
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



ANALYSIS OF A HYBRID, UNIDIRECTIONAL

BUFFER STR?. LAMINATEl

Lokeswarappa R. Dharani
Assistant Professor of Engineering Mechanics

University of Missouri - Rolla	 /
Rolla, Missouri 65401

I

Rte - .^.,..
N
^D
N	 N
N	 b Ln

co	 c fn
ZI	 ^ o

a

James G. Goree
Professoi of Mechanics and Mechanical Enj.inee

Clemson University
Clemson, South Carolina 29631

ABSTRACT

ta>)	 N

H
J

M	 Ill
a3 U

.^ O

aHw
lczt

E-4 \

0 0

V)04

Incas
^. o
a4 y

z
0

H
70 U >
W

P H ^
I z -1ssau
J I ^

I0
0

.4 
m In

a y+ >C

A metho4 of analysis capable of predicting accurately the fracture

behavior of a unidirectional composite laminate containing symmetrically

placed buffer strips is presented. As an example, for a damaged graphite/

epoxy laminate, the results demonstrate the manner in which to select the

most efficient combination of buffer strip ;;roperties necessary to inhibit

crack growth. Ultimate failure of the laminate after crack arrest can

occur under increasing load either b y continued crack extension through

the buffer strips or the crack can jump the buffer strips. For some

typical hybrid materials it is found that a buffer strip spacing to width

ratio of about four to one is the most efficient.

INTRODJCTION

One of the major difficulties in designing an advanced composite

structure such as an aircr—m ft to comply with current safe*_-- regulations.

is meeting the damage-tolerant (fail-safe) requirements. One very

1This work was supported by the Fatigue and Fracture Branch, Materials
Division, NASA-LanglPy Research Center unc.er Grant NSG-i'97.
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promising method of constructing a damage-tolarnut composite laminate is

to use hybrid, embedded otringers (buffer strips) as a crack arrest

mechanism. A typical laminate is shown in Figure 1 and the geometry

assumed for the present study is given in Figure 2. Two fundamental dif-

ferences are seen between the real construction and the model; first the

modal is assumed to consist of only zero degree (parallel to the load)

fibers and second, it contains an initial central crack between two

buffer strips and two half-planes rather than a periodic array of buffer

strips. It is felt that such of the characteristic behavior can be re-

presented by the unidirectional laminate, as a dominant portion of the

load is carried by these fibers. A primary function of the angle plies

in Figure 1 is to prevent longitudinal matrix splitting in a brittle

matrix such as epoxy. This is accounted for to some degree in the present

solution by allowing the matrix to support large strains without splitting.

This work is an extension of the studies presented by the authors in

references 1, 2 and 3 and is the latest solution developed in an attempt

to understand the damage tolerant behavior of a buffer strip laminate.

The intent is to be able to estimate the remote stress required to fail

the hybrid unidirectional laminate of Figure 2. The fibers and matrix

are assumed to be linearly elastic and the failure criterion is simple

tension failure of the fibers. The classical shear-lag model is used to

represent the shear stress distribution between adjacent fibers. From

the previous work  it is known that for a single material laminate, with-

out matrix yielding and splitting, the most highly stressed fiber is the

first unbroken one directly in front of the notch. The significant

question in this study is, if the first fiber in front of the notch breaks
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at a given applied stress will the next fiber require a higher or lower

applied stress to also fail or will a fiber break at some other location

at un even lower stress? That is, is the crack growth stable or unstable,

and how does this behavior depend on materials and geometry? The shear-lag

model and the assumptions and simplifications made in the analysis are

somewhat restrictive but the ability of these simple models to represent

actual laminate response has been found' to be very good. It is then felt

that the results given in this paper are a good indication of the behavior

of a buffer strip laminate.

The initial studies using the shear-lag model to analyze notched uni-

directional laminates were given by Hedgepeth4 and Hedgepeth and Van Dyke5,6_

The work of 1, 2 and 3 extends these methods up to the present treatment.

Experimental investigations concerning buffer strip laminates are dis-

cussed by Eisenmann and Kaminski ? ; Hess, Huang and Rubin 8 ; Avery and

Porter9 ; Verette and Labor 10 ; and Poe and Kennedy ll . Because of the

limited space allowed for this presentation much of the background de-

tails and development must be referred to these papers.

FORMULATION

The fundamental solution needed in the analysis of this problem, is

the case of a unidirectional half-plane with broken fibers and matrix

splitting as shown in Figure 3. This basic solution will be developed

first, and then by taking appropriate combinations of particular forms of

this result, the complete solution will be presented.

A unidirectional array of parallel fibers with an arbitrary number of

broken fibers in the form of a notch and a longitudinal split in the matrix
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is shown in Figure 3. The laminate is subjected to prescribed shear

stresses Ta(y) along the free edge and Tb (y) along the split, and a remote

uniform tensile strain in the axial direction. Fiber breaks occur along

the x-axis (axis of symmetry) and, since the loading is sy=stric, only

the upper half of the laminate is considered in the analysis.

The fibers are taken to be of much higher strength and extensional

stiffness than the matrix and all of the axial load is assured to be

carried by the fibers with the matrix transferring load by shear stresses

as given by the classical shear-lag assumption4 . The axial fiber stress,

an(y), and matrix shear stress, T n(y), are then given by the simple re-

lations

dv (y)

an (y) ' F.
	 d	

and Tn(Y) -	 [vn(y) vn-1(y)]	 (1)
Y

where, vn (y) is the axial displacement of the fiber n at the location y,

E  is the Young's modulus of the fiber, GM is the equivalent matrix shear

modulus and h is a shear transfer distance. Because of the interference

between fibers it is unlikely that GM will be the homogeneous matrix shear

modulus or h the actual fiber spacing. It is pointed out by Goree 3 that

these values can be determined experimentally for a given laminate.

Batdorf12 also discusses this question in considerable details

By virtue of the shear-lag assumption the longitudinal and transverse

equilibrium equations become decoupled and the fiber axial displacements

and stresses can be obtained without solving the transverse equilibrium

equation. Therefore, only the equilibrium equation in the longitudinal

(axial) direction will be considered. With reference to the free-body

diagram of a typical fiber-matrix region shown in Figure 3, the equilibrium

equations in the longitudinal direction are given by
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AF duo (y)

t	 d	 + T
1 (y) - Ta(y) ' 0	 for fiber 0,

Y

AT dun(Y)
t d	 + T

1 
(y) - Tn(y) - 0 ,	 for fiber n,

Y

A
F 

duNW(Y)
t	 dy + Tb(y) - T

NW(y) - 0	 for fiber NW when y < 1, and

AT dcNW+l(y) + T	 (y) - T (y) n 0 , for fiber NW+1 When y < 1, (2)t	 dy	 NW+1	 b

Using the stress-displacement relations, Equation (1), in the above equilib-

brium equations, the following set of differential -difference equations is

obtained:

AFEFh 
d2vo

GMt d
y 
2 + vl - vo Ta(Y)

AFEFh d2v
GMt dy2 + vn+l - 2vn + vn-1 s

AFF-rh d2vNW+1
G t	 2 - 'NW + vNW-1 s .. Tb (Y). and

	

M	 dy

A.F
EFh d2vNW+1 

+ vNW+2 _ vNW+l T
b (Y).	 (3)

	

M	 dy

Noting the coefficient of the second derivative term in the above

equations, the following changes in the variables are suggested:

	

V
	 dvn

let Y ' 	nan o^on EF dy, and
 

A.Fh

vn lQ^ EGtVn	 (4)
F M

Algebraic manipulation then gives
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Aon = cM 
do 

Tn = Crr Pht (Vn - Vn-1) and R = ^MFY

	

 B	 (5)

where in S, 
a  

and Vn(TO are non-dimensional.

By making use of Fourier transform techniques  the resulting dif-

ferential-difference equilibrium equations can be written in the form of

a single differential equation given by

d2V 
2 
e - d -v(n,e) = Ta ( n) Cos( 	 + < n-S > [ g (n) - Tb (n) IF 	 (6)

do

where,

Vn(n) _ n 1w V(n,e) cos[ (n + 2)e]de , 6 2 - 2[1- cos (e) ] - 4 sin 2 ( e
0

EFth Ta (y )	 -	 EFth Tb(y)
T a(n) =	 a	 , Tb (n) =	 aAFGv

F2 = cos[(NW + 2)e] - cos[(Nw + 2)e]

-1 for n<S
<n - S>

-0 forn > S , and

g (n) - VNW+1 - VNW

The solution to the problem of vanishing stresses and displacements

at infinity and uniform compression on the ends of the broker, fibers will

now be sought. The complete solution is obtained by adding the results

corresponding to uniform axial strain and no broken fibers to this

solution. As before  the solution to Equation (6) satisfying vanishing

stresses and displacements reduces to s ,^)J.ving a set of linear algebraic

equations, in terms of the unknown Fourier constants B  , given by
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cos[(N* + m + t)8]cos[(n + j)810Q
mrl	 o

+	 j cos(2) cos[(u + 2)e]j eft ia(t)dt d8
0	 0

+ ? jr F2 cos[(n + 1)e]jp i	 Tas {g(s) - (s)) ds d8 1, 	(7)
0	 2 0	 b	 t y

for all broken fibers, i.e., n 0,... ,M.

The displacement of any fiber u at n is then given by

n	 M
Vn(n) _ j e 8n E B  cos[(N* + m + 2)8] cos[(u + 2)8]d8

o	 m=1

nj cosoy/2 j D(d,n,t) i a(t)dt cos[(u + 2)8]d8
0	 0

n 2

1 I d os D(S,n,t){g(t) - Tb (t) }dt cos(n+ 2)81d8 , (a)o 

where, D(d,n,t) - e ° jn-t ^ - _60+0 .

SYMMETRIC BUFFER STRIP LAMINATE

Since the laminate shown in Figure 2 is symmetric about the x and

i y-axes, only the upper right quadrant will be considered. Figure 4 shows

the three distinct regions of the laminate. Regions I and II are finite

width unidirectional strips with broken fibers subjected to remote tensile

j
stresses a. and 

sII and varying shear stresses along the free edges. The

solution of these two regions can be obtained by setting the split length

equal to infinity in the basic solution obtained in the previous section.

The region III is a unidirectional half-plane subjected to uniform remote

tensile stress a. and varying shear stress 
TbII(y) 

along the free edge,

the solution of which is obtained by setting the split length equal to zero
r

I
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in the aasic solution of the previous section. Thus the solutions for all

the three regions are known for given applied shear and axial stresses.

Where these regions are joined together the shear stress is unknown.

But from equilibrium, the shear stresses on each of the adjacent regions

must be equal at their respective interfaces. Further, as the shear

stress is directly related to the distortion of the matrix from the shear-

lag assumption, it follows that these stresses must be proportional to

the difference in the displacement of the adjoining fibers of the adjacent

regions 3 . These conditions, along with the stress boundary conditions on

the broken fibers in regions I and II, are used in obtaining the solution

for the entize buffer strip laminate. The superscripts I and II indicate
M it	 GM i2

the variables in region I and II. Further,
(.:G

  ) and C h ) are the

ratios of GM and h for interfaces I and II, respectively. Denoting

fI ( T ) - Ta (n) - gI (n) fIIM - bIM - gIIM

FI - cos[(NW1+ 2)9] - cos[(NW1 + 2)e]

F 	 cos [(NW2 + 2) a] - cos[(NW2 + 2)e]	 and

C(k) - cos[(k + 1)9]

the governing equations for the buffer strip laminate can be given as

follows:

M1

!^	 E BI C(m)6 - FI J'00 a-6t f I (t)dt C(n)de - 1	 (9)
M-0 

m	 o

M
^	

mn	 - t

r ,^	 E B" C(N* + m)d + G 12 C	 f e 1 ra(t)dt
o m-0 M	 R o

1

- FII	
e- 

6s f II
(s)ds C(J)d6 - 1 ,	 (10)

0

I
V
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Ta(n)	 Gil c^ - E 28m C(a)e 
6n C(NW1)

a^0

- 8 !p FID (d.t.n)J ( t)C(NWi) +	 C20)D(619t.n);e(t) dt
o

—6 n e
+ Rl I ')'B C(N2+m)e 1 C(0) -FII C(0) c D(6,8 , n/Rl)f1"(8)da d96

M-0

(11)

^ M2	 e	 _
8I(n) ` - I	 E 2BmC (a)C(Ml) e'dn + d t(F lIC(NWi)fl (t)-C2(0)ta(t) dt d8,

° m-0	 0

(12)

9II(^)	 n I - E 2BmIC(NZ+m)C(NW2)e-ac
°	 m=0

+ G12 C(0)C(NW2) 
!e D(d,t /Rl ,E)Ta dt

Rd	 °
1

- d f°° FIIC(NW2)fli (a) + C2(0)T"(s) da d8 ,	 (13)
0

G	
1
	 M2

TbI(E)	 ^2 
f - 2 E BmIC(NZ+m)C(NW2)e d^
o	 m.0

+ G12 C(0) a(
NW2) ! D(6,t /R1,^) T1(t)dt

0

2

dJ^ FIIC(NW2)D(6, s)f
II

(s)+ G23 C 2j D(62,y,$)TbI(s)^ da d6,
o	 R

2
(14)

where, M1 and X2 are the number of broken fibers in I and II,

R -  /IItRsEFh^IIIGtII

1	 2	 Gt	 AFEFhi
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al . a/Ri 62	 /R2 , Gil • (G./h)u (h/yI

Gil• 

(rM' 

`h)12 (h/Gm)(h./G.)"and G23 (G./h)
II (h/G^)III

'

The above governing equations are of the same fore as those obtained in

the case of a single buffer strip laminate Dharani and Goree 3 , ezeept

that this problem has an additional integral equation due to the finite-

ness of the center panel.

SOLUTION

The above six equations (9-I5) contain the unkuown Fourier constants

Bm and Borland the unknown functions gI (n), 8II (E), ta(n), 
and SbI(^)•

The solution is developed by representing the integrals containing the

unknown functions using a Gauss-Laguerre 3 quadrature formula and reducing

the six equations to a single system of equations having as unknowns the

Fourier constants and the values of the unknown functions at specific points

(quadrature points).

For any continuous, integrable function the Gauss-Laguerre quadrature

formula gives
K	 -xi

I f (x) dx= E w 
i 
e	 f (xi)	 (]5 )

o	 i•l

where xi is the i th zero of the Laguerre polynomial, LK (xi), and w  is the

corresponding weight function given by

wi ' xi / L (K+1)L
K+1 (xi

) 
]
 2.
	 (16)

For the results presented in this paper, forty-five terms (K- 45) were

taken to represent each of the four unknown functions. Computation time on

the Clemson University IBM 3081-K computer was about two minutes for a

typical geometry.
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Figure S presents results corresponding to initial crack growth in

region I, crack arrest at the interface, crack growth in the buffer strip

and subsequent laminate failure. In these results all fibers are of the

ear cross-sectional area and in all eases the buffer strips are ten fibers

wide and are thirty fibers apart. Wo buffer strip materials are con -

sidered, each with the same modulus but with different ultimate stresses as

show in Figure S. Material 2 has properties close to that of S—glass

and the parent laminate is graphite/spoxy. The solid line in Figure S

represents the remote stress required to initiate crack extension, (tail

the first unbroken fiber in front of the notch, fiber A). The remote

stress required to fail the laminate catastrophically, (fail the first

fiber it plane III, fiber B) is given by the broken line in Figure 5. Both

these stresses are functions of the initial crack length and decrease with

increasing length. tesulte for an all graphite/epoxy laminate are also

given. The crack growth takes place by breaking consecutive fibers from

the crack tip to the interface. Then, depending on the stress level

required to run the crack to the interface and depending on the buffer

strip material, the crack may arrest. Both buffer strip materials require

an increasing stress to continue the crack growth in the buffer strip,

although material 1 will arrest a crack only if it initiates under fairly

low load, i.e. initially close to the interface. For the particular lamina

of Figure 5, all fibers in the material 1 buffer strip fail before fiber

B attains its failure stress, whereas for material 2 fiber B fails when

there are still some fibers left unbroken, i.e., the crack jumps the buffer

strip.

i

y
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In Figure 6 the effect of buffer, strip width on crack growth for a

fixed spacing between buffer strips of thirty fibers is given. The

ultimate failure stress of the laminate as a function of buffer strip width

is plotted in Figure 7. From Figure 7 it is seen that for material I the

optimum buffer strip width is about 3-4 fibers and for material 2 , about

8 fibers. Additional results indicate that one may thick of individual

fibers as groups of fibers and Figure 7 then implies that, for a (graphite,

S-glass)/epoxy hybrid laminate, the optimum aspect ratio should be about

four to one.
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Legends for Illustrations

Figure 1. A Typical Buffer Strip Laminate.

Figure 2. Geometry of a Sy=etric Buffer Strip.

Figure 3. Unidirectional Half-Plane with Broken Fibers.

Figure 4. Three Regions of the Buffer Strip Laminate.

Figure 5. Effect of Buffer Strip Width on Crack Growth.

Figure 6. Failure Stress as a Function of Crack Length.

Figure 7. Ultimate Failure Stress vs. Buffer Strip Width.
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