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MAJOR GOALS OF THE TECHNOLOGY ASSESSMENT

Investigate technologies available for Multiple Fixed Spot Beam/ Multiple
Scanning Spot Beam systems where reflector optics systems are used in
conjunction with array feeds,

Investigate the feasibility of the use of monolithic microwave integrated
circuit {MMIC) power amplifiers and phase shifters to combine and control
array feeds. ‘

Study technologies for EHF operation: 20 GHz transmit, 30 GHz receijve,

APPLICATION

Typical system deployment: space shuttle launched geostationary satellite,
early 1990's technology.

Multiple Fixed Spot Beam System: major U.S. cities are simultaneously
connected with multiple independent beams (up to 18).

Multiple Scanning Spbt Beam System: six sectors of the continental
U.S. are simultaneously scanned with high power beams to reach outlying
areas.
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MOTIVATION FOR USE OF ARRAY FEEDS
IN REFLECTOR ANTENNAS

Array feeds provide an effective means to combine RF power generated
by many individual solid state power amplifiers {SSPA's).

Emerging EHF GaAs technology indicates space qualified SSPA's using
MMIC's will be available in the latter part of this decade.

Beam shape compensation for undesirable reflector effects and for

improving carrier-to-interference (C/I) performance can be accomplished
with array feeds. '

Rapid scanning from city to city can be implemented (~10-100 nanoseconds).
Sophisticated systems of the 1990's will permit dynamic control of Effective

Isotropic Radiated Power (EIRP) and C/I performance based on measured
performance indicies.

LIMITATIONS
High EIRP requirements are difficult to meet with existing and planned
SSPA's for scanning beam systems.

MMIC amplifier and phase shifter units have not yet been developed for
antenna use at EHF frequencies.

Thermal dissipation from SSPA's (15% maximum efficiency typical) needs
technology development.
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ADVANTAGES OF SOLID STATE POWER
USING GaAs TECHNOLOGY

Increased reliability on a per device basis,

Eliminates the single point failure mode encountered with TWT designs.
Failure mode results in a graceful degradation for scanning veams,
Modules allow dynamiv leam control for multibeams.

Fast switching times (10-100 nanoseconds) are feasible.

Low power, lightweight array control elements (amplific , phase shifters)
can be used.

Space fed lenses rather than corporate BFN's are feasible, thus lower
losses.
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LIMITED FIELD OF VIEW ANTENNAS
PARABOLIC REFLECTORS
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LIMITED FIELD OF VIEW ANTENNAS

The antenna systems considered in this assessment are known as limited
field of view (LFOV) antennas. LFOV antenna designs in someway take ad-
vantage of the fact that limited scan requirements are imposed on the
satellite system. These antennas can be scanned rapidly over a small
angular region of space without mechanical repositioning of the reflector
system, Typically, a feed array of limited size (compared to the main
reflector) is electronically adjusted in order to produce beam scanning
or beam shaping. A1l reflector systems used for off-axis beams, i.e.,
scanned beams or multiple beams, are LFOV systems, The discussions in

:his report ‘are generally limited to reflector systems that use a para-
bolic main reflector,

The diagram on the next page illustrates a method by which LFOV antennas
can be c¢lassified. Although not all of these configurations would be
successful in meeting the requirements of the Advanced Communications
Technology Satellite (ACTS) program, they are useful for describing the
techniques available for off-axis beams. The major attributes and draw-
backs of each category will be discussed. Examples of uff-axis properties
are given for most of the configurations. In this report, specific examples
are not always compared to one another due to the vastly different design
parameters (such as aperture size and f/D ratios) chosen by various

authors of the reference material.
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OPTICS CONFIGURATIONS

The following three pages present a sketch of each of the optics con-
figurations of the previous table. It is important to note the type of
subreflector surface, e.g., hyperbolic, parabolic, or elliptical. The
Schwarzschild (12A) configuration is not shown since it follows very
closely the offset Cassegrain configuration, but with the reflectors’
shape defined by the Abbe' sine condition. Another feature to observe
is the schematic of the feed. Three individual feeds represent individual
horns or small clusters {typically < 25 elements) of array elements
grouped with individual amplitude and phase shift control. A block of
many feeds represents an array of many ‘elements {typically > 100 to 200)
with dynamic phase and amplitude control,
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OFFSET VS, SYMMETRIC CONFIGURATIONS

Offset configurations are generally favored in order to meet stringent
C/T requirements. Some of the disadvantages of the symmetric configuration,
and the relative advantages of the offset geometry, are:

¢ Aperture blockage caused by feeds, subreflector and/or
support structures in the symmetric configuration.

0 Aperture blockage results in higher sidelobes, higher cross-
polarization levels, and lost aperture efficiency.

0 Sidelobe levels below 25 dB are more difficult to obtain in
symmetric systems.

¢ Mutual coupling among multiple feeds in the offset configuration
is reduced because of the use of larger high gain feeds.

® Mutual coupling between the feeds (via the reflector) is reduced
to an insignificant Tevel in the offset geometry; this is important
for broadband feed matching.
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SINGLE REFLECTOR VS. DUAL REFLECTOR CONFIGURATIONS

There are several major trade-offs to consider when selecting a single
reflector design versus a dual reflector design. Some advantages of
dual reflector designs are:

¢ Focused dual reflector systems can implement larger equivalent
f/D ratios than front fed configurations in the same volume
constraint, Large equivalent f/D's generally lead to better
off-axis performance.

8 Array feeds can be kept closer to the satellite body; long RF
transmission path lengths are avoided; feed support structures
are replaced by simpler subreflector supports.

0 Effective near-field designs require subreflectors to collimate
primary and secondary aperture beams, i.e., the secondary aperture
is a magnified image of the feed aperture.

But, ‘dual reflector designé have some drawbacks.

0 Dual reflector systems require precise alignment of subreflector
surfaces.

0 The forward pointing feeds encountered in dual reflecting systems
contribute to lower C/I ratios. The amount of forward scatter
field is dependent upon the feed horn illumination taper at the
feed horn. For small edge tapers Rusch (10.4) reports the forward
lobe peak to be about equal to the feed horn peak amplitude.
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FOCUSED VS. NEAR-FIELD SCANNING METHODS

The figure on the following page depicts the implementation of a scanning
beam feed in both a focused system, shown on the left, and a near-field
system, shown on the right.

Focused Scanning

Focused scanning uses an RF switching matrix or variable power djvider
(VPD) network.

Signals from each feed are spherical wavefronts.

Scanning is achieved by physically changing the Tocation of the phase
centers, either mechanically or electrically.

A large number of feeds are required; at least one feed is required
for each scanning beam position. Many more elements are required when
free space combining of RF power is implemented.

Only a small portion of elements are used at any given time. If SSPA's
with on/off switching are used to simplify the power divider network,
even amplifiers in the off state will absorb signal power,

However, multiple scanning beams are easier to implement in focused
systems.

Near Field Scanning

Phase shifters can be used to control a linear phase taper across the

array. Each element is fed by a power divider either of the fixed
type or from a space fed lens.

The image distorts as a function of f/D and scan angle. Correction
methods require both amplitude and phase control of each feed element.

The number of elements required relates to the subreflector size and
magnification ratio.

Multiple beam antennas require multiple near field feeds physically
tilted to achieve isolation.
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ﬁ' TRANSFORMING PROPERTY OF REFLECTORS

The fundamental difference between near-field optic systems and
focused optic systems is illustrated on the pages following by spatial
Fourier transform relationships, From antenna theory, we know that
the far field pattern (in sine space) of an aperture antenna is the
spatial Fourier transform of the aperture distribution. Additionally,
by selecting the proper fccal plane in a parabolic reflector, the prin-
cipal component of the electric field in the focal plane can be related
to the aperture field distribution by a spatial two-dimensional Fourier
transform pair (7.4). Thus, in the appropriate transform plane, the
field distribution has the form of the far-field radiation pattern.

sy

g ey
L .

o ey
'

f o msediy, )
. ¥

pg. ~17-




. SRS R AR kMR St

PQ [ "'18"

NOILNS1¥1S1G INVId IUNLIHIAY

™ .
5 b
[

fikts,

"

™

ik |

*
X’

OF POOR QUALITY

Crit.

NOLLNBIYISIC 3NV T4 17D04
z z
X Ps P -
AN
Al Hivd
WHOISNVHL
H3WNod IANLITANY
30N1dWY

NOILN8IYISIO INYTd IHNLYILY NH3Livd Q13d-uvd

z z
X P+ t- g NIS=11
Hivd
WHOASNVHL
Y314N03
a WY
aaun 30NLITNY
mzﬂm.ﬁ
2 m

X /N\W!Ix M

e NN/
YIS

3INVId IHALU3IY

W31LSAS G3ISNJ04 VY NI SIIHSNOILY 138 WHOISNVHL Y3IBA04

« B -
RPN - R gt

ms mhe w aves o e ame - e e o740caempmamdy




Pg. -~19-

i

OF POOR QUALITY

]
]

RN

Gzl da Wi

1
L UTIEIRT, T R S R R T TR TR L TR, O S S A T

RIS
NOILNGINLSI
3UN1Y3dV 0334 NOILASIYISIO INYd V304
ra Z
.m Nv: .NW IS Ix
Hivd
WHO4SNVHL
aontdawy H3IEO04 30011160V
NOINBIYLSIO
nqu._ m::»xw.w« NY3L1V4 Q13id-Hvd
X\ |—ﬂ» -—I—m + ONIS=1 _
“ Hivd m )
WHOJISNVYHL
3GNLITINY H3Wno4 3QNLITdNY
3INV1d IHALEIdY G334 /
. z
{ %
AN 2
Z Z [4
|y .Nm + 1
ANV TYO0d - -X
/

z

‘ |
§ //\ M
al3id-yvd z \

et

z
x \ ip*
I/ INVI4 IHNLHIY

AHVYANODI3S

W3LSAS 01314-BVY3N ¥ NI SIHSNOILY13H WHOISNVHL H3IHNO3

R




pg. =20~

Rl VRGT TV

OF POOR QUALITY

Front Fed Symmetric Parabola

# Many references are available that have studied this configuration.

¢ Multiple beams and/or scanning beams (i.e. off axis beams) are
formed by Tateral feed displacement in the focal region.

0 Feed and Support structures create blockage; hence, sidelobes
and lost aperture efficiency, Therefore this configuration
could not be considered viable for the 30/20 GHz application.

9 O0Off-axis scans suffer from comatic aberrations.
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TOPICS OF AUTHORS, SUMMARY

Y,T., Lo; beam deviation factor

a, analysis and measurement

b, parameter: f/D ratio

¢, The beam deviation factor becomes closer to unity as f/D is
increased

Ruze;

a. beam broadening

b, loss in gain

¢. coma lobes

d, scans limited to a very few beamwidths

e. primary coma; beam degradation, beam shift opposite direction,
first sidelobe away from the axis changes sign and merges with
main beam

Rudge & Withers; .

a. experimentally shown %15 beamwidth scans *

b, 1ittle pattern degradation, minimal gain loss

c. arrayed feeds in scan plane

d, feed implements a spacial Fourier transform of the distorted focal region

Rusch & Ludwig;

a. locus and orientation of feed for-optimum scanning

b, related to the Petzval surface (optics)

c. Higher scan gain obtained when feed remains parallel to reflector
axis for moderate to Tow f/D ratios

Imbriale, Ingerson, and Wong;

a. vecfor formulation for accuracy

b, agreement with experimental results

c. beam scans to 29 beamwidths with 14 dB gain loss, poor patterns.
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EXAMPLES FROM RUZE'S PAPER

0 Example:

f/D = .33 & beanwidths scanned 10 dB edge taper

i 1, Beamwidth increases 1.3:1 over on-axis case
2. Sidelobe level increases from -22 dB on-axis to -8 dB (coma lobe)
' 3. The gain loss at 5 beamwidths is 2.8 dB
! 8 Example;
| f/D = 1.0 5 beamwidths scanned 10 dB edge taper
i 1. Minimal increase in HPBW

2. Sidelobe level increases from -22 dB on-axis to -18 dB (coma lobe)

3. Gain loss of <.2 dB
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EXAMPLE OF ARRAY COMPENSATION
A. W. Rudge, M. J. Withers (7.4)

This technique is similar to the focal-plane-array technique of Loux
and Martin, and Assaly and Ricardi.

Here the feed is not restricted to the focal plane.

This is an example of a front-fed circularly symmetric parabola; the
intent is to ilJustrate how the spacial Fourier transform was applied.

This approach requires no amplitude weighting.

A sampled spatial Fourier transform is physically implemented with a
hybrid matrix. The sampled transform is then phase weighted to correct
for the phase errors introduced in the optics and then summed in a

beam forming network.

A %15 beamwidth scan was achieved with a scan loss of 0.5 dB.

Other studies that have addessed methods leading to the reduction of
distortion for moderate scan angles.

Takeshima; defocusing, balancing of 2 or more aberrations.

Hannan; compensatory phase-error technique, tilting of the subreflector
in Cassegrainian systems.

Loux & Martin; focal-plane-array technique, amplitude weighting,
phasing, and summing.

Assaly & Ricardi; focal-plane-array technique.
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2, Cassegrain Fed Symmetric Parabola

Discussed here is an example of off-axis feeds in a symmetric Cassegrain
configuration. These results are taken from breadboard measurements of
a Harris sidelobe canceller system consisting of 1 on-axis feed (the
main beam) and 4 off-axis feeds (auxiliary channels). Only 2 auxiliary
beams are shown; the remaining 2 are situated in the orthogonal plane.
Each element of the five element feed is a small pyramidal horn with
element-to-element spacing of 2.5A. The element spacing was chosen such
that the beams formed an approximate set of orthogonal secondary beams.

The main parabolic reflector was 95\ and the auxiliary beams were scanned
off 2 beamwidths. Even at these small scan angles the sidelote perform-
ance and the scan loss of the auxiliary patterns was poor. The 20 to 25
dB sidelobes are typical of sidelobe levels encountered in symmetric
configurations.

However, as an adaptive sidelobe canceller the system worked well. Using
complex weights on the 4 auxiliary channels the system could effectively

null two jammers in all regions outside of the main beam peak. Conversely,

the conjugate weights can be used in the transmit case to improve sidelobe

levels in specific directions of the secondary pattern even when relatively

poor off-axis auxiliary beams are used.

T eeT
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Front-Fed Offset Paraboloid

This configuration is a viable candidate for use on the 30/20 GHz
program since the Tack of aperture blockage permits designs with
30 dB sidelobes or better.

Several off-axis examples from a paper by Rudge (8.1) are given
here:

0 Left Hand Figure

a) f/D = .392 (of parent parabola)
b) off-set feeds at 0, 1.4A, and 2.8\ in the focal plane

c) imeasured sidelobes increased from -25 dB to -22.5 dB at 2 beamwidths
scan

d) slight beamwidth increase at 2 BW scan

) cross-polarization increased from -25 dB to -22.5 dB
) scan loss was approximately .5 dB at 2 BW scan

) cross-over levels were at ~5 to -6 dB

Wy ~hHh (M .

0 Center Figure

a) change edge illumination to -17 dB and f/D to .332
b) The boresight patterns are shown for the two principal planes

c) sidelobe levels at -32 dB, note shoulders in the plane-of-
symmetry pattern at -28 dB

¢ Right Hand Figure

a) measured scan properties with -17 dB edge illumination and f/D =
.332

b) sidelobe levels increase from -33 dB to -27 dB at 2 beamwidths
scan

c) The high sidelobe occurred on the boresight axis side of the main
beam; at the same time the sidelobe away from the axis merged
with the main beam; this is the same type of comat1c aberrations
observed in the symmetric paraboloid.

41 L
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FRONT-FED OFFSET PARABOLOID

Shown on the following page is another example of off-axis beams in an
offset paraboloid. This example uses a 9 element array feed.

0 Ku-Band feed of small pryamidal horns grouped in a cluster,

8 The patterns shown are calculated secondary patterns based on measured
near-field patterns made of the feed.

¢ The cluster was used to form the high taper needed to achieve 35 dB
sidelobes.

® The on-axis pattern is compared with a pattern scanned off 2.5 beam-
widths.

® Scan was accomplished by lateral displacement of the feed cluster,.

0 Main reflector diameter 78.9A
3 dB beamwidth .95°
increase in sidelobe >40.0 dB to 34.6 dB, 3.5 BW scan
Beam broadening <.05°

® The beam forming network used to feed the 9 element array was fabricated
in waveguide. H-Plane septum power dividers were used,

R
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Focused Offset Cassegrain
Calculated Results

Results calculated by Rahmat-Samii and Galindo (1.1). They use what
they claimed was an efficient combination of methods to formulate
accurate results:

1. Scattering from the subreflector was computed using the Geometrical
Theory of Diffraction (GTD),

2, The fields reflected to the secondary aperture were computed by
Geometrical Optics (GO), and

3. The far fields were computed from the secondary aperture fields
using a Jacobi-Bessel series expansion.

The figure on the left compares the solution using GTD from the sub-
reflector to the results using only GO from the subreflector. The
main beam compares well, but the first few sidelobes are in slight

- disagreement,

Note that the first few sidelobes are predicted to be higher using
GTD. This is to be expected since the edge scattered fields act as
additional interference in the secondary aperture. This is analogous
to the aperture interference generated by feed or subreflector support
blockage in symmetric antennas.

This configuration, with an equivalant f/D of 0.6, has limited off-
axis performance with conventional feeds. If 20 dB sidelobes were the
goal, then the off-axis scan must be less than 3.5 beamwidths. Array
compension techniques similar to (Rudge) might improve the scan
performance.

This configuration (equiv. f/D = 0.6) has better scan loss character-
jstics than an offset paraboloid with a f/D = 0.4.
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Focused Offset Cassegrain Measured Resuits

0 These results were measured by Semplak (9.2) at 100 GHz,

¢ Main reflector diameter = 203
Large f/D ratio; i.e. 1.9
HPBW of .39°
On-axis sidelobes of -25 dB
ITTumination taper of 18 dB

8 Unexpected results were observed; the sidelobes decreased as the beam
was scanned. For example, at 4.3°% scan (11 beamwidths) the sidelobes
had decreased to ~30.5 dB with a well shaped pattern. Scan loss at
that point was only .4 dB.

® At a 5° scan angle the sidelobe away from the axis.merges with the
main beam. This broadens the coverage at the -30 dB level from t,1°
at a 4.3° scan to 1.35° at the 5° scan.

8 A plot of Gain vs Scan angle indicates a maximum of .25 dB Joss at
a scan angle of 9 beamwidths; it also indicates a shoulder in the
curve where the scan loss does not fall off as rapidly as predicted
by calculation on similar configurations.

¢ A plot of beamwidth vs., scan angle is given at the -3.0, -10, and
-20 dB levels; note that after scanning past 49 the -20 dB beamwidth
increases very rapidly, this is the result of the sidelobe merging
with the main beam (comatic aberation).
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CALCULATED RESULTS

ORIGINAL PAGE 18
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FOCUSED OFFSET CASSEGRAIN

Pgu "35"

e 12' diameter main reflector with fixed f/D ratio, 45" subreflector.

¢ Frequency of operation is 20 GHz.

INITIAL POINT DESIGN GEOMETRIC PARAMETERS

HYPERBOLOIDAL SUBREFLECTOR

N SUBTENDED DISTANCE

EQUIVALENT MAGNIFICATION APPROX. SUBDISH ANGLE BETWEEN
f/D FACTOR DIAMETER OF SUB SUB FOCI
0,65 1.61 45 inches 26.9° 80 inches
1,00 2.48 45 qinches 1§.2° 116 inches
1.35 3.35 45 1inches 13.6° 140 inches
1.71 4,22 45 inches 10.9° 170 inches
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{ COMPUTER CODE DESCRIPTION/VERIFICATION

0 Utilizes geometrical optic raytracing techniques with far field
radiation pattern determined by an aperture integration or surface
current integration

® Checked against two independent reflector codes

-
1

Numerica]‘E]ectromagnetic Code (NEC), Ohio State University,
Equivalent Parabola Geometry, Aperture Integration Method

- Raj Mittra, University of I11inois, Dual Reflector Code,
- Surface Current Integration Method
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SCAN PROPERTIES VS F/D RATIO FOR THE OFFSET CASSEGRAIN

Gain loss for feeds in focal plane are excessive

Gain loss for feeds located on the focal surface is less than 1.0 dB
for eight beamwidths off axis

Low secondary pattern sidelobes requires low edge illumination
of subreflector. (approximately -17 dB for 30 dB C/I ratio)
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Gain Loss vs F/D Ratio in an Offset Cassegrain Antenna for Feeds Offset Along
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OPTIMUM FOCAL SURFACE

There is an optimum focal surface for feed placement for the offset
Cassegrain

Approximate focal surface location can be found using geometrical
optics. More accurate location requires physical optics and/or
experimental verification

The curvature of the optimum surface increases with f/D ratio
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“TOP VIEW) /

HYPERBOLOIDAL
SUBREFLECTOR

A
] 21.5;}.—1‘1.71 Fio=06s

\/
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f“szu"*'{

\ / e

FiD = 1.35
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Feed Plane Versus Optimum Focal Surface
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OF POOR QUALITY

FEED SYSTEM DESIGN

CLOSE PROXIMITY OF CLUSTERS AND NECESSITY OF
SHARING SOME ELEMENTS MAKES SPACE FEEDING DIFFICULT

CORPORATE FEED HAS CAPABILITY FOR EXACT POWER
DIVISION BETWEEN ELEMENTS

TYPICAL SEVEN ELEMENT CORPORATE FED CLUSTER (NO
SHARED ELEMENT)
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FOCUSED OFFSET GREGORIAN

This approach was studied as an alternative configuration to
provide large f/D ratios in a compact gecmatry. No distinct
advantage is known that favors this con,iguration over an
offset Cassegrain configuration,

The subreflector surface is a portion of an ellipsoid. One
focus is placed coincident with the main parabolic reflector
focus and the other focus is the location of the feed.

Scanning is accomplished by displacing the feed on the focal
surface for off-axis beams,

The off-axis scan properties in the symmetric plane were
reported in Ref. [9.3]. It was shown that the scan loss at 3
beamwidths off-axis was -3 dB. Good cross-polarization per-
formance was predicted, j.e., less than -31 dB at 1 beamwidth
scan and less than -26 dB at 3 beamwidths scan.

T
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6. NEAR-FIELD SYMMETRIC PARABOLA

A multi-element array compensation technique for off-axis beams was
studied by Assaly and Ricardi (8.3).

¢ In this optics configuration, the array feed is placed in front
of the focal point,

0 Assaly & Ricardi's analysis was based on scalar wave theory,
a simple approximation for the EM fields, and used only a
2-dimensional geometry.

0 The synthesis of the transmit array distribution is simple
(conjugate matching technique):

1. Assume a plane wave incident from free space for several
! off-axis angles.

2. Compute the complex weight of the received signal at each
| array element.

3. Set the transmit element weight equal to the complex
conjugate of the recejved signal.

4, Compute the far-field secondary pattern from the sum of
the individual elements.

¢ Element Spacing Effects - It was found that the secondary
patterns exhibited a grating lobe 1ike phenomenon when the
elements were spaced at 1.0\ in the feed aperture, Even at
.8X spacing relatively high sidelobes were observed at 12
beamwidths from the main beam (see Figure).

v

i ¢ Array Position - As the array was moved closer to the focal

; point the amplitude and phase weights on the elements became
o very critical. As the array was moved away from the focal
point, more elements were required.

; 8 This configuration was also studied by Mistik and Smith (3.2),
| and C. Winter (11.1), among others.

Results observed in Ref. (8.3).

8 The array gain was higher than the gain of a single feed element
- Jocated at the on-axis focus.

ol
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6.  NEAR-FIELD SYMMETRIC PARABOLA - contd. ORIGIMAL PAGE 18
OF POOR QUALITY

{ ¢ The array pattern beamwidths were always larger than the
% single element case for scans as high as 4 beamwidths.

focal length = 30 A

distance from vertex to array = 26 )’

FEED GAIN HPBW 10 dB BEAMWIDTH SIDELOBE LEVEL*
é CONFIGURATION (dB) (deg) (deg) (dB)
Single Element 25 1.0 1.75 .~23.5
; Feed
i 21 Element
: Feed 25.3 1.1 1,80 -29.5
0° Scan

21 Element

Feed 25,1 1.2 2.00 -22.5
4° Scan

*
Blockage neglected
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OF POOR QUALITY
7.  SYMMETRIC NEAR-FIELD CASSEGRAIN

One of the major investigators of the NFC system was Fitzgerald [1.2].

He presents both analytical results based on ray tracing and measured
results.

A small planar phased array is placed such that it is in the near
field of the parabolic subreflector.

This is a circularly symmetric antenna; hence, there is a consid-
erable amount of blockage resulting from the presence of the subreflector.

In his investigation, Fitzgerald studied the 5 different parameters:

1).  the ratio of subreflector diameter to main reflector
diameter,

2). the focal length to main diameter ratio,
3). the main reflector diameter in wavelengths,

4).  the distance of the feed array aperture from the sub-
reflector, and

5). the electric field distribution on the feed aperture.

Two aperture distributions were studied: a l—p2 distribution and a
uniform distribution.

Scan loss is caused by phase aberations and to a lesser extent,
amplitude dispersion.

Computed patterns showing scan loss are shown. It is seen that the
beam can be scanned to 3 degrees before the scan loss reaches 3 dB, this
is equivalent to a scan of 15 half-power beamwidths from boresight. The
sidelobe levels did not increase when the beam was scanned to 3 degrees,

although the boresight beam levels were excessively high due to the uni-
form feed distribution.
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7. SYMMETRIC NEAR- FIELD CASSEGRAIN - contd,

The principal conclusions from Fitzgerald's investigation of the NFC
antenna are that:

¢ The feed array demonstrates linear phase scanning property

(linear phase taper, although the primary to secondary transfer
is rot linear).

¢ The feed array element spacing can be made Targe due to the limited-
field-of-view requirement, thus reducing cost and complexity.

o The "coma" lobes associated with an off-axis focused parabolid are
avoided.

¢ The system can scan up to 15 beamwidths from boresight with
only 3 dB scan loss and 7 beamwidths with 1 dB scan loss.

The disadvantage of the symmetric near field Cassegrain system is
the large amount of blockage resulting from the subreflector. This
blockage is greater than a similar off-axis Cassegrain antenna configu-
ration using a hyperbolic subveflector,
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SYMMETRIC NEAR-FIELD CASSEGRAIN
SECONDARY APERTURE DISTRIBUTION

The figure on the following page shows the path length errors determined
by Fitzgerald (1.2) across the central strip of the secondary aperture,
The Tinear phase distribution that represents the beam steering component
has been subtracted out; hence, only phase errors are shown. Amplitude
variations resulting from space attenuation on the central strip were
small. The amplitude distribution was found to be approximately linear
with variations of less than 2 dB when the primary aperture scan angle,
g, equaled 15°.

The effects of f/D ratio on aperture reduction and path length errors
are seen. Smaller f/D ratios have less aperture reduction but greater
path length errors. )
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8. NEAR-FIELD SYMMETRIC GREGORIAN

Little information has been published about the off-axis properties
of this configuration. Dragone and Hogg (11.2) implicitly talked about
its radiation patterns and the reflection coefficient seen at the feed.
Morgan (11.3) discussed the possibility of using the concave subreflector
to minimize spillover and wide angle sidelobes. He found that antennas
of practical proportions were difficult to design.
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9. OFFSET NEAR-FIELD PARABOLA

This particular configuration has received little attention in the
literature, The theory of operation, in principle, is very similar to
its symmetric counterpart discussed earlier. The obvious advantage of
the offset configuration is the elimination of feed blockage, resulting
in a significant improvement in far field beam performance.
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Offset Near-Field Cassegrain

This is one approach that Harris is studying for the scanning beam
case,

A phased array generates a plane wave that is incident on the
parabolic subreflector,

Beam steering results from applying varying phase tilts to the
feed array. '

The input and output signals (array feed and secondary beam, respec-
tively) are collimated beams. '

This configuration follows that of the symmetric near field Cassegrain
presented by Fitzgerald (1.2).
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OFFSET NEAR-FIELD CASSEGRAIN DESIGN PROCEDURE

Relate the far field beam requirements of the antenna system to
physical dimensions of the feed array and subrefiector.

*

Assume a perfect imaging reflector system.

Apply a 3 dB sector edge illumination criferion to aperture array
elements.

Note that this implies a 3 dB gain loss a. sector edge. (Other edge
criteria could be applied, resulting in more feed array elements. )

Determine actual feed array size and element spacing through magnifi-
cation factor.
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) in Geometry Thowing Aperture irra;
Qffset Near-Field Tassearain 3eometry Thewing Aperty N
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PERFORMANCE OF NEAR-FIELD CASSEGRAIN

Chosen to minimize physical size for spacecraft applications.

Disadvantage is the amount of spillover. Fuor Timited scan applications
the amount of spillover may be acceptable.

Offset Gregorian may be used where the confocal parabola has excessive
spillover. However image distortion increases with scan angle.
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OFFSET NEAR-FIELD CASSEGRAIN CONFIGURATION

8 12' main reflector with fixed f/D ratio and offset angle
0 Operating frequency 20 GHz

@ Largest subreflector chosen to prevent blockage

Table Of The Offset Near Field Cassegrains Studied

SUBREFLECTOR SUBREFLECTOR
DIAMETER FOCAL LENGTH
( INCHES) MAG FACTOR SUBREFLECTOR F/D (INCHES)

A 9 16 0.405 11,1

B 18 8 0.405 22.2

c 27 5.3 0.405 33.4

D 36 4 0.405 44.5

E 45 3.2 0.405 55.6
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TYPICAL ARRAY CHOSEN FOR NEAR-FIELD CASSEGRAIN FEED

'] Dominant TE11 mode concical horns.

] 177 elements.

) Amplitude weighting distribution proportional to cos (P/A).
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177 Phased Array Feed Elements Are Required
Based Un The Far-Field Sector Scan Criteria
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PERFORMANCE OF NEAR-FIELD CASSEGRAIN

AS A FUNCTION OF MAGNIFICATION RATIO

Cross polarization decreases with decreased system magnification.
Gain loss decreases with decreased system magnification.

There is an equivalent beam deviation factor for near-field systems.
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SYSTEM MAGNIFICATION
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Gain Loss Ys Element Diameter for 2 1/2 Beamwidths Scan.

Feed Array Contains 177 Dominant Mode Conical Horns With An Amplitude

Weighting Distribution Proportional +o £OS (x P /D).
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Beam Deviation Factor Vs Element Diameter for 2-1/2 B‘eamwidths S‘can.
Feed Array Contains 177 Dominant Mode Conical Horns With An Amplitude
Weighting Distribution Proportional to COS (v p /D).
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MULTIPLE BEAM NEAR FIELD SYSTEM

] Requires multiple array feeds for multiple beams.

9 Can use OMT's to obtain simultaneous orthogonal linear

polarizations.

¢ Can cover two of six COMUS zones with one dual polarization

array.
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THREE SECTOR FEED ARRAY LAYOUT
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TOP VIEW

TRI-Focal Subreflector

FRONT VIEW
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FEED SYSTEM DESIGN

o COPORATE FEED

- USES POWER DIVIDERS, BENDS, TWISTS TO FORM "N"
OUTPUTS FROM A SINGLE INPUT

- POWER LOSSES OCCUR IN WAVEGUIDE COMPONENTS
- PROVIDES EXACT POWER DIVISION BETWEEN FEEDS
- SIMPLE TECHNIQUE

- NO EXTRA RF RADIATION

SUBJECT TO PHASE VARIATIONS DUE TO THERMAL
EFFECTS

CORPORATE FEED CONFIGURATION

1544 32

Pg. -71-

e

-z



e iy

b s,

BT B

Ry

i

Py csmeme

ORIGINAL PR .E‘e,e
OF POOR QUALITY

FEED SYSTEM DESIGH (CONTIMUED)

e SPACE FEED
- USES FREE SPACE TO DIVIDE SIGNAL AMONG
RADIATING ELEMENTS, IDEAL FOR ARRAYS OF LARGE
NUMBER OF ELEMENTS.

- SPILLOVER LOSS DUE TO ILLUMINATION NOT BEING
CONFINED TO THE ANGLE SUBTENDED BY THE ARRAY

- LESS WAVEGUIDE - LOWER COST AND WEIGHT

- RESULTING AMPLITUDE TAPER CAN BE USEFUL

FEED THRU
ARRAY

o=
\

SPACE FEED
HORN

1545 82

SPACE FEED CONFIGURATION

Pg.

-72-

ey ppopirs

B S T B T TR S TR T TR




Pg. -73-

ORICIMAL PAREC 19
OF POOR QUALITY

ﬁl./..,ni)!.)«/rril

e el e LT e P s S —

10dNI 24 _
INdNT 48 - 1ndAo T AINIIJ3443 Avyuv
NIVY 401233143y gp €9 9NIQNIONGT s
S3SS0T d334 S3anianNy .

: : i I R i T T v e e e H
m | | |
M aEt st A M AP 4149 MY/l M £70Y2 MU Q9g £EL MW G21°0 YdA-V¥91-Sdhn m.qaw.
. . m
it 2 w Mgl 4yl°9y M GL7¢¢ M L70Y¢ B Z2-gy - Lel MW 2170 YdA-Y¥93-SdA mpdzz;;:u_

m _ !
| i

i . |

stHUTHE i NP 41°89 M GL72¢S M b6 52 Mg v LLL BE oL VdA-SdA w;mamm

) |

Rof Tl | M3P gLTgy M GL72E M6 p5e ML°E LLL Mw oL YdA-SdA uk<x:;z:;_

H |
r ]
m»uzumuhmuu xxd¥y]3 43IM0d g3yind3y x33IM0d SINIWITI ININITI ¥3d JdAl dr; m
m AYHYY w 10d1no ¥3IM0d 10dNI 347} 40 Y3GHNN 43M0d LNdNI 44 31N00W 134 i
“ 44 Y101 10dNI 30 V1oL ;

|
i

0334 31vy0dy0d SA 3Iv¥dS

=]

S e - Lo . . Liireowmip



pg. =74-

ORIGINAL PIAE 19
OF POOR QUALITY

RECOMMENDED SSPA ELEMENT DESIGNS

Use leadless chip carrier.

Uses microstrip to interconnect the chip modules.

Makes use of ridgeline transiormer to convert from microstrip
to waveguide (excellent performance measured at 30 GHz).
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JAVEGUIDE TO MICROSTRIP TRANSITION

OESIGN CHOICE: RIDGELINE TRANSFORMER

- BROADBAND CAPABILITY

- STRAIGHTFORWARD DESIGN

- READILY ADAPTED TO UNSYMMETRICAL MICROSTRIP LINE

- EASILY MACHINED AND ATTACHED TO WAVEGUIDE

PERFORMANCE OF TRANSITION

- SAMPLE TE3T DATA FOR 27.5-31.3 GHz TRANSITION
BUILT BY SCHNEIDER, ETAL

(3
o

1N
%, coded Y S
v L~ ]
w
9 TRIANSITION /\/il[i
2 K AR . S
- z — -~
“ N
a A ]: ;
9135 \\‘ [
2 b U N Araansconmer] |
o -

x i Sl
S 40 POy SEE |
~ I i
@ !

45 ! I i !

26 27 28 29 30 Y] 32 3

FREQUENCY IN GHZ

RETURN LOSS OF TRANSFORMER AND TRANSITION FROM
WAVEGUIDE TO MICRQOSTRIP FROM 26.5 GHz TO 32 GHz
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ARRAY HEAT REMOVAL

o MUST REMOVE UP TO 500 WATTS HEAT DISSIPATION FROM
THE CORE OF THE PHASED ARRAY

o INTEGRATE HEAT PIPES INTO A MOUNTING PLATE WHICH

ATTACHES AT MOOULE SECTION TO EACH ELEMENT

o 500 WATTS INPUT INTO 1.0 m OIAMETER EVAPORATOR AREA
BY 177 WAVEGUIDE SECTIONS CONTAINING MODULES

o HEAT FLOWS LATERALLY BY HEAT PUMPING 7O A 0.3 m
WIDE BORDER COATED WITH S-13G PAINT; HEAT IS THEN
REJECTED TO SPACE BY RADIATION

\
t
.

Y3
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__\l\

-

Y1
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SEREA!
11

SR

T

L4A
Yl
(Y

XY
RES

-‘.4-:?{-1
0

‘1 ’I‘)'\ ~‘l"1'!'|'|1 |‘|

S13G WHITE THERMAL EVAPORATORS
PAINT IN CONDENSER INTERLACED WITH
REGION MOOULES

ESTIMATES FROM INDEPENDENT CONTRACTOR INDICATE THE
STRUCTURE WILL DISSIPATE APPROXIMATELY 1200 WATTS
'NITH A MAXIMUM HEAT SINK TEMPERATURE OF 60°C
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QFFSET NEAR-FIELD GREGORIAN

Imaging Reflector Configuration

In reference (2.2) Dragone & Gans pointed out several
important properties of the Gregorian Imaging Reflector
Systenm.

One important concept i- that of conjugate elements, i.e.,
rays eminating from a point on a surface in an optical

system are transformed to rays eminating from the conjugate
point on a second surfdce. In a Gregorian optical configu-
ration two conjugate planes can be determined. The array
surface projection is the reference plane and the inverted
image surface in the projected aperture of the main reflector
is the conjugate plane.

A second important concept is the frequency independence of
the transformation relating the array aperture to the main
reflector projected aperture.

Reference (7.1) determined the performance of the Gregorian
configuration by a plane wave expansion from a series of
transformed plane waves. Dragone and Gans' entire analysis
is based on the laws of Geometrical Optics.
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POLARIZATION

No information concerning the cross-polarization properties of any near-field
system was found. However, much has been written about the polarization proper-
ties of on-axis beams in focused systems. 0ijk, et.al. [12.2] compared the

polarization efficiencies of 4 of the focused reflector systems that we have
discussed:

8§ Symmetric front-fed paraboloid:
efficiency .999 to .939
- for subtended angles from 60° to 160° or
f/D = ,933 to .300

- Warse for lower f/D ratios

8 Offset front-fed parabo]oid:
efficiency ,997 to .916
- for subtended angles 40° to 100° (offset angle
30° and 60°, respectively)

- Polarization efficiency is dependent on feed polarization

¢ Symmetric Cassegrain:
afficiency 1.0 to .996
- for subtended angles from 63> to 160° M = 2

- Worse for Tower magnification (M) values

8 Offset Cassegrain
efficiency .997 to .924
- for subtended angles 40° to 100° (offset angle
30° and 60°, respectively)

- Similar to the offset front-fed paraboloid; but, the
results are less sensitive to polarization of the feed.
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POLARIZATION COMPENSATION

According to Rudge and Adatia [2.4] depolarization in offset front-fed
and offset Cassegrain antennas can be made to cancel by designing the
primary feed to provide a conjugate match to the incoming fields. In
contrast to a linearly polarized corrugated horn they suggest an
approach where higher order asymmetric waveguide modes ‘are used to
provide the polarization correction. A similar effect might be obtained

in an element cluster where some of the array elements were orthogonally
polarized.
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ARRAY PROPERTIES

In addition to knowledge of the reflector optics it is important to
discuss the properties of the array feeds. The electric-field from

an array of elements can be expressed by a single fundamental equation,
Many simplifications of the array equation are possible, but will not
be discussed. An important consideration is that of array element
complex weights, i.e, amplitude and phase. A general discussion is
given; however, specifics-can only be discussed in the context of a.
detailed design. This discuésion concludes with examples of design
considerations others have found to be important when dealing with
array feeds in reflector systems.

=89.
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EQUATION OF A 2-DIMENSIONAL ARRAY

0 Applicable to both:
1, A nmultiple fixed spot beam might consist of a cluster of elements

used in a focused system with approximately 7 elements in the
cluster.

2. The scanning beam case is a near-field system consisting of at least

177 elements per beam.

0 The electric field pattern of the array is given by:

— —

JkIr-r.|
(Y)Y = k : + R
E(r) = }‘Zfi(e, 3) ass——
i |7
where
E is the electric field vector
r the position vector from the origin to the observation
point
"k a complex constant
fi(e, b) element radiation pattern in the array environment as
a function of the polar angles for the ith element
a, the complex weight of the 1th element
Y, the position vector of the 1th element

¢ Element weight, a5 is complex, i.e., amplitude and phase

1. Multibeam clusters, a, is fixed by the BFN. For dynamic beam

control, a, must be'contro11ed in amplitude and phase.

2. Scanning array, the ai's are modified in amplitude and phase to
steer the beam.
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EQUATION OF A 2-DIMENSIONAL ARRAY - contd.

3, Dynamic amplitude and phase control is usually reserved for
adaptive antenna systems where all of the requirements are not
known a priori. Antenna patterns are modified by the measure-
ment of some parameter in a control loop that seeks to optimize
that parameter, However, the optics configurations discussed
earlier require both dynamic amplitude and phase control to correct
for optics transform properties when the beam is repositioned.

4, Dynamic EIRP control, amplitude and phase control can be used
when the need arises to change the effective radiated power from
time to time.

» The position vector Fi describes the location of the elements in the

lTattice. This lattice is very important to the contral of grating lobes,
which possess the properties of the main beam in the sampled aperture
space. For large element spacing, these grating Tobes appear in the
"visible region" which means that there is propagation in the grating
Tobe direction.

] Element patterns fi(%, 2)

1. Finite array: each element has a slightly different pattern.

2. Array edge effects become important, vastly different element
patterns near edge.

3. Typical array has elements with a cos & field pattern, some
arrays use high gain elements where the pattern width is narrower,
reason: limited scan and aperture filling.
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GENERAL PROPERTIES OF ARRAY ELEMENT WEIGHTS

Size of aperture determines beamwidth.
Phase distribution determines scan angle and focal range.
Amplitude and spatial tapers determine sidelobe characteristics.

If all parameters are known a priori, then traditional synthesis
methods are applicable.

Synthesis methods:
1. Fourjer Transform Method
2. Laplace Transform Method
3. Woodward's Synthesis Method
4, Optical Synthesis
5. Iterative Methods
6. Optimum Design Methods
a. Minimum Beanwidth
b. Taylor's Method
c. Dolph-Chebyshev

Synthesis of 2-dimensional sources:

1. Separable distribution, line source, uses methods mentioned
above

2. 2-Dimensional Fourier Transform

3. Circular Source, Hankel Transform

Fresnel Region Synthesis:

1.  Used if field distribution is specified in the Fresnel Region
(radiating near-field).

2. Integral equation of the fresnel field is inverted to give
integral equation for the source distribution.
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GRATING LOBE CONTROLS AND MINTMUM CONTROLS

Considerations

’ EIRP requirements met and exceeded for SSPA active array implementa-
tion when controlling grating lobes,

L] Since wide scan angles are not envisioned, e.g., * 27 secondary scan
with a magnification of 4 - primary array must scan * 8°,

(] Cost, weight and mechanical tolerances of closely spaced arrays
provides impetus for thinning the array feed.

) Partial choice of array lattice configuration based on observability
of grating lobes in U - V space.

¢ Rectangular lattice configuration acceptable for narrow scan angles;

Triangular lattice used for large scan angles and reduce coupling.

Array Controls

Minimum number of controllers needed for LFGV phased array deter-
mined by:

Max {N/Nmin} = 1, where N is the number of phase shifters used;
Novin is the minimum number of control elements.
BUTRREY (2
3 0
\ 51N ax sin oy

)
ax__
2) 7

/’1;>

min sinkggﬁé> sin (‘g
' ]

) '
W2 .
where Gégl, mmai are the maximum scan angle in the two planes
at peak;
ﬁgl), ﬁéa) are the half-power beamwidths.
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NEAR-FIELD OF AN ARRAY

In this report we have discussed focused systems and their relation-
ship to near-field systems. z

But, we have not set a criteria for what the near field range of an
aperture is. This criteria is shown on the left in the following
figure.

Focused systems are designed such that the reflectors are placed in the
far field of the primary aperture. The main beam of a primary aperture
is usually well formed by the time the fields reach the reflector.
However, in some configurations, i.e., configurations with high /D
ratios, the reflector is at the far field boundary or possibly in the
Fresnel zone.

Near field systems are configured in a way to place the subreflector in
the radiating near field (Fresnel zone) of the primary aperture.

Seen on the right (after Silver) is the relative field magnitude of a
uniformly illuminated aperture at various ranges in the Fresnel zone.
Field patterns in this region are very dependent on range. The main :
beam is not well formed until the far field boundary is reached.
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OVERSIVED RADIATING ELEMENTS, WIDELY SPACED ARRAY ELEMENTS

Review of Amitay & Gans (2.2)

See Reudink D, 0. & Y, §. Yeh
Bell Syst. Tech J. Volume 56 No. 8

Oct. 1977 pp. 1549 - 1560

Amitay & Gans used:

104 element array

Studies blind spots in this oversized element array. Blind spots were
discovered to be a result of a resonant TM12 waveguide mode at the aperture
surface. They further discussed methods to modify the position of the
blind spot such that the array could be useful as a feed for a LFQV
antenna.

High gain elements, used with active element patterns, will gontrol grating
lobes past 50 deg. from boresight.
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ACTIVE ELEMENT REFLECTION CCEFFICIENT

It is important in array design to consider the reflection coefficient that
will be observed at each array element when the array is fully excited. There
are many techniques available for both infinite and finite array active
reflection coefficient analysis [12.11. For large arrays such as those
encountered in near-field systems, infinite array approximations can be used
successfully to design element matching for scan angles as high as 30 degrees.
The behavior of internal elements of a large array are nearly identical and
only the outer elements require special treatment,

But, in small arrays such as the cluster array proposed for use in a focused
multibeam antenna, the active ref]ectionacoefficient cannot be predicted by
infinite array techniques. One method available to analyze finite arrays

is an integral equation formulation (moment method). Results were published
by Fenn, Thiele, and Munk [3.4] using open-ended rectangular waveguide
radiators. The magnitude and phase of ' predicted for a 25 element array
fed at broadside is shown oh the following bage. Mote that the worst case
reflection coefficient corresponds to a VSWR of 2.6:1 while the corner elements
have a VSWR of 1.2:1. It was discovered that when the array is scanned in the
H-plane, .| was generally reduced, where as E-plane scans tended to increase

-
> .
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SCAN LIMITS OF A NEAR-FIELD ARRAY

Here, the aperture-to-secondary scan transfer properties of the Gregorian
configuration studied in Ref, [1.3] are compared with a linear beam
steering approximation based on the magnification ratio (0/d). It is
seen that in the positive &' direction that the array understeers the
beam, i.e., an increase in aperture scan does not produci a proportional
increase in the secondary beam scan. In this case, a beam scan of

ot = 4 7° makes it necessary to increase the scan capabilities of the
feed array by 20% from the linear approximation. The condition is
reversed in the -2' direction; here the secondary beam is oversteered.
This example uses computed data from a configuration with a magnifica-
tion of 3. As shown in this study for magnification ratios on the order

of 10 to 15, even greater non-linear scan transfer characteristics are
produced,

’
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TECHNOLOGY OF RF AMPS AND PHASE SHIFTERS

This section will address the current status and growth prospects of
technologies required of phased array elements having integral mono-
Tithic transmit or receive control devices. The literature search
concentrated on monolithic modules and phased array elements operating
above 18 GHz.

Monolithic Modules

In general, a lot of work, both theoretical and developmental has been
done in the area. As early as 1965 diode switches were available to 24
GHz, and to 40 GHz by 1967. Diodes (BARITT, IMPATT, TRAPATT) have been
used extensively for reflection type amplifiers and phase shifters., ODual-
arve GaAs MESFET's show the most promise for Variable Gain and Variable
Phase amplifiers in the 20-30 GHz Band. Power combining from several
FET's 1is necessary to achieve appreciable output power.

Engineers from Hughes Corp. and Texas Instruments both indicated that
variable power amplifier module fabrication is feasible with current
technology. Texas Instruments is currently fabricating a four-stage
monolithic amplifier module for the Advanced Communications Technology
Satellite (ACTS). The chip size will be approximately 100 x 200 mils.
The module uses dual-gate FET's for gain control and should have per-
formance similar to NASA's design goals. It will be fabricated on a
GaAs chip which would then be’mounted in a leadless chip carrier and
connected to the desired interface.

D
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RF LINEAR AMPLIFIER CONSIDERATIQONS

Since an active array is under consideration in this study the scope
of investigation must go beyond the techniques of an antenna designer
of reflector antennas and beyond the scope of a designer of phased
arrays. The technology of the design must now include the concepts
of the RF linear power amplifier designer such as AM/PM conversion,
dynamic range, linearity, response time and harmonics.

0 Typical values of EHF components includu:

1

AM/PM Conversion: 2 degrees/dB

Linearity: 215°

Stability: ts"
#0.3 dB

Third-Order IM: -23 dBc

¢ Effects on Multiple Beam Generation

- SSPA array RF amplifier non-linearities can produce 3rd order
spacial intermodulation.

- Affect the antenna pattern by producing spacial gitter and
Tobing phenomenon.
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ARRAY PHASE_CALIBRATION

An fmporant consideratien in an active elemant array is phase synchroni=
zation of the RF signal at the array face. The ideal case at broadside
would be constant planar phase front. Hany factors will perturb this ifdeal
sftuation. Some of these are by design i.e. linear phase steering and
beam shaping but many will be undesirable effects. These undesirable efs
fects inglude:

8 SSPA insortion loss variations from eloment to element.

0 Differential phase variations from eloment to element as a
function of froequency.

¢ Phase shifter quantization offocts.

One suggestad remedy 18 yiven by (8.1) as an ioterpolation locking
technique,
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GaAs FETS, UNIT-TO-UNIT VARIATIONS

0 Thc FETS can be biased and tuned for either:

a) optimum efficiency

or b) optimum output power

The same set of 14 solid state amplifiers were measured at 20 GHz
and at 21 GHz.

The power output of randomly selected SSPA's in an active aperture
could vary widely. For éxamp]e, at 21 GHz and optimum efficiency
the power output from the highest to the Towest differs by more than
3 d8. Array design is difficult with random variations of this mag-
nitude.

The standard deviation of output power is smaller when the amplifiers
are biased and tuned for optimum efficiency.

Note that efficiences ranging from 20 to 25% are obtainable. But,

the power output is typically lower by 150 mW. Because of the thermal
problems encountered in active apertures of this type, optimum ef-
ficiency is preferred.
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SSPA/RADIATING ELEMENT DESIGN

Shown here is a block diagram of a solid state power amplifier integrated
into a radiating element.

0 Final Stage - It is recommended that the final amplifier stage be
set at its optimum efficiency, and should not have any dynamic control
of amplitude nor phase, It was found in the literature that fixed,
Tow-gain (5 to 10 dB) SSPA's are generally more efficient. Since heat
dissipation in the array is a severe limiting factor, efficient opera-
tion is extremely important. In addition, some fixed gain amplifier
designs are now available; thus, the reliability history will be more
well known. The remaining portion of the SSPA element gain would be
supplied by a preamp module. This module would operate at modest
power output levels (50 to 150 mW) and have dynamic amplitude and/or
phase contral.

8 Rapid Scanning - Since rapid beam steering is required each element
would be equiped with the ability to store the next amplitude and
phase state. Individual elements would be loaded sequentially via
an address and data bus structure. This structure would reduce the
total number of control Tines and reduce layout complexity for large
arrays. A single control would command the phase shifters and vari-
able gain amps to change state. Beam updating could be done quite
rapidly; but, the power supply must be designed to handle the power
surge.

-111-
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SSPA/RADIATING ELEMENT DESIGN

¢ Static Phase Set - Each e]emeﬁt will need a precise static phase
setting device to establish a coherent wave front at the aperture.
One method would be to use various lengths of dielectric slabs to
cover a portion of a microstrip line.

® Chip Carrier Construction - Prior to placement into the radiating
element, SSPA's would be packaged in hermetically sealed, leadless
chip carriers. The chip carriers are typically made of berillium
copper. They would be afixed to the element with silver epoxy for
thermal and RF continuity. MWire bonds would be used between chip
carriers and coupling devices.

The configuration shown here is for a space-fed active aperture with
rectangular receive elements. Other radiating apertures cuuld be selected,
such as: square apertures, small pyrimidal horns, conical horns, and
rectangular to circular transitions.
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There are a wide variety of elements which could be used with a monolithic
module in a Phased Array at 20 GHz. These elements are briefly discussed
below in order of applicability to tlie project.

Some successful experimentation has been done at Harris in the EHF Band
on dielectric rod antenna elements. A dielectric rod element is an ex-
tension to an open-ended waveguide radiator which prbvides additional
beam shaping and impedance matching design parameters.

Microstrip array elements offer an extremely easy interface with mono-
Tithic modules including the possibility of simultaneous fabrication

and connection. There is a moderate amount of analytical tools available
and the array would be rather simple to construct, However, printed-
circuit microstrip patch has low bandwidth and only moderate aperture
efficiency and polarization purity. A similar technique, the printed-
circuit notch antenna, offers a wide bandwidth and is easily matched to
free space as well as to the fed line.

Dipole or printed circuit dipole elements have moderate bandwidth,
polarization purity, and aperture efficiency. However, fabrication

of dipoles for broadband EHF operation is difficult. Cavity backed
slots have parameters similar to those of open-ended waveguide. They
might be considered if array depth becomes a driving factor. Waveguide
slot arrays are popular, but are not applicable to the use of a single
monolithic module per element.

Open-ended rectangular waveguide is a commonly used element, and would

be convenient for initial studies. It has a wide bandwidth, with moderate
aperture efficiency, and high polarization purity. It is easily combined
with monolithic modules, and provides for a relatively simple array
structure with either a triangular or rectangular lattice. Blind spots
which are often associated with waveguide arrays can be avoided due to

the small scan angle requirements of the system. There is a large amount

of analysis available for waveguide arrays.
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ARRAY ELEMENTS =~ Contd.

In some instances a small pyramidal horn may be needed, especially if

a large aperture area must be filled with a few elements. It has the
same general characteristics as the waveguide above. If a high packing
density is needed, the element spacing may be smaller than the size of
normal waveguide. In this case, ridged waveguide would be used. It has
the same parameters as regular waveguide, except for a lower cut-off
frequency and wider bandwidth for a given size.

Another alternative is open-ended circular waveguide. It allows for
polarization diversity, elimination of some array resonance problems,
and lends to dense hexagonal packing. A small conical horn would be
used if a large aperture of circular elements is desired and is recom-
mended here, '

= iy
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SSPA TO WAVEGUIDE RADIATOR TRANSITIONS

Two examples of an SSPA transition to a rectangular waveguide radiator
are shown in the following figure.

The element on the left shows the use »f a stepped waveguide transition.

This type of transition is typically used for matching IMPATT diode
cavities to rectangular guide.

The loop coupling shown here for the GaAs FET is impractical at EHF
frequencies because of the tight tolerances required; but, the coaxial
feed through does provide environmental protection for the SSPA.

A second transition is shown on the right.
Measured data for this transition is shown at the end of this section.

The SSPA chip can be mounted to a heat sink (not shown) that extends
half way into the waveguide from behind tl= SSPA.

The heat sink and support for the SSPA as well as the element jtself
could be machined from a single piece of metal. This provides an
excellent thermal path to a cooling nlate.

Another alternative is the use of a broadband stepped ridgeline
transformer shown on the following page.

Measured data for this type transition indicates good bandwidth character-

istics. The following pages illustrate how the MMIC modules can be
integrated into microstrip line and rectangular waveguides.

e
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{a)

TAB FOR MATING
TOMICROSTRIP LINE

RIDGELINE
TRANSEORMER

WAVEGUIDE SECTION
WRA42 REMOVED TO SHOW

WAVEGUIDE TRANSFORMER DETAIL

{b) 1488 82

Naveguide to Microstrip Transition:
(a) Ridgeline Transformer

(h) Completed transition - wall sectioned
to show detail
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Return Loss of Microstrip-to-Waveguide
Transition from 26.5 to 32 GHz

Pg.

-120-

T




o

| | pg. =121~
ORISIUAL PAGS 1§
OF POOR QUALITY

SSPA ELEMENTS/CIRCULAR RADIATOR INTERFACE

0 Rectangular SSPA Package

- Uses the same transitioning design as shown in the previous
illustrations.

- Input is ejther microstrip line or rectangular waveguide transition.

- Rectangular to circular waveguide transition utilized to match
modes in the circular radiator.

® SSPA in Circular Waveguide Pipe
- SSPA region must be isolated from input/output transitions.

- Microstrip modes are matched in a recténgular package in the
SSPA region.

- Flaired slot transitions match circular waveguide input/output
modes.
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Monolithic Module Transition and Mounting Configuration
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SCANNING BEAM EIRP DC POWER REQUIREMENTS

Conventional Spacecraft Communication 3atellite systems utilize
TWTA's to produce power levels commensurate with the required coverage
EIRP. The required EIRP for the scanning beam case is 67 dBW with
53 dB assumed for the antenna. An RF output power of 25 W is required.
A comparison of TWTA's having an efficiency of 25% and the specified
efficiency of 15% for the SSPA's is presented. The DC power dissipated
by the TWT is 195 watts and for the SSPA's is 158 watts. It should
be pointed out in this comparison that the logic power loss has not been
considared and would be higher for the SSPA's due to the larger number
of devices required.
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POWER_COMPARISON TWT/BFN VS MONOLITHIC MODULE ARRAY

MONOLITHIC
TRANSMIT

TWI/BFN MODULE
RF OUTPUT POWER 25 W 25 W
BFN LOSS* 3 dB -
POWER AMPLIFIER OUTPUT 50 W 25 W
EFFICIENCY 25% (TWT only) 15%
AMPLIFIER LOSS 150 W 142 W
H.V. SUPPLY EFF. 91% (L.v.) 91%
H.V. SUPPLY LOSS 20 W (L.V.) 16 W
BFN SWITCHING PQWER* 25 W -
TOTAL POWER REQUIRED 195 W 158 W

* BFN SYSTEM ASSUMED: 63 VPD's in 6 stages, 5 dB/Stage loss, 200 .J

switching energy per VPD, BFN reconfigured every 500 m sec.
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ACTIVE ARRAY HEAT DISSIPATION

An active array like the one studied by Motorola produces significant

heat (~380 Watts in this case). Assuming that the method of heat dis-
sipation is via conduction through a structure possessing moderate thermal
mass to a thermal radiator(s), significant thermal gradients are prevalent
which will distort the array. Distortions resulting from the thermal
differences of this magnitude can be compensated for as long as the
thermal environments are predictable. Thermistor sensor devices can

be utilized in practice to monitor the array thermal condition so that

the appropriate phase shifts may be trimmed providing the needed compen-
sation.

An example of a new type of thermal radiator is shown on the following
page. A honeycomb heat pipe plate is utilized where the individual wave-
guides pass through the plate and are mechanically attached at their

- center section, the region of heat dissipation. Heat is conducted into

the plate and evaporates a working fluid such as methanol. By capillary
action, vapor is radially transported through wicks to the plate edge
where condensation takes place. Heat is then rejected to space via the
nlate edge region which acts as a space radiator. There is very little
build up of temperature from the plate center to the edge which is ideal
for the SSPA's.

ot re
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EHF COMPONENTS

At EHF frequencies the performance of the RF components becomes increas-
ingly critical. Shown below on the left is the measured insertion and
return Joss of a back-to-back waveguide to microstrip transition. This
configuration is important for the utilization of the SSPA modules in
waveguide radiators. Other measured data was available for a 20 GHz

'microstrip 3 dB hybrid. A VSWR of 1.5:1 was maintained over 4 GHz with

an insertion loss averaging .7 dB. Comparing this with readily avail-
able stripline 3 dB hybrids at X band one finds typical VSWR's of 1.35:1,
isolation greater than 18 dB, and insertion loss less than .4 dB., Pre-
dicted performance at 21 GHz fov 2-way and 4-way in-phase stripline power
dividers is shown here: .

YSWR  INSERTION LOSS  ISOLATION  AMP BAL PHASE BAL BW
2-Way 2.0:1 0.9 dB 14 d8 +.3 dB +6° 36%

4-Way . 2.0:1 2.0 dB 14 dB .4 dB «12°  36%

123

For coaxial connections the 3 mm coaxial connectors are the most suitable.
These connectors can operate up to 38 GHz free of higher order modes. The
maximum VSWR expected in the 20 GHz band is 1.27:1 while the maximum in-
sertion loss expected is 0.18 dB. The 3 mm connectors are compatable with
.085 semi-rigid coaxial cable. A typical 6 inch cable assembly operated

at 20 GHz can be expected to have a maximum VSWR of 1.6:1 and a maximum
insertion loss of 0.83 dB. In contrast, the theoretical insertion loss

of a 6 inch length of WR42 aluminum waveguide is .12 dB; however, waveguijde
tolerances of =.001 inches are required.

-128~
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NEEDED TECHNOLOGY

Technology developments needed for multiple reflector system with array
feeds include:

8 A study of specific optics designs with array feeds and with
array compensation techniques. (addressed in this contract)

¢ Solid State phased array technology (addressed in this contract)
¢ Multiple beam forming networks for active arrays

8 Further investigation of mounting configuration of SSPA modules
into a complete antenna system

® Additional studies on the distribution of bias and control Tines
to the individual SSPA modules

9 Optimize amplitude and phase quantization; needs versus hardware
capability

¢ Studies of advanced cooler designs

ez
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