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Abstract

Hypersonic flow over spherical dome protuber=-
ances was investigatsd to determine increased
pressure and heating loads to the surface. The
configuration was mathematically modeled in a time-
dependant three-dimensional analysis of the
conservation of mass, womentum (Navier-Stokes), and
energy equations. A boundary mapping technique was
used to cbtain a rectangular parallelepiped compu-
tationzl domain, and a MacCormack explicit time-
split predictor-corrector finite difference algo-
rithm was used to obtain solutions. Results show
local pressures and heating rates for domes one-
half, one, and two boundary layer thicknesses high
were increased by factors on the order of 1.4, 2,
and 6, respectively. However, because lee-side
pressure and thermal loads were reduced the two
lower height domes did not experience any net
increase in total loads. The total loads on the
higher dome were increased by twenty-five percent.
Flow over the lower dome was everywhere attached
while flow over the intermediate dome had small
windward and leeside separations. The higher dome
had an unsteady windward separation region and a
large leeside separation region. Trailing vortices
form on all domes with intensity increasing with
dome height. Discussions of applying the results
to a thermally bowed thermal proutection system are
presented.
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n redistributed transformed
coordinate (eq. 14)

u viscosity (eq. 6)

p density

43 stress tensor (eq. 2)

Subscripts

max maximum coordinate value
c coordinate value at dome
centerline
Introducticn

Protuberances in the form of large-diameter
small~-height spherical domes often occur on hyper-
sonic vehicles as a result of hardware design or
thermal bowing. Hypersonic flow over these protu-
berances can produce increases in local wall
pressures and heating rates. Interest in this flow
configuration and computation of the pressure and
heating rate distributions on them has increased
because of proposed alternative metallic Thermal
Protection Systems (TPS) to replace the fragile
Reusable Surfaie Igsu]ation (RSI) on the original
Space Shuttle.1»2,3 Titanium and/or superalloy
designs that are weight competitive with RSI and
offer the advantages of mechanical fastening,
longer life, and increased damage resistance have
been fabricated.

However, the use of metallic TPS can introduce
some physical phenomena not present in the RSI
system. One such phenomgnon is thermal bowing of
the metallic TPS panels.” Bowing can occur because
metals have relatively large coefficients of
thermal expansion and because in the course of
performing their function as a thermal protection
system the TPS panels nust sustain large tempera-
ture gradients through their thickness. These
conditions lead to large thermal expansion of the
outer portion of the panel and smali thermal expan-
sicn of the inner portion of the panel. The square
panels are held down at the corners but otherwise
thermal expansion is unrestrained. As a result the
center of the panel bows out into the stream so
that the vehicle moldline is altered. An array of
panels would teke on a quilted configuration.

; Analytical and experimental studies of two-
dimensional flow over a wavy-wall are available in ’
the literature, however, extrapolation of these

"~ results to the three-dimensional flow over an array

of bowed panels or spherical dome protuberances
results in an inaccurate description of the
phenomena. The analysis must be done in three-
dimensions to adequately predict the physical
flows. No analytical studies of a configuration
resembling the thermally bowed TPS were found in
the literature, probably because large amounts of
computer time and storage are required te perform
the analysis. Consequently, this preliminary study
was undertaken to determine if the increased
pressure and heating effects were significant and
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if the problem required in-depth consideration.
Thermally bowed panels were modeled by the generic
configuration of spherical domes. Numerical grid-
ding and computer storage limitations prohibited
modeling an array of full scale TPS panels so a
single row of 4.6 inch diameter domes was selected
to be compatible with the gridding requirements.
Dome heights of 0.1, 0.2, and 0.4 inches were
considered in a flow field with a laminar-boundary-
layer thickness of 0.2 inches. Free stream
conditions are for Mach 7 flight at 120,000 ft.
altitude. The analysis of this flow configuration
will yield dimensionally similar solutions.
However, the proper balancing of the similarity
parameters to ascertain that the small scale pro-
cesses in the boundary layer will fall into the
similarity pattern requires additional agalytica1
and experimental data not yet available,
Therefore, no extension of the results of this
sgudy to larger protuberances will be made at this
time.

The analysis employs a three-dimensional
formulation of the time dependent equations for
conservation of mass, momentum, and energy. A
MacCormack explicit time-split predictor-corrector
finite difference algorithm was used to obtain a
steady-state solution on Langley's Cyber 203 vector
processing computer. The results of those solu-
tions are presented in this paper using state-of-
the-art computer graphics techniques.

A comprehensive experimental program to verify
the results obtained in this analysis is scheduled
for a later time. Some preliminary small scale
tests have provided qualitative correlation with
some of the predicted phenomena; no experimental
data will be presented in this paper.

Analysis

Governing Equations

Aerothermal loads on spherical domed protuber-
ances were computed by mathematically modeiin? the
flow field with the continuum mechanics equations
of motion. Air, the fluid medium, was modeled as a
compressible, viscous, thermally conducting gas.
Limiting assumptions include considering air as an
isotropic, newtonian ideal gas in local thermo-
dynamic equilibrium. The three-dimensional
time-dependant system of equations describing this
mode] include the continuity equation (conservation
of mass), the Navier-Stokes equations of motion
2conservat1on of momentum), the energy equation

conservation of energy), and the ideal gas
equation (thermodynamic state equation). Thege
@quations have been derived in the literature® and
are shown below written in cartesian tensor form
where repeated indices indicate a summation over

. a(pwi)

the range of indices (i.e., 5K fori=1,2,3
Bpwl apw2 3pw3 ' .

is —-a—x-; * —a-x—z—' + -a-x-s—-)- In addition Wi, W2, W3

are the velocity components u, v, w, and Xj, X3, X3
are the coordinate directions x, y, . .The
Kronecker delta, §;i; equals 1 when i = j and
equals zero when i ; i
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Continuity equation,

; alow, )
%%4- T = 0 fori= 1, 2,, 3 (1)
Navier-Stokes equations of motion;
a(pwi) . afpwiwj) . 3(111) .o
ot BXj BXJ ¢
where »
o W oW, )
5 i 2 7k
RF R T (*a'x; - SX'} 3% axk) @

for i, j, k=1, 2,3

(results in three equations, one for each
coordinate direction) ~

Energy equation,

3(pew,) alw, Ty :) 7
() aT id
te +T)q_'d—"(§f;+—'§i'j—l =0 {3)

for 1, J, k, =1, 2, 3

Ideal gas state eguation,

P = pRgT (4)
These equations along with the ideal gas
relationship,

e = ch (5)
and the Sutherland viscosity formula,

3/2
u = 2.270 Y—I—m X 10-8 -LQ% {6)
t

constitute a set of five partial differential
equations and one algebraic equation in six
dependant varijables: three velocity components, u,
v, and w; density, p; temperature, T; and pressure,

The physical domain of the problem is shown in
figure 1. The thermally bowed TPS is modeled as a 4
séries of doiles on a flat plate. Because of
symmetry planes at the center of each dome and
between domes, only one-half of a dome need be
modeled. The dome was specified by its height, h,
above the flat plate and its radius, ry» at the
dome/flat plate intersections The intersection
between the dome and flat plate was made
mathematica’lly smooth by modeling & fillet region
at rg * € with a Hermite polynomial.

Boundary Conditions

A boundary layer profile was input as the
upstream boundary plane data and held constant
throughout the computations. The boundary layer
profile was determined using a two-dimensional
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boundary layer ana1y5155 for flow over a flat
plate. The flow configuration is shown in figure 1
and free stream conditions for Mach 7 flight at an
altitude of 120,000 ft. are listed in Table I. The
boundary layer profiles for the starting plane are
shown in figure 2. These profiles, along with a
crossflow velocity, w, of zero were impressed on
the starting plane {x = 0) and held constant
throughout the computations. For a flat plate with
no dome the boundary layer height, &gy, at the
conter of the three-dimensional regioh (x = x.) is
0.2 inches. Dome heights, h, with ratios h/6¢p =
0.5, 1, and 2 were investigated. The ratio of dome
radius to boundary layer height, ro/8fp, was held
constant at 11.5.

tuth side boundaries are planes of symmetry on
which the dependent variables are determined by
quadratic extrapolation from interior puints so
that the cross flow yradients, 9/dz, of all state
variables are zero and the cross flow velocity, w,
is zero. The upper boundary and downstream
boundaries are specified as no change boundaries,
i.e., set equal to the plane next to them. The
flat-plate/dome surface is a no-slip boundary with
a constant wall tempecature of 1440°R. This wall
temperature is both the upper use tenperature and
the flat plate radiation equilibrium temperature
for the input boundary conditions for a titanium
TPS assuming a high emittance coating and zero
thermal diffusivity.

Computational Domain

I'n order to generate a boundary fitted
coordinate system and provide increased resolution
in the boundary layer, the physical domain (fig. 1)
was transformed into a rectanyular parallelepiped
computational domain Vsing a two-boundary grid
generation technique.’ The computational domain,
shown in figure 3, has equally spaced grid lines in
the ¢, n, and & directions.

Transformation of the governing differential
equations, eqs. 1, 2, and 3, to the computational
domain requires replacement of all spatial
derivatives, 0 QX; for i =1, 2, 3, with the
followiny,

i} R ac

ol ol s o (7)
O X, oC o X,
1 2 1

where Cg for £

=1, 2, 3 are the transformed
coordinates £, n a

nd T, i.e.,

9 .28, ddn D B .
Dxi = aF "Xi + an‘axi * a7 axi' The resulting
equations of motion are,

Continuity,
a(pw;) aC
dp o, A TR
at * TRC 3K 0 (8)
[} i

Navier Stokes equations of motion

3(pwi) a\pwiwj)‘acz Bbqj)

o
' o < =0 (9
at acz 3 i Bcg ) j

ORIGINAL PAGE [§
OF POOR QUALITY

where
aw, 9C aw. aC ow,_ aC
i m m 2 k m)
. p-u(gc-m-« ¥n_2 g ki
15 " &3 o 085 80 9Ky 3 4 m Kk
Energy Equation
aC aC
I pe m
+ peW. ~ K
(10)
. 8(w11}f) BCL ‘o
Cz 5Xj

Written in short form the system of partial differ-
ential equations is,

o aCl oC

W, BF e 6 2 M "o,
St wm T w Ta e (an)
| 2 2 L
where,
P
AU
U = | pv
1]
pe
~ou .
puu - Ty
F = puv - T2
puw - T13
ar acm 4
peu . K 5 5= - (uty) + vTpp + wTy3)
m
[ov ]
puy - T2
& = [evv - 122
pvwW - T32
aC . ’
eev - K —g%—- Tym - (ule + VT22 + w'l‘323)
m : .
[ ow ]
puw = T13
H o= fpow - To3
pwW - T33
oT acm
peW -~ K T —a—z— - (uT13 + VT23 + w"l'33)
m

The required Jacobian transform matrix;

[

3t 3 el
3 % ¥ %
- 1| - fam ;m  a '
v EN ax 2 52 (12)
' L 3K 14
o ay az

is determined by a linear mapping of the boundaries
at n= 0 and n= 1 of the computation domain onto
the boundaries of the physical domain at y = 0 and
Y = ¥Ymax in the following form;

Y=V (5,1,8 n+V (50,2 (1-n) (13).
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Further transformation to increase resolution in
the boundary layer region entails an exponential
grid stretching in the n direction of the form,

kn
Rt | (14)
e -1

where k is a free parameter that adjusts grid
spacing. Equation 13 becomes,
VeV (E, 1,00 + Y (50,8 Q-0 (15)

For the geometry of the subject problem the
resulting Jacobian matrix is of the form,
g

—
1
—_— 0 0
Xmax
an an an
J = Bx Ty %z {(16)
0 0 z—-l—
| max |

where %E, %3, and %3, which vary for the flat

plate, fillet, and dome regions as defined by the
radius measured from the dome centerline,

/ 3 3
r= (xmax £€- XC}2 * (zmax : ) (17)

are shown in the Appendix.

Thesa Jacobian elements are calculated and
stored for each grid point in the domain thus
allowing the solutions from the computational
domain to be transformed to the physical domain.

Substituting the transform Jacobian {eq. 16)
into the short form of the equation system ?eq. 11)
reduces the system to the following,

3&[+iﬁ__l_+aﬂﬁn+3§_ﬁn+3ﬁh+ﬁﬂ__ 0

1.
Bt OF Xy, On 09X 3n 3Y  9n 32 3L Zp,,

(18)

Numerical Procedure

A finite-difference solution to the governing
equations was attained using the second-order
accurate MacCormack explicit time-split
predictor-corrector algorithm.® The algorithm
splits the differencing scheme into a series of
one-dimensional operators. The operator in the
principle flow direction, L, advances the
computation by one time incFEment while the
operators in the other two coordinate directions,

L. and L,, are divided into two steps of one-half a
t fme-increment each and applied symmetrically
around the principle flow direction operator. This
arrangement allows the principle flow direction
operator to run at a Courant, Friedricks, Lewy
(CFL) number close to the optimum value of one.

The operators are applied serially as follows:

sy

i [n)] [es] et (o)
o] (5.5, o

Each operator has two steps, a predictor step that
advances the solution by its time increment based
on a backward spatial differencing of the
one-dimensional equations and a corrector step that
recalculates the advancement based on a forward
spatial differencing of the predicted results and
averages the result with the predictor. The
predictor must therefore lag the corrector by a
spatial increment in each coordinate direction.
The combination of these two steps results in a
second-order-accurate differencing scheme in time
and space. As an example the first operatior ~
L?(At/Z) applied to the data at time step n (s as
follows,

Predictor step:
A

U T D I I I R
Ui,k ™ YiLdk T T [(Fj Fj-l) ax

(20)
n_geh on n_yn \on
¥ (Gj Gj-l) " (“j ”5-1) az] ik

Corrector step:

ceptl 1[5 n
“nLk‘?@uLk*de
£ - -
e Ul
s K%ﬂ DT

)3 ) 8
(6500 - &) 3+ (g0 = 15) B2 s &

Where bars over the variables indicate predictor
values and asterisks over the variables indicate an
intermediate result in the serial application of
operators as shown in equation 19. The other
operators have similar form.

4

(21)

Although a complete stability analysis of this
algorithm is not available the CFL Yimit yields a
conservative time step as follows,

N TR ) B 1
at < min [ AX + Ay + Az

-1
+c/-1—2+—1-2-+__12
& ay© sz

where c is the local spead of sound.

(22)

In the formulation of this algorithm terms of
order three and higher have been truncated. These
terms are not significant in many flow regimes,
but, when modeling high energy flow fields with
strong shocks, as in this paper, they can be
significant. In the region of a shock, where
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