPXL
IF(NtLE.0 OR. N.GT.NUMNP) GO TO 108
DO 103 I=l ► NDM

103 X(ItN)-XL(l)
IF(LG) 10401020I04

104 LGmISIGN(LG ► N—L)
LIo(IABS(N—L+LG)-l)3IA13S(LG)
DO 105 I=L,NDM

105 XLQ)r2(XQiNHn'(IfL))/LI
106 L=i.+LG

IF((N—L)*LG LE. 0) Go TO 102
Ir(L-LE,0 OR. LXT.NUMNP) GO TO 110
DO 107 InIPM1
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107 X(IvL)*X(I ► L-LG)+XLM GENU P4
GO TO IDS mriv F 5

110 WRITE(6 ► 000) L ► (CD(I)vI"I ► 3) GENII mi
ERR = JRUE. GENO
GO TO 102 GENV 20

108 DO 103 I-IPNUMNPPSO GLNkl 'P9
IF(FRT) 14RITE ( G ► 2000 ) O ► HEAD ► (CD(L)PLOI ► 3)v(LPCD ( I) ► CD(2 ) vLa ItNI)M) l3rNt 1 00
N a MINO (NUMNP ► l+45) CLNU 2t
DO Its J-IpN _QFMI 1"0
IF(PCOMP(X(I ► J)oDL)	 AND. PRT) WRITE(St2008) N GEllu 33

IDS IF(.NOT.PCOMP(X(I ► J) ► BL).AND.PRT) 14RITE (S ► 2009) Jo(X(L ► J)pLft I ► NDM) GUNUI
RETURN

1000 FORMAT(215p7FI0.0) G04v ob
2000 FORMAT(A1 ► 20A4//SXp SHNODAL ► 3A4//5X ► 4HNODE ► 9 ( 17 ► A4 ► A2)) GENU '3't'
2CA FORMAT ( 5X ► 2IH**GENVEC WARNING 01*4ollOo GENU 00

A	 32H HAS NOT BEEN INPUT OR GENERATED) GENU so
2009 FORMAT(I10#9FI3.4) GENU 40
3000 FORMAT( 5Xo44H*OGENVEC ERROR 01#*ATTEMPT TO GENETATE NODE ► l ► GrNU 41

I	 3H Ijio 3A4) G0V 40
J4

END

SUBROUTINE PROFIL(JOIAG ► lD ► IX ,^NDF ► NEM ► tiKMtPRT) PPllf	 I
C**"* COMPUTE PROFILE OF GLOBAL ARRAYS PROF	 i!

LOGICAL PRT PROF	 3
COMMON /CTDATA .,' OPHEAI)(20) ► NUMNP ► NUMEL ► LAYER ► NEO ► IPR PROF	 4
DIMENSION JDXAG(I)olD(NDFt1) ► lX(NEN ► 1)PEQ ( 2) PROF	 6
DATA EQ/4H DOF ► 2H. PROF`	 6

cioto SET UP THE EQUATION NUMBERS PROF	 'r,
NEU a 0 PROF	 8
DO 50 N w IvNUMNF r t\vf t v
DO 40 I=IPNDF PROF 10
J ft ID(I ► N) PROF 11
IF(J) 30P20 ► 30 PROF IV

20 NEU = NCO + I PROF 1*lA
ID(I,N) - NEU PROF 14
JDIAG(NEQ) = 0 PROF IS
GO TO 40 PROF is

30 ID (I ► N)	 le 0 PROF 17
40 CONTINUE PROF 18
50 CONTINUE PROF 18

IF(.NOT.PRT) GO TO 70 PROF 20
WRITE(6 ► 2000) O ► HEAD ► (I)EQ ► I=l ► NDF) , PROF RI
DO 60 I=IvNUt lN0 PROF Ra

60 WRITE(6 ► 2001) I ► (ID(K ► I) ► K :c IvNDF) PROF 23
C.04. COMPUTE COLUMN HEIGHTS PROF 24

70 DO 500 N=IvNUMEL Pt'llor V.ci
DO 400 I=IPNEN PROF 20
II = IX(I ► N) PROF 27
IF(Il	 EQ. 0) GO TO 400 PROF 20
DO 300 K=IPN'DF Q 9PROF 0
KK = ID(K ► II) PROF 30
IF(KK. EQ-0) GO TO 300 PROF 31
DO 200 J=I*NEN PROF 32
JJ a IX(J ► N) PROF 33
IF(JJ.EQ.0) GO TO 200 PROF 34
DO 100 L=I ► NDF PROF 35
LL - ID(L,JJ) PROF 30
IF(LL.EQv0) GO TO 100 PROF 37
M = MAXO(KKtLL) PROF 38
JDIAG(M) = MAX0(JDIAG(M) ► IA13S(KK—LL)) PRIOF 39

100 CONTINUE PROF
	

10
200 CONTINUE PROF 41
300 CONTINUE PROF 111P
400 CONTINUE PROF 43
500 CONTINUE PROF

C.0.6 COMPUTE DIAGONAL POINTERS FOR PROFILE PROF qU
NKM = I PROF 46
JDIAG(l) = I PROF 47
IF(NEQ.EQ . l) RETURN PROF 40
DO $00 N=2 ► N5Q PROF 49

CL.
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GOO JDIAG(N) m JDIAG(N) + JOIAG(M •1) + I PROF $0

NKM n JDIAG(NEO) PROF 51
EOOO FORMAT(Al ► 2OA4//SX#IGHEQUATXON MUMDERS/4Xv5HNODE f PROF 52

SQ504 ► 2).? IX) PROF 53
21001 FORMAT (I I Op 0111) PROF 54

RFTURN PROF 55
END PROF 56

SUBROUTINE MMID MATL I
Comw MATERIAL V INIOPERTICS ROUTINE MATL 2

COMMON ,,CTDATA,,1 Up HEAD(20) v NUMNP # NUMCLP LAYM NEGs IPR MATL 3
COMMON .4 1TI)ATA/ RHOP UU12p EIFE2, Cleo 013o G23s THK*WII)TH MATL 4
COMMON VCOMPST/ MATL 5

TH(2S) ► ZK(25) MATL G
COMMON /DMATIX,,' D(IO) ► DB(G ► G) ► LXNT MATL 7
DIMENSION WD(S) MATL 8
DATA 14D,,I GH	 ISO- ► GH ORTHOPSHTROPICoGli	 COMPPSHOSITE r MATL 0

C60.6 INPUT MATERIAL PROPERTIES MATL 10
READ(S ► IOOO) LI ► L2oK,THK ► WXDTH MATL It
READMI001) RHO ► UUIE ► E1 ► E2 ► G12 ► G13 ► G23 MATL 12
00 150	 J=1 ► 3 MATL 13
DO ISO	 I nI ► 3 MATL 14
IF(I.E0.3 .OR. J.EQ.3) GO TO ISO MATL 15
DS(J ► I) W 0. MATL IG

150 ADD(J ► I) C ADD(J+3 ► I) w ADD(J ► X+3)	 AUD(J+3 ► I+3) MATL 17
LI = MIN0(4 ► MAXO(1 ► Ll)) MATL 18
D(I) m LI MATL 19
La - MINO(4#t1AXO(I ► L2)) MATL 20
D(R) a LE MATL 21
1) (3) = K MATL 22

LINT= O MATL e3
IF(EI-E2)	 120 ► 110o18t► MATL 24

110 MATL 25
JlwI $ J2e3 MATL 28
GO TO BOO MATL 27

IVO J1t,4 $ J2=5 MATL 28
IF(LAYME0.1) 41=2 $ JRm3 MATL 29

COO WRITE ► EMOO) LAYER o l4D(JI) P WD(JP) # THKoEI P E2vGl2tGl3oG23 # ,u'UI 12 # MATL 30
RHO t L I# LIR o'^ MATL 31

CALL CMPD MATL 32
RETURN MATL 33

C6096 FORMAT FOR INPUT—OUTPUT MATL 34
1000 FORMATM ► VIO.0) MATL 35
1001 FORMAT(MI040) MATL 38
MOO FORMAT(00%M1214 LAYER(S) OF ► M ► RIH PLATE WITH THICKNESS ► MATL 37

1 171O.VillMISNYOUNGOS hIC)DULUSt10X o ol:lupl t E10.4 # I0XoOEEW ;d#EIO.4/ MATL 38
2 IOXo ISHSHEAR	 MODULUSP SXo!GI2 z",d s E10.41, 9Xv OG1300t EIO.4tSXP MATL 39
3 sG23ro ► EI0,4/IOX ► I6HPOISSON	 RAT1Oo8Xo*VU12w0 ► FS.3/1OX ► MATL 40
4 7HDENSITY ► l7X ► ORHO=OPEI0.4/10X ► 13HGAUSS PTS/11TR ► 1 ► OLInO t IS ► MATI. 41
S 5XoVL2orJ p I5e1 lOX p l2HSTRESS POIMT v l4Xo0Km0oIV) MATL 42
END MATL 43

SUBROUTINE CMPD CMPD I
C*#*N► COMPUTE ;dOBDA MATRIX AND 4DS;d MATRIX CMPD a

COMMON o, CTDATA o' 0 o HEAD (20) # NUMNP * NUMEL w LAYER o MM IPR C-tipu 3
COMMON 41TDATA/ RIIO ► VUI2 ► EI ► EPoGIP.tG13 ► G23 ► THK ► 141DTH CMPD 4
COMMON /COMPSV CMPD S

fi	 TH(MoMES) CMPI) G
DIMENSION 0(3#3) ► QS(2 ► 2)oTK(2S) aft 7
LL-LAYER CMPD a
i l tiALL+l mipl) s
Mnl)(U ► IODO)	 (L ► TH(L) ► TK(L) ► I t11#LL) CMPD 10
N(I) mTTV v O.O CMPD 11

DO IS X m l#LL CMPD 12
TTK^111'\+TKM CMPD 13
El l CMPD 1 ►1

IS CONTINUE CMPD Is
DO Lhi XM I ► MM CNPD IG
ZK(I)=ZK(I) —TTKe2. CMPD 17

25 CONTINUE CMPD is
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DEL=4.*ATAN(l.)?180. CMPD 19
DEN a 1, - E'cl*VUlP-**2/E1 CMPD 20
O(It 1) = El/DEN CMPD 21
0(2p2) = E2/DEN CMPD pp_

g

(](IF2) = 0(201) w vu12*t] (202) CMPD 20"
0(3o3) = G12 CHPI)
Q(IP3) w 0(2,3) = 0(3p1)	 Q(3v2)	 0.0 CMPD (1,5"
09(lo1) = G13 CtlPD t" G
QS(2v2) = C23 CMPD 27
QS(1 ► 2) = GS(201)	 0.0 CMPD as
DO 40 X=IPLL CHID
AP IGL=TH(X)*DEL Clipi) 00
C=COS(ANGL) CMPD «;1
W=SIN(ANGL) CMPD 32

CMPD 33
CMPD 34

+Q(lp2)*(W**4 +C**4) CMPD ;%i
CMPD "J "S

+ CMpD 3?
0( 1 2) -0 (2 2) +2. *0 (3 3) i*C*W 10*3 CMPJ)

*C+ UIPD —j
0(1 2 ) —0 ( 2 2 ) 1 -2. Q (3 3)) W* C**3 CMpr) 1110

CHPD 41
Q(3v3)*(W**4 +C ,8#4) CMPD 42

OBS(IPIPI) = QS(191)*C*02 + OS(292)*W**2 CMPD 43
OBS(2#291) = 'IS(l p l)*W**2 + OS(292)*C**2 CMPD 44
OBS(1,2#1) = OBS(291 ► 1) = (US(Ipl) —QS(892))*C*W CMPD 45

40 CONTINUE CMPD 40
DO 50 J=IP3 CMPD 47
DO 50 111N=1 0 3 CMPD 48
DO 50 I=IPLL CMPD 40
ABD(J	 9K	 ABD(J	 PK	 )+QBR(JPKPI)*(ZK(I+L) —ZK(l)) CMPD 50
ADD(J+3pK	 ABD(J	 K+3)= ABD(J+3#K)+GBR(JPKPI)* CMPD 51

$	 (ZK(I+1)**2—ZK(I)*02)/2. CMPD Se
ABD(JI • 3oK+3)= ABD(J+39K+3)+OBR(J ► KoI)*(ZK(I+I)**3 •ZK(I)**3)/3. CMPD 53

SO CONTINUE CMPD 54
Do 55 I=IPB LIIPD 55
DO 55 J=IPG CMPD 5G
IF(I.GE.3	 OR. J-GE-3) GO TO 55 CMPD 57
IF(OBS(DS(I,J))	 LT,	 I.E-06) 	 DS (IPJ)=O.O Clipl) 55

55 Ir(A8S(ABD(IPJ)) 	 LT.	 1.E—OG) ABD(IPJ)=O.O C11PD 59
WRITE(GP2001)	 ((ABD(I PJ)PJ=lpG)tl=lpS) CMPD GO
DO 60 J=192 CMPD 61
DO 60 K=IP2 CMPD 62
DO 60 I=IFLL CMPD 63

80 DS(JPK) = DS(JoK) + OBS(JPKPI)*(ZK(X+I) —ZK(l)) CMPD G4
WRITE(6,2002)	 ((DS(I ► J)PJ=1,2)oI=lP2) C11PD GS

1000 FORMAT(IS ► F5.OPF10,0) CMPD GS
2001 FORMAT(//vIXPIOHABD MATRIX//6(2Xv6L13.4/)) CMPD 67
2002 FORMAT(/ ► LXPSHDS MATRIX//2(2Xp2E13.4/)) CMPD 68

RETURN CMPD SS
END CMPD 70

C
SUBROUTINE KMLIB KMLI I

C****	 ASSEMBLE GLOBLE ARRAY KMLI 2
COMMON G(l) KMLI 3
DIMENSION M(l) KMLI 4
EQUIUALENCE (G(I)PM(l)) KMLI 5
COMMON /ISWIDX/ ISW KMLI 6
COMMON /CTDATO/ OPHEOD(20) ► NUMNPPNUMELPLAYERPNEOPIPR KMLI 7
COMMON /LODATA/ NDF,NDMPNEN)NST,NKM KMLI 8
COMMON /PARATS/ NPAR(14),NEND KMLI 9
NI=NEND KMLI 10
N2=Nl+NST ,,;NST*IPR KMLI 11
IF(ISW.LE.2) NE=N2+NI<M*IPR lQlLI 12
Ir(ISW.GT.2) IIE=N2+NEO*IPR KMLI 13
CALL SETMEM(NE) KMLI 14
CALL PZERO(G(NEND)tNE— NEND) KMLI 15
CALL MASSOI(G(NPAR(1))tG(NPAR(2))PM(NPAR(3)) ► G(NPAR(4))p KMLI IG

I	 M(NPAR(5)),M(NPAR(6))PG(NPAR(7))PG(NPAR(8))PM(NPAR(S)), KMLI 17



i

ORIGiI! AL PAQ,S iU
OF P®OFt QUALITY 145

2	 G(NPAR(Il)) ► G(N1) ► G(N2)rNDF ► NDM ► NEN ► NST+NKM) KMLI 18
RETURN KMLI 19
END KMLI 20

C
SUBROUTINE MASS01(UL ► XLrLD ► PrIX ► IDPXPF ► JDIAG ► B ► S ► A ► NDFrNDMrNEN► MASS 1

NST,NKM) MASS 2
C**** FORM MASS MATRIX MASS 3

COMMON /CTDATA/ O,HEAD(20) ► NUMNP ► NUMEL ► LAYER,NEG ► IPR MASS 4
COMMON /MTDATA/ RHO,UUI2,EI,E2 ► G12,G13 ► G23 ► THK,WIDTH MASS 5
COMMON /DMATIX/ 0(IO)rDB(6 ► 6) ► LINT MASS 6
COMMON /ELDATA/ N ► NEL,MCT MASS 7
COMMON /ISWIDK/ ISW MASS 8
COMMON /GAUSSP/ SG(16) ► TG(1G) ► WG(IG) MASS 9
DIMENSION UL(1),XL(NDM,1) ► LD(NDF,1),P(1) ► IX(NENrl) ► ID(NDFPI)r MASS 10

1	 X(NDM,1),F(i)rJDIAG(1),B(1) ► S(NST ► 1)PO(1),SHP(3,12) MASS 11
C.... LOOP ON ELEMENTS MASS 12

DO 110 N=1 ► NUMEL MASS 13
DO 10 I=1,NST MASS 14
DO 10 J=1 ► NST MASS 15

10 S(I,J)=0. MASS I6
C.... SET UP LOCAL ARRAYS MASS 17

CALL PFORM(UL,XLrLD,IX,IDrX,FPB ► NDFrNDM,NEN,ISW) MASS 18
C.... COMPUTE CONSISTENT MASS MATRIX MASS 19

L = D(1) MASS 20
CALL PGAUSS(L,LINT) MASS 21
DO 500 L=1 ► LINT MASS 22

C	 .. COMPUTE SHAPE FUNCTIONS MASS 23
CALL SHAPE(SG(L),TG(L),XLrSHP ► XSJ,NDM ► NEL ► IX ► .FALSE.) MASS 24
DV = WG(L)*X.SJ#RnOxTHK MASS 25

C	 .. FOR EACH NODE J COMPUTE DB=RHO*SHAPE*DU MASS 26
K1 = 1 MASS 27
DO 500 J=1,NEL MASS 28
W11 = SHP(3,J)*DU MASS 29
W33 = W11 #THK**2/12. MASS 30

C	 of FOR EACH NODE K COMPUTE MASS MATRIX (UPPER TRIANGULAR PART) MASS 31
J1 = K1 MASS 32
DO 510 K=J ► NEL MASS 33
S(J1	 ,K1	 ) = S(J1	 ,KI	 ) + SHP(3 ► K)*Wl1 MASS 34
S(JI+3 ► K1+3) = S(J1+3 ► K1+3) + SHP(3,K)*W33 MASS 35

510 J1 = J1 + NDF MASS 36
500 K1 = K1 + NDF MASS 37

C	 .. COMPUTE MISSING PARTS AND LOWER PART BY SYMMETRY MASS 38
NSL = NEL*NDF MASS 39
DO 530 IC=I,NSL,NDF MASS 40
DO 520 J=K,NSL ► NDF MASS 41
S(J+291(+2) = S(J+1,K+1) = S(J	 ► K	 ) MASS 42
S(J+4,K+4) = S(J+3,K+3) MASS 43
S(K	 ► J	 )	 = S(J	 ,I(	 ) MASS 44
S(K+3,J+3) = S(J+3,K+3) MASS 45
S(K+29J+2) = S(K+I,J+1) = S(J 	 ,K	 ) MASS 46

520 S(K+4,J+4) = S(J+3,K+3) MASS 47
530 CONTINUE MASS 48

IF(ISW.E0.2) GO TO 100 MASS 49
C.... LUMPED MASS MATRIX MASS 50

SUM1 = 0.0 MASS 51
SUMP = 0.0 MASS 52
SUMD1 = 0.0 MASS 53
SUMD2 = 0.0 MASS 54
DO 540 I=1, NSL, N))F MASS 55
SUMDI = SUMD1 + S(I ► I) MASS 56
SUMD2 = SUMD2 + S(I+39I+3) MASS 57
DO 540 J=I,NSL,NDF MASS 58
SUM1= SUN1 + S(I ► J) MASS 59

540 SUMP = SUMP + S(I+39J+3) MASS GO
DO 550 I=1rNSL,NDF MASS 61
P(I) = S(I,I) *SUM I/5UMD1 MASS 62
P(I+2) = P(I+1) = K I) MASS 63
P(I+3) = S(I+3 ► i+3)*SUM2/SUMD2 MASS 64

550 P(I+4) = P(I+3) MASS 65
C.... ADD TO TOTAL ARRAY MASS 66
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100 CALL ADDSTF(A ► S+PtJDIAG ► LDPNST,MEL*14DFP.FALSE.) MASS Pal'
110 CONTINUE MASS 63

REWIND 2 MASS 69
IF(ISW.EQ.2) WRITE(2)	 (A(I),I=LtNKM) MASS 70
IF(ISW.EQ.3) WRITE(2)	 (A(I),Im1,NE0) MASS 71
RETURN MASS 72
END MASS 7:

SUBROUTINE RODIP.CT

LOGICAL FLAG
COMMON G(1)
DIMENSION M(1)
EQUIVALENCE (G(1)#M(1))
COMMON /CTDATA/ Q,HEAD(20)PNUMNPPNUMEL94AYER#NEO#IPR
COMMON /LODATA/ NDF,NDM,NEN,NST,NKM
COMMON /PARATS/ NPAR(14),NEND
COMMON /RODATA/ UR,IQ.NDS
COMMON /ROELEM/ NER,NEQRPER
DATA FLAG/.FALSE./,NER/20/,ER/30000000./
IF(FLAG) GO TO 50
NEOR=2*(NER+1)
NKMR=7*NER+3
N1=NEND
N2=NI+NEQ-*XPR
N3=M2+NEQ*IPR
N4=N3+NE0 4. IPR
N5=N4+NI(MR*IPR
NG -NS+NEAR;+IPR
N7=NG+NEAR
NS=N7+NEAR*IPR
NS=N8+NEQR*IPR
N10=199+NEQR+FIPR
Nil=Silo+NEQR*IPR
NE=1911+NEQR*IPR
CALL SETMEM(NE)
CALL PZERO(G(NEND),NE—NEND)
FLAG=.TRUE.

50 CALL WIhiPCT(G(NPAR(1)),G(NPAR(2)),M(NPAR(3)),G(NPAR(4))v
1	 M(NPAR(5)),M(NPAR(6)),G(NPAR(7)),G(NPAR(S)).
2	 M(NPAR(9)).G(NPAR(10))+G(NPAR(il)) ► G(N1).G(N2).
3	 G(N3),G(N4),G(NS).M(NG)rG(N7) ► G(NS),G(N9),G(N10)v
4	 G(N11))
RETURN
END
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SUBROUTINE WIMPCT(UL,XL,LD,P,IXPID,X,F,JDIAG.DR,U.B,V,A,RK,RM, 	 WIMP 1
JDR,RU,RU,RA,RB,FR) WIMP 2

C****	 SOLVE IMPACT PROBLEM WIMP 3
LOGICAL FLAG,TAN I4IMP 4
COMMON G(1) WIMP 5
DIMENSION M(1) WIMP G
EQUIVALENCE (G(1).M(1)) WIMP 7
COMMON/CTDATA/ O,HEAD(20),NUMNP,NUMEL,LAYER,NEQ,IPR WIMP 8
COMMON /TTDATA/ TIMEPDT.DDT,FORCE.ALPHA WIMP 9
COMMON /LODATA/ NDF+NDM.NENPNST,NKM WIMP 10
COMMON /NITERS/ ITR WIMP it
COMMON /PARATS/ NPAR(14).NEND WIMP 12
COMMON /RODATA/ UR.IQFNDS WIMP 13
COMMON /ROELEM/ NER,NEQR.ER WIMP 14
COMMON /CONSTS/ A0,A2pA4,A5.AG ► A79A8oAREA WIMP 15
COMMON /PROLOD/ PROP WIMP 1G
COMMON /ISWIDX/ ISW WIMP 17
COMMON /EXTRAS/ TAN WIMP 16
DIMENSION UL(1).XL(1),LD(1) ► P(1)SIX(1),ID(1).X(1),F(1),JDIAG(1), WIMP 19

1	 DR(1),U(1),B(i),U(i),A(1)PRK(1).RM(1)PJDR(1),RU(l), WIMP 20
2	 RV(1),RA(1),RB(1),FR(1) ► 0(3).QP(3) WIMP 21
DATA ITR/5/.FLAG/.FALSE,/.WIL/1.4/,INTE/24/ WIMP 22
IF(FLAG) GO TO 50 WIMP P-3
DO i I=1 ► 3 WIMP 24
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C

l

k

i

i

Q(I)R0.0 WIMP 25
OP(I)d0.0 WIMP 26

1 CONTINUE WIMP 27
IDS=1 WIMP 28
TAN=.FALSE. WIMP 29
REWIND 2 WIMP 30
READ(2)	 (B(I)PI=l ► NEQ) WIMP 31
FORCE=0.0 WIMP 32
ALPHA»0.0 WIMP 33
PROP=0.0 WIMP 34
NNEQ=NDF*NUMNP WIMP 35
AO=6./(WIL*DT)**2 WIMP 36
A2=6./(WIL*DT) WIMP 37
A4=AO/WIL WIMP 38
AS=-A2/WIL WIMP 39
A6=1.-3./WIL WIMP 40
A7=DT/2. WIMP 41
AB=DDT/6. WIMP 42
CALLFORMROD(RK,RM ► JDR) WIMP 43
DO 10 I=1PNEOR WIMP 44

10 RU(I)=-UR WIMP 45
0(2)=-UR WIMP 46
FLAG=.TRUE. WIMP 47

50 ISW=S WIMP 48
IF(ID& EQ.NDS) TAN=.TRUE. WIMP 49
CALL FSTREA(UL•XL,LD,PP IXP IDPX ► FPJDIAGPDRPUP NDFPNDM ► NEMP NSTPNNEb) WIMP 50
DO 20 I=1,NEO WIMP 51
A(I)=DR(I)/B(I) WIMP 52
U(I)=U(I)+DT*A(I) WIMP 53
U(I)=U(I)+DT*U(I) WIMP 54

20 CONTINUE WIMP 55
OP(1)=U(I0) WIMP 56
OP(2)=U(IQ) WIMP 57
0P(3)=A(IO) WIMP 58
DO 30 I =1,NEOR WIMP 59
RB(I)=RM(I)*(AO*RU(I)+A2*RU(I)+2.*RA(I)) WIMP 60

30 CONTINUE WIMP 61
RBIQ=RU(I)+DT*RU(1)+DDT/3.*RA(1) WIMP 62
ROT=0.000001 WIMP 63
ICOU=O WIMP 64
DO 100 IT=1rITR WIMP 65
RUT=RBIQ+0(3)*DDT/6. WIMP 66
AF=-RUT-OP(1) WIMP 67
CALL RODLOAD(FIO:AF) WIMP 68
DO 110 I=19NEOR WIMP 69
FR(I)=RB(I) WIMP 70

110 CONTINUE WIMP 71
FR(1) =FR(1)+(1.-WIL)*FORCE+WIL*FIQ WIMP 72
CALL ACTCOL(RK.FR ► JDR.NEQR+.FALSE.P.TRUE..0) WIMP 73
0(3)=A4*(FR(1)-RU(1))+AS+ ERU(1)+ASi tRA(1) WIMP 74
BUTT=RBIQ+Q(3)*DDT/6. WIMP 75
ROTR=ABS((P.UTT-RUT)/BUTT) WIMP 76
IF(ROTR.LT .ROT) ICOU=1 WIMP 77
IF(ICOU.GT.0) GO TO 200 WIMP 78

100 CONTINUE WIMP 79
200 DO 210 I=1,NEOR WIMP 80

FR(I)=A4'^(FR(I)-RU(I))+AS*RU(I)+A6*RR(I) WIMP 81
RU(I) =RU(I)+DT*RU(I)+ASI^(FR(I)+2.*RA(I)) WIMP 82
RU(I)=RU(I)+A7*(FR(I)+RA(I)) WIMP 83
RA(I)=FR(I) WIMP 84

210 CONTINUE WIMP 85
0(1)=RU(i) WIMP Be
0(2)=RU(1) WIMP 87
0(3)=RA(1) WIMP 88
FORCE=FIO WIMP 89
PROP=FORCE WIMP 90
ALPHA=-0(1)-QP(i) WIMP 91
RODFR=RU(INTE)*AREA*ER WIMP 92
WRITE(8r8001) FORCE#ALPHA ► RODFRf(Q(I)+I=1r3) WIMP 93

8001 FORMAT(GE12.4) WIMP 94
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IDS=IDS+1 WIMP 95
IF(IDS.GT.HDS) IDSw1 WIMP 96
TAN= * FALSC. WM 9?
RETURN W

I
M

P
P ou

END 1 -ju3p S 11

SUBROUTINE FORMROD(RK#RM#JDR) rmm
C**** FORM STIFFNESS AND MASS MATRICES OF ROD FW:H

COMMON /RQDATA/ VRpIQvNDS F ()'' i i
COMMON /ROELEM/ NERD NEQR#ER ropo
COMMON /CONSTS/ A0,A2oA4pA5sAGpA?vA8,AREA
DIMENSION RK(1)vRM(1)vJDR(R) ► D(6) FORM
DATA RHOR/.0003225/PRL/1,0/ FORM t'
DATA FO ti i 1 8
EL=RL/NER rOPM lc)
PAI=4.*ATAN(I.) FORM 10
JDR(I)=l FORM 11
JUR(E)=3 FORM la
DO 100 I=ItNER FORM 13
IF(I.LT.6) A=PAI*(D(I)/2.)**2 FORM 14
IF(I.GE.S) A=PAI"(D(6)/2,)*'f2 FORM ib
TTmA*ER/30,/EL FORM 16
JI=20(1+1)-1 FORM 1?
J2=J1+1 FORM 13 lawJIMI=Jl— 1 FORM 19
JIM2=4-2 FORM 20
JDR(J1)=JDR(J1M1)+3 FORM 21
JDR(J2)=JDR(J1)+4 FORM PP
Kl mJDR(JIM2) FORK 2 3
KR=JDR(J11 ,11)-1 FORM 21
RK(K1	 )=RK(KI	 )+TT*36. FORM VU
RK(K2	 )=RK(K2	 )+TT*3.*EL FORM au
RK(K2+1)=RK(K2+1) q-TT*4.*EL**E FORM L"?
Rl<(K2+2)=RK(K2+2) —TT*36. FORM 28
RK(K2+3)=RK(K2+3)—TT*3.itEL FORM EY3
RK(K2+4)=RK(K2+4)+TT*36. FORM 30
RK(K2+5)=RK(K2+5)+TT*3.*EL FORM 31
RK (K2+S) =RK (K2+G) —1 T*EL'*'f2 FORM 32
RK(K2+7)=RK(K2+7)—TT*3.*EL FORM 33
RK(K2+(3)=RK(K2+8)+TT*4.*EL**2 FORM 34
TT=RHOR*A*EL FORM 35
LI=21*1-1 FORM 36
RM(LI	 )=RM(Li	 )+TT/2. FORM 37
RM(L1+1)=RM(L1+1)+TTikEL**2/420- FORM 30
RM(Ll+2)=RM(L1+2)+TT/2. FORM 39
RM(LI+3) =RM(LI+3)+TT*EL**2/420. FORM 40

100 CONTINUE FORM 41
AREA=A FORM Q
DO 20 I=IFNEOR FORM 43
J=JDR(I) FORM 44

20 RK(J)=RK(J)+AO*RM(I) FORM 45
CALL ACTCOL(RKPRMPJDRPNEORP.TRUE.P.FALSE.PO) FORM 46
RETURN FORM 47

C
END FORM 48

SUBROUTINE RODLOAD(FvAF) RODL I uu

C**** COMPUTE CONTACT LOADING RODL 2
LOGICAL RELDPUNLD,PIL RODL 3
COMMON /TMDATA/ TIME, DToDDTP FORCED ALPHA RODL 4
COMMON /EXDATA/ 0(4) RODL 5
DATA UNLD/.FALSE./ ► PIL/.FALSE./PRELD/.FALSE./ RODL S
IF(PIL) GO TO 10 RODL 7
AMAX=AMIN=FMAX=0.0 RODL 3
PIL=.TRUE. RODL 9

10 IF(RELD) GO TO 50 RODL 10
IF(UNLD) GO TO 20 RODL 11
F=0(1)*AF**I.5 RODL 12
IF(F.GE.FORCE) RETURN RODL 13 t

UNLD=.TRUE. RODL 14
AMAX=ALPHA RODL 15

^U

rs
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FMAXaFORCE
IF(AMAX.GT.O(R)) UK=FMAX/((I.-0(3))«AMAX+0(2)*0(3))**0(4)
IF(AMAX.LE.O(R)) UKmFMAX/AMAX#*O(4)
AMEN-O(3)*(AMAX-O(2))
IF(AMIN.LT .O.) AMIN-0.0

20 IF(AF.LE.AMIN) GO TO 30
F:UKo(AFR-AMIN)*rO(4)
IF(F.LT.FORCE) RETURN
R,CLD=.TRUE,
RK=FNAX/(A1lAX-AMIN)**I.5

50 IF(AF.LE.AMIN) GO TO 30
F=RK*(AF-AMIN)**I.5
RETURN

30 F¢0.0
RETURN
END

RODL 16
ROM 17
ROM 18
ROM 19
ROM 20
ROM 21
ROM 2R
ROM 23
ROM 24
ROM 25
ROM 26
ROM 27

RODL 29
ROM 30
ROM 31

i



ISO
INTERIM REPORT

ORiGRIAL KkuCE IS
OF POOR QUALITY

.

NSG 3185

.

,.z

t4

,

C1
E	 a

Lai—_

WAVE PROPAGATION IN GRAPHITE/EPDXY LAMINATES DUE TO IMPACT

NASA CR-168057

Advanced Research Projects Agency
Washington DC 20525
Attn: Library

Advanced Technology Center, Inc.
LTV Aerospace Corporation
P.O. Box 6144
Dallas, TX 75222
Attn: D. H. Petersen

W. J. Renton

Air Force Flight Dynamics Laboratory
Wright-Patterson Air Force Base, vn
Attn: E. E. Baal,y

G, P. Sendeckyj (FBC)
R. S. Sandhu

Air Force Materials Laboratory
Wright-Patterson Air Force Base, OH 45433
Attn: H. S. Schwartz (LN)

T. J. Reinhart (MBC)
G, P. Peterson (LC)
E. J. Morrisey (LAE)
S. W. Tsai (MBM)
N. J. Pagano
J. M. Whitney (MBM)

Air Force Office of 'Scientific Research
Washington DC 20333
Attn: J. F. ►Masi (SREP)

Air Force Office of Scientific Research
1400 Wilson Bivd.
Arlington, VA 22209

AFOSR/NA
Bolling AFB, DC 20332

Attn: -A. K. Amos

Air Force Rocket Propulsion Laboratory
Edwards, CA 93523
Attn: Library

F 1'r 	r
M; a	 3

x ;
E

k.

I

s f4



151

Babcock & Wilcox Company
Advanced Composites Department
P.O. Box 419
Alliance, Ohio 44601
Attn: P. M. Leopold

Bell Helicopter Company
P.O. Box 482
Ft. Worth, TX 76101
Attn: H. Zinberg

The Boeing Company
P. 0. Box 3999
Seattle, WA 98124
Attn: J. T. Hoggatt, MS. 88-33

T. R. Porter

The Boeing Company
Vertol Division
Morton, PA 19070
Attn; E. C. Durchlaub

t

	

	

Battelle Memorial institute
Columbus Laboratories
505 King Avenue
Columbus, OH 43201
Attn: L. E. Hulbert

Bendix Advanced Technology Center
9140 Old Annapolis Rd/Md. 108

'	 Colunbia, MD 21045
Attn: 0. Hayden Griffin

Brunswick Corporation
Defense Products Division
P, 0. Box 4594
43000 industrial Avenue
Lincoln, NE 68504
Attn: R. Morse

j;	 Celanese Research Company
86 Morris Ave.

ORIGINAL PAGI 'M
OF POOR QUALITY

Summit, NJ 07901
Attn:	 H. S. Kliger

Commander
Natick Laboratories
U. S. Army
Natick, MA 01762
Attn	 Library

t
{



ORIGINAL

Commander	 OF POOR QUA L 117
Naval Air Systems Command
U. S. Navy Department
Washington DC	 20360
Attn:	 M. Standen, AIR-43032D

Commander
'Naval Ordnance Systems Command
U.S. Navy Department
Washington DC	 20360
Attn:	 8. Drimmerp ORD-033

M.	 Kinna, ORD-033A
it

Cornell	 University
Dept. Theoretical	 & Applied Mach,

Thurston Hall
Ithaca, NY	 14853
Attn:	 S.	 L.	 Phoenix

Defense Metals	 information Center
Battelle Memorial	 Institute
Columbus Laboratories
505 King Avenue
Columbus, OH	 43201

Department of the Army
U.S. Army Aviation Materials Laboratory
Ft. Eustis, VA 23604
Attn:	 1. E. Figge, Sr.

Library

Department of the Amy
U.S. Amy Aviation Systems Command
P.O. Box 209
St, Louis, MO 63166
Attn: R. Vollmer, AMSAV-A-UE

Department of the Army
Plastics Technical Evaluation Center
Picatinny Arsenal
Dovero NJ 07801
'Attn: H. E. Pebly, Jr.

Department of the Amy
Watervliet Arsenal
Watervliet, NY 12189
Attn: G. D'Andrea

aj

p.



Department of the Army
Watertown Arsenal
Watertown,-MA 02172
Attn: A. Thomas

Department of the Army
Redstone Arsenal
Huntsville, AL 35809

r Attn: R. J. Thompson, AMSMI-RSS

Department of the Navy
Naval Ordnance Laboratory
White Oak
Silver Spring, MD 20910
Attn: R. Simon

Department of the Navy
U.S. Naval Ship R&D Laboratory
Annapolis, MD 21402

F	 ^
Attn: C. Hersner, Code 2724

Director
Deep Submergence Systems Project
6900 Wisconsin Avenue
Washington DC 20015
Attn: H. Bernstein, DSSP-221

Director
Naval Research Laboratory

^`.	 Washington DC 20390
Attn: Code 8430

I. Wolock, Code 8433

Drexel University

32nd and Chestnut Streets
Philadelphia, PA 19104
Attn:	 P. C. Chou

E. I. DuPont DeNemours & Co.
DuPont Experimental Station
Wilmington, DE 19898

Attn: D. L. G. Stuxoeon

Fiber Science, Inc.
245 East 157 Street
Gardena, CA 90248

'e	 Attn: E. Dunahoo

General Dynamics
P.O. Box 748
Ft. Worth, TX 76100

Attn: D. J. Wilkins
Library

i
I.

153

ORIGINAL, p,IG;^ I
OF POOR	

kA

.



General Dynamics/Convair
P.O. Box 1128

San Diego, CA 92112
Attn: J. L. Christian

R. Adsit

General ^sluctrlc Co.
Evendale, OH 45215
Attn: C. Stotler

R. Ravenhall

OR;GINAL	 [J"

OF POOR QW 11 i Y

General Motors Corporation
Detroit Diesel-Allison Division
Indianapolis, IN 46244

Attn: M. Harman

Georgia institute of Technology
School of Aerospce Engineering
Atlanta, GA 30332
Attn: L. W. Rehfield

Grumman Aerospace Corporation
Bathpage, Long island, NY 11714
Attn: S. Dastin

J. B. Whiteside

Hamilton Standard Division
United Aircraft Corporation
Windsor Locks, CT 06096
Attn: W. A. Percival

Hercules, Inc..
Allegheny Ballistics Laboratory
P. 0. Box 210
Cumberland, MD 21053
Attn- A. A. Vicario

Hughes Aircraft Company
Culver City, CA 90230
Attn: A. Knoell

Illinois y nstitu 4., of Technology
10 West 32 Street
Chicago; iL 60616
Attn: L. J. Broutman

T. M. Daniel
Dr. Joseph Wolf, Engineering Mechanics Dept.
General Motors Research Labs.
256 Research Drive
Warren, MI 48090

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena, CA 91103
Attn: Library

154
{

j

` I!

^. r

!i
a^

E

^gf

I^

s^

Ij

^^^ la
tf

.I

Sri



i

R

i

Lawrence Livermore Laboratory
P.O. Box 808, L-421
Livermore, CA	 94550
Attn:	 T. T.	 Chiao

E. M.	 Wu

Lehigh University
Institute of Fracture &
Solid Mechanics

Bethlehem, PA	 18015

Attn:	 G.	 C.	 Sih

,". Lockheed,,Georgia Co.
Advanctw Composites Informatioh Center

Dept.	 72-14, Zone 402
Marietta, GA	 30060

3
Attn:	 T.	 M.	 Hsu

Lockheed Missiles and Space Co.
"{{ P.O.	 Box 5o4

f( Sunnyvale, CA	 94087

Attn:	 R.	 W.	 Fenn

tl~
Lockheed-California
Burbank, CA	 91503
Attn:	 J. T.	 Ryder

K.	 N.	 Lauraitis
J.	 C.	 Ekvall

f McDonnell Douglas Aircraft Corporation
P.O.	 aox 516
Lambert Field, MS	 63166

I
Attn:	 J.	 C.	 Watson

McDonnell Douglas Aircraft Corporation
3855 Lakewood Blvd.„a
Long Beach, CA	 90810

Attn:	 L.	 B. Creszczuk

Material	 Sciences Corporation
., 1777 Walton Road

Blue Bell,	 PA	 19422
Attn:	 B. W,	 Rosen

Massachusetts	 Institute of Technology
Cambridge., MA	 02139

` Attn:	 F.	 J.' McGarry
_f J.	 F.	 Mandell
,R J. W.	 Mar

NASA-Ames Research Center
Moffett Field, CA	 94035

" Attn:	 Dr. J. Parker
` Library

j
i

r	 ^

Is
7

155	 ^

i

ORIGINAL PAG.: 6U
OF POOR QUALITY



9

NASA-Flight Research Center 	 ORMIxIP^L E*" ^ .;
P.O. Box 273	 OF f ooR QUALI'F'Y
Edwards, CA 93523
Attn: Library

NASA-George C. Marshall Space Plight Center
Huntsville, AL 35812
Attn: C, E. Cataldo, S&E-ASTN-Mk

Library

NASA-Goddard Space Flight Center
Greenbelt, MG 20771
Attn: Library

NASA-Langley Research Center
Hampton, VA 23365
Attn: J. H. Starnes

J. G. Da, " , Jr.
M. C. Cara
J. R. Davidson

NASA-Lewis Research Center
21000 Brookpark Road, Cleveland, OH 44135

Attn: Contracting Officer, MS 501-11
Tech. Report Control, MS 5-5
Tech. Utilization, MS 3-16
AFSC Liaison, MS 501-3
S4MTD Contract Files, MS 49-6
L. Berke, MS 49-6
N. T. Saunders, MS 49-1
R. F. Lark, MS 49-6
J. A. Ziemianski, MS 49-6
R. H. Johns, MS 49-6
C. C. Chamiz, MS 49-6 ( 4 copies)
R: L. Thompson, MS 49-6
T. T, Serafini, MS 49-1
Library, MS 60-3 (2 copies)

NASA-Lyndon B. Johnson Space Center
Houston, TX 77001
Attn: S. Glbrioso, SMD-ES52

Library

NASA Scientific and Tech. Information Facility

P.O. Box, 8757
Balt/Masi-h ; I'ntezina,txenal ^k rpbrt O MD 21240
Attn:	 Acquisitions Branch (10 copios)

National Aeronautics & SpaceAdministm6t ion
Office of Advanced Research G Techno-1*9y
Washington DC 205+6
Attn:	 L. Harris, Code . RTM-6

M. Greenfield, Code RTM-6
C. Bersch,	 'Code RTM-6

1

156	 Ii

4{

L} li

a u

u

µ .

's
i

1

1,14

L• y

r, u

Ink

,

^.

tiv

i
F	

+

^



t

1f

(

s #

157

National Aeronautics 6 Space Administration
Office of Technology Utilization 1
Washington DC	 20546"

OF 'POOR QIJAL[TY'

National Bureau of Standards
Eng. Meth, Section
Washington DC	 20234

Attn:	 R. Mitchell

National Science Foundation
Engineering Division
1800 G. Street, NW
Washington DC	 20540
Attn:	 Library

RNorthrop Corporation Aircraft Group	 h

39.11T West Broadway
Hawthorne, CA	 90250
Attn:	 R. M.	 Verette

G. C.	 Grimes

F

Pratt 6 Whitney Aircraft
> East Hartford, CT	 06108

fs._ Attn:	 J. M. Woodward

Raytheon Co., Missile System Division
Mechanical Systems Laboratory
Bedford, MA

7
Attn:	 P. R. Digiovanni

Rensselaer Polytechnic Institute
Troy, NY	 12181
Attn:	 R. Loewy

Rockwell	 International

u Los Angeles Division
International	 Airport
Los Angles, CA 90009
Attn:	 L. M.	 Lackman

D.	 Y.	 Konishi

1}rx
Sikorsky Aircraft Division

-	 .	 Z United Aircraft Corporation
Stratford, CT	 06602

Attn:	 Library

Southern Methodist University

Dallas, TX 75275
Attn: R. M. Jones

Space E Missile Systems Drganization
Air Force Unit Post Office

}	 Los Angeles; CA 90045
Attn: Technical Data Center



QUALI` Y

f

Structural Composites Industries, Inc.
6344 N. Irwindale Avenue
Azusa, CA 91702
Attn: R. Gordon

Texas A&M
Mechanics & Materials Research Center
College Station, TX 77843
Attn: R. A. Schapery

Y. Weitsman
TRW, Inc.
23555 Euclid Avenge
Cleveland, OH 44117

Attn: Z. J. Toth

Union Carbide Corporation
P. 0. Box 6116
Cleveland, OH 44101
Attn: J. C. Bowman

United Technologies Research Center
East Hartford, CT 06108

E	 Attn: R. C. Novak
Dr. A. Dennis

University of Dayton Research Institute
Dayton, OH 45409
Attn: R. W. Kim

University of Delaware
Mechanical & Aerospace Engineering
Newark, DE 19711
Attn: B. R. Pipes

University of Illinois
Department of Theoretical & Applied Mechanics
Urbana, IL 61801
Attn: S. S. Wang

University of Oklahoma
School of Aerospace Mechanical & Nuclear Engineering
Norman, OK 73069
Attn: C. W. Bert

University of Wyoming
College of Eng i nee ring
University Station Box 3295
Laramie, WY 82071
Attn: D. F. Adams

U. S. Army Materials & Mechanics Research Center
Watertown Arsenal
Watertown, MA 02172
Attn: E. M. Lenoe

D. W. Oplinger

j



d	 i

159

V.P. I . and S. U. ORIGINAL PPG— Z" ES.
Dept. of Eng. Mach. 	 OF POOR QUALITY
Blacksburg, VA 24061
Attn: R. H. Heller

H. J. Brinson
C. T. Herakovich
K. L. Reifsnider	 1f


	GeneralDisclaimer.pdf
	1983014054.pdf
	0034A01.pdf
	0034A02.pdf
	0034A03.pdf
	0034A04.pdf
	0034A05.pdf
	0034A06.pdf
	0034A07.pdf
	0034A08.pdf
	0034A09.pdf
	0034A10.pdf
	0034A11.pdf
	0034A12.pdf
	0034A13.pdf
	0034A14.pdf
	0034B01.pdf
	0034B02.pdf
	0034B03.pdf
	0034B04.pdf
	0034B05.pdf
	0034B06.pdf
	0034B07.pdf
	0034B08.pdf
	0034B09.pdf
	0034B10.pdf
	0034B11.pdf
	0034B12.pdf
	0034B13.pdf
	0034B14.pdf
	0034C01.pdf
	0034C02.pdf
	0034C03.pdf
	0034C04.pdf
	0034C05.pdf
	0034C06.pdf
	0034C07.pdf
	0034C08.pdf
	0034C09.pdf
	0034C10.pdf
	0034C11.pdf
	0034C12.pdf
	0034C13.pdf
	0034C14.pdf
	0034D01.pdf
	0034D02.pdf
	0034D03.pdf
	0034D04.pdf
	0034D05.pdf
	0034D06.pdf
	0034D07.pdf
	0034D08.pdf
	0034D09.pdf
	0034D10.pdf
	0034D11.pdf
	0034D12.pdf
	0034D13.pdf
	0034D14.pdf
	0034E01.pdf
	0034E02.pdf
	0034E03.pdf
	0034E04.pdf
	0034E05.pdf
	0034E06.pdf
	0034E07.pdf
	0034E08.pdf
	0034E09.pdf
	0034E10.pdf
	0034E11.pdf
	0034E12.pdf
	0034E13.pdf
	0034E14.pdf
	0034F01.pdf
	0034F02.pdf
	0034F03.pdf
	0034F04.pdf
	0034F05.pdf
	0034F06.pdf
	0034F07.pdf
	0034F08.pdf
	0034F09.pdf
	0034F10.pdf
	0034F11.pdf
	0034F12.pdf
	0034F13.pdf
	0034F14.pdf
	0034G01.pdf
	0034G02.pdf
	0034G03.pdf
	0034G04.pdf
	0034G05.pdf
	0034G06.pdf
	0034G07.pdf
	0034G08.pdf
	0034G09.pdf
	0034G10.pdf
	0034G11.pdf
	0034G12.pdf
	0034G13.pdf
	0034G14.pdf
	0035A03.pdf
	0035A04.pdf
	0035A05.pdf
	0035A06.pdf
	0035A07.pdf
	0035A08.pdf
	0035A09.pdf
	0035A10.pdf
	0035A11.pdf
	0035A12.pdf
	0035A13.pdf
	0035A14.pdf
	0035A15.pdf
	0035B01.pdf
	0035B02.pdf
	0035B03.pdf
	0035B04.pdf
	0035B05.pdf
	0035B06.pdf
	0035B07.pdf
	0035B08.pdf
	0035B09.pdf
	0035B10.pdf
	0035B11.pdf
	0035B12.pdf
	0035B13.pdf
	0035B14.pdf
	0035C01.pdf
	0035C02.pdf
	0035C03.pdf
	0035C04.pdf
	0035C05.pdf
	0035C06.pdf
	0035C07.pdf
	0035C08.pdf
	0035C09.pdf
	0035C10.pdf
	0035C11.pdf
	0035C12.pdf
	0035C13.pdf
	0035C14.pdf
	0035D01.pdf
	0035D02.pdf
	0035D03.pdf
	0035D04.pdf
	0035D05.pdf
	0035D06.pdf
	0035D07.pdf
	0035D08.pdf
	0035D09.pdf
	0035D10.pdf
	0035D11.pdf
	0035D12.pdf
	0035D13.pdf
	0035D14.pdf
	0035E01.pdf
	0035E02.pdf
	0035E03.pdf
	0035E04.pdf
	0035E05.pdf
	0035E06.pdf
	0035E07.pdf
	0035E08.pdf
	0035E09.pdf
	0035E10.pdf
	0035E11.pdf
	0035E12.pdf
	0035E13.pdf
	0035E14.pdf
	0035F01.pdf
	0035F02.pdf
	0035F03.pdf
	0035F04.pdf
	0035F05.pdf




