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operations, e.=. across (111) followed by a mirror operation across

(111) are classified as second order twins etc.
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Many of the concepts required to analyse the atomic structure of

second and third order twin boundaries in silicon were introduced by
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Hornstra in his papers on the structure of dislocations (1) and <110>

tilt boundaries (2) in the diamond lattic ,3, Then modelling a lattice

defect. Hornstra's criterion was to preserve tetrahedral bending where

possible, thereby minimizing the number of broken bonds. 	 Radial

distribution functions of amorphous silicon show that the Si-Si bonds

vary in length by less than 1% from those in crystalline silicon, but

that the bond angles can fluctuate by up to 13 0 (3). Therefore, an

appraach that minimizes the number of broken bonds 'and keeps the

interatomic distances essentially fixed, whilst allowing bond angle

♦ariation, should. roduce relatiyel	 ow en	 coafigur	 oa

a	 iad`btll modals of firi -: aad seven membered rings of silicon atoms can

be constructed without large strains.,and,Hornstra (1) proposed that a

symmetrical-combination of one five and ons. ; seven membered ring-vouldw

i ^ ^ torn • coro^.	 (,?y^, ,]X10 ,djaa,¢iL flpeatApaaia he, .dismond. ,l attic e*r

figure 1. Tilt boundaries with a <110 > tilt axis and -a 	 0 grain't.^^... 	 ,-t^..,.:*-•. •.trw.i . ...	 ^,ert'-	 f

'	 boundary plane in the median lattice (4) could be modelled as an

arr otngement of edge dislocations in combination with chair and boat

shaped six membered rings (2). The Si-Si bonds in chair shaped rings

•^	 are arranged in stn g	 ggored configurations, whereas the b^it^ ` shaped

rings contain two pairs of eclipsed bonds. Hornstra considered <1M

k.
y	 tilt boundaries where the rotation angle A corresponded to a high

c
coincidence (jow .$) s►isossatatioa. aa^dodelled each . bouada	 as a ^•

combination of a small number of identical structural units. 	 is the

ratio of atom sites to coincidence sites (5). 	 Hornstra's model for

the	 (331)8'-19, 26.53 0 boundary, figure 2,	 has	 the	 highest

misorientation angle that can be accommodated by discrete a/2<110>

edge dislocations.	 He developed two models for the (221) -9, 38.94`'

boundary, which Kohn (6) has termed a second order twin boundary. The

ML
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first' ;ef the models contains ;adjoining a/2<110 > edge dislocations

arranged in a zig—zag fashion, figure 3(a). The alternative model.

figure 3(b) consists of a regular array of .a<110> dislocations

created by interposing a six membered ring between the five and seven

ncabered rings of the a12<I10> dislocation structure. 	 Hornstra

stated, witiiout constructing a model, that the (552)E-27. 31.590

third order twin boundary-ioould be built up from elements of the E -19

structure and either of the two E .-9 structures. At that time (1958)

	

no experimental evidence was-available to decide which of the F -9 and
	

C  I

^,.

	

	 In this papot • the-.,Aodelo -ofOtrustra and ;their connection to the

repeating group descript ion -.n!?-fkq boundaries: • (7-10) are discussed:

o^^g os^„thy,Sg<Z poapdasygw,oantAi-wing,4mal6sig-xat .tN^,arrangementri;sa " .	 _

dislocations a constr.ucte	 A.Aft Ias ' 	is how t. ati4sad . models,ca^^i,iy,^.•

account for the contrast features observed in	 high	 resolution

transmission electron micrographs of second and third order twin

boundaries in silicon. The boundaries discussed are symmetric with a

"'(1101 tilt ' axis and a—'(110)`boundarj, plane in the iedian lattic'; ( the "^

,;y	 c	 median plane). The median lattice -, is identical' in structure and

M 	 halfway in orientationti betweenithe'crystal lattices either aide of the

m
boundary ,It., La. denoted,ib pthysab	 pt^,^^.	 ,;^	 p ►,+F - 1? ,t ^	 i'	 i!i$r

c

Experimental Detail:

Silicon ribbon was produced by chemical vapor deposition at a

temperature of 1100 0 C (11). The ribbons werf polycrystalline with a

predominantly <110> texture and an average grain size of about 1pm.

Page	 4
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TEM specimens were prepared by mechanically polishing the silicon to a

thickness	 of about 75Vm, followed by ion beam milling. 	 High

resolution electron microscopy observations were carried, out on a

Siemens Elmiskbp 102 operating at an accelerating voltage of 125kV.

The <110) tilt boundaries were viewed erd-on. with the incident beam

parallel to the tilt axis. 	 Lattice images were recorded with the

inner seven beams from the <110 > zone of each crystal included in the

objective aperture.

Results

F;iii
re igri 4 is a littice fringe image of a (1101 tiht boundary

imaged parallel to the tilt axis. The boundary exhibits, facsting px;*,

j.	 :i tib scale;of? about ,10nm and`also appears faceted at the atomicU eve1. The

J
_	 q	 tarysta ]^lography^.3s showaa►waa^.f igure,•4^witlit subscripts.A,,aWndica,ter•„.hea	 s^

.1
W,hi4^,..plane or vector refers. The long facet marked Z is

^Cc'A.tii'rt^... • J7•x l's't1i
a (552) 1 /(551) 2 symmetric third order twin boundary, median plane

(110). This plane contains the second highest density of coincidence

sites for the C-27 misorientation. The plane with the highest density

of c̀oTncidence sitss -for the X-27 misorientation is .(115) 1 (median -

plane (001)) which is orthogonal to the plane of the observed

boundary. In the boundary shown in figure 4, a pattern of ,1our large

whita' dots repeats;	 ery 2.80na.- A line can; . ba.draw ^thto	 tires•	 ^,	 ^.

whits-dots that is faceted on two planes, (111) 1 and (111) 2 , and thi

two white dots in each facet plane differ in size. The boundary

• • changes direction and character at Y, dissociating into a coherent

first order twin boundary (arrowed) and a symmetric second order

boundary marked Z. This dissociation has been discussed in an earlier

paper (12). The small triangular twinned region is indicated with the

Page	 5
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subscript 3
	

The second order boundary plane is (22I ) 3/(221)2,

(110) m, and this boundary contains a sig -rag arrangement of white dots

faceted on the"(11I ) 3 and ( 111) 2 planes ' vith a periodicity of 1.15nm.

^ 	 These local	 periodicities	 and	 symmetries	 can	 be	 determined

unambiguously since they are are independent of the imaging conditions

and transfer function of the microscope.

M

When odd numbered rings are joined symmetrically to form the

dislocation core shown in figure 1, the ends of the core, marked E.

-

II^" ! -	 ,}'rF^P•{•^if^^tl'R^ , 	 +;^.,T..it^ per	 t..	 ....^^	 ,r,; . t-.	 „	 ti'S;	 • r
togeferbnt mast'beroonneoted ' by two six-fold rugs as in furIS

formingga	 packed at aazimnii4!;.Aensity in the- •TS-19	 V

structure. As•piHornstra stated. "there are-.two' . logical: options when

^ ^t^ t̂.ea+p^pg*t„^,odelha^bonndaryR>rith^.•a^highe rr aim or ie atat_^o n pan g i es^thanaw^waxl^r:A pl^^c.: et„

+M^	 .iir+ ►"w, :i2. r kn', illustrated vith,,^	 del^A f igur,.U, 3,^;^ "dQ
i

(b). The first model, figure 3(a), consists of two sets of a/211101

edge dislocations arranged in a rig -rag fashion and labelled B and C
a

in the diagram. In the alternative model, figure 3(b), a dislocation

with Burgers ieotor a11101 has been o -riatid by Interposing a•-iii F	 ^^

t.	 membered ring :between thi` Srlive and" ''sevon membered ones, forming,a

?	 repeating unit labelled D,^. Note that this sir membered ring is in th^i

boat ha d oaf garatin trhich 	 enna hgrea	 rat' ord	 Lein.

boundaries. This model can be therefore be interpreted as an array of

• edge dislocations in a coherent first order twin boundary. The BC

rt

k	 model, figure 3(a), can also be visualised in the same way, although

it is not as obvious in this case. This point will be discussed in

more detail below.

Page	 6
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The zig -zag appearance of the Z -9 boundary in figure 4 indicates

that the BC sequence of figure 3(a) is more likely. This conclusion

is in agreement with the findings of Yrivanek at al ( 13), Papon at al

(14) and Bourret at al (15) with regard to 2-9 boundaries in

germanium, although Bourret suggests that segregation of impurities to

the interface may cause variations in the structure. In addition, the

structure in figure 3(a) is more plausible from simple energetic

considerations since the elastic energy per unit area of a symmetric

tilt boundary is at a minimum when the e .ids of the extra half planes
b^

in spaeiAS as Mle as possible. ' Examlaation of figures 3(8) and '^:(1^^`

shows 4that this :oriterion favors the BC • sequence.

a_4w274agodelrcanabe:.constructed.using-either- an ABAC . structuraLt	 .MWM1N 04r.

unit comb nation. ,.#_ figure 5(a), :o	 a SAD_ , combinat}oa. figars ^Sb.
e	 ^,b	 •fi	 r	 •+',. ;.t.a6 yt r»	 >. ar,: 	` 

The micrograph of the Z =27 boundary in figure 4, which is reproduced

at a higher magnification in figure 6(a), has the same repeat pattern

as the faceted ABAC structure, and there is good correlation between

lire ^n6: a-th̀r oadel ^n'd 1;;Fso dots is the • image. ­'ft' dotted-11 - _^ . --w

j(	 in figure 5(a) indicates (111)i and (111) 2 facets. then figures 5(a)

and 6(a) art superimposed, figure 6(b), there is good correlation

betweeaKope channels, and white-dota,,,suggesting thatrthe imag . 	.a	 {
rW .V

accurate representation of the boundary structure, although this

cannot be confirmed without multislice calculations.

Discussion

Several authors (Ashby. Spaepen, and Williams (7); Pond, Smith,

Page	 7



Final Report	 ORIGINAL PAC
OF POOR QUALIFY

and Vitek (8),	 Sutton and Vitek (9), Frost,Spaepen and Ashby (10))

have described the structure of grain boundaries as a packing of a

&moll number of (polyhedral) Bernal type atomic groups. This approach

has largely been based on hard sphare modelling or computer simulated

i	 itructures of grain boundaries in fcc 	 metals	 where	 spherical
h

potentials and central forces are assumed. 	 There have been few

attempts to.extend this w3rk to tetrahedrally coordinated materials

w4th directional bonding, presumably due to the complexities of

dealing with distorted sp 3 _bonds. However, the concept of building up

particul arly ivitted to covalent structures. A system for modelling

the structures - of symmetric (110 tilt boundaries with tilt angles :0&_

is the range;0^fto 70.53° is presented.

«tr"^Pd^i'Yi+yw:^[^4,aur+..t!^«w	 c+S:,	 ,.r,.	 , *lt¢awoA _	 f11iF^1t1i+t^l^R1 + -. •ti +*ii^Wlll^

Models f. .or 0 up to 38.940'

Symmetric boundaries with (110) median planes and values of 0 up

to	 26.53 0 	are	 modelled	 as	 an array	 of discrete	 a/2[1101	 edge

dislocations,	 snit A.	 Misorientations between 26.53 0 and 38.940 	are

+r	 modelled by'7combinter'sMiCetural units	 A.`B,"and—C'ia'k`cfatematio

rr	 manner, so that they are as:evenly distributed as possible along	 the

boundary.	 This	 is	 equivalent	 to adjusting the spacing between the

dislocations . .so - that	 theavlrag^, spao ng	 is ,isrgt	 b7^	 err

a/2[110] M sin (0/2)), and the variance of the spacing is a minimum.

To preserve the symmetric nature of the boundary, the units B and C

must occur alternately along the boundary. For example, a boundary

r	 whose	 repeating unit is AABAAC ( a combination of -T -19 and 7-27)	 has a

ff	 rotation angle
h^

of 29 . 70° corresponding to Z-137 ,  whereas a sequence of

ABC or ABCACB (F-27 and Z-9) gives a misorientation of 33.72 0 (E-107).

Page	 8
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C
A simple method of determining the	 and 0 values for a particular

combination is given. The vector d joining the two ends of each

structural unit is determi +±ed using a basis in which ( 1,0)-x/2[110]2

and (0,1) -a[001 ] 2 :	 thus for A d-1 / 2(1,3) and for BC d-(1,2).	 The

repeat vector ( r,$) (r and s integers) for the complete sequence of

structural units making up the boundary is calculate ,l and the value of

Via found from I-(r2 + 2s2 ) / w where w is 1 if r is odd, otherwise w

is 2. The misorientation angle is found from tan(0 / 2)-r/ 2s. The A.B

and C units do not differ in their intrinsic structure. but rather in

the wa that the are oined together and t e loc 	 oaa

	

POW im ose on the lattice'. ~., The local Burgers vectors (16) of units A,B

aad•C are a/2[110] mp _a/2[110] 1 and a/2[110] 2 respectively.	 These

local Burgers vectors can be determined by considering which crystal

costa ns the Qve nd eve oembe ;sdv;atlas,rings Kwhia ga^uasti,tntf .f, thg ti:,.*r^r	 •^	 1. !6{"^Y^a+^^.Mr :75 { :	 9T.1i •`iK...	 yn

dislocation core.	 The B and C unite iatrodace, , tsaaslations,.4^ .one

	

^,k, ^!ar^1.- 	 ►	 ,^ „	 '{M.	 .Ji d ^"	 ! 1 t +` .	 ..... -4 A.x	 .r_	 ..	 y ..	 . ^ . r .	 y-.IRk{la! rt! t

crystal relative to the other at the boundary equal to their local

Burgers vectors projected onto the boundary plane. 	 For a 1 -27

u
boandary, these translations are equal and opposite, as is apparent in

figure S(a) where nearest neighbour A units have undergone equal but

opposite shears.	 To minimise the energy of this alternating shear

field, there is-a rigid body translation of one crystal relative to

the other, away from the coincidence irsition, ,of half the-shift

produced by a B ( or C) unit. The shift produced by each B unit in the

3-27 structure is a/27[113] 1 , which is a DSC vector of the 31.39 0 -27

misorientation. The 1-27 boundary plane contains screw axes half way

between each (1I0) atomic plane. The X-9 boundary plane, figure 3(a),

is a glide plane.	 Other boundaries with these symmetries (e.g.

AABAAC. 7'-137 has glide symmetry) can be analyzed in the same way.

Page	 9
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Less symmetric configurations (e.g.	 ABC. F -107) have more complex

short range stress fields that are beyond the scope of the present

paper.

Models for "O between 38,94 0 and 70,530

The extensioa of the modelling system up to 0-70.53 0 , the first

order twin orientation, is achieved by introducing the boat shaped six

membered ring, * T. into the .T -9 structure of figure 3(a). This

structure consists of alternating five and soven membered rings. 	 The

IIa^ZtlOa t►et eo La0"64	s 
104

a	 41

eonfigurations;>oae symmetriealiand the other asymmetrical. Only the

.	 "atrical_configuration can accommodate the T unit whilst still

maintaining -tetrahedral bonding. Theestructural model in figure 7 is

^^, ; r s,4„w ,,, xyy^ i„d,j,la^ ne AT,,^,,^i.iaaaaah^ symmo tr anal . po s i t i o a: sThiss#me-+^r*

structure con"ins two t^ es of five and„,seven 	 membered sing	 ,r
..'Aopm' Xw► r+.►»p:. ^.7ib 440V: TI:- ”- py^+9«..Mils. .. 740-0 ^r.^•+.

combinations, labelled G and H. which differ from units B and C. As

more T units are added to the structure 7. the boundary misorientation

u
increases. Then the spacing of the G and H units becomes large, the

boundary-can"-be"'Interp=ete-l-ai'lsela-fid-disl'ooa'tioas (0 and -H unit'981-

x	 in a coherent first order twin boundary. 	 Therefore, throughout the
4-

n i&orientation7z an &a from 39 . 9401 to i !0.53 0 , symmetric boundaries are

-nodelled,asing*0 Haad T	 nctara,	 "•t^ibnted evenly a]^ong.T^he.

:o*^dary.

f

The	 vectors of tha 7 and GH units ire (1 / 2,1/2) and (1,2)

re apective1y. The G THT sequence of figure 7 has a repeat vector of

(2.3) and the model is therefore a (332 ) F -11. 50,48 0 boundary.	 The

density of G and H units is a maximum for thef - 9 structure and is

Page	 10
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zero at the :E -3 misorientation. Therefore, the reference lattice is

twinned and the median plane is (111). Burgers circuits of the G and

H units transferred to the twinned .tructure show that the Burgers

vectors are a/2[II0] 1 (G) and a/2[11 0 ] 2 (H).	 The G and H Burgers

vectors are not normal to the common (111) boundary plane. 	 However.

twinning transforms a/2[IZ0] 2 into a/6[114] l , making the sum of the G

and H Burger* vectors equal to 2a/3[TII]1, As with the B and C units,

	

K	 the dislocations G and H introduce translations, at the boundary,

equal to their Burgers vectors projected onto tht boundary plane.

These if is a 1 ^. r 3*	 #**tw"bf,'a ft' 1%WPW

alVernating shear field is apparent in figure 7 where neighbouring T

•	 units have undergone equal and opposite shears parallel' to the

boundary. The rigid body translation at the boundary which equalises

++ 1KT 
thv,,,; ^gg^^s,of,the T units. is a / 22[i131V 1r	f "^a DSC vector of tTii^=°1r

structure. _ Bond bending in the crystals, on either side of the

boundary can absorb the shear strains without large increases in the

energy of the structure. An alternative model for thew-11 boundary

proposed by Papon et al (10) has a repeat unit of GHTT. The T units

in	 this case are not sheared but an alternating tensile and

compressive stress field is established normal to the boundary, due to

the uneven spacing of the terminating- planes of atoms. 	 For this

reason it is suggested that the GHTT,!j.structure may have"10higher

energy than the structure in f igure 7.

In an exact analogy with the favored boundary model of Sutton and

Vitek (13), small deviations from low coincidence values of 0 are

accommodated by varying the spacing of the primacy dislocation by

inserting foreign structural units at regular intervals.	 Any

Page	 11
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departure from perfect regularity in the spacing of an array of

primary dislocations can be	 analysed	 in	 terms	 of	 secondary

dislocations. The Burgers vector of a secondary dislocation is the

relative displacement of the two crystals due to a change in the

ipacing of the primary dislocations. 	 Using an analysis similar to

that of Bollmann (5). the matrix A describes the rotation of lattice 1

into lattice 2, and the displacement matrix T is given by T- (I-A-1).

If the vector A is the change in the spacing of the primary

dislocations, expressed in lattice 2. the Burgers - actor of the

of a	 repeating	 block	 of fifteen A units. one A unit.	 fifteen more A

units and a C unit has a repeat vector of ( 16.47)	 and a	 deviation of

.344	 from thef -19 misorientation.	 Each nforeignn structural unit is

_ &*,,,,aasociatsd . with . . awgrain boundary dislocation whose .Burgers vector is

&/19 [3311 
1 . .%-.	 ^'	 r

Recent work on tilt boundaries in hard sphere fcc crystals (15)

has snuwn that some 93mme *: le boundaries, ( particularly those with

relatively long repeat lengths) could be constructed more densely when

faceted, These boundaries usually had a dense plane in one crystal

nearly parallel to a different dense plane in the other. In the cat,

of the 1 -27 (552) bonn o!ary it was found.. that faceting on	 to

(111) 1/( 110) 2 and (111 ) 2/(110 ) 1 planes reduced the excess volume by

281L. On each facet. the (111) and (110) planes were within 3.7 0 of

being parallel.	 The boundary Lintained equal areas of (110) 1 and

(110) 2 Flanes, consistent with a (110) median plane. This faceting is

identical to that experimentally observed in figure 4.

Page	 12
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Conclusions

! ':'

M

Symmetric secocd and third order twin boundaries in silicon havo

been observed- using high resolution 111f. Micrographs of a symmetric

{221) 41-9 borndary exhibited contrast features consistent with the

zig-zag dislap - t itu structure proposed by Hornstra (2) and similar to

those reported in germanium (13-15). A modal 'or a symmetric (552)

-27 bounda:,7 was constructed and sound to have the some periodicity

and faceted structure as an experimentallf observed Z a:7 boundary.	 A

system for modelling the structure of < 10 tilt bouada : s,
l^li^l .	 1l1t• sM'±"1^1^ MOWS
tetrahedrally coordinated materials was developed based on the early

work of Ho^-nstra (1,2).	 Boundaries. with (110) median planes and

misorientations up to 70.53 0 were constructed using a repeating series

of simple struc Ural units. ^ 	 IWIN'b"	 ,.	 sw+narwyw.a. +.

R	 -

A c kn ot4sdis m-.11`1^_

Specimens wero supplied by JPL. Central facilities operated ty

the Materials Science Center at Cornell were used to carry out part of

this research.

/I
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Fig.l Core structure of a a / 2 <110) edge dislocation in the diamoud

lattice as proposed by Hornstra.	 The core configuration is

symmetric and consists of one 5 and one 7 membered ring.

Fig.2 Model of L (331).1;-19, 26.33 degree tilt boundary according to

Hornstra. This boundary has the highest misorientation that

can be accomodated by a repetitive pattern of the edge
p^^.,;,.^,^+r-,x.;	 i:;r,►:=.1r"	 +^';^s^a^lfltpldliiK^ls:^► 	.-1^!

dislocations shown in Fig. 1

Fig.3a First (of two alternative) models proposed by Hornstra for the

structure of the (221), 1,' =9, 38.94 degree boundary,. 	 The

boundary contains a/2 <110 edge dislocation=_ arranged in a

1	 zig—zag pattern.

Fig.3b Second (of two alternative) models proposed by Hornstra for the

i
structure of the ( 221), X -9, 38.94 degree bounds	 This

boundary	consists of a symmetric arrangement of 	 a<110)

dislocations.

l	
Fig.4 Lattice fringe image of a 110 tilt boundary ( incident electron

I

beam parallel to tilt axis) at a magnifiaction of x 6 500 000.

The section denoted by Z is a (552 )/( 552) symmetric third order

twin boundary with a median boundary plane ( 110). The boundary

dissociates at Y into a coherent first order twin boundary and

a • symmetric second order boundary. denoted by Z.
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Fig.Sa Schematic representation of the T-27 boundary, constructed of

with a repeating group unit ABAC. For details see text.

Fig.Sb Alternative version of the Z -27 boundary, consisting of a

repealing group unit AAB. For details see text.

Fig.6a Experimental micrograph of 1-27 boundary. 	 Magnification	 r	 30

000 000.

JUL Fig 6b Superposition of the e x erental micrograph of	 Fi .	 6a	 and
^1^11^^,WFbPr±^itf^Mll^liellRlt^$'t'.i:^^ '̂ ^i,Risi	 Ir"'	 WM^ +r't.•

the	 schematic	 representation	 of	 the	 boundary with	 ABAC

repeating,-groups	 (Fig.	 Sa).

h

Fig.7 Schematic representation of,613321 	 Z -11.	 50.48 degree	 tiltl,.#

boundary consisting of GTIIT repeating group unit. The boundary

contains a	 rigid body translation a/22(113).	 For more details

see text.

n
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