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INTRODUCTION 

It is often difficult and time consuming, if not computationally impossible, to 
locate a failed component in a large complex system. Recently, the U.S. Army Research 
and Technology Laboratories at Moffett Field, California, have established a theory 
stating that the minimum number of test points required for conclusive detection of 
system failure is equal to the total number of terminal test points; this set of 
points constitutes the optimal choice. In this report we have developed an optimal 
diagnostic strategy for finding a failed component in a malfunctioning system. 

Four problems intrinsically related to this strategy are given as an introduc
tion. The first problem (ref. 2) deals with finding a selected object from a given 
set, each object of which has a known probability of being chosen. The problem is 
solved using a series of yes-no questions, arbitrarily dividing the set of objects 
into two groups and asking in which group the selected object is contained. The 
yes-no questioning process continues until the selected object is known. The second 
problem is the gold-coin-in-the-box problem (ref. 2). Briefly, a gold coin is con
cealed in one of m boxes of copper coins, where each box i, i = 1, 2, 3, ... , m. 
Assuming a known probability of finding the gold coin and the associated cost 
involved, one must choose a strategy to maximize the probability of finding the gold 
coin when a budget ceiling is imposed, incorporating a repeated search through the 
set of boxes until the coin is found. The third problem (ref. 3) does not allow for 
the repeated search of the gold-coin-in-the-box problem. This problem addresses how 
to find the state of every component in a kin system (an n-component system having 
the property that the system is functioning if at least k out of n components are 
f unctioning) in the minimum optimal time, given that the system is not functioning. 
Finally, the last problem (ref. 4) is stated as follows: Given an n-component 
functional s ystem in which numerous components are functionally interdependent, 
determine a diagnostic strategy for conclusive detection of the operational status of 
the system with the least expenditure. 

The present paper concerns itself with the problem of optimally finding a failed 
component in a malfunctioning system. A concise statement of the problem, together 
with the main result, will be given in the third section, entitled Admissible Diag
nostic Strategies, after some relevant definitions and assumptions have been intro
duced in the second section. The fourth section contains illustrative examples for 
determining the optimal strategies based on the theorem obtained in the third 
section. 

DEFINITIONS AND ASSUMPTIONS 

In this section we shall state explicitly the definitions and assumptions upon 
which our strategy is based. These definitions and assumptions are generally accepted 
in the mathematical sciences and engineering communities; see, for example, refer
ences 5-7. 

Definitions 

Failure: A condition characterized by the inability of a material, structure, or 
system to fulfill its intended purpose or task. 



Malfunction: Fai lure to operate in the normal or expected manner, or level of 
performance. 

Test: An observation or measurement procedure that provides sufficient informa
tion to determine whether or not all members of a particular subset of elements are 
functioning properly. 

Coherent systems: Those systems for which the replacement of 
by a functioning one will not i nduce a functioning system to fail. 
mathematical definition is given in appendix A.) 

a failed component 
(A rigorous 

Strategy: An ordering of the components which are tested sequentially in the 
predetermined order until a f ailed component can be found. 

Admissible strategy: A strategy whose expected expenditure is minimum. 

Optimal strategy: An admissible strategy which obeys Bellman's Principle of 
Optimality. 

Bellman's Principle of Optimality: Whatever the initial state and initial deci
sion are, the remaining decisions must constitute an optimal policy with regard to the 
state resulting from the first decision. 

Assump tions 

It is hypothesized that 

1. At any instant or stage, the system or equipment under consideration may be 
in only one of two states: functioning or faulty. 

2. The system can be schemat ically decomposed into a finit e number of components 
(or modules), each of which, at any instant, is in one of the two possible states. 

3. The state of the system depends solely on the states of its components. 

Hypothesis (1) is a realistic assumption because if the performance level of a given 
component is degraded to an "unsatisfactory" level (or beyond the tolerance as cited 
in the specifications of the equipment), then the component is in the malfunctioning 
state. Hypothesis (2) demands only the feasibility of schematic system decomposition, 
not necessarily a physical decomposition. Hypothesis (3) tacitly assumes that a 
proper environment exists for the s ystem under question. 

ADMISSIBLE DIAGNOSTIC STRATEGIES 

Before we discuss the main result of this paper, it is necessary to restate con
cisely the problem under consideration: Suppose that we are given an n-component, 
coherent, malfunctioning system for which the component reliability and the associated 
test time are known. A malfunctioning component must be fo und such that the expected 
test time is optimal in the sense of Bellman's Principle of Optimality. 

The followin g lemma plays an important role in the subsequent deductive process . 
(The mathematical proof i s provided in appendix B . ) 

2 



--- .. _---

Lemma . Given that an n-component, coherent system is not functioning, and 
Pi and ti' i = 1, 2, 3, ... , n, are the reliability and test time of component i, 
respec t i vely, then the expected time T(a) of a strategy a for finding a malfunc
tioning component of the system is given by 

T(a) = ~l [ITl P(k)]t
i 

~=l k=o 

where 

P(O) - 1 

and the conditional probability 

when the kth 
all the fi rst 

component of a is functioning, given that the system is down, and 
k - 1 components are functioning. 

Wi t h this lemma at our disposal, it is a trivial exercise to deduce the following 
theorem ( thus , the proof is omitted). 

The orem. Given that an 
reliability and test time are 
component of t he system, then 

n-component, coherent system is down, the corresponding 
known, and it is necessary to find a malfunctioning 
the following statements are equivalent: 

1. St rategy s is admissible 

2 . T(s) ~ T(a) , Va E Jl 

where Jl is the set of all ordering of n components. 

The main drawb acks of the theorem include the amount of algebraic computation 
and enumeration, and the bookkeeping of A (e. g., for n = 15,.A contains more 
than 1. 3 x10 1 2 strategies). Therefore, even for a "moderate" value of n, the compu
tation would defy the capability of a present-day electronic computer. Since the 
number of stra tegies grows factorially as a function of n, an obvious remedy to over
come this di ffi cul ty is to partition the system into a sequence of nested levels (or 
subsystems ) i n which the number of components involved in each level is computationally 
manageable. Unfortunately, the resulting strategy is not necessarily admissible or 
optimal in the global sense, even though it is admissible and optimal locally. A 
better way to solve this combinatorial problem is to reduce the computational complex
ity of s tatement 2 of the above theorem by finding its equivalence. This would sim
plify the computation immensely while preserving the global admissibility and optimal
ity. (This result will be published in a subsequent paper.) 
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EXAMPLES FOR FINDING OPTIMAL STRATEGIES 

The main result of the preceding section is to provide a means to determine 
optimal diagnostic strategies for finding a malfunctioning component in a failed 
coherent system . 

We begin with an intuitively simple example . Suppose that a four-component 
coherent system is not funct ioning. Let a , S, y, and 0 be the components whose 
reliabilities p and test times t are as follows: 

Component -p- t -

a 0.9 2 
S 0.9 4 
y 0.9 2 
0 0.9 3 

Then for this example the set A contains 24 strategies: 

A <a, S, y , 0> M <S , y , a , 0> 
B <0 , a , S, y> N <S , 0 , a , y> 
C <y, 0 , a , S> 0 <y , a , S, 0> 
D <S , y , 0 , a> P <y , a , 0 , S> 
E <S , 0 , y , a> Q <0 , a , y , S> 
F <0 , y , S, a> R <S , a , 0 , y> 
G <y, 0, S, a> S <13 , a , y , 0> 
H <0 , S, y , a> U <a , S, 0 , y> 
I <y , S, 0 , a> V <a , y , 0 , S> 
J <0 , y , a , S> W <a , 0 , y , S> 
K <0 , S, a , y> X <a , y , S, 0> 
L <y , S, a , 0> y <a , 0 , S, y> 

Also, the conditional probabili ties are : (In what follows all numbers have been 
rounded off t o four decimal places.) 

Pea S) 0.7092 pe s SAy ) 0.6310 
pe s S) .7092 pe s SM ) .6310 
P(y S) .7092 P( y SAa ) .6310 
P(O S) .7092 P(y SAS ) .6310 
Pea SAS ) 0.6310 P(y SM ) .6310 
Pea SAy ) .6310 P( 0 SAa ) .6310 
Pea SM) .6 310 P( o SAS ) .6310 
pes SAa) .6310 P( o SAy ) .6310 

and the expected times of the strategies are: 

T(A) 5.7318 T(I) 6.1793 
T(B) 6.2084 T(J) 5.3134 
T(C ) 5.0226 T(K) 6.7318 
T(D) 6.7609 T(L) 5.7318 
T(E) 7. 0226 T(M) 6.3134 
T(F) 6.2084 T(N) 7.0226 
T(G) 5.9176 T(O) 5.2084 
T(H) 6.7318 T(P) 4 . 7609 
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T(Q) = 
T(R) 
T(S) 
T(U) 

5.3134 
6.7609 
6.3l34 
6.1793 

T(V) 
T(W) 
T(X) 
T(Y) 

4.7609 
5.0226 
5.2084 
5.9176 

The minimum value is attained by strategies P and V. By definition, both P and V 
are admissible . To determine optimality, we compute for each admissible strategy the 
e x pec ted time at each of the three subsequences of tests. 

Admissible Ex pected time of Expected time of Expected time of 
st r ategy first test first two tests first three tests 

P 2.0000 3.4184 4.7609 
V 2.0000 3.4184 4.7609 

In this cas e , the corresponding expected times at each stage are equal. Thus, P and 
V are als o optimal. This is not surprising for two reasons: (1) the component test 
times ar e the deciding parameters for the system whose entropy is maximum, and (2) any 
a dmissible strategy with nondecreasing, termwise-smallest sequence of component test 
times i s optimal. 

Fo r the next example, let us reconsider the last problem using the following 
reliability data: 

For t h i s 

and t he 

Component 

a 
8 
y 
e 

example the conditional probabilities 

Pea 
p es 
P(y 
P( e 
Pea 
Pea 
Pea 
p es 

expected 

T (A) 
T(B) 
T(C) 
T(D) 
T(E) 
T(F) 
T(G) 
T(ll) 
T (I) 
T(J) 
T(K) 

S) 0.8472 
S) .6944 
S) .3887 
S) . 6944 
SAS ) 0.8239 
SAy ) .7643 
SAO ) .8239 
SAa ) .6753 

times of 

6.5330 
6.6773 
3.5769 
6.0050 
6.9830 
5.2104 
3.9877 
6.6774 
4.1710 
4.7996 
6.6774 

the strategies are: 
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P 

0.9 
0.8 
0.6 
0.8 

are: 

pe s SAy ) 
pe s SAO ) 
P(y SJ\a ) 
P(y SJ\S) 
P(y SAO ) 
P( e SAa ) 
P( e SAS ) 
P( e SAy ) 

0.5284 
.6479 
.3506 
.2958 
.2958 
.6753 
.6479 
.5284 

T(L) 
T(M) 
T(N) 
T(O) 
T(P) 
T(Q) 
T(R) 
T(S) 
T(U) 
T(V) 
T(W) 

3.9656 
5.7996 
6.9830 
3.9657 
3.6687 
5.5330 
7.1051 
6.5330 
7.1051 
4.5855 
5.6858 



T(X) = 4.8825 T(Y) = 6.8301 

Obviously, strategy C is the only admissible strategy, and hence it is optimal also. 

It is interesting to notE~ that the optimal strategy, C = <y, 0 , a, S> proceeds 
with the most unreliable and the least test time component y as the first component 
to be tested; next in the test sequence is 0, which is the next most unr eliable and 
costly component. Between the remaining components a and S, C yields a for the 
third position; yet S is less reliable than a. This apparent contradiction to 
intuition can be explained by reexamining the preceding lemma, which asserts that the 
expected test time of the last component is zero. That is to say , equivalently, 
between the last two components, an optimal strategy always chooses the one having a 
smaller test time regardless of their reliability data. 

CONCLUS IONS 

An optimal diagnostic strategy f or finding a failed component in an n-component, 
coherent, malfunctioning system is presented. It was found that even for a moderate 
value of n the amount of algebraic computation and enumeration of the set of all 
possible strategies becomes computationally infeasible because of its factorial
growth character. An obvious solution to this problem i s to partition the sys tem 
into a sequence of nested subsystems, in which the number of components involved in 
each subsystem is computationally manageable. Unfortunately, this strategy is not 
necessarily optimal or even admissible in the global sense. 
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APPENDIX A 

A MATHEMATICAL DEFINITION OF COHERENT SYSTEMS 

Le t S be the set of all n components of an n-component system. Then a state 
f unction X on S onto the set {O,l} is defined as follows: 

by 

'tJ c E:: s, X(c) = {l' if 

0, if 

component 

component 

c is functioning 

c is faulty 

A structure function ~ on the set of all n-tuple, XeS), onto {O,l } is defined 

=t if the system is functioning 
'tJ t E:: X(S), Ht) 

0, if the system is faulty 

A structure function ~ is monotone if it has the following property: 

'V a,b E:: XeS), a S b => Ha) S ~ (b) 

A coherent system is a s ystem whose structure function is monotone. 
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APPENDIX B 

A MATHEMATICAL PROOF FOR T(s ) 
n 

Lemma. Given that an n-component, coherent system is not functioning, and 
Pi and ti' i = 1, 2, 3, ... , n are the component reliability and test time of i, 
respectively , then the expected time T(sn) of a strategy sn for finding a mal
functioning component of the system is given by 

(* ) 

where 

and the conditional probability 

when the kth componen t of sn 
tioning, and all the firs t k-1 

T (s ) 
n 

P(o) - 1 

/, k-l ) " 
P(k) - P\kjS m~ l m ' 

is f unctioning, given that the system is not func 
components are functioning. 

Proof: We prove the expression (*) by mathematical induction on n. To show 
the basis of induction, let n = 1 ( i . e., a one-component system) . In this case, 
T(Sl) = 0, since no test is needed. Also , for n = 1, the right-hand side of (*) is 
zero because a null sum is defined to be zero . Next, by inductive hypothesis, (*) is 
valid for an n-component system. It remains to be shown that the inductive step is 
valid whenever the induc tive hypothesis is valid; that is, we must prove that for an 
(n + l)-component system 

Note that 

T(s + ) n 1 

T(s ) + P(l)P(2) 
n 

T(s ) + P(l)P(2) 
n 

8 

+ P(1)P(2) ... Pen - l)t 
n 

Pen 1)t 
n 

Pen - l ) {t + P(n) ,o(s + ) n n 1 

" 



The next to the last equality holds by the inductive hypothesis, and, given that the 
system is not functioning and the first n components are functioning, the last 
equality follows from the fact that the expected remaining test time (denoted by 
To (sn+l»' is zero. Likewise the expected remaining test time, Tl(Sn+l ) is zero 
if the first n - 1 components are functioning and the nth component is not func
tioning. The quantity in the braces in the last term is precisely the expected time 
f or testing the nth component in sn+l' Therefore, together with the first term, 
T(sn), it constitutes the expected test time of sn+l; that is, 

T(s ) + P(1)P(2) ... Pen - 1){t + P(n) To (s + ) + [1 - P(n)]t l (s + ) } = T(s + ) n n nl n l n l 

Hence, by the principle of mathematical induction, the assertion follows. 
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