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ABSTRACT
A method of analysis capable of predicting accurately the fracture
behavior of a unidirectional composite laminate containing symmetrically
placed buffer strips is presented. As an example, for a damaged graphite/
epoxy laminate, the results demonstrate the manner in which to select the
most efficient combination of buffer strip rroperties necessary to inhibit
crack growth. Ultimate failure of the laminate after crack arrest can
occur under increasing load either by continued crack extension through
the buffer strips or the crack can jump the buffer strips. For some

typical hybrid materials it is found that a buffer strip spacing to width

ratio of about four to one is the most efficient.
INTRODJCTION

One of the major difficulties in designing an advanced compcsite
structure such as an aircraft to complv with current safety regulations,

is meeting the damage-tolerant (fail-safe) requirements. One very

i s : : .
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promising method of constructing a damage-tolerzut composite laminate is
to use hybrid, aembedded ctringers (buffer strips) as a crack arrest
mechanism. A typical lauinate is shown in Figure 1 and the geometry
assumed for the present study is given in Figure 2. Two fundamental dif-
ferences are seen between the reszl comstruction and the model; first the
model is assumed to consist of only zero degree (parallel to the load)
fibers and second, it contains an initial central crack between two
buffer strips and two half-planes rather than a periodic array of buffer
strips. It is felt that much of the characteristic behavior can be re-
presented by the unidirectional laminate, as a dominant portion of the
load is carried by these fibers. A primary function of the angle plies
in Figure 1 is to prevent longitudinal matrix splitting in a brittle

matrix such as epoxy. This is accounted for to some degree in the present

solution by allowing the matrix to support large strains without splitting.

This work is an extension of the studies presented by the authors in
references 1, 2 and 3 and is the latest solution developed in an attempt
to understand the damage tolerant behavior of a buffer strip laminate.
The intent is to be able to estimate the remote stress required to fail
the hybrid unidirectional laminate of Figure 2. The fibers and matrix
are assumed to be linearly elastic and the failure criterion is simple
tension failure of the fibers. The classical skear~lag model is used to
represent the shear stress distribution between adjacent fibers. From
the previous workl it is known that for a single material laminate, with-
out matrix yielding and splitting, the most highly stressed fiber is the
first unbroken one directly in front of the notch. The significant

question in this study is, if the first fiber in front of the notch breaks




at a given applied stress will the next fiber require a higher or lower
applied stress to also fail or will a fiber break at some other location

at un even lower stress? That is, is the crack growth stable or unstable,
and how does this behavior depend on materials and geometry? The shear-lag
model and the assumptions and simplifications made in the analysis are
somevhat restrictive but the ability of these simple models to represent
actual laminate response has been f.mm.d1 to be very good. It is then felt
that the results given in this paper are a good indication of the behavior
of a buffer strip laminate.

The initial studies using the shear-lag model to analyze notched uni-
directional laminates were given by Hedgepetha and Hedgepeth and Van Dyke5’6.
The work of 1, 2 and 3 extends these methods up to the present treatment.
Experimental investigations concerning buffer strip laminates are dis-
cussed by Eisenmann and Kaminski7; Hess, Huang and Rubins; Avery and
Porterg; Verette and Laborlo; and Poe and Kennedyll. Because of the
limited space allowed for this presentation much of the background de-

tails and development must be referred to these papers.
FORMULATION

The fundamental solution needed in the analysis of this problem, is
the case of a unidirectional half-plane with broken fibers and matrix
splitting as shown in Figure 3. This basic solution will be developed
first, and then by taking appropriate combinations of particular forms of
this result, the complete solution will be presented.

A unidicectional array of pérallel fibers with an arbitrarv number of

broken fibers in the form of a notch and a longitudinal split in the matrix
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is shown in Figure 3. The laminate is subjected to prescribed shear
stresses r‘(y) along the free edge and tb(y) along the split, and a remote
uniform tensile strain in the axial direction. Fiber breaks occur along
the x-axis (axis of symmetry) and, since the loading is symmetric, only
the upper half of the laminate is considered in the analysis.

The fibers are taken to be of much higher strength and extensional
stiffness than the matrix and all of the axial load is assumed to be
carried by the fibers with the matrix transferring load by shear stresses
as given by the classical shear-lag assunptiona. The axial fiber stress,
on(y), and matrix shear stress, tn(y), are then given by the simple re-

lations

dvn(y) GM
o () = Eg ot and t (y) = [v, (3 =-v _,(M], (1

where, vn(y) is the axial displacement of the fiber n at the location vy,
EF is the Young's modulus of the fiber, GM is the equivalent matrix shear
modulus and h is a shear transfer distance. Because of the interference
between fibers it is unlikely that GM will be the homogeneous matrix shear
modulus or h the actual fiber spacing. It is pointed out by Goree3 that

these values can be determined experimentally for a given laminate.

Batdorf12

also discusses this question in considerable detail.
By virtue of the shear-lag assumption the longitudinal and transverse
equilibrium equations become decoupled and the fiber axial displacements

and stresses can be obtained without solving the transverse equilibrium

equation. Therefore, only the equilibrium equation in the longitudinal
(axial) direction will be considered. With reference to the free-body
diagram of a typical fiber-matrix region shown in Figure 3, the equilibrium

equations in the longitudinal direction are given by
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Ag do (y)
- dy + T (y) - (y) =0, for fiber 0,
do_(y)
-:I gy T ) = T30 =0, for fiber n,
Ap doy(y)
T Ty + -rb(y) - tm(y) =0, for fiber NW when y < £, and
n
.At_?-Wle-_+ Tl () = T, (9) = 0, for fiber NW+l when y <&, (2)

Using the stress-displacement relations, Equation (1), in the above equilib-
brium equations, the following set of differential-difference equations is’

obtained:

2
Al-'EI-'h d vo

+v, ~v =1 (y),
GMt dy2 1 o a

h dzv
AgEgh .

GMt dy2 n+l

ApEh 4

Gt 2 " Yaw t Vaw-1 T 7 Tp(¥),  and
M dy

ALEch d2v,

NW+1

C.t 7t V2 T Vs - T () (3)
M dy

- 2vn + v =0,

n-1

Noting the coefficient of the second derivative term in the above

equations, the following changes in the variables are suggested:

A?EFh - dvn
let y = GMr' n, on-omUn.EFW' and
Al_.h
Vo " %Al TG Vn . (4)

oMt

Algebraic manipulation then gives
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n ® dn * 'n ® Erht n o=l Gnt ’

where n,8, En and V_(n) are non-dimensional.

By making use of Fourier transform t‘chniquu3 the resulting dif-
ferential-difference equilibrium equations can be written in the form of

a single differential equation given by

d—?uﬂ;ﬂ - 6%(n,0) = T_(n) cos(}) +<n-8> [g(n) - LM%, (6 :
dn i

where, '

2. 2[1=-cos(6)] =4 sinz(%) s

EX LY

Vn(n) =

2 () = iEFth ra(y) = (n) = lEFth 'cb(y)
a AFGN o_ b A‘?GM o_ ’

-

T 1
J V(n,8) cos[(n+i)e]d6 , 0
o

‘r"2 = cos[(NW +%)9] - cos[(NW + %)e] ,

=1 forn<8§B
<n = 8>
=0 forn>B, and

8() = Vi1 = Y

The solution to the problem of vanishing stresses and displacements
at infinity and uniform compression on the ends of the brokeun fibers will
now be sought. The complete solution is obtained by adding the results
corresponding to uniform axial strain and no broken fibers to this
solution. As before3 the solution to Equation (6) satisfving vanishing
stresses and displacements reduces to solving a set of linear algebraic

equations, in terms of the unknown Fourier constants Bm , given by



ORIGINAL PAGE IS

" cosl (W% +m + Delcos[(a + Dyejae  OF POOR QUALITY

4|0

M
I B /
o=l B¥o

v ® -8t -

co.(-g-)co:[(n + %)G]I e T‘(t)dt de
o

+
e
o

+

ER )

f" Fz cos{(n +-%)e]!. c-s' {g(s) - ?b(s)} ds do6 = 1, ¥))
0 o

for all broken fibers, i.e., n = 0,...,M.

The displacement of any fiber n at n is then given by

T . M
e & B cos[(¥* +m+Dye) coa[(n-l--%)e]de

2
\'j ==
n(n) To m=]

=t

é

=2

_ _.f" cos(8/2) / D(&,n,t) ?a(t)dt cos[(n + %99]d9
o o

2 g

1 ,"F - 1
- =1 5/ D&, t){g(t) - 7, (t) }dt cosl(a+ 5)6]d6 , (8)
T Y 5

N | A
-6 in=-t -
where, D(8,n,t) = e cin=ti e §(n+t)

SYMMETRIC BUFFER STRIP LAMINATE
Since the laminate shown in Figure 2 is symmetric about the x and

y-axes, only the upper right quadrant will be comsidered. Figure 4 shows
the three distinct regions of the laminate. Regions I and II are finite
width unidirectional strips with broken fibers subjected to remote tensile
stresses ci and oi}and varying shear stresses along the free edges. The
solution of these two regions can be obtained by setting the split length
equal to infinity in the basic solution obtained in the previous sectionm.
The region III is a unidirectional half-plame subjected to uniform remote

tensile stress ciII and varying shear stress till(y) along the free edge,

the solution of which is obtained by setting the split length equal to zero

|
!
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in the vasic solution of the previous section. Thus the solutions for all
the three ragions are known for given applied shear and axial stresses.
Where these regions are joined together the shear stress is unknown.
But from equilibrium, the shear stresses on each of the adjacent regions
must be equal at their respective interfaces. Further, as the shear
stress is directly related to the distortion of the matrix from the shear-
lag assumption, it follows that these stresses must be proportional to
the difference in the displacement of rhe adjoining fibers of the adjacent
regions3. These conditions, along with the stress boundary conditions on
the broken fibers in regions I and II, are used in obtaining the solution
for the enti.e buffer strip laminate. The superscripts I and II indicate
the variables in region I and II. Further, (1;)11 and (——)12 are the

h
ratios of GM and h for interfaces I and II, respectively. Denoting

£0) = Tom - gty £ - -?“’ - gy
FL = cos[(NW1 +%)e] - cos[(NW1 + %)e] ,
Il

F™" & cos[(NW2 + %96] - cos[(NW2 + %99] . and

C(k) = cos[(k + %)e]

the governing equations for the buffer strip laminate can be given as

follows:

M
5 ®
2701 Bleme-F s e St ¢It)de) C(n)de = 1, (9)
I 0 m

m=0 o

M

2 o =0, t
n T -
20 B e ems v, 2 e b e
T m i ls “ a
o m=( - R o

1

- s e fl(gyas c(gras = 1, (10)

0
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forn = 0,...,M and j = u; + 1,004,
M
T =g, |- zl 28X c(m)e®" cami)
a n v 41 ° a=0 n e
-1 [elns,e )fI(t)C(M)-'--G—]-'z- C(0)D(S, ,t,m)T (t) ) d
3 o »CyN nj l.t.n T‘ t) t
“2 -§.n -
+R m-:oon:IC(u;+n). 1" o) - ¥T 9%9)- ! D(G.l.n/_ll)fn(l)dn a8,
(11)
1 1 T * 1 ~<n.1.°(.1 1 | 2 1
gn) =-=7 £ 2B C(m)C(WL) e M +2 s { FFC(NWL) £7(£)-C“(0)T (t)) dt)ds,
"o |mmg D 6, a
(12)
M,
gl = 2 f“{- r 28 To(n* + m)conw2)e~SE
LI o0 m 2
+ 6y, ﬁ%&i& ! D(8,t/R;,E)TL at
1
-1 Iw{FnC(WZ)fn(a) + cz(oﬁgl(s)} d.} do , a3
0

M
_ G " 2 _
111(5) . 42 / {- 2 I BIIC(N*+m)C(NW2)e s¢
b < o m.o m 2

+ gy, SQCEEND /" ps e/p),0)Th(e)ae
o a

- -] 2 \
- %. s {rnc(wz)o(a,s,s)fn(s) +6,, 9—529-’- n(ez,a,s)fc‘n(s)} d.} de,
0 R2 b
(14)

where, Ml and Mz are the number of broken fibers in I and II,

/AFEFh 11 GMt 1 A}'E}‘h\lli G\‘t II
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11 I
51 - 6/31 » 62 - /RZ ’ Gﬂ - (leh) (h/GH) ’

6= (6 /012 (b/G)™" and Gyq = @M @ettt .
The above governing equations are of the same fors as those obtained in
the case of a single buffer strip laminate Dharani and Gorlos. except
that this problem has an additional integral equation due to the finite~
ncss'of the center panel.

SOLUTION

The above six equations (9-15) contain the unkuown Fourier constants

1 11
Bm and B

- and the unknown functions sI(n)- SII(E). ;:(n). and ;:I(E)-

The solution is developed by representing the integrals constaining the
unknown functions using a Gauss-Laguerre3 quadrature foraula and reducing
the six equations to a single system of equations having as unknowns the
Fourier constants and the values of the unknown functions at specific points
(quadrature points).

For any continuous, integrable function the Gauss-Laguerre quadrature

formula gives
® K -X

[ £(x)dx=12 w,e i f(xi) (15)
o] im]
vhere x, is the ith zero of the Laguerre polynomial, Le(x,), and w, is the

corresponding weight function given by

vy = x LD L, (12 (16)

For the results presented in this paper, forty-five terms (K=45) were
taken to represent each of the four unknown functions. Computation time on
the Clemson University IBM 3081-K computer was about two minutes for a

typical geometry.
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RESULTS

Figure 5 presents results corresponding to initial crack growth in
region I, crack arrest at the interface, crack growth in the buffer strip
and subsequent laminate failure. In these results all fibers are of the
same cross-sectional area and in all cases the buffer strips are ten fibers
wide and are thirty fibers apart. Two buffer strip materials are con-
sidered, each with the same modulus but with different ultimate stresses as
shown in Figure 5. Material 2 has properties close to that of S~glass
and the parent laminate is graphite/epoxy. The solid line in Pigure 5
represents the remote stress required to initiate crack extension, (fail
the first unbroken fiber in front of the notch, fiber A). The remote
stress required to fail the laminate catastrophically, (fail the first
fiber ir plane III, fiber B) is given by the broken line in Figure 5. Both
these stresses are functions of the initial crack length and decrease with
increasing length. Lesults for an all graphite/cpo;y leminate are also
given. The crack growth takes place by bresking consecutive fibers from
the crack tip to the interface. Then, depending on the stress level
required to run the crack to the interface and depending on the buffer
strip material, the crack may arrest. Both buffer strip materials require
an increasing stress to continue the crack growth in the buffer strip,
although material 1 will arrest a crack only if it initiates under fairly
low load, i.e. initially close to the interface. For the particular lamina
of Figure 5, all fibers in the material 1 buffer strip fail before fiber
B attains its failure stress, whereas for msterial 2 fiber B fails when
there are still some fibers left unbroken, i.e., the crack jumps the buffer

strip.

[




In Figure 6 the effect of buffer strip width on crack growth for a
fixed spacing between buffer strips of thirty fibers is given. The
ultimate failure stress of the laminate as a function of buffer strip width
is plotted in Figure 7. From Figure 7 it is seen that for material 1 the
optimum buffer strip width is about 3-4 fibers and for material 2 , about
8 fibers. Additional results indicate that one may think of individual
fibers as groups cf fibers and Figure 7 then implies that, for a (graphite,
S-glass)/epoxy hybrid laminate, the optimum aspect ratio should be about

four to onme.
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Lagends for Illustrations

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Figure 7.

A Typical Buffer Strip Laminate.

Geometry of a Symmetric Buffer Strip.
Unidirectional Half-Plane with Broken Fibers.
Three Regions of the Buffer Strip Laminate.
Effect of Buffer Strip Width on Crack Growth.
Failure Stress as a Function of Crack Length.

Ultimate Failure Stress vs. Buffer Strip Width.
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