
NASA Technical Memorandum 84604 lNASA-TM-84604 19830014273

Use of CYBER 2 0 3 and CYBER 2 0 5
Computers for Three-Dimensional
Transonic Flow Calculations

N. Duane Melson and James D. Keller

APRIL 1983

25th Anniversary
1958-1983

N/A

NASA Technical Memorandum 84604

Use of CYBER 2 03 and CYBER 2 05

Computers for Three-Dimensional
Transonic Flow Calculations

N. Duane Melson and James D. Keller
Langley Research Center
Hampton, Virginia

National Aeronautics

and Space Administration

Scientific and Technical
Information Branch

1983

The use of trade names in this publication does not constitute endorsement,
either expressed or implied, by the National Aeronautics and Space Administration.

SUMMARY

Experiences are discussed for modifying two three-dimensional transonic flow

computer programs (FLO 22 and FLO 27) for use on the CDC ® CYBER 203 computer system

at the Langley Research Center. Both programs discussed were originally written for

use on serial machines. Several methods were attempted to optimize the execution of

the two programs on the vector machine: leaving the program in a scalar form (i.e.,

serial computation) with compiler software used to optimize and vectorize the pro-

gram, vectorizing parts of the existing algorithm in the program, and incorporating a

new vectorizable algorithm (ZEBRA I or ZEBRA II) in the program. Comparison runs of

the programs were made on CDC ® CYBER 175, CYBER 203, and two-pipe CDC ® CYBER 205

computer systems.

INTRODUCTION

Most research in the computation of transonic flows in recent years has been to

improve the accuracy and geometric capability of computational tools. Most three-

dimensional transonic codes, however, still use large amounts of computer resources

and are expensive to use extensively, such as in parametric and optimization

studies. Thus, there is a need for improving the computational efficiency (and

reducing the cost) of these codes.

Two ways to reduce run costs and run times are through improvements in (I) con-

vergence rate and (2) calculation rate. The way to increase convergence rate is by

the use of improved iteration algorithms to solve the governing equations. To date,

the true workhorse of potential flow calculations for transonic flow has been the

successive line overrelaxation (SLOR) algorithm. SLOR is a very robust algorithm and

is relatively easy to program. For these reasons, it has found widespread acceptance

and use. Unfortunately, SLOR requires many iterations to obtain a converged solu-

tion; this can make three-dimensional calculations very expensive.

The most straightforward way to improve calculation rate is through the use of

larger, faster computers. Three examples of these machines are the CDC ® STAR-100,

the CDC ® CYBER 203, and the CDC ® CYBER 205 computer systems. These machines are all

known as vector processors. They obtain high calculation rates through unique archi-

tecture which performs operations on groups of operands (vectors). Unfortunately,

the advantages gained by vector processing are not without some penalty. To use

vector instructions, all the operands must be available before execution of the

instruction is begun. In iterative algorithms where updated values at adjacent

points are used to calculate values at a given point, this requirement is very

restrictive. Quite often the direct application of partially implicit algorithms,

such as SLOR, on a vector machine results in either the inefficient use of its

vector-processing abilities or the necessity to resort to slower scalar operations.

On the other hand, an explicit algorithm which is easily vectorized may have a much

slower convergence rate. Hence, the efficient use of a vector-processing machine

becomes a trade-off between calculation rate, convergence rate, and ease of

programming.

In this paper, experiences are discussed for modifying two three-dimensional

transonic flow computer programs (FLO 22 and FLO 27) for use on the CYBER 203

computer at the Langley Research Center. Both programs discussed herein were

originally written for use on serial machines. Several methods were attempted to

optimize the execution of these programs on the vector machine: (I) using the

existing compiler software to optimize and vectorize the scalar code, (2) vectorizing

parts of the existing algorithm in the program, and (3) incorporating a new vectoriz-

able algorithm in the program (ZEBRA I or ZEBRA II). Comparison runs of the programs

were made on CYBER _75, CYBER 203, and two-pipe CYBER 205 computers. All calcula-

tions discussed in this paper were for the ONERA M6 wing as described in reference 1.

The free-stream conditions were a Mach number of 0.84 and an angle of attack
of 3.06 °.

Jon Hall at Control Data Corporation ran the various versions of the FLO 22 code

on the CYBER 205 computer system.

VECTOR PROCESSORS

The STAR-100, the CYBER 203, and the CYBER 205 computers are all vector proces-

sors. In these machines, each operation is broken into many steps which are per-

formed in series to obtain the result of the operation (ref. 2). This is a

production-line type of process; once the first result is produced, the others follow

very quickly. The time required to produce the first result is referred to as the

start-up time. These vector processors contrast in operation to a scalar or serial

processor where all the steps involved in a given operation are performed on one set

of operands before anything is done with the next set. The crossover vector length,

where a vector instruction is faster than a series of scalar instructions, is a func-

tion of the ratio of vector speed to scalar speed.

Vector length is an important factor in the calculation rate for these vector

processors. The STAR-100, CYBER 203, and CYBER 205 are pipeline processors which can

operate on vectors as long as 65 535. They operate more efficiently as the vector

length increases and long vectors should be used whenever possible.

It is important to limit the use of scalar operations since such operations are

generally slower than vector operations. The scalar speed of the STAR-100 was about

one-seventh that of the CYBER 203, but the vector speeds were about the same. On the

CYBER 203, the ratio of vector speed to scalar speed is not very high; therefore,

some scalar code may be used without a large penalty. On the CYBER 205, where the

vector speed is significantly faster and the scalar speed is only slightly faster

than the CYBER 203, it is important to vectorize the code rather than leaving it in
scalar form.

IMPLEMENTATION OF CODES

To examine ways to make the most efficient use of the vector-processing abili-
ties of the CYBER 203, two programs were studied to determine the trade-offs neces-
sary to best implement the programs. The two codes investigated were FLO 22 and
FLO 27. FLO 22 is the Jameson-Caughey transonic wing-alone program (refs. 3 and 4)
which solves the nonconservative full-potential equation in finite-difference form.
FLO 27 is another Jameson-Caughey transonic program (ref. 5), but it is for a wing
alone or a wing on a cylindrical fuselage of infinite length. FLO 27 solves the
conservative full-potential equation in finite-volume form. Both codes were
originally written for use on a conventional computer and use the SLOR iterative
algorithm. Of the two programs, FLO 22 was studied in the most detail.

2

FLO 22 Study

FLO 22 solves the inviscid flow about swept or yawed wings by using a sheared
parabolic coordinate system in chordwise planes. Over the past several years, it has
been the most widely used program in the aircraft industry for transonic wing-alone
calculations and was therefore chosen for implementation on the CYBER 203.

In the present study and another study conducted at Langley, four different
approaches were taken to implement FLO 22 on the CYBER 203. The simplest improvement
was to put the program on the machine in scalar form and to use the large central
memory and virtual memory architecture of the CYBER 203 to replace the buffered
input/output features in the original code. Various levels of optimization provided
by the compiler were used, including a provision for automatic vectorization. The
second approach was to explicitly vectorize as much of the program as possible with-
out changing the original order of calculations or the iterative algorithm. The
original algorithm and order of calculations in FLO 22 allowed only limited vector-
ization and short vector lengths. In the third approach, a highly vectorizable algo-
rithm, ZEBRA II (ref. 6), was incorporated into the program. This incorporation was
done in conjunction with a reorganization of the storage for efficient execution and
the resulting program was then written with vector instructions. It was found that
this vectorized version of ZEBRA II obtained an excellent calculation rate but the

convergence rate suffered to such a degree that a net negative effect was obtained
with the incorporation of ZEBRA II. To improve the convergence rate, another algo-
rithm, ZEBRA I (ref. 6), was incorporated into the program in the fourth part of the
FLO 22 study. ZEBRA I gave a convergence rate comparable to the original SLOR algo-
rithm but this was in conjunction with a penalty in calculation rate due to factors
discussed subsequently.

Scalar FLO 22.- The scalar version of FLO 22 which was available at the begin-
ning of this study was a serial code adapted for use on a standard CYBER 175 type
machine, that is, no extended core capability. To operate on a CYBER 175, it was
necessary to use special input/output commands to move the potential array in and out
of central memory a plane at a time since the storage was not sufficient for the
entire array in central memory. Only four planes at a time were kept in central
memory.

Execution of the serial FLO 22 program on a grid with 192 points in the x or
tangential direction, 24 points in the y or normal direction, and 32 points in
the z or span direction (192 by 24 by 32) on a CYBER 175 with the highest level of
compiler optimization (OPT = 2) gave a calculation rate of 7400 grid points per sec-
ond (pps). (See table I.)

The scalar CYBER 175 version of FLO 22 was modified so that it would run in
central memory on a CYBER 203. This modification involved the removal of all special
input/output statements and the correction of the z index for each reference to the
potential function. The scalar version of FLO 22 was executed on the CYBER 203 on a
192 by 32 by 32 grid and a calculation rate of 16 650 pps was obtained. The program
was then recompiled with the optimizing version of the FORTRAN compiler (OPT = BO)
which eliminates redundant code, optimizes DO loops, and does instruction scheduling.
A calculation rate of 48 800 pps was then obtained. Thus, use of the optimization
feature of the compiler can make a scalar program run significantly faster and is
recommended. With automatic vectorization also included in the compilation
(OPT = BOY), the same calculation rate was obtained. This is the first of several
examples presented in this paper which show that the automatic vectorization option
rarely is able to vectorize code in this type of program. Since the amount of work

required to get FLO 22 running on the CYBER 203 in scalar form was small, the speedup
from 7400 to 48 800 pps made the effort very worthwhile.

Vector FLO 22.- During the period of time when Langley had a STAR-100 computer,
it was desirable to vectorize this code since the scalar performance of that computer
was poor relative to its vector performance. The initial vectorization effort
described herein occurred during that period. This initial vectorization of the code
was performed by a group of researchers at Langley and is reported in detail in ref-
erence 7. Since this work is so closely related to the present study, a brief
description of the results is given in the following discussion.

In Jameson's original FLO 22 code, calculation of updated values of the poten-
tial are obtained by successive line overrelaxation (SLOR) for combinations of normal
and tangential lines in chordwise planes, one plane at a time, starting at the root
and going out the span. In each plane, line overrelaxation is performed by tangen-
tial lines in the region in front of the nose of the airfoil section to infinity and
by normal lines from this region to infinity off the trailing edge for both the upper
and lower surfaces. (See fig. I.) The extent of the tangential implicit lines in
the central strip off the leading edge can be varied by an input parameter from the
case where all relaxation is performed by using line overrelaxation along tangential
lines to the case where all relaxation is performed by using normal lines.

To make vectorization easier and to maximize their vector length, Smith, Pitts,
and Lambiotte (ref. 7) vectorized only the tangential overrelaxation routines. This
choice allowed them to use vector lengths equal to the number of grid points in the
x-direction (192 for a 192 by 32 by 32 grid as used in the test case considered in
this paper). This vector length was used for all the calculations necessary to gen-
erate the residual at each point along a given tangential line. (The residual is
herein defined as the result of the finite-difference operator operating on the val-
ues of the potential function.) It is very important to have a long vector length
for the residual calculation since this calculation is about 90 percent of the compu-
tational work in this potential flow code.

Since the vector length used in a calculation greatly affects the calculation
rate, it is obvious that the number of grid points in the tangential direction will
affect the calculation rate of the vectorized FLO 22 code. There is a crossover
length below which scalar instructions are faster than vector instructions. Because
of the superior scalar speed of the CYBER 203, the crossover is higher than on the
STAR-100 for which the vectorized code was originally developed. In fact, for some
of the coarser grids the scalar CYBER 203 code was found to be faster than the vector-
ized version.

There is another consideration involving vector length for this code. FLO 22
uses central differences at subsonic points and backward differences at supersonic
points. This causes some difficulty in vectorizing the code. The vectorized version
of FLO 22 calculates the residual at all the points on a line using central differ-
ences. This residual is not correct for the supersonic points on that line and must
be recalculated. One alternative in this recalculation is to use vector instructions
to calculate the residual at all points on the line by using backward differences (as
if all the points were supersonic) and use the results of this calculation only at
the supersonic points. This is effective if there are a large number of supersonic
points in the line. If the number of supersonic points is below an experimentally
obtained value, it is faster to calculate the supersonic residuals at only the super-
sonic points by using scalar instructions. Lambiotte found that for this code on the

4

CYBER 203, it was better to use scalar instructions if there were less than 40 super-
sonic points on a given line.

The vectorized FLO 22 code, working on a grid size of 192 by 32 by 32, operates
at 50 100 pps with both the BO and BOV levels of optimization. Although this was a
considerable improvement over the STAR-100 scalar code, it is only modestly better
than the scalar code which can now be run on the CYBER 203. Interestingly enough,
the improved vector performance of the CYBER 205 will undoubtedly reverse this com-
parison again. It is possible to predict the performance of the scalar and vector
versions of the original FLO 22 code on the CYBER 205 by using performance estimates
discussed in the following section. These results show that the scalar code runs
approximately 20 percent faster on the CYBER 205 than on the CYBER 203. Hence, the
scalar version of FLO 22 should run at about 58 600 pps on the CYBER 205. Vector
code tends to run 2 I/2 to 3 times faster on the CYBER 205. Therefore, the vector-
ized version of FLO 22 should run at 125 000 to 150 000 pps. Thus, the vector ver-
sion of the original FLO 22 code should be significantly faster than the scalar
version on the CYBER 205.

FLO 22 with ZEBRA II algorithm.- In an effort to improve the calculation rate
of the vector FLO 22 code, an explicit vectorizable algorithm was incorporated. This
algorithm, called ZEBRA II, was developed by South, Keller, and Hafez (ref. 6).

Basically, ZEBRA II is a two-color point relaxation scheme where each cross
plane is a checkerboard pattern. (See fig. 2.) The cross planes are aligned in such
a way that each color traces out tangential lines. This alignment means that all the
points of one color in a cross plane can be updated before points of the other color
are updated.

The incorporation of ZEBRA II in FLO 22 was initially done with scalar instruc-
tions. First, it was necessary to rewrite parts of the code to allow sweeps through
planes in the cross flow direction rather than the chordwise direction. The residual
calculation was also changed to the calculation of a steady-state residual with
explicit updates added. (The steady-state residual is the result of the finite-
difference operator operating on the values of the potential function generated by
the previous global iteration.)

The calculation rate for the scalar version of FLO 22 with ZEBRA II was
44 700 pps for both the BO and BOV levels of optimization on the CYBER 203. With no
optimization, a calculation rate of only 13 400 pps was obtained. This speedup due
to optimization is not uncommon for scalar codes such as the FLO 22 with ZEBRA II.

The FLO 22 code with the ZEBRA II algorithm was then rewritten with vector
instructions. It is possible to use vector instructions to calculate the steady-
state residual for an entire cross plane at a time. Then, updates are performed on
the points of the first color, black, and then on points of the second color, white,
of the cross-plane checkerboard. The residuals at the white points are updated by
using corrections at the adjacent black points. Calculation then proceeds to the
next downstream cross plane. Thus, the length of the vectors used in calculating
the residual is equal to the number of points in a cross plane. Because of the
requirement that vector elements be contiguous in storage, it was necessary for the
potential to be stored in a two-dimensional array rather than in a three-dimensional
array. In this two-dimensional array, the first index refers to the x-direction and
the second index points to all the elements in the given cross plane. (An option of

the compiler was used to invoke a nonstandard array-addressing algorithm so that the
last index of the array varied the quickest in contiguous storage to allow vector
instructions.)

In order to calculate the residual with full-plane vectors, it was necessary to
make all intermediate results temporary vectors the length of the cross plane; this
added considerable storage to the program. Again, there was a problem relating to
the fact that supersonic points are not treated in the same way as subsonic points.
The residual was first calculated at all points in a cross plane by using the sub-
sonic formula. If there were any supersonic points in the plane, corrections to the
residual were calculated (again by using full-plane vectors) and applied at only the
supersonic points.

With ZEBRA II incorporated into FLO 22 in vector form, the CYBER 203 calculation
rate was 59 000 pps with both the BO and BOV optimization levels. For the nonopti-
mized level of compilation, the computation rate was 57 500 pps. The small differ-
ence is because the program is highly vectorized and the optimization only works on
scalar code.

To compare the relative speeds of the CYBER 203 and CYBER 205 for transonic flow
calculations, both the scalar and vectorized versions of FLO 22 with ZEBRA II were
run, unchanged, on a two-pipe CYBER 205. The CYBER 205 gave a calculation rate of
54 100 pps on the scalar version - a 20-percent improvement in scalar calculation
rate over the CYBER 203. For the vectorized FLO 22 with ZEBRA II, a rate of
173 800 pps was obtained - a 195-percent improvement in vector calculation rate over
the CYBER 203.

The sustained calculation rate for the vectorized residual and update portions
of FLO 22 with ZEBRA II was approximately 26 million floating-point operations per
second on the CYBER 203 and 76 million floating-point operations per second on the
CYBER 205.

Since the developmental work on ZEBRA II in reference 6 was for a conservative
formulation of the full-potential equation, it contained no cross derivatives.
FLO 22 is nonconservative and, therefore, does contain cross-derivative terms.
Hence, it was necessary to experiment with these terms in FLO 22 with ZEBRA II to

determine the best mix of old and new values to optimize convergence. This experi-
mentation was done with the constraint of Jameson's rule of balanced coefficients for
supersonic points (ref. 8).

The convergence rate of ZEBRA II was not as good in FLO 22 as was anticipated
from the work in reference 6, where it was found that ZEBRA II gave a convergence
rate comparable to SLOR. In FLO 22, the ZEBRA II algorithm required more than twice
as many iterations to obtain the same level of convergence as with the SLOR algo-
rithm. These extra iterations more than canceled the 20-percent increase in calcula-
tion rate obtained with the ZEBRA II.

FLO 22 with ZEBRA I algorithm.- To improve the poor convergence rate found with
the ZEBRA II algorithm, it was decided to implement an algorithm known as ZEBRA I
(ref. 6). This algorithm uses the same arrangement of black and white points as the
ZEBRA II algorithm, but the tangential lines are solved implicitly using tridiagonal
systems of equations. It is still vectorizable because it solves many independent
tridiagonal systems at the same time.

6

For simplicity, the vector ZEBRA II version of the program was used as the
starting point for the ZEBRA I incorporation. The full-plane residual calculation
was retained but the whole update portion of the program was changed.

For ZEBRA I, the two back-substitution coefficients used to solve the tridiag-
onal system of equations generated along tangential lines are calculated for a cross
plane and saved as three-dimensional arrays. Since only one color is updated at
a time, only one-half the coefficients for each plane are saved. The back-
substitution coefficients are calculated one plane at a time until the coefficients
for all the black points in the flow field are calculated. As mentioned, the storage
of these coefficients requires two arrays, each one-half the size of the entire flow
field. The back substitution is then performed by using vector lengths equal to one-
half the length of the cross planes. Updates of the potential are performed as the
corrections are calculated. Once the black point backward sweep is completed, the
residual is recalculated using full cross-plane length instructions and the new val-
ues of the potential function at the black points. Then the forward and backward
substitutions are done for the white points. An obvious problem with this scheme is
the calculation of the residual at each point twice for each iteration. The elimina-
tion of the extra calculation of the residual at each point would require reworking
nearly all the storage in the program which was not done in this study.

The convergence rate of the ZEBRA I algorithm was found to be as good as the
original SLOR algorithm. The calculation rate was only 38 800 pps on the CYBER 203,
a direct result of the extra work used to calculate the residual twice at each

point. On the CYBER 205, a calculation rate of 124 100 pps was obtained.

It is possible to predict the calculation rate obtainable if the extra residual
calculation at each point is eliminated in FLO 22 with ZEBRA I. This requires taking
into account the percentage of total work that the residual calculation involves and
the reduced vector lengths which would be used for the calculations. For the
CYBER 203, a calculation rate of 61 000 pps is projected. If the same rate is used
to predict the CYBER 205 performance, a conservative estimate of 195 000 pps is
obtained. Thus, the efficient implementation of the ZEBRA I algorithm would result
in a significant increase in calculation rate without any degradation in convergence
rate.

FLO 27 Study

FLO 27 is a computer code written to analyze the transonic flow over a wing
alone or a wing on a cylindrical fuselage. It uses a finite-volume formulation to
solve the full-potential equation in conservative form. In the construction of
the computational coordinate system, a Joukowski transformation is used to transform
the cylindrical fuselage to a vertical slit and then a sheared parabolic transforma-
tion is used in planes containing the airfoil sections.

The work performed on the FLO 27 code was limited to the area of programming
techniques. No changes were made to the iteration algorithm used in the program
(SLOR).

The starting point for this study was a version of FLO 27 which was written for
use on the CYBER 175 computer. Its main three-dimensional array of potential func-
tions was stored on disk, and special input/output statements were used to bring
planes of data in to central memory and to store updated planes of data back on the
disk. This buffering of data was eliminated and the code was modified so that a

large array containing all the values of the potential function was used. This modi-
fied code was able to fit in central memory on the CYBER 203.

On the CYBER 175 (with OPT = 2), the original scalar code ran at a rate of
3200 pps on a 160 by 16 by 32 grid. This same version of the code ran at about
3560 pps on the CYBER 203 (with OPT = BO), a speedup of 11 percent.

The authors then investigated a suggestion from Raymond Blanc of Control Data
Corporation. He obtained a surprising speedup in FLO 27 by changing two small loops
from scalar code to vector code.

A timing study was performed on the subroutine which accounts for the majority
of the execution time for the program. This subroutine, YSWEEP, contains about 350
lines of code. In the main portion of YSWEEP, many arithmetic operations are per-
formed for each point in the computational grid. A breakdown of the number of
operations is as follows:

Operation Occurrences

Additions and subtractions 249
Multiplications 142
Divisions 7
Square roots 5
Sine or cosine 4
ATAN2 function 2

Although there were only two evaluations Of the ATAN2 function, the timing study
gave the surprising result that these two operations took 77 percent of the time used
in this portion of the code! The two ATAN2 functions happen to be in a loop which
could be changed easily to allow the use of the vectorized version of the ATAN2 func-
tion (VATAN2). With a vector length of 160, VATAN2 is about 32 times as fast as
ATAN2. This minor coding change caused the calculation rate for the main iteration
loop to increase from 3560 pps to 13 320 pps, an increase of 247 percent.

Because of the conservative, finite-volume formulation, the main portion of the
FLO 27 code has some simple loops which can be recognized by the compiler as vector-
izable. Use of the automatic vectorizing compiler option (OPT = BOV) further

increases the calculation rate to 19 460 pps. Thus, with only minor modifications,
the calculation rate of FLO 27 was increased from 3200 pps on the CYBER 175 to
19 460 pps on the CYBER 203 - a net increase of over 500 percent.

CONCLUDING REMARKS

Two three-dimensional transonic flow programs (FLO 22 and FLO 27) have been
modified for use on CYBER vector processing machines.

From the study of the FLO 22 code, it was found that on the STAR-100 machine the
most efficient version of FLO 22 was the Smith-Pitts-Lambiotte code (NASA Technical
Memorandum 78665) which used vector instructions with the original SLOR algorithm.
On the CYBER 203, it was found that the best version of FLO 22, in terms of the

8

trade-off between work required to change the code, convergence rate, and calculation
rate, was the scalar version of the original code. On the CYBER 205, the long vec-
tors and good convergence rate of the efficiently implemented ZEBRA I version of
FLO 22 make it the fastest of the versions of FLO 22 considered in this study.

From the FLO 27 study, it was found that limited vectorization and the replace-
ment of an inefficiently implemented scalar trigonometric function with a system-
supplied vectorized routine produced significant improvements in calculation rate
over a serial machine. These changes required a minimum of work and were thus deemed
to be quite effective.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
February 22, 1983

REFERENCES

I. Monnerie, B.; and Charpin, F.: Buffeting Tests With a Swept Wing in the Transonic

Range. NASA TT F-15803, 1974.

2. Knight, John C.: The Current Status of Super Computers. Comput. & Struct.,

vol. 10, no. I/2, Apr. 1979, pp. 401-409.

3. Jameson, Antony: Numerica_ Calculation of the Three Dimensional Transonic Flow

Over a Yawed Wing. Proceedings AIAA Computational Fluid Dynamics Conference,

July 1973, pp. 18-26.

4. Jameson, Antony; and Caughey, D. A.: Numerical Calculation of the Transonic Flow

Past a Swept Wing. C00-3077-140 (Contract EY-76-C-02-3077"000 and NASA Grants

NGR-33-016-167 and NGR-33-016-201), Courant Inst. Math. Sci., New York Univ.,

June 1977. (Available as NASA CR-153297.)

5. Jameson, Antony; and Caughey, D. A.: A Finite Volume Method for Transonic

Potential Flow Calculations. A Collection of Technical Papers - AIAA 3rd

Computational Fluid Dynamics Conference, June 1977, pp. 35-54. (Available as

AIAA Paper 77-635.)

6. South, Jerry C., Jr.; Keller, James D.; and Hafez, Mohamed M.: Vector Processor

Algorithms for Transonic Flow Calculations. A Collection of Technical Papers -

AIAA Computational Fluid Dynamics Conference, July 1979, pp. 247-255. (Avail-

able as AIAA Paper 79-1457.)

7. Smith, Robert E.; Pitts, Joan I.; and Lambiotte, Jules J.: A Vectorization of the

Jameson-Caughey NYU Transonic Swept-Wing Computer Program FLO-22-VI for the

STAR-100 Computer. NASA TM-78665, 1978.

8. Jameson, Antony: Iterative Solution of Transonic Flows Over Airfoils and Wings,

Including Flows at Mach I. Commun. Pure & Appl. Math., vol. XXVII, no. 3, May

1974, pp. 283-309.

10

TABLE I.- FLO 22 TIMING RESULTS

r

Optimization Caiculation
Program Grid Machine level rate, pps

Original FLO 22 192 by 24 by 32 CYBER 175 OPT = 2 7 400
(scalar)

192 by 32 by 32 CYBER 203 No optimization 16 700

OPT = BO 48 800

OPT = BOV 48 800

CYBER 205 OPT = BO a58 600

Original FLO 22 192 by 32 by 32 CYBER 203 OPT = BO 50 100
(vector)

OPT = BOV 50 100

CYBER 205 OPT = BO a125 000 to 150 000

FLO 22 with ZEBRA II 192 by 32 by 32 CYBER 203 No optimization 13 400
(scalar)

OPT = BO 44 700

OPT = BOV 44 700

CYBER 205 OPT = BO 54 100

FLO 22 with ZEBRA II 192 by 32 by 32 CYBER 203 No optimization 57 500
(vector) ,.,

OPT = BO 59 000

OPT = BOV 59 000

CYBER 205 OPT = BO 173 800

FLO 22 with ZEBRA I 192 by 32 by 32 CYBER 203 OPT = BO 38 800
(residual calculated
twice (vector)) CYBER 205 OPT = BO 124 100

FLO 22 with ZEBRA I !192by 32 by 32 CYBER 203 OPT = BO a61 000
(residual calculated
once (vector)) CYBER 205 OPT = BO a195 000

aprojected value.

11

Extent of tangential
implicit lines

Extent of normal implicit lines

Figure I.- Schematic of chordwise plane iteration scheme in original FLO 22.

12

Figure 2.- Schematicof cross-planecheckerboardpattern for ZEBRA algorithm.

13

1. Report No. 2, Government Accession No. 3. Recipient's Catalog No.

NASA TM- 84604

4. Title and Subtitle 5. Report Date

USE OF CYBER 203 AND CYBER 205 COMPUTERS FOR THREE- April 1983

DIMENSIONAL TRANSONIC FLOW CALCULATIONS 6 PerformingOrganizationCode
505-31-03-01

7. Author(s) 8. Performing Organization Report No.

N. Duane Melson and James D. Keller L-15553

i0. Work Unit No.

9. Performing Organization Name and Address

NASA Langley Research Center '11.Contractor GrantNo.
Hampton, VA 23665

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration
14. Sponsoring Agency Code

Washington, DC 20546

15. Supplementary Notes

16. Abstract

Experiences are discussed for modifying two three-dimensional transonic flow computer

programs (FLO 22 and FLO 27) for use on the CDC CYBER 203 computer system at the
Langley Research Center. Both programs were originally written for use on serial
machines. Several methods were attemptedto optimize the execution of the two

programs on the vector machine: leaving the program in a scalar form (i.e., serial

computation) with compiler software used to optimize and vectorize the program,
vectorizing parts of the existing algorithm in the program, and incorporating a new
vectorizable algorithm (ZEBRA I or ZEBRA II) in the program. Comparison runs of the
programs were made on CDC CYBER 175, CYBER 203, and two-pipe CDC CYBER 205 computer
systems.

17. Key Words (Suggested by Author(s)) 18. Distribution Statemen't :

Transonic flow ZEBRA I Unclassified - Unlimited

Three-dimensional flow ZEBRA II

Vector processing
FLO 22

FLO 27 Subject Category 34, 61

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 15 A02

Forsale by the NationalTechnicalInformationService,Springfield,Virginia 22161 NASA-Langley, 1983

NationalAeronauticsand THIRD-CLASS BULK RATE Postageand Fees Paid

SpaceAdministration National Aeronautics andSpace Administration

Washington, D.C. NASA-451
20546

Official Business

Penalty for Private Use, $300

__I_A POSTMASTER: If Undeliverable (Section 158Postal Manual) Do Not Return

