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I. INTRODUCTION

This paper summarizes the processing concepts which form the basis of the NASA

Thematic Mapper (TM) Geometric Correction System.

TM geometric correction is a system process which includes both the Flight and

Ground Segments. The principle Flight Segment subsystems are:

Thematic Mapper

Attitude Control

Attitude Measurement

On-Board Computer

The principle Ground Segment processes are:

Payload Correction

Control Point Processing

Geometric Correction (Resampling)

11 Purpose and Fundamental Concept of Geometric Correction

The overall purpose of Geometric Correction is to place TM image samples onto

an output coordinate system which is related to a map projection. This output

product simplifies the data processing For subsequent applications. Conceptually,

the geometric correction is accomplished in two phases: First, correction data is

generated and then the raw TM image data is resampled using the correction data.



Figure 1-1 illustrates correction data generation. The spacecraft position, TM

frame attitude, position of the TM scanning mirrors and detector sampling are known

as a function of time, through a combination of Flight Segment measurements, Ground

Segment modeling and control point information. This information, along with an

earth geoid model, is used to determine the geoid location for each TM image sample

(geoid look point). Then, using map projections, correction data can be generated

which defines the location of each TM sample on the output coordinate system.

As with previous Landsats, products will be provided on an output grid system

known as a World Reference System (WRS), The WRS is defined by a nominal orbit

path. Each of the nominal 233 orbit paths of the sun synchronous Landsat-D

orbit is divided into 248 WRS scents. 	 Including overlap with adjacent scenes

in the same orbit, a scene is approxima'ely 170 km along-track by 185 km across-

track. A WRS scene is identified by a scene center latitude and longitude and a

map rotation angle for each map projection. Output products can be provided in

either of two map projections:

1. Space Oblique Mercator (SOM)

2. Universal Transverse Mercator when scene center is betvraen 65 degrees

South latitude and 65 degrees North latitdi' ,, nr Polar Stereographic when

scene center is below 65 degrees South latitude and above 65 degrees

North latitude.

The output coordinate system for all satellite passes over the WRS scene is the

map projection coordinate system rotated about the WRS scene center location by the

map rotation angle.

Figure 1-2 illustrates the resampling concept. The correction data is used to

locate TM detector samples on the output coordinate system, and TM detector

samples are then interpolated to the desired output grid locations.

1-2
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I,	 An overview of the Landsat-D geometric accuracy specifications are shown in

1,2 Geometric Accuracy

Figure 1-3, Effectively, a reference interval (set of consecutively imaged scenes)

is geodetically rectified to a set of maps. Registration control points are then

extracted from the reference interval and stored in a control point library. Sub-

sequently imaged intervals are registered to the reference interval using the control

point library. There are three geometric accuracy requirements: Band-to-band regis-

tration, temporal registration and geodetic rectification.

Sand-to-Band registration is the ability to overlay spectral bands within a

single scene. It is considered the most important accuracy requirement, The

Thematic Mapper band-to-band requirements are 0.2 pixel (905) of the time) between

spectral bands on the same focal plane and 0.3 pixel (905j' of the time) between

spectral bands on primary and cold focal planes. A TM pixel is 42.5 microradians.

Bands 1 to 4 ar- on the primary focal plane and Bands 5 to 7 are on the cold

focal plane. With ground processing, these band-to-band accuracy requirements are

expected to be easily satisfied.

Temporal registration is the ability to overlay a band of the registrant scene

with the corresponding band of the reference scene. The accuracy requirement is

0.3 pixel (90 of the time). The temporal registration requirement is the most

challenging system accuracy requirement. The following simplified calculation

illustrates this point:

42 5 urad	 (1 a)	 X Single scene

0.3 pixel temporal (90 1h')) X	 pi— ef-! X 1.645(90V,)	 Y'2-temporal

= 5,48 Arad (la) single scene

= 1.13 arc-sec (la) single scene

= 3.87 meter (at 705.3km) (la) single scene

1-5
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f	 a

That is, the 0.3 pixel 90"; of the time accuracy between two scenes allows

no more than 3.87 meters (lc) total system error for one scene. This

simplified calculation assumes that the error is Gaussian (the factor of

1/1.645 converts 90`S to la) and th;t the errors in the two scenes are un-

correlated (the factor of 1/Yfl . 'The temporal registration accuracy requires an

adequate number of ground control points. This may be as large as 18 control

points when a single scene is processed, but can be reduced to 3 to 4 control

points per scene when consecutive scenes from one orbit (an interval)

are processed. The temporal registration accuracy will be discussed further

in Section 4.0.

Geodetic rectification is the ability to overlay a band of the re g istrant scene

with the original maps. The accuracy requirement is 0.5 pixel (90% of the time).

This accuracy is to be met when the maps have no geometric errors, over regions

without topological variations and given sufficient numbers of geodetic control

points. To the extent that these conditions are not satisfied in actual operation,

the Geodetic accuracy of output products will degrade.

1.3 System Overview

An overview of NASA's Landsat-D TM Geometric Correction System is shown in

Figure 1-4. The Flight Segment includes the TM instrument, attitude measurement

devices, attitude control and ephemeris processing. The Flight Segment inertial

attitude estimates are made using an extended Kalman Filter process, which corrects

integrated gyro measurements using star tracker information. Attitude is controlled

using reaction wheels. Ephemeris, used for attitude control and ground processing,

is uplinked from the ground or determined using the on-board Global Positioning

System. Attitude control and ephemeris processing are implemented in the on-board

computer.

1-7
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The spacecraft attitude is downlinked for ground processing but at a rate (4.096

seconds) that cannot follow all TM attitude deviations. Low frequency (0 to 2 Hz)

attitude deviations are measured by gyro samples supplied every 0,064 seconds

per axis. Higher Frequency (2 to 1^5 Hz) attitude deviations are measured using

Angular Displacement Sensors (ADS) which are sampled every 0.002 seconds per axis.

The Angular Displacement Sensor is mounted directly on the Thematic Mapper.

A spacecraft formatter combines the necessary On-Board Computer information and

the ADS samples into a 32 kilobit per second telemetry stream called Payload

Correction Data (PCD). PCD contains all Flight Segment information needed to

perform TM data processing. It is both downlinked on a telemetry channel and

included with the TM wideband data. Also iml ,added into TM wideband data is

Mirror Scan Correction Data (MSCD) from which the scan mirror position as a function

of time is determined. This data includes scan start time, scan direction, first

half scan time error, and second half scan time error.

The NASA TM ground processing extracts the Mirror Scan Correction Data (MSCD) from

the TM wideband data. The PCD is received using the tels,,metry path. Payload

Correction Processing then combines the MSCD and PCD to generate Systematic Correc-

tion Data (SCD). The Systematic Correction Data is a complete set of correction

data except that large bias and slow drift errors exist due to time, ephemeris,

gyro measurement, attitude control and TM alignment uncertainty. These bias and

drift errors are removed by Control Point Processing. Control Point Processing

uses the m1slocation between Features in reference interval and the same features in

the registrant interval to estimate these SCD errors. The SCD is then modified

to remove the error effects	 and the result is called Geodetic Correction Data.

•t
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The payload correction and control point processing are performed over an

interval or number of consecutively imaged scenes in an orbit path. This r qsu's is

in improved accuracy and fewer control points than orocesses that operate on

individual scenes.

The final steps in geometric correction system involve resampling the TM image

samples to place them onto the output coordinate system. The TM wideband data is

first reformatted into Archive imagery in which reverse scan data has been

reordered to correspond to the forward scan data, and integer detector and band

offsets have been removed. The Archive imagery is then resampled during Geometric.:

Correction Processing. The resampling is performed using the Geodetic Correction

Data and it results in product imagery.

A more detailed description of the Flight Segment contributions to geometric correc-

tion is given in Section 2.0, the Ground Segment Processing is described in

Section 3.0 and a system level temporal registration error budget is summarized

in Section 4.0.

1-10



II. FLIGHT SEGMENT

The Landsat-D Flight Segment is shown in Figure 2-1. It is configured in two

modules: Multimission Modular Spacecraft (MMS) and Instrument Module (IM).

The MMS provides standard spacecraft subsystems such as Attitude Control (ACS),

Propulsion Module for orbit adjust, a Collection and Data Handling (C&DH) Module

which includes an On-Board Computer (ORC),and a Power Module. The Instrument

Module includes the mission unique subsystems such as Thematic Mapper, Multi-

spectral Scanner (MSS), Wideband Communications, High Gain Antenna and RF Com-

partment, Global Positioning (GPS) and Solar Array.

The Flight Segment contributions to geometric correction will be described in

terms of TM position (ephemeris), Till attitude, TM scanning operation and associated

Flight Segment correction information which is used in the Ground Segment Pro-

cessing.

2.1	 Position

TM inertial position is a factor in determining the TM

sample location on the output coordinate system. Before describing how this

knowledge is obtained (Section 2.1.2), the basic orbital parameters will be

described.

Landsat-D Orbit

As shown in Figure 2-2, the Landsat-D orbit is sun synchronous, nominally crossing

the equator at 9:45 a.m. local time. The orbit inclination is nominally 98.21

degrees with periodic orbit adjust maintaining this inclination to +.045 degrees.

The nominal equatorial altitude is 705.3 kilometers and due to a combination of

periodic orbital eccentricity and earth oblateness the altitude will vary from

696 to 741 kilometers. The ground track repeats on a 16-day cycle and the

2-1
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equatorial crossing is maintained to within +4 kilometers by periodic orbit

adjust. The 16-day cycle generates 233 ground paths with a seven day skip-cycle

between adjacent paths.

The orbit inclination drifts, orbit altitude variation and ground track variation

have significant geometric impacts. Orbit inclination drift is a factor affecting

image rotation requirements. Altitude variation effects ground sample distance,

inter-scan gap and scan line skew (see Section 2.3). Ground track and altitude

variations interact with earth topology to create temporal registration errors.

Ephemeris

Ephemeris is data which describes the position and velocity of the TM as a

function of time. Landsat-D ephemeris data is obtained directly from downlinked

Payload Correction Data (PCD) telemetry. A more detailed description of Payload

Correction Data is given in Section 2.4.

A system level ephemeris data flow is given in Figure 2-3. There are two possible

sources of ephemeris data: NASA Goddard Orbit Support Computing Division (OSCD)

and the Global Positioning System (GPS).OSCD generates predicted Earth Centered

Inertial (ECI) ephemeris, then converts it to a highly compressed Fourier power

series and residuals representation. The compressed data is uplinked to the

Flight Segment where the on-board computer reconstructs the ECI ephemeris.

A GPS receiver/processor assembly (R/PA) is an experimental subsystem which is part of the

Flight Segment. The receiver/processor assembly uses ranging information from

GPS satellites to estimate Landsat-D ephemeris. The GPS ephemeris is computed

in Earth Centered Earth Fixed coordinates, then sampled, converted to ECI and

extrapolated by the On-Board Computer.

2-4
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Tndepondent of tilt) ophomeris scurev, the resulting kCI ephemeris is used for

attitudes control and pointing the WRSS Antenna. The ephemeris is sampled

every 8.101 seconds and formatted for downlink by the tin-Board Computer. once

on the ground, the received ephemeris data is fitted with a ,l orbit model. This is done

to remove GPS data t' ^isvontinuiti ps or processinig errors caused by 'tilt) t'e7mpression

and dovomprens ion of OW ephemeris. The around ephemeris processing is discussed

in Section Al (Payload Correction Processing).

The downlinked OSCD ephemeris may be a two-day old prediction. After ground

processing, the error standard deviation of such data is given below:

Position (Meters) Velocity (Meters/Second)

Alone Track	 500	 .163

Cross-Track	 100	 AD

Radial
	

33	 .650

The error standard deviution of GPS ephemeris is difficult, to predict because

it depends upon the number of operational GPS satellites and the length of time

since the last GPS observation. GPS accuracy is expected to be considerably

bettor than OSLO two-day predicts.

A +00 millisecond uncertainty in spacecraft time will result in

an addition +140 motor along-track positional uncertainty.

The geometric effect of ephemeris and time errors are estimated and corrected

during control point processing. This processing is described in Section 3.2.

2-6



;-.4 ATTITU K

The TM attitude (orientation in an inertial frame of reference) is another factor

used in determining the TM sample location on the output coordinate system. There

are three dominant components which effect TM attitude: the Attitude Control

Subsystem ,ACS), higher frequency attitude d Wations, and TM alignment with the

Attitude Control Subsystem.

For discussion purposes, define the instrument coordinate system as shown below:

\ ^ X-axis is into the paper

x---'10 Y

\	 Scan mirror at mid-scan

Z

The X-axis is along the scan mirror pivot axis, the Z-axis is the telescope optical

axis reflected through, :,can mirror at midscan, and the Y-axis completes the right

hand coordinate system. Rotation about the X, Y and Z axes are called roll,

pitch and yaw, respectively.

Such coordinate systems are defined for the TM and Multispectral Scanner (MSS)

instruments. The instruments are mounted onto the Flight Segment such that the

difference between the TM and MSS axes is less than 0.15 degrees in roll,

0.5	 degrees in pitch, and 0.5 degrees in yaw. The alignments between the

ACS axes and the TM axes and between the TM axes and MSS axes are then measured.

Based on the available ECI ephemeris, the ACS controls the mean axes between the

TM and MSS such that the mean Z-axis points to the earth center and the mean

X-axis points along the instantaneous ephemeris velocity vector.

2-7



ACS i., a low frequency control system with bandwidths less than 0.01 Hz, Any

higher frequency attitude deviations, which arise from the TDRSS antenna drive, the

solar array drive, and TM or MSS mirror impacts, are not compensated by the ACS.

Such disturbances must be measured and corrected fn ground processing.

The ACS, alignments and high frequency attitude deviations are now described in

more detail.

ATTITUDE CONTROL SYSTEM (ACS)

Figure 2-4 shows a simplified functional block diagram of the Landsat-D Attitude

Control System. The DRIRU (gyros) and Fixed Head Star Trackers constitute the

attitude measurement devices. The reaction wheels are used to effect attitude con-

trol. In ACS operation the DRIRU measures change in inertial attitude about each

of its three axes every 0.064 seconds. Gyro Data Processing removes gyro drift

and low pass filters the samples to a 0.5 Hz bandwidth. The Euler Parameter Inte-

gration propagates the ACS Attitude using the processed DRIRU increments every

0.512 seconds. The Update Filter implements an extended Kalman filter process

which uses the attitude error between the propagated ACS attitude estimate and star

tracker measurements to compute gyro drift and an attitude correction. Star

tracker measurements are made at most every minute, but under worst case conditions

tens of minutes may elapse between star measurements. Based on ECI ephemeris (see

Section 2.1) and the alignment between the ACS axes and mean instrument axes, the

desired ACS attitude is computed. The desired attitude has the mean TM & MSS

instrument Z-axis pointed to the earth center and the mean instrument X-axis along

the instantaneous velocity vector. An attitude error is computed and the reaction

wheels are appropriately commanded every 0.512 seconds.

2-8
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The ACS is a closed loop system because the attitude changes effected by the reaction

wheels are sensed by the DRIRU. The ACS control bandwidth is 0.01 Hz 	 about the

pitch axis and 0.005 Hz about the roll and yaw axes. Exclusive of ephemeris error

and disturbances caused by the TM and MSS, the ACS is required to control its

pointed axes to within 0.01 degrees (1c) with an attitude rate error of less than

10-6 degree/second (measured over a 100 minute interval). The

dominant source of ACS error arises from Star Tracker measurement error.

As Figure 2-4 indicates, the DRIRU data (every 0.064 seconds), gyro drift estimate

(every 4.096 seconds) and ACS attitude estimate (every 4.096 seconds) are down.

linked for ground processing. Significant low frequency error exists in this data

and their error effects must be removed during control point processing. These

errors result from Star Tracker measurement errors, gyro drift estimation errors

and propagated DRIRU Measurement Errors, and could be as large as 0.01

degrees (l(x) about the roll, pitch and yaw axes. Figure 2-5 shows typical error

dynamics of DRIRU Measurements,

Alignment

The alignment between the ACS and the TM axes is a factor in determining the TM

sample locations on the output coordinate system. ACS to TM alignment uncertainty

results from error in the alignment measurement process in which eight separate alignment

measurements are required.	 These measured alignments change as a result of launch

structural stress, difference in thermal conditions between alignment measurements

and orbital conditions, and spacecraft reassembly at the launch site. The ACS to

TM alignment uncertainty will be 125 arc-sec (la) in roll and 250 arc-sec (la) in

pitch and yaw. These alignment uncertainties will be substantially reduced by ground

measurements using control points.
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Under orbital conditions, a dynamic alignment error is expected to result from

temperature variations within the spacecraft structure. The dominant source of

these temperature variations is the operation of TM, MSS, Wideband Communications

Subsystem and Multimission SF, cecraft Modules. The thermal alignment rate error

can be expected to be as large as 0.167 arc-sec/second (1a) and this error effect will be

removed by control point processing (Section 3.2). Figure 2-6 shows a typical

alignment error model which has been used to evaluate the effects on ground

processing.
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Hiqh Frequent Attitude Disturbances

There are four dc.ninant sources of high frequency (greater than 0.01 Hz)

mechanical disturbances: TDRSS !'antenna drive, solar array drives, MSS scan mirror,

and TM scan mirror. Interaction of these disturbances with the spacecraft structure

causes attitude deviations. An extensive effort involving structural testing, modeling

and simulation analysis charaz terized these interactions. A brief summary of

these results will be qi ven .

The TDRSS antenna is driven around the spacecraft z-axis (azimuth) and an elevation axis

to follow the relative motions between Landsat-D and the earth synchronous TDRSS.

A stepper motor drives the antenna. Under normal operating conditions, there are

between 0 and 3 steps per second required to exactly follow TDRSS in elevation.

The rate depends upon the relative position between Landsat-D and TDRSS. A ran-

domizing antenna control sys^.em is implemented in the on-board computer that

avoids dwelling on large structural resonances in the 0-3 Hz frequency region.

The solar array is driven open loop to follow the sun by a stepper motor (19.66

steps/second). The resultant space,.'aft disturbance is estimated to be 0.2 arc-

second (RMS). When the solar array position is adjusted to compensate for mis-

alignment with the sun, much larger disturbances will occur. Solar array adjust-

ment will not occur immediately before or during TM instrument operation.

Figure 2.7 shows simulation results of a typical 30 second running RMS of space-

craft attitude deviation (above 0.01 Hz) which results from TDRSS Antenna and

solar array operation. Under worst case conditions, the RMS excitation (over 30

seconds) may approach 10 arc-seconds in the bandwidth 0.01 to 0.4 llz .,but is

expected to be less than 0.3 arc-second above 0.4 Hz.
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The low level of attitude deviation due to the TDRSS antenna has been achieved

through design of their control systems. No such control could be exercised for

the TM and MSS instruments. The bumper impacts of the MSS and TM scan mirrors

will create attitude deviations. MSS and TM scan mirrors operate at 13,62 and

approximately 7 Hz respectively. The alternating direction and impulsive impact of

the scan mirrors produce significant torque amplitudes at odd harmonics (see

Table 2-1). Structural analysis has shown that the frequencies of concern are

7 and 63 Hz for TM excitation and 68.1 Hz for MSS exciting TM. Based on test

verified structural models, the roll, pitch, yaw attitude deviations due to the

TM scan mirror are predicted to be 0.0, 0.2 and 0.3 arc-second (RMS), respectively.

However, within the uncertainty of the structural modeling process, significantly

higher amplitudes can be encountered. The ground processing is designed to meet

temporal registration specifications with roil, pitch and yaw attitude deviations

of 20.0, 2.2 and 16.3 arc-seconds, respectively.

High Frequency Attitude Measurements

The high frequency attitude disturbances cannot be reduced to an acceptable level

through structural design. Recall in Section 1.2 it was shown that 1.13 arc-second

(lty ) constituted the entire temporal registration error budget for a single scene.

The actual allocation to high frequency attitude error is 0.5 arc-second (10r).

This situation forced Landsat-D to measure the attitude deviations of the spacecraft

and to provide a companion correction capability in the ground processing. After

consideration of available measurement devices, structural flexibility$ and accuracy,

size and power requirements, it was decided to use a combination of the existing

ACS gyro package (DRIRU) and a small three axis Angular Displacement Sensor

Assembly (ADSA) to measure TM attitude deviations. The DRIRU measures angular
	

4
b
{

displacements in the 0 to 2 Hz band and the ADSA measures angular displacements in
	

i^

the 2 to 125 Hz band. Their data is combined in ground processing (see Section 3.1) 	

ii
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to yield angular displacements in the 0 to 125 Hz band.

The DRIRU is a NASA Standard. It contains 3 two-degree-of-freedom dry tuned gyros

operating in a strapdown mode. The gyros are oriented such that redundant measure-

ments are provided along three orthogonal axes. The output of each gyro channel is

an asynchronous pulse train in which each pulse represents an incremental angular

rotation about the gyro input axis. The pulses are accumulated in a register

which is sampled every 0.064 seconds by the on-board computer. The key DRIRU

performance parameters per axis are:

Drift Rate: 0.05 arc-second/second (1a)

Drift Rate Stability: 0.003 arc-second/second (1a) over 6 hours of operation

Noise: 1 arc-second (0 to peak) after linear drift removal

Bandwidth (3 dB): between 1.5 and 2.5 Hz

Quantization: 0.05 arc-second/pulse

Sample Time: 0.064 second

The Angular Displacement Sensor Assembly consists of three independent angular

displacement sensors (ADS) oriented along orthogonal axes. As shown in Figure 2-8,

the ADS uses a fluid-rotor inertia element which stands still in space

as the case is oscillated about its input axis. A vane assembly is immersed in

the fluid and its position with respect to the case is sensed with a low noise dual

inductive pickoff. The pickoff system produces an analog signal output which is

directly proportioned to the deviation of the vane assembly from its null position.

To maintain the vane assembly at the desired null position an electrical auto-null

system is used to feed back a torque to the moving vane assembly. The feedback is in part

proportional to the integral of the output signal, keeping the average vane

position at a fixed output value. This in turn keeps the vane assembly average

position at the null position of the pick-off and the ADS does not respond to any

2-18
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low frequency inputs. Since t yre auto-Zero feedback leap Cant ributes torque pro-

portional to position as well as the integral of position, it produces a low

natural frequency second- ftYder system response in combination with the inertia

of the rotor, with anominal loop closure at w liz. This provides an overall

amplitude frequency response for the unit which rises at 1l3 dB/octave to 0.05 N,

at 14) dB/octave from 0.05 to a NZ and is nominally flat from 2 N2 to X000 liz.

Significant phase shift exists below 30 liz.

Three ADS sensors are mounted in the ADSA alone with presample low pass filter and

A/D electronics. Ivey ADSA performance parameters per axis are:

Noise: 0.01 micro radian (RMS)

Bandwidth (3 dB): 2 to 125 Hz (nominal)

Threshold: Not measurable

Quantivation: .25 microradian (nominal)

Full scale reading: 250 microradians

Sample time: 0.003 seconds

b-b0



2.3 Thematic Mapper

TM Geometric characteristics have impacts on the ground processing. While the TM

and MSS both employ object plane scanning, certain TM geometric characteristics

differentiate the two instruments. In general, these characteristics are related

to the TM bidirectional scanning, the relatively wide focal place separation of TM

spectral bands, the decreased TM field-of-view size, and the availability of good

performance data. A brief review of significant TM geometric characteristics

follows.

Focal Plane Layout and Detector Sampling

A geometric overview of TM is shown in Figure 2-9. The TM detectors are arranged in

two focal plane assemblies: primary and cold. The primary focal plane assembly (PFPA)

consists of four high resolution spectral bands each having 16 detectors, and an

instantaneous field-of-view (IFOV) of 42.5 microradians. The odd numbered detectors

are arranged in a row normal to the scan direction. The even detectors are arranged

in a parallel row, offset 1 IFOV in the cross scan direction and 2.5 IFOV's in the

along scan direction. The cold focal plane assembly (CFPA) consists of two high

resolution bands each of which is arranged similarly to the high resolution bands

of the PFPA. The cold focal plane assembly also consists of a thermal band which

has only four detectors with a 170 microradian IFOV. Figure 2-10 shows the overall

layout of the focal plane assemblies with the cold focal plane projected to the

prime focal plane location.

The detector arrays are swept back-and-forth approximately normal to the ground track

by the scan mirror. A West-to-East scan (on a daytime descending orbit pass) is

called a forward scan. The East-to-West scan is called a reverse scan. Each high

resolution band detector is sampled every 9.611 microseconds which corresponds to
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one IFOV (42.5 microradians) of nominal object space mirror motion. All odd

numbered detector outputs are held at one time and all even number detector outputs

are held one half sample time later. With the nominal 2.5 IFOV spacing between odd

and even numbered detectors, this creates a 2 IFOV odd to even detector spacing on

forward scans and a 3 IFOV spacing on reverse scans.

Scanninc.Mechanisms

The TM has two scanning mirrors; the Scan Mirror and the Scan Line Corrector. The

Scan Mirror rotates about (approximately) the spacecraft x-axis and thus scans the

detector arrays normal to the direction of flight. The scan mirror scan cycle

is 7 ± .01 Hz. Nominally, the active scan time (imaging time) in one direction is

0.060743 seconds with 0.010719 seconds of turnaround time. The forward scan start

and end are marked relative to the TM frame by an optical sensor called th ,-, Scan

Angle Monitor (SAM). The SAM similarly marks the reverse scan start and end,with

nominal co-location between forward scan start and reverse scan end and between

forward scan end and reverse scan start. The SAM also identifies scan mirror mid-

scan position.

The scan line corrector (SLC) scans about the spacecraft y-axis and sweeps the

detector arrays to oppose the spacecraft ground track motion during the active

portion of the scan. The SLC is reset during the forward and reverse scan mirror

turnarounds. This generates an approximately parallel forward and reverse scan

pattern on the earth.

Ideal TM scanning is illustrated in Figure 2.11. The 16 X 42.5 = 680 microradian

wide band arrays are swept across the spacecraft ground track by the scan mirror.

The increase in array ground width from the scan center to the extreme scan positions

is a 5 meter "bow-tie" effect. The SLC scans against the along-track ground velocity
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at a fixed rate which will cancel the in track earth velocity and the small in

track earth rotational velocity component at the 712.8 km design altitude. The

composite scan is illustrated in the lower part of Figure 2.11. At spacecraft

position (1), the scan mirror is in its start scan position for a forward

scan, and the SLC points the 680 microradian band arrays ahead of the sub-satellite

point. The scan mirror moves the band arrays normal to the paper's plane, for

nominally 0.060743 seconds, until the end of forward scan is reached. During that

time, imagery is acquired, the spacecraft advances along its orbit, the SLC pushes

the scan back along the ground track and the band arrays scanned normal to the ground

trace;. At the end of forward scan (spacecraft position (2)), the SLC reset command

is issued. During the nominal .010719 second scan mirror turnaround, the SLC is

reset to its initial pointing angle, the spacecraft advances to position (3) and the

scan mirror has moved to the start of reverse scan. The process is then repeated

for the reverse scan.

The TM band array width, active scan time, scan mirror turnaround time and SLC

active scan rates are fixed. They have been designed for an altitude of 712.8 km and

an effective ground velocity of 6.821 km/second (the nominal condition at 40°

Latitude) with the effect of bow-tie split,creating an equally small scan gap at scan

center and overlap at scan end. However, spacecraft altitude varies between 696

and 741 km while velocity variations are small. As shown in Figure 2-12 at

altitudes above the TM design point the scan width widens causing scan overlap and

the SLC over-compensates the spacecraft ground track velocity causing scan skew.

The actual scan error pattern is a composite of scan overlap, scan skew and bow-

tie effects. The result is that the 16 detectors within a scan are always evehly

spaced but the detector spacing between scans varies. The difference in ground spacing

for detector spacing within a scan and for detectors 1 and 16 of two consecutive

scans is called scan gap. Scan gap is positive when the spacing between scans is
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greater than the spacing within a scan. In general, scan gap varies across the

scan and is usually greatest at the end of scans. Figure 2-13 shows the worst

case end scan gap from altitude variation (as a function of Latitude), spacecraft

attitude deviation, and TM overlap/underlap. The composite worst case range of

scan gap is -2.8 IFOV to 2.0 IFOV. The altitude deviation scan gap error results

from scan width, SLC skew and bow-tie effects. Spacecraft attitude deviation is caused

by pitch and yaw axis motions and the one IFOV scan gap is a spacecraft structural

design requirement.	 The TM underlap/overlap is the specified limit imposed on the

instrument. It is expected that the attitude deviation effects will be substantially

less than shown and that scan gaps due to altitude variation will dominate..

Scan Profiles

Ideally,the scan mirror has a constant angular rate over the active scan time (from

scan start to scan end). As Figure 2-14 indicates, small rate variations will occur

in scan mirror motion. The deviation in angular position from linear motion is

called nonlinearity or profile. The profile results from small torques acting on

the scan mirror. Magnetic compensators have been incorporated into the TM design

that have the effect of significantly reducing the residual flex pivot torque. This

results in an extremely linear mirror motion with worst case nonlinearity less

than 200 microradians (object space). This low nonlinearity is required for good

instrument level band-to-band registration due to the relatively wide geometric

spacing between band arrays. It has been shown that the profile can be described

by a fifth order polynomial and that different polynomials are required for forward

and reverse scans.

After extensive scan mirror unit level testing, it was learned that the scan mirror

profiles were not stable over time. They slowly "wander" about + 20 microradians
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(object space) after days of operation. Wander is limited to the second order profile

component and this can be estimated (see Section 3.1) by using information about

first half scan and second half scan times. This data is supplied in the TM

wideband data.

Nonlinearities in the cross axis scan mirror motion and in the SLC motions must also

be compensated during ground processing.

Scan Line Length Control

Active scan time (the time from scan start to scan end) is also known as line length.

The TM actively controls line length by measuring scan times and appropriately

adjusting the torque magnitudes applied to the scan mirror during turnaround. The

scan mirror is free running during the active scan time with no applied torque.

This control scheme differs from that of the MSS which essentially controls scan

cycle time (start to start time). The TM scan control is insensitive to attitude

deviations which are self induced. Under such conditions, line length variations

of 1 microsecond (lar) are typical. However, it is extermely sensitive to externally

induced attitude deviations. For example, one microradian of MSS excitation at

68.1 Hz is capable of creating line length variations of 16 microseconds or about

70 microradians in geometric effect. Line length variations as large as 400 micro-

seconds are anticipated in ground processing design.

Forward to Reverse Scan Discontinuity

The bi-directional TM scanning introduces a number of significant factors that were

not present with the MSS design. The different forward-to-reverse profiles have

already been mentioned. Detector amplifier delays (typically 10 microseconds) and

SAM electronic delays act in the opposite directions for the forward and reverse 	
fl

scans. The result is a forward to reverse scan discontinuity which must be corrected

during ground processing.	
2-31



2.4 Flight Segment Correction Data

There are two sources of Flight Segment data needed for geometric correction ground

processing: Mirror Scan Correction Data (MSCD) and Payload Correction Data (PCD).

The Mirror Scan Correction Data is imbedded into the TM wideband data. It includes

the spacecraft time at scan start (scan time), the first half scan time error, the

second half scan time error and the scan direction (forward or reverse) indicator.

The scan time is the spacecraft time, with 0.0625 millisecond precision, at the scan

mirror start position. This time is used to relats scan mirror position to the

ephemeris, ADSA and DRIRU data. The time at any TM detector sample is obtained by

adding 9.611 microseconds times the samp	 number to the scan time. The first half

and second half scan time errors define the time error from a nominal scan time.

These errors are known to a 0.188 microsecond precision and are

determined from the TM oscillator.

Payload Correction Data includes ADSA angular samples every 0.002 seconds per axis,

DRIRU output register samples every 0.064 seconds per axis, DRIRU drift estimates

every 16.384 seconds per axis, ephemeris data every 8.192 seconds, spacecraft time,

and TM housekeeping telemetry data. PCD is transmitted via a 32 kilobit/seconu

telemetry link and is also imbedded into the TM wideband data. Figure 2-15 shows

the PCD attitude data and scan start timing. All PCD data collection is driven by

the spacecraft oscillator. This oscillator generates time code which identifies

the TM start scan time and is imbedded into the PCD telemetry cycle. The spacecraft

oscillator synchronizes ADSA sampling and synchronizes on-board computer (OBC)

operation. The OBC executive scheduler in turn drives DRIRU sampling.

The ADSA samples and OBC Data are supplied to the PCD Formatter which constructs

the PCD Telemetry Cycle Data. This is a fixed format telemetry data packar,,

occuring every 16.384 seconds. For each occurrance of a given data item in the
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PCD telemetry cycle, its occurrence time relative to the imbedded time code is known.

For example, as indicated in Figure 2-15, the first ADSA x-axis sample was taken

3/3 milliseconds after the telemetry time code and each subsequent x-axis sample

in the PCD cycle occurs every 0.002 seconds.
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III. GROUND SEGMENT

With respect to geometric correction, the Landsat-D Ground Segment uses Mirror

Scan Correction Data, Payload Correction Data and control point information to

determine where TM detector samples fall on output map projection systems. Then

the raw imagery is reformatted and resampled to produce image samples on a

selected output projection grid system.

Figure 1-4 is repeated here for convenience. It shows the TM geometric correction

functions performed by the ground processing. These functions were briefly

described in Section 1.0 and will now be discussed in more detail.

3.1 Payload Correction Processing

Payload Correction Processing uses Payload Correction Data (PCD) and Mirror Scan

Correction Data (MSCD) to generate Systematic Correction Data (SCD). All subsequent

processing uses the relatively simple SCD to determine TM imagery geometric distor-

tions. SCD provides a means of locating TM detector samples on the output projection

system. Large bias and relatively slowly varying drift errors are contained in the

available attitude, ephemeris, time and TM alignment information used in generating

the SCD. These errors remain in the SCD but their effect is removed during control

point processing. A set of SCD applies to World Reference System scene and consists

of four data groups: Benchmark Matricies, High Frequency Matricies, Focal Plane

Geometry Matricies, and Processing Parameters.

Benchmark Matricies define the location of the TM optical axis assuming perfect

attitude, linear scan mirror motions, linear SLC motions and nominal active scan

3-1
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times. Ephemeris, TM alignment, actual scan start times and map projections are

used in generating the Benchmark Matricies. These matricies include only slowly

varying distortion information and thus are defined on a relatively sparce grid

system consisting of 256 data items per WRS scene. Any given detector sample is

located by interpolating the grids. The Benchmark Matricies provide the basic geo-

metric distortion information. All other distortions resulting from attitude

deviations, scan profiles or actual detector location on the focal plane assemblies

are additive.

High Frequency Matricies define the attitude deviations, scan profiles and line

length variations of each scan in the WRS scene. These matricies are time based

and define the high frequency optical axis deviations from the Benchmark Matricies.

This data is considerably more dense and consists of 26180 data items per WRS scene.

Focal Plane Geometry Matricies define the geometric adjustments needed to move from

the optical axis location to that of any TM detector. These adjustments include

actual focal plane detector location and the geometric effect of electronic time

delays. The data quantity is relatively small consisting of 240 Data Items per WRS

scene.

Processing parameters are data items, such as scan line length and detector offset

adjustments made during image reformatting. They are needed during image resampling

processing.

As shown in Figure 3-1, Payload Correction Processing consists of three major

functions: Payload Correction Data Processing, Mirror Scan Correction Data Pro-

cessing and Systematic Correction Data Generation.
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Pa, load Correction Data Processing

Payload Correction Data Processing operates on the ephemeris information and

attitude deviation measurements (ADSA and DRIRU Data) from the spacecraft Payload

Correction Data (PCD). This processing synchronizes all attitude and ephemeris

data to a common PCD telemetry start time for ease of subsequent processing.

The ephemers data from PCD arrives as Earth Centered Inertial position and velocity

estimates every 8.192 seconds. This received ephemeris is not directly suitable

for precision image processing due to on-board computer processing errors, potential

Global Positioning System data discontinuities and telemetry errors. The control

point processing (Section 3.2) requires a smooth analytic ephemeris with known

error dynamics. This is provided by fitting the initial conditions of a second

zonal harmonic (J2) orbit model to the received ephemeris. The fit error is used

as a data quality indicator for the received ephemeris data. Ephemeris processing

uses the fitted initial conditions to synchronize the ephemeris data with the PCD

telemetry start time and regenerates the smoothed ECI ephemeris data every 2.048

seconds using the J2 model.

Attitude Data Processing (ADP) combines and synchronizes the ADSA and DRIRU attitude

deviation information to yield TM optical axis roll, pitch and yaw attitude deviations

in a zero to 125 Hz bandwidth. ADS and DRIRU data are first processed to replace

bad values and are logically extended through missing data that may occur due to telemetry

link errors. Figure 3-2 shows the functions performed in ADP. The 0.002 second

ADSA roll, pitch and yaw axis samples are converted to microradian units, and synchronized

to the PCD telemetry start time with .002 second sample spacing. The coordinate axes

are then rotated to align with the TM optical axis.
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I

.

The 0.064 second roll, pitch and yaw DRIRU angles are similarly converted to micro-

radian angular change units, the on-board computer gyro drift estimates are applied,

the data is rotated to align with the spacecraft pointed axis, nominal body rates

derived from ephemeris data are removed, the data is then aligned with the TM

optical axis, and digitally pre-filtered. The processed DRIRU angular increments

are then synchronized to the PCD telemetry start time and interpolated to 0.002

second samples.

The processed ADSA and DRIRU data are now in a common coordinate system and time syn-

chronized. The data sets are then summed and digitally filtered to remove phase

and -amplitude distortions. The processing has been designed to provide less than

1% error.

Provisions have been made that allow modification of DRIRU pre-filter and final

combined digital filter coefficients based on ADS temperature information. The

need for this capability has not been demonstrated by ADSA testing and this filter

coefficient processing is not being used.

Mirror Scan Correction Data Processing

Mirror Scan Correction Data Processing generates along scan profile deviations and

cross scan profile deviations fr:^- each scan. The profile deviations are relative

to the TM body axes and are time synchronized with the Attitude Data Processing

outputs. The start scan times are also adjusted to use the PCD start time as their

reference.

The Mirror Scan Correction Data (MSCD) Processing inputs (scan start time, first

half scan time error, second half scan time error and scan direction) are imbedded

by the TM into its wideband data. This data is extracted from the wideband data

3-7



I

and checked for self consistency. That is, proper scan time advancement, within

tolerance variation in estimated nonlinearity at midscan, and scan direction changes

are evaluated. Front end processing hardware also provides independent measures

of total line length and start-scan to start-scan time. The number of 8 bit TM words

between scan start and end codes imbedded in the TM wideband data are counted. Due

to the critical need for proper MSCD, it is also checked for consistency against these

independent measures. Errors are reported and best estimates are substituted for

rejected MSCD values. The first half scan time errors and second half scan time

errors are converted to mid-scan time interval and end-scan time interval for subsequent

processing.

Figure 3-3 shows the MSCD Processing functional flow. Telemetry-Imagery Synchroniza-

tion adjusts the scan start times to reference the PCD start time and computes the

line length processing parameters needed during resampling. Scan Mirror Data Pro-

cessing uses the relative scan start times, mid-scan interval time and end-scan

time interval to interpolate the roll axis attitude deviations at scan start, mid-

scan and end-scan times. These roll axis deviations along with the static first

half and second half scan angles, and the mid-scan and end-scan interval times are

used to estimate the second order scan mirror profile adjustment. Nominally, a

sliding 400 scan average is used to estimate the profile adjustment for each scan.

A linear correction factor, based on end-scan interval time, is then used to modify

the adjusted profile and generate along scan profile deviations at the same times

as the ADP output samples.

Scan Line Corrector Data Processing generates cross scan profile deviations which

arise from the Scan Line Correction (SLC) profile and the cross-axis scan mirror profile.

The SLC position is reset by the end-scan Scan Angle Monitor (SAM) position and it

3-8
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initiates active scanning independent of the SAM start. Thus, mirror turnaround

variation effects the coordination between SI-G and the scan mirror. The nominal

SLC profile is, therefore, adjusted based upon mirror turnaround time. A linear

correction factor, based on end-scan interval time, is also applied to adjust the

cross-axis scan mirror profile. The composite adjusted cross-axis scan mirror and

SLC profiles are then used to generate cross axis profile deviations at the same times

as the ADP output samples.

PRECEDING PAGE SLC INK NOT FILM —"D

{
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PGO Processing and MSGO Processing have both compensated and time synchronized the

ephemeris, attitude deviation and scan profile data. The final function of Payload

Correction Processing is Systematic Correction Data (SGO) Generation. Figure 3-4

shows the SGO Generation Processing flow, An overview of SGO content is shown in

Figures 3-5, 6 and 7.

Image framing determines the WRS scene parameters, Scene center time, scene center

scan, and output coordinate system scene center X-shift are determined from World

Reference System path and row identification. The output projection scene center

location is always 00, NO with output grid points spaced every 28.5 meters in

X and Y.

The benchmark matrix calculation generates a grid of geometric distortion informa-

tion for each output map projection, Figure 3-3 illustrates the benchmark matrix

concept. This Figure shows an example of the optical axis path on a portion of the

X,Y output coordinate system. The circles along the optical axis path represent

sample times (ovary 9.611 microseconds) of odd numbered high resolution band

detectors. The i value is the sample number relative to scan start, The benchmark

value, Pp, indicates the fractional sample number and the benchmark value, YO,

indicates the output projection Y coordinate where the optical axis path crosses a

specific output projection X coordinate ( X a 43.776 km for this example), The

computation is also performed for a point on the focal plane shifted a o 311.75

microradian cross-scan from the optical axis, These benchmark values are called

Pl and Yl ,

3-11
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There are 374 scans identified with each WRS scene. The first scan is always

a forward scan. The benchmarks are calculated at 4 pair of forward and reverse scans:

1 and 2, 125 and 126, 249 and 250, 373 and 374. For each scan, P O , Y O and P 1 9 Y1

values are determined for X coordinates: -102.144 km, -72.96 km, -43.776 km,

-14.592 km, 14.592 km, 43.776 km, 72.96 km, and 102.144 km.

Benchmark values can be determined for other scans of X-coordinates by interpolatiing

the benchmark matrix data. Actual scan times must be used during this interpolation

process.

The benchmark matricies are generated using WRS scene center parameters, map pro-

jections, TM alignment, smoothed ephemeris data, and scan start times for the

evaluated scans. The processing assumes that the attitude control maintains perfect

pointing of its controlled axis and that the scan mirrors have linear angular

motion with nominal active scan time. These assumptions are removed when high

frequency matricies are combined with the benchmark matricies.

High Frequency Matricies combine the ADP altitude deviation data and the Mirror

Scan deviation data. There are two high frequency matricies: along scan and cross

scan. The along-scan High Frequency Matrix has 35 data values with 0.002 second

spacing for each of the 374 scans comprising a WRS scene. These high frequency values

are created by summing the scan mirror deviations and the ADP roll data. Figure 3-9

illustrates which high frequency values are used for a given scan. For each scan,

35 high frequency values (0.070 seconds) are supplied starting with two values

preceeding the scan start time. This allows the high frequency data to be inter-

polated to the scan start time. With two high frequency samples also needed for

end scan time interpolation, the 35 values guarantees 0.066 seconds of usable data

during an active scan.
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The Cross Scan High Frequency Matrix by combining cross scan mirror deviations

(CFS ), pitch (@pitch ) and yaw ( 9yaw ) attitude deviations:

9 HF - `̂ E - @pitch•cos9 - 9
yaw •SINS

where 9 is the scan mirror point angle relative to mid-scan. The matrix has 35

entries, evaluated every 0.002 sec, for each of the 374 scans comprising the WRS

scene. The selection of the 35 points is performed analogously to

the Along Scan High Frequency Matrix.

Detector focal plane location parameters define the along scan and cross scan off-

axis location of the detector elements, These parameters include the effective geo-

metric error due to TM timing delays. These data items are fixed in a static data

base and include the nominal point vector scan rate across the output projection,

nominal along scan focal plane band locations, along scan focal plane detector loca-

tions, nominal cross scan focal plane band location and the cross scan focal plane

detector spacing.

The Data Formatter-Processor (DFP) performs the function of nominally aligning odd-

even detectors and spectral bands arrays within a scan. This operation is performed

on an integer detector sample basis while the TM archive imagery is being formatted.

The DFP odd detector shifts indicate the magnitude of this shift for each scan

direction.

An example of SCD usage is given in Appendix A.
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3.2 Control Point Processing

Control point processing estimates the low frequency errors due to undertainties

in the input data that was used to generate the SCD. Measurements for estimating

the SCD errors are provided by control point mislocations in the imagery generated

by resampling TM data using the SCD.

The SCD geometric errors fall into two broad categories: (1) High frequency errors

and (2) Bias and drift errors. High frequency errors cannot be removed using

control points. These errors are principally caused by:

0 High frequency (greater than 0.01 Hz) attitude deviation measurement and

processing errors

• TM scan repeatability errors

• Computational and linearization errors made in generating and using SCD

The effect of bias and drift errors can be substantially reduced through control

point processing. These errors are caused by data uncertainties in:

i Ephemeris

e Absolute time

o Low frequency attitude

• TM alignment

The basic approach used in estimating these errors is to model their variation over

time and then use control point mislocation measurements to estimate state variable

parameters of these models. In this manner, significant reduction to the number of

control points needed can be achieved especially when a group of consecutively

imaged scenes are processed. This approach also provides reduced sensitivity to

control point location distribution.
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Information from regions with large numbers of control points can be propagated

to image regions with few control points.

Drift and Bias Errors -in SCD

The spacecraft ephemeris data has been smoothed with a J2 orbit model during

Payload Correctin Processing. This process does not significantly increase the

ephemeris uncertainty described in Section 2.1. It does provide a smoothed analytic

ephemeris with known error dynamics with respect to true ephemeris. Thus, dynamic

equations can be written defining ephemeris error propagation in time.

The relative timing between scan data and attitude deviation data is tightly controlled

by the spacecraft oscillator. However, absolute time errors effectively create

additional uncertainty in ephemeris, especially in the rapidly changing along track

component. Absolute time errors present no additional processing complexity over

those of the ephemeris uncertainty.

The spacecraft attitude control system has an inertial attitude uncertainty (0.01

degrees (1a)) due to star tracker uncertainty, star tracker misalignment, non-linear

gyro drift and ephemeris uncertainty. The gyros measure any attitude deviations

below 2 Hz and attitude control stability is not a significant factor. The

dynamics of the pointing uncertainty are well understood a. r 6 can be accurately

modeled as shown in Figure 2-5.

The alignment between the TM and the Attitude Control Systems reference axis is

uncertain due to alignment measurement error, differing structural temperatures at

time of alignment measurement and during orbital conditions, reassembly of the
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Multimission Spacecraft and Instrument Module at the launch site, and structural stresses

during launch, ':n addition to-this unknown alignment bias, structural temperature

variation from cyclic operation of spacecraft subsystems will cause the alignment to

vary over time. A good characterization of dynamic alignment is difficult to obtain.

The system level design approach has been to estimate alignment effects durin q control

point processin q . The processing has been narametricall .v exercised with flexible

correlated noise models such as that shown in Fi gure 2-6.
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Landsat-D Contr^1 Point Concept

The Landsat-D concept underlying the use of control points is shown in Figure 3-10.

The Landsat spacecraft is maintained in an orbit which generates a repeatable ground

track. An orbital ground track is repeated every 16 days. Each time a World

Reference System scene is imaged, the output product should be temporally registered

to previous output products.

If Systematic Correction Data were used to generate output products, the resulting

imagery would be internally consistent (with the exception of high frequency and

drift errors),) but would exhibit large offsets when compared temporally. Control

points are used 'Co' 	 establish temporal registration by estimating the spacecraft Errors

(ephemeris, time, low frequency attitude and alignment errors) needed to force each

overflight to register with the reference interval imagery.

In order to establish a Geodetic basis for output products, the reference interval

is first rectified to a geodetic reference. Landsat-D uses available maps (called

Standard Maps) as the geodetic reference. This rectification is accomplished during

a Control Point Library Build process. The reference interval imagery is corrected

using SCD's. Then mislocations between the rerrected reference interval and geodetic

control point locations from the Standard Maps are used to estimate the spacecraft

error" All Landsat-D TM processing is performed using a standard geoid. Thus,

Geodetic Control point information from the Standard Maps are converted to latitude,

longitude and elevation relative to the standard geoid. The elevation is needed so

that spacecraft errors can be properly estimated. The spacecraft error effects are

removed from the benchmark matrices of the SCD's creating Geodetic Correction Data

(GCD). Although the elevations of Geodetic Control points were used in estimating

spacecraft errors, during resampling it is assumed that all TM detector samples fall

on the standard geoid and earth topographical effects are not considered.
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The control point library for the reference interval can now be constructed. It

consists of registration control point chips which are 32 pixel by 32 line sections

of SCD corrected reference interval imagery. At a defined location on the control

point chip, the latitude and longitude and elevation -r: r efined relative to the

standard geoid. The elevation information is derived from the standard maps and the

latitude and longitude are derived using the GCD's for the reference interval. These

registration control points are used to determine the mislocations between the reference

interval and all subsequent passes over the reference interval.

Control Point Processing Flow

An overview of the Control Point Processing Flow is shown in Figure 3-11. Payload

Correction Processing has generated a set of SCD's for scenes comprising the

interval to be processed. The SCD alonq with the control point latitude, longitude and

elevation information from the control point library are used to determine the expected

control point location in the unprocessed TM imagery. Control point search neighbor-

hoods are then extracted from the unprocessed imagery. The extracted neighborhood is

sufficiently large to generate a 128 pixel by 256 line section of product imagery which

is centered on the expected control point location. With this sizing, the 32 pixel

X 32 line control point chip can be found in the control point neighborhood even for

three sigmas ephemeris, time, attitude, and alignment errors. The extracted search

neighborhood "magery is first radiometrically corrected using look-up tables (RLUT)

and then geometrically corrected using the SCD.

The resultant control point search neighborhood is then digitally correlated with the

corresponding control point chip from the control point library. This correlation

involves gradient enhancement of edge features in both the control point chip and

neighborhood to improve correlation success over time; a rejection ctriteria is

applied which provides for correlation peak and surrounding correlation value

examination; and a subpixel location routine is applied to accepted control points.

To meet specified temporal registration performance, the control point location procedure
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must be capable of finding chip to neighborhood match points with an errors of less

than 0.1 pixel (la).

Next, the control point mislocation is determined, This is the errc,r on the output

projection between the expected control point location (determined from the

latitude, longitude and elevation) and the actual observed control point location in the

SCD processed control point neighborhood,

The Geodetic Error Determinator (GED) is a set of processing software which uses the

control point mislocation information to update the SCD's in the interval, GED

processing has three basic steps: Filtering, smoothing, SCD to GCD conversion.

During filtering, the mislocation results are used to estimate state variables of a

spacecraft error model. The spacecraft error state variables are position error (x,y,z),

velocity error (x,y,z), attitude error (R,P,Y) and attitude rate error (R,P,Y). After

simulation analysis, it was discovered that alignment and attitude errors could be

combined into a single set of 6 attitude variables. The filtering proceeds by propa-

gating the spacecraft error state to a control point time. The spacecraft state is

estimated as a weighted average of the state estimated using the mislocation information

and the propagated state. The smoother adjusts the spacecraft error state using the

control point information over the entire interval. The SCD to GCD conversion pro-

cessing applies the spacecraft error states to adjust the benchmark matrix values of

the SCD's. The adjustments remove the measured error effects from the SCD and the

result is called Geodetic Correction Data (GCD).

r
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As previously mentioned, the control point library build uses control point latitude,

longitude and elevation information derived from standard maps to correct the SCD's

of a reference interval. The mislocations between the map information and the

observed location on SCD processed TM imagery is used with the Geodetic Error

Determination Software to perform the GCD generation. Then 32 pixel by 32 line

control point chip image segments are extracted from the SCD corrected imagery. A

location within the chip is assigned a latitude and lon gitude on the standard

geoid using the GCD, and an elevation is assigned using the standard maps. The

chip and location information are stored into a control point library which is used

•4o process all subsequent passes over the reference interval.

3.3 Geometric Correction Processing

Geodetic Correction Data locates TM detector samples on the output projection system.

This information is used during Geometric Correction Processing to resample the detector

samples, placing them on the output grid locations as indicated in Figure 3-12.

An output scene may be generated using either of two resampling methods: Nearest

Neighbor and Cubic Convolution. Both resampling types are implemented in a two step

process which is illustrated for cubic convolution in Figure 3-13. This Figure

shows the resampling process without consideration of scan gap problems. First,

samples of a given detector (input pixels) are resampled to 	 output projection

column locations. This resampling occurs in one dimension along a line of detector

samples (called a scan line). Such resampled values are called hybrid pixels and the

process that generates the hybrid pixels is called x-resampling. Next, single dimension

resampling is performed along each output projection column using the hybrid pixels.

This is called y-resampling and the result is a resampled value called an output

pixel. Cubic convolution uses four pixels in the resampling process. The applied

weights are those of a cubic spline and are shown in Figure 3-14. Nearest Neighbor inter-

polation chooses the closest pixel value for each resampling step.
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The TM scan gap error, described in Section 2.3, causes additional complexity

for the resampling processing. With MSS processing, acceptable geometric error

results from assuming that the sample spacing along a scan line and the spacing

between scan lines is equal over a limited region of imagery. With TM processing

the gap spacing must be considered. The system throughput requirements place severe

limitations on the resampling processing implementation. There are nearly 3 X 108

output pixels in a TM scene. The ground processing requirements translate 'to an

average processing rate of 750,000 pixels/second for resampling. Generation of

every pixel requires at least 8 integers multiplies and 6 adds when using cubic

convolution. To meet these high processing rates, a dedicated processor is

used to implement the arithmetic pipeline resampling procedure. The processor is

called a Geometric Correction Operator (GCO). Figure 3-15 defines the scan parameters

of gap size, gap skew and scan line skew. These parameters specify the geometry

between scans an between a scan and the output grid. The GCO generates output segments

of 128 pixels (detector samples) by approximately 17 lines and Table 3-1 shows the GCO

capability and worst case conditions for the scan parameters.

When cubic convolution resampling is used, the GCO implements a three-pass

process to resample the gap region between two scans. The first pass is called

x-resampling. It generates hybrid pixels aligned along output grid columns by

using cubic convolution resampling along input lines as previously described.

3-32



W
cn
Iuj

z

LO z

M

W

C7 uj
H
LA-

CL

(Q

a

W
Z

J cZ FE

V O

Nx
u
x

^	 Q
x

II

x
e

U- W
O J

Q	
ZO Q
	

Z ^-

y Z	 Q C)	 N Z

0 

co

0 
OX

r	 r	 J LU ^—	 N
ZW	 W	 Q	 tJJ	 W

Z Z w W Z Z
J J 0^ J J

X	 I	 CA
II	 ^1	 a
x	 4

I

O
V,	 II
Z

z 
U
Q'
	 C7

Ja

x	
mow,	

V
It	 p.
x	 d

C7

U.1
Z O
.^ Z

d Q
w CO

ui

O Z
J

} r

us
^CZ Z

~
iii 

-v J z

_H Q - t,7

J d' O x y
Q W W W F°

m^
Z ti a

H'
CL

Q
fL

W
.:

r

G
ILL

O
LU

P r-

LrL X
X

N
I

—co

Z N G x
cn 

Q Q
fL

II
C7

U^ y O
W

cn CE

d  0
it w

W
U.

W
04
V-

Q W
N

W Z J
II

+
s"•U' W

Z^ y
J

z X
it

Q = a. a Q

3-33

E



t^:'r^^'^6^SE^L PAGE

A tTYOF POOR Q

f

Hs

m

r

W
x

M

Q
N

0
N

Q

Q G. Lo cy N
U Z
O =v

W ne

Q

y

®

..1

X
M.

Z

O
N

O
O

d'
G

O
N

O
e-^

O
O

?y v

N
O

J JW W
_X x

^^Da ^ a
F- Lu F-

® JZO
^" VN uj N z N

^e I- B V-

co w = CJ =
M O. LL! cn LU

C7 C' O F-

domm

4
V
C^

J
WeCf
EL

® 
0.

zr00
e '" ;

M
W J

LC..az,

®_

U

uj

2
0
LU
(D

G	 3-34

3



Figure 3-16 shows the hybrid pixel locations for two scans after x-resampling. The

generation of samples at grid locations requires the use of four unevenly spaced

hybrid pixels between lines 15 and 18. The resampling weights to be applied in this

gap region are a function of two parameters: the distance between the grid point and

scan line 16 and the gap size. Note that the line spacing within scan N and

scan N+l may be assumed equal.

When performing high speed resampling, it is necessary to use precomputed sets of

four weights. This avoids the significant overhead of generating the weights during

processing. The weight sets are calculated every 1/32 pixel. In order to reduce the

number of weight sets and to simplify the processing, an intermediate resampling

pass called sweep extension (or E-resampling) is used. Starting with the hybrid pixels

from scans N and N+1, scan N is extended (lines 17E, 18E, etc.) using a spline inter-

polation along output columns as shown in Figure 3-16. This extension continues

until output grid pixels can be generated using cubic convolution with the hybrid pixels

of scan N+1 alone. The extension pass requires weight sets which are a

function of one parameter, the gap size, because the extension lines are spaced an

integer number of line spacings below line 16.

The last resampling pass (y-resampling) is then performed after sweep extension.

The output grid pixels can be generated using cubic convolution along the output

grid columns as with the zero gap case. The hybrid pixels from scan N and the

extension pixels are used in this pass.

The gap region between scans N+1 and N+2 are similarly processed by extending scan N+1

and performing y-resampling starting from the point at which processing of scan N was

terminated.
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By appropriately defined	 weight sets, both positive and negative gaps can be

accommodated using sweep extension. This approach degenerates into standard cubic

convolution when the gap size is zero. The sweep extension resampling weights are also

cubic spline interpolations with weights defined as shown in Figure 3-17.
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APPENDIX A

SEGMENT DATA CALCULATION USING SCD

This Appendix describes how Systematic Correction Data is combined to generate a

set of benchmark type data called segment data. Segment data combines all infor-

mation in the SCD to determine the location of each TM detector sample on a dense

nrid system.

Output Data (single map projection, single scene)

The output data of the segment calculation consists of sample times (input pixel

numbers) pm,n (i,j) and output projection y-coordinates y m,n (i,j) for detector numbers:

n = 1, 2,...,16 (or 4 for Band 6)

at the GCO segment edge defined by:

i = 1, 2,..., 57 = x-coordinate index

j = 1, 2,..., 374 = scan number

m = 1, 2,..., 7	 = band number.

The x-coordinate index corresponds to:

X = 128 (28.5)[-28 + (i-1)] meters.

It has been assumed that the individual detectors in each band's detector array are

uniformly spaced on the focal plane in the cross-scan (along-track) direction. This

allows reducing the display y-coordinate data for Band m to two values: ym,l(i,j),

the y-coordinate for Detector 1, and Aym (i,j), the y-coordinate spacing between adjacent

detectors.

Note that the number of scans in the SCD (374) is 16 scans more than will nomin-ally

fill the 170 km high output scene. The SCD "scene" is larger to enable geometric

correction of 256 X 256 pixel neighborhoods of geodetic control points near the top

A-1



and/or bottom edges of the output scene. Also, since the total along-track error is

expected to be no greater than +3 km, the same SCD can be updated to geodetic correc-

tion data (GCD) following geodetic correction processing by simply adjusting the

benchmark matrices.

Procedure

1. Interpolate sparse matrices - For ea:h combination of i and j, interpolate

between the appropriate benchmark matrix rows to compute the intermediate

benchmarks

for:	 po (' , j ), Yo ( i , j ), p l ( i , j ), Y10,j)•

i = 1, 2,..., 57 = x-coordinate index

j = 1, 2,..., 374 = scan number

In the three mchmark matrix rows having the same scan dire-tion and

surrounding the j th scan, first interpolate horizontally to x-coordinate index

i using 4-point cubic convolution. Then interpolate 
p o , yo' p l , 

y1 vertically

to scan start time T(j) using 3-point quadratic interpolation to determine the

intermediate benchmarks at OX.

2. Sample time (pixel) adjustments (for each m,n)

A. Nominal band along-scar,

At 
	 = -oelm)/eeff

B. HF along-scan

At 
	 = -6HF(t2)/eeff

where:

t2	 = to + At  + At  (t2 =t
0
+ot1 initially, then iterated)

to 	 = p0(i,j)Tp

T 
	 = pixel sample period = 9.611 l,sec

e HF (t2 ) = value [rad] interpolated from HF along-scan array corresponding

to time t2

OJ^OL^.e:^L ^..°dCp Y Ŝ.I.N^ 1Z3

OF POOR QUALITY
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C. HF cross-scan

At 	 = -u(i,j) °HF(t2)/eeff(k)

where:

U(i,j)	 = -[ p l ( i , j ) - pd(i,j)]laj

Q l	= cross-scan angle used to compute p l [rad]

aHF (t2 ) = value [rad] interpolated from HF cross-scan array corresponding

to time t2 (from step B)

D. Detector along-scan

At 
	 = -Se(m,n,k)/eeff(k)

E. Detector cross-scan

At 	 = -u(i,j)Sa(m,n)

where

Sa(m,n)	 = 6a(m) + [n - (NDET) + 1)/2] - da(m)

NDET	 = 16 (= 4 for Band 6)

Finally, the detector sample time (input pixel) for Detector n, Band m is:

5

pm,n (i, j ) = po (i, j ) + E	 oti/Tp
i=1

3. Y-coordinate adjustments (for each m,n)

High-frequency cross-scan

oyl	 = S(i, j ) ^HF(t2)

where

SOX	 = [yl (i, j ) - yo(i,j)]/61

B. Detector cross-scan

oY2	 = S(i,j)Sa(m,n)

A-3
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The display y-coordinate for Detector n, Band m is then:

Ym,n (i, j ) = Yo ( i , j ) + AY1 + AY2

More specifically, the Detector 1 y-coordinate ym,l (i,j) and the y-coordiante spacing

are required:

AyM ( i,j) = Ym , n+l (i,j ) - Ym,n (i,j) = S(i,j) - da(m)

A-4
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