General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

a
.
_— -
> .
-
o
..
R
(
-~
.-
T
:
’ -
2 ._ '.‘
.1{-4
".‘-.- .
»
&\ ‘
- ;" 0 e
s %'-

(NASA-TN-85302)

DESIGN LANGUAGE:

MULTI-LEVEL EXPRESSION
EEQUIREMENT LEVEL (MEJL-R)

SYSTEM EVALUATION (NASA) 92 p HC AO5/8F 101

. I B
< <
% 1 .
.
L] ’ -
P & [.
0 . e
< S ’ :
bl 2
5 L e
>~ LS
RecEu ol _ .
.'- = = Ty
' -
A =
= <eallia .
& I —
= -2 # 2 & o Y
v . #
b Al
v \ e .
- . - st e v i .
i A]
'j. 35 ,
b
*
o . .
- b L i & i
" L L i) g
;% : = .
N . ‘).
1 y T N
.
.
& - s
3 - x |.’
<
. “-

CSCL V9B

G3/61

034459

N83-23045

Unclas

(RO, - -

T D EN SR SR D T el S W B S e e e ey e

SOFTWARE ENGINEERING LABORATORY SERIES SEL-80-002

MULTI-LEVEL EXPRESSION DESIGN
LANGUAGE—REQUIREMENT LEVEL
(MEDL-R) SYSTEM EVALUATION

National Aeronautics and
Space Administration

Goddard Space Flight Cen’er
Greenbelt Marylang 20771

-zawes S AT

I N I G AN IR G BT T B Y S SN O aEy BER e ey

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-
tion Goddard Space Flight Center (NASA/GSFC) and created for
the purpose of investigating the effectiveness of software
engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has
three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems Operation)
The goals of the SEL are (1) to understand the software de-
velopment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on

. this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software En-
gineering Laboratory Series, a continuing series ot reports
that includes this document. A version of this document was
also issued as Computer Sciences Cc¢rporation document
CsC/TM-80/6093,

The primary contributors to this document include

William Decker (Computer Sciences Corporation)
Charles Goorevich (Computer Sciences Corporation)

Other contributors include

Arthur Green (Computer Sciences Corporation)
Frank McGarry (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to
Frank E. McGarry
Code 582.1

NASA/GSFC
Greenbelt, Maryland 20771

ii

B

[T—

i

T cormmed

ey

£
i U SO [V

ORIGINAL PAGE 1S
OF POOR QUALITY

ABSTRACT

An evaluation of the Multi-Level Expression Design Language = -

Requirements Level (MEDL-R) system was conducted to determine
whether it would be of use in the Goddard Space Flight Center
Code 580 software development environment. The evaluation

is based upon a study of the MEDL-R concept of reguirement
languages, the functions performed by MEDL-R, and the MEDL-R
language syntax. Recommendations are made for changes to
MEDL-R that would make it useful in the Code 580 environment.
This document has been prepared in partial fulfillment of

the requirements of Task 990 of National Aeronautics and
Space Administration contract NAS 5-24300.

ik

b |

o

— |

b oo

| Sm——

ORIGINAL PAGE 1S
OF POOR QU

TABLE OF CONTENTS

Section 1l - Introduction to Requirements Language.

l.1 Goals in Using RALsS . . . e e e e e e

1.2

1.3

Use of RAL in Code 580 Environmcnt. e+ e o s

1.2.1 GSFC Code 580 Software Development
Environment, . . .

1.2.2 Criteria to be Applied to Evaluation
of MEDL-R in Code 580 Environment.

Examples of Different RALS.« .

1.3.1 PSL/PS2 Approach to Requlrements
Specification/Analysis

1.3.2 MEDL-R Approcach to Requzrements
Specification/Analysis

1.3.3 Comparison Summary . . . « « +« + « o

Section 2 - MEDL-R Analysis. « . B

2.1 Functional AnalysisS ¢ + o « 4« « o o @
2.1.1 Create Subsystem
2.1.2 Update Subsystem o .
2.1.3 Language Translator.
2.1.4 Query Subsystem. ¢ .o .
2.1.5 Analyzer Subsystem« « . .
2.1.6 Metric Subsystem e s e
2.1.7 Change System Name Subsvstan e e e e

2.2 Flow Diagrams of User/System Interaction. .

2.3 Structural AnalySiS . . ¢ ¢ ¢ ¢ ¢ ¢ o o o
2.3.1 MEDL-R System Structure.
2.3.2 MEDL-R Data Set Structure. . .

2.4 Recommended MEDL-R Structure.

Section 3 - MEDL-R Language Syntax

3.1 Current MEDL-R Language Syntax. . . .

3.1.1 Identification
3.1.2 Description.+
3.1.3 Nature . . . e o e 4 4 e e s s e
3.1.4 Responsmbxl;ty e s v e s e o s e 4 a
3.1.5 Originator

iii

1-6
1-9
1-10

1-11
1-14

N
' ')
N

o

NNNI:DNNN ~N
00D &N -

Wy

B it e T C R i

ORIGINAL PACE 13
OF POOR QUALITY

TABLE OF CONTENTS (Cont'd)

Section 3 (Cont'd)

o o & .

.
L]

= e b b e b e b e e e
. L] .

WWWWWWWWWWwWwwwww
» L] L]

00N s b 1 = b = b = O 00 <3 O)
~OWooo~doOunswhE—HO

w
[V]

e 8 e @ ® o 8 s e & & s & @ o & @
« e o o ¢ o & o e o e s @
[SYSESE SN N EN NN N Nl ol ool ol Y IR I NV LN - VYIS Y
S WOFOWO-JOWNUVIaWNEFO

[SHSESENENESE SN NN SE NN SN SN SN SN SN SN SN SE SN SR VRSN
.

e S S 2 |
L] - - . . L] .
L] . L] L] . L]

v

Scope. . .
Version. . . .
Subsystem. .

Source
Constraint .

Resulting-From
Subject. . . .
Explanation.
Status
Replaces
Replaced=-By.
Derives.
Derived-From « + + «
Function-Resolution.
Data-Resolut on. . . « « « « « + &
Resource-Resolution.

. * o o o s
* e e o o
3
s e o . o .
.
e o » o e

* e . o

.
e & & ® » e * & s e e
s & o e e
.

Recommended Enhancements to MEDL-R Language .

Identification e o e o .
Description.
S¢urce . . .
Test-Criteria.
Explanation.
Subject. e e e e e e
Censtraint
Nature . . « « « « o 2 o o =
Metric . . . v ¢ ¢ ¢ ¢ « o« .
Motivation .
Scope. . .
Subsystem. .
Derlved-From .
Status , . .
Replaces . .
Originator . .

e o o .« o
.
. . . o

o« e » e @ . & o
L]
.
.
.
.

Developer. « o o
Reviewer . . . o
Functional- Resolutlon.
Data-Resolution.

Resource-Resolution.
version.+ ¢ ¢ ¢« ¢ e o o
Replaced=-By. « .+ « « « «
Derives, « ¢ + ¢ o o o+

iv

3-10

3-25

3=-26

.g
i
&

ey

o

L

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE OF CONTENTS (Cont'd)

Section 4 - Evaluation Summary.

4.1 Evaluation and Recommendations . .

4.2 Future Plans for MEDL-R in Code SBO'Environment.

s;Msg‘ﬂh, - U = : . e . ,,4.*;,;,]__;_-“;

— S P 5 Y S
- A ? e

ORIGINAL PAGE 1S
OF POOR QUALITY

LIST OF ILLUSTRATIONS

Figure
I 1-1 Placement of MEDL-R in GSFC Software
s Development Cycle. . . . « . ¢« + « . 1-8 \
2-1 Flow of Control in Create Subsystem. « + o« . 2=16
. 2=-2 Flow of Control in Update Subsystem. e o o 2=17
{ 2-3 Flow of Control in Language Translator
Subsystem. . . .« « . 2-18
“ -4 Flow of Control in Analyzer Subsystem. e« . 2=19
L 2=5 Flow of Control in Query Subsystem 2=20
2-6 Flow of Control in Change System
Name Subsystem e o o 2=21
! 2-7 Schematic Representatxon of MEDL-R Data
Base After Create Subsystem Action 2-28
i 2-8 Schematic Representation of MEDL-R Data
. Base After Update Subsystem Action 2-29
[2-9 Recommended MEDL-R System Structure. 2=31
3-1 Current NATURE Keywords in
Hierarchical Form. . . . « « « ¢« ¢ « « « . 3-8
3=2 Recommended NATURE Keywords. « . . 3=19
3-3 Requirement Evolution as Reflected
- by STATUS Keyword. . . . ¢ « ¢ « « « « » « 3=24
v LIST OF TABLES
[f Table ’
. 2-1 Graphic Analysis Commands. 2-12
. 3=-1 Current Requirement Type Syntax. 3=2
[% - Current Regquirement Entries. 3-3
- - Current Keywords . 3-4

METRIC Keyword Definitions

3=2

3-3 . . e e e e e

3-4 Recommended Requlrenent Entrxes. e « « + « « 3=15
3=5 S
3-6 Recommended STATUS Keywords. 3=23

-
=

vi

=

-
e
o ez | e s S B S ¥ s e,

ORIGINAL PACE IS
OF POOR QUALITY

SECTION 1 - INTRODUCTION TO REQUIREMENTS LANGUAGES

The lack of proven techniques for specifying and performing
analysis on requirements causes many serious problems in the
development of software systems., To f£fill this void, a class
of system development tools known as Requirements Analysis
Languages (RALs) has become available. Each RAL has its

own approach to the problem of specifying and performing
analysis on requirements. This fact is not surprising, since
no standard format exists in which requirements are given,
and regquirements analysis is a rélatively new concept.

This document presents a summary of work done in evaluating
the Multi-Level Expressicn Design Language - Requirements
Level (MEDL-R), a RAL that is part of the Multi-Level Ex-
pression Design System (MEDSYS) (References 1 and 2). The
remainder of this section contains further definition of
what a RAL is and how RALs fit into the software development
cycle. The Goddard Space Flight Center (GSFC) Code 580 en-
vironment is defined, and the criteria for judging a RAL in
this environment are presented. The conclusion of this sec-
tion is an overview of two different approaches to the prob-
lem of specifying and performing analysis on requirements;
one of these is the MEDL-R approach. Section 2 contains a
detailed analysis of the functions and structure of MEDL-R,
including the specific strengths and weaknesses of the cur-
rent system. ‘Section 3 contains an analysis of the current
MEDL-R reguirements language syntax and some recommendations
for enhancements. Section 4 contains general conclusions

on the system and its applicability to the Code 580 envireon-
ment.

1.1l GOALS IN USING RALSs

RALS are intended to assist the developer in the creation of
a rigorous statement of a system., The develcper nreeds this

1-1

e

,..4._.,....~

ORIGINAL PACE S
OF POOR QUALITY

automated help because today's systems are too large and too
complex to be developed effectively using manual methods.

The amount of matarial that must be covered in a system spec-
ification often leads to errors due to

Omissions

Ambiguities

Inconsistenc:es and contradictions
Lack of clarity and precision
Varying levels of detail

Presence of design type constraints

The cause and effect of each type of error are explained below.

Omissions are either intentional or accidental. Intentional
omissions are caused by differing rates in developing the
definition of parts of a system. For example, if the speci-
fications for one subsystem are not available, the specifi-
cations for other subsystems may intentionally omit the speci-
fications for interfacing with the missing subsystem. It

is up to the developer either to stop and allow the schedules
to match or to proceed. 1In either case, intentional omis-
sions must be made highly visible to everyone involved in the
specification effort. Accidental omissions typically are
caused by the large volume of material or by a lack of com-
munication between personnel.

An omission (either intentional or accidental) that is en-
countered in the design phase results in either an arbitrary
decision by the design team or a delay while the specifica-
tions are completed.

RALs assist in the detection of omissions in several ways.
First, the format used to enter the requirements into the
svstem creates a regimented environment. This environment
encourages rigorous and logical organization of the material
before entry. Second, the data base created and maintained
by the RAL is always available in its current gorm. Tais

1-2

ORIGINAL PACZ 53
OF POOR QUALITY

encourages constant reevaluation of the state of completion
of the system and allows project management to concentrate
effort in the areas where weaknesses are apparent. The RAL
assists in reducing the volume of material through categori-
zation or subdivision of the system. Communication between
personnel is increased because each person has access to the
current system description. If an omission is detected, it
may be flagged and immediately brought to the attention of
all concerned.

Ambiguities occur because the English language is used to
express the original statement of the system. The interpre-
tation of each English statement is dependent upon the indi-
viduals making the statement or reading it.

Ambiguiti2s result in the development of a system that dces
not match the original intent of the specifications. As
with omissions, ambiguities result in (1) delays while wait-
ing for clarification, (2) arbitrary interpretations made in
the design phase, or (3) incorrect designs.

RALS help with the detection of ambiguities thrcugh either
the enforced adherence to a rigid description syntax in which
the meanings of terms are fixed or the establishment of fixed
review policies as part of the "analysis" of the require-
ments.

Inconsistencies and contradictions result from poor communi-

cation between personnel, as well as from ambiguities and
omissions. The large volume of description required fcr
even a moderate system tends to isolate each individual in-
volved from the work done by others and thus rrevents the
early detection of the causes.

Inconsistencies and contradictions usually result in the
scrapping of part of the system. The inefficiency of dis-
carding completed work results in cost coverruns, schedule

1-3

P .

NS 0 NN L0 gl s 1 e

e B sy T SRS TG S s - i - e orien s Fe dpalamie s eda S AT TEISESTESLGRS S mSwmom T one o owm Amommemmm

ORIGINAL PAGE IS
OF POOR QUALITY

delays, or even failure to implement the complete system.
When they are detected, contradictions must be treated as
symptoms and traced back to locate the root cause.

RALs can be of aid by helping to eliminate the ambiguities

or omissions that cause inconsistencies and by providing a
tracing mechanism to quickly locate the source of the problem
if one is detected.

Lack of clarity and precision and varying levels of detail
are actually two sides of the same coin. Many individuals

tend to be overly thorough in describing a known subject and
to gloss over the description of an unfamiliar topic. The
result is masses of explicit detail that obscure the fact
that some portions of the system are not adequately de-

. scribed. The failure to completely describe the system may

become apparent as late as the system acceptance testing
phase.

RALS can help here in two ways. First, RALS may organize

the specification in a hierarchical (top-down) format; then,
with proper presentation tools, the depth of knowledge on

any giver specificaticn may be examined and the even progress
of development across the entire system ensured. Second,
RALs may use an approach that embodies the idea that each
statement about the system must be testable in the final
system and also encourages the test to be included with the
statement. This virtually eliminates the possibility that
the description lacks precision.

The presence cf design type constraints results from a natu-

ral tendency tc solve problems. Most individuals who work

on system specifications have "graduated” from system design.
The individual's design skill, when combined with a difficul:y
in verbalizing the problem, often results in a design solution
of the problem instead of a clear statement of the prcblem

to be solved.

b .
N S T

ORIGINAL PAGE IS
OF POOR QUALITY

This situation may result in a series of solutions that are
not based upon a conception of the entire system. When the
system is finzlly brought together, conflicts may arise that
could have been avoided if the constraints imposed by the
"solutions" were not present. Thus, although perhaps sim-
plistic, in some environments the following statement is a
good rule of thumb: Requirement specification states what

a system will do; design specification states how the system
will do it.

RALS can help minimize this difficulty by providing each
specification for a system with an optional trial design
solution. This serves as a constant reminder that the
solution is not the problem.

1.2 USE OF RAL 1N CODE 580 ENVIRONMENT

Section 1.1 describes the purposes and goals of RALS in gen-
eral terms. To cobtain a meaningful evaluation of a particu-
lar software tool, the tool must be measured against the
environment in which it will be used. Section l.2.1 de-
scribes the GSFC Code 580 software development environment
in terms of the current procedures used and the types ol
software systems developed. Section 1.2.2 presents a set

of criteria (drawn from the description of that environment)
against which each potential RAL must be measured. The
reader is cautioned that the remainder of this document con-
tains opinions, comments, recommendations, and judgments
based on the contents of this section. Other environmencs
will demand other sets of criteria that would naturally af-~
fect any evaluation. This evaluation 1s strictly aimed at
determining the suitability of MEDL-R in the Code 580 envi-
ronment.

2 |

t or B g

ORIGINAL PAGE 53
OF POOR CUALITN

1.2.1 GSFC CODE 580 SOFTWARE DEVELOPMENT ENVIRONMENT

GSFC Code 580 is responsible for software development in the
following areas:

Spacecraft attitude determination and control
Spacecraft orbit determination and control
Spacecraft maneuver planning

Mission planning

In Code 580, the software development cycle starts with a
contract for the preparation of a formal requirements speci-
fication document. The organization preparing this document
is outside of GSFC and is not necessarily the organization
contracted to perform the design, implementation, and in-
tegration and testing of the system. The delivered document
is expected to contain detailed functional (not procedural)
specifications for the system. Th2 document is prepared by
individuals with approximately 4 to 5 years cf experience

in flight dynamics and celestial mechanics applications. The
document is typically delivered within 12 months of the start
of the contract. The expenditures for this phase of the soft-
ware develorment cycle are about 25 percent of the total for
a particular system if the system is significantly different
from previous systems. The percentage expenditure is typi-
cally reduced when (as is often the case) the system is simi~
lar to previously developed systems. Recently, Code 580 has
initiated new development efforts at a rate of two to three
per vear.

The second portion of the software development cycle starts
with a contract for the design, implementation, xand integra-
tion and testing of the system. The organization performing
these functions starts with an analysi- of the reguirement
specifizotions document. Often the system is similar to
previous systems, resulting in the extensive reuse of coce,

1-6

e

e

p——

ORIGIN/L PACE 1B
OF POOR QUALITY

personnel experience and skills, and documentation. A typ-
ical system spends 12 to 20 months in design, implementation,
and integration and testing. The phases are nnot sasily sep-
arable and often overlap in an iterative way. This results
from a large number of changes to the functional specifica-
tions. Typically, for the first 75 percent of the contract,
two to three nontrivial revisions occur per week. Delivery
dates for fully dccumented, operational systems are fixed by
spacscraft launch schedules. Code 580 has no control over
these schedules.

The management of the software development efforts in-

Code 580 is characterized by two levels. GSFC provides gen-
eral coordination of the effort. Comnunication between con-
tractors, progress monitoring, and resolution of schedule
modifications are all directed by GSFC. Contractors provide
tight management of the detailed technical efforts in their
support areas.

Code 580 proposes to use a RAL at the beginning of the design
phase to assist in the analysis of the requirements specifi-
cation document (Figure 1l-1l). The results of the analysis
will be passed to the design team to assgist it in coordi-
nating changes in the design work in response to meodifica-
tions to the functional specifications.

The use of a RAL in the Code 580 environment is a natural
extension of previous efforts in which other software en-
gineering tools and methodologies have been introduced and
evaluated to determine the benefits tc be derived from their
use. Tools such as the automated Process Design Language
(PDL) processor and the Structured FORTRAN (SFORT) processor
have been evaluated and found to be beneficial in the design
and implamentation phases, respectively. Code 580 is now in-
vestigating tools to ease the transition from recuirements

to design.

1=7

b sy P

i
t

AN
REQUIREMENTS o é;s;;sss
REQUIREMENTS SPEQSﬁ§ﬂON
DOCUMENT ANALYSIS
(MEDL-R) REQUIREMENTS
DATA BASE

DESIGN
L
|
[}
!
t
|
1
IMPLEMENTATION
!
|
1
i
! o
' H
' g
! 2
TESTING

Figure 1-1. Placement of MEDL-R in GSFC
Software Development Cycle

1-8

S,

ORIGINAL PAGE IS
OF POOR QUALITY.

Code 580 software development results in software systems
that range in size from 5,000 to 120,000 lines of code. A
typical (average) system has 40,000 lines. When possible,

a high-order language (typically FORTRAN) is used. The de-
velopment is done on both PDP-11/70 and IBM §$/360 computers.

The software can be characterized as scientific application
systems with little or no real-time or near-real-time re-
Quirements. Attitude determination and control systems re-
Juire software to access large data bases and to perform
flight dynamics analysis. Orbit determination and control
systems require celestial mechanics software that is mainly
mathematical and algorithmic. Spacecraft maneuver planning
requires mathematical and algorithmic software that models
a particular vehicle's physical and dynamic characteristics.
Mission planning software is the generalized maneuver plan-
ning software that is used to evaluate vehicle performance
while the total mission is still in its definition phase.
1.2.2 CRITERIA TO BE APPLIED TO EVALUATION OF MEDL-R IN
CODE 580 ENVIRONMENT
The following criteria, based upon the needs, resources, and
goals of Code 580, will be used to evaluate MEDL-R:

® The system must operate efficiently within the re-
sources of the PDP-11/70 computer allocated for
use by the Software Engineering Laboratory (SEL).
The PDP-11/70 is an interactive, nonbatch facility
with limited printzr capability.

° The system must assist Code 580 in performing an
analysis of a requirement specification document
with minimal impact on the schedules for other de-
velopment work. The task of translating the docu-
m.nt into a form suitable for system analysis should

1-9

ORIGINAL PAGE 1S
OF POOR QUALITY

be straightforward and should not change the char-
acter of the specifications; that is, they should
remain "functional specifications.”

° The system must be easy tc learn and use effectively.
Personnel without previous experience with the sys-
tem, but with experience with requirements analysis,
should be able to make effective use of the system.
The user/system interface must be implemented in
a conversational and instructive way.

° The system must be adaptable. After the system has
been evaluated through actual use, the recommended
changes must be easy to implement. GSFC anticipates
that any requirements analysis language will require
some "tuning" to fit its needs, especially in the
areas of the content of analysis reports and the
terms used in the language.

° The system must allow changes to the requirements
and provide analysis in which the implications of
the changes are presented. GSFC requires a tool
that has dynamic as well as static analysis of the
requirements.

1.3 EXAMPLES OF DIFFERENT RALS

The evaluation of MEDL-R required an examination of other
similar software tools. To supply the background against
which the MEDL-R evaluation was performed, this section dis-
cusses several approaches used to implement RALs. Examples
of available RALsS are the Problem Statement Language/Problem
Statement Analyzer (PSL/PSA) (also known as the User Require-
ments Language/User Requirements Analyzer (URL/URA)), the
Input/Output Requirements Language {(IORL), and the Require-
ments Statement Language/Requirements Engineering and Valida-
tion System (RSL/REVS). Each RAL aids in the translaticn of

1-10

o 2

CRIGINAL PAGE IS
OF POOR QUALITY

a regquirements document (a highly abstract, conceptual defi-

nition of a potential system) into a complete set of concrete

and correct statements describing the system. Section 1l.3.1

describes the PSL/PSA approach to this problem, and Sec-

tion l1.3.2 describes the MEDL-R approach. Section 1.3.3

briefly sumnarizes the comparison.

1.3.1 PSL/PSA APPROACH TO REQUIREMENTS SPECIFICATION/
ANALYSIS

The approach used by the majority of RALs available today,

including PSL/PSA (URL/URA), IORL, and RSL/REVS, differs from

the MEDL-R approach. PSL/PSA is used as the example in this

discussion. :

The PSL/PSA system is composed of two parts: a syntactically
rigorous language (PSL) and a language analyzer (PSA). PSL/
PSA describes a system with a language composed of "system
elements” (e.g., INTERFACE, INPUT, OUTPUT, SET, GROUP, PROC-
ESS, GENERATE). The interrelationships between elements are
rigorously defined. The developer describes the system in

a language using these elements either during the specifica-
tion process or after a specification document has been pre-
pared. In either case, the developer performs a translation
from text to language elements using a rigid format. The
system elements chosen are terms familiar to system designers.

An advantage of this approach is that the language elements
have been selected such that they (and their relationships)
can be subjected to a rigorous automated analysis by the
language processor (PSA). For example, a defined QUTPUT feor
which there is no PROCESS to GENERATE it can be easily de-
tected by PSL/PSA. In addition, the choice of language terms
very familiar to system designers results in a final system
definition that is easily interpreted in the next systaem de-
velopment phase (svstem design).

1-11

_—

CRIGINAL PAGE IS
OF POOR QUALITY

PSL/PSA (and the other similar RALs) attacks the problems

of omission, ambiguity, inconsistency, and contradiction
through the use of a rigid syntax. Omissions are detected
because the number of language elements is limited, and each
relationship is rigorously defined. As with the previous
example, gaps in the specification are readily apparent to
the processing parts of PSL/PSA. Ambiguity is eliminated by
fixing the definition of each language element. Once the
developer assigns a component of the system to a class of
elements, ambiguity is removed. Another individual may then
examine the element class and know the properties of the
system component. Inconsistencies and contradictions are
easily detected because interrelations are rigorously defined.
The syntax used does not allow multiple definitions of any
system component. Only in the case in which subsystems are
specified separately and then combined into the total sys-
tem does a problem with contradictions exist, and even then
the RAL detects the problem immediately upon integration.

PSL/PSA is probably less efficient in eliminating problems

of lack of clarity and precision and varying level of detail.
It includes no provision for supplying test criteria to en-
sure that the final specification is a clear and precise
statement of the system. In addition, it provides no ground
rules for expanding the definition of the system, a lack that
may lead to overspecifying one portion and leaving another
portion in a virtually undefined form.

Perhaps the weakest aspect of the PSL/PSA approach, when com-
pared to the previously stated general goals of a RAL, is in
the elimination of design type constraints. The following
three critical comments can be made about this particular

1-12

L il

W

WS

ORIGINAL PACGE IS
OF POOR QUALITY

implementation in regard to the presence of design type con-
straints:

l. Due to the translation that takes place, contact
may be lost with the original requirement statement. The
result of translating the original statement into language
elements is requirements source code that does not resemble
the original text. Because of this translation, the result-
ing specifications may not be comprehensible to the origi-
nator. The output of this type of RAL is, as previously
noted, in a form easily understood by a designer, but this
eliminates effective feedback to the originator. Part of
the clarification process involves the validation of the
rigorous statement of the system by the originator (who
should be able to verify the final set of reguirements di-
rectly in the terms used in the original specification).

An optional DESCRIPTION element in PSL/PSA gives the analyst
the opportunity to enter the original text; but if the

‘analyst elects not to do so, the resulting specification has

no direct references.

2. The language itself may influence the contents of
the data base and thus the final design. The rigid struc-
ture of the language may result in a restricted statement of
the system requirements, thus removing a certain amount of
flexibility from the design stage. 1If the syntax of the
RAL is not capable of describihg a particular type of solu-
tion system, that system is eliminated from consideration.
The elimination of possible solutions should be part of the
design stage and not part of requirements specification.

3. The potential exists for actually designing the
solution system with this type of RAL. The language is com-
posed of "design terms," and this encourages the emphasis of
detail. These features can lead to the explicit introduction

1-13

Wiy [T e—1

W

ORIGINAL PAGE IS
OF POOR QUALITY

of design type constraints, which are not desirable at this
(the requirements specification/analysis) stage.

Code 580 has evaluated PSL/PSA in its environment and has
reached the following conclusions:

) The PSL/PSA system is too large. A scaled-down i
version (URL/URA) was tested on the IBM S/360 com- |
puter at GSFC. The decision not to attempt to fur-
ther reduce the program to fit within the resources
of the PDP-11/70 was made because of the complexity
of the system (a quality not unusual in an older,
established system). The complexity would have
caused difficulties in the implementation of system
extensions that Code 580 found desirable.

° The language syntax was not appropriate or particu-
larly easy to use in the specific application of
analyzing a Code 580 requirement specification doc-
ument. PSL/PSA appears to be more of a design tool
than a requirements analysis tool when it is applied
to this application in this environment.

1.3.2 MEDL-R APPROACH TO REQUIREMENTS SPECIFICATION/
ANALYSIS

In the MEDL-R approach, the original statement of a system
requirement is entered into a computer data base in its
English-language form. No translation of the statement is
performed. The statement becomes the central item of each
MEDL-R "requirement." Instead of translation, the developer
adds to the requirement by supplying qualifiers (and in some
cases, quantifiers) that characterize the meaning of the
English text. The relationships between requirements may
also be specified; for example, a requirement may be "de-
rived from" other requirements.

1-14

 —

[ume

gmwmmn’

£
i

w ¥

-

| S— 4

[m— |

e |

ORIGINAL PAGE 1S
OF POOR QUALITY

An advantage of the MEDL-R concept of requirement analysis
is the retention of the original statement of the system.

If one particular requirement neads supporting statements to
clarify it, the supporting statements are entered as re-
quirements themselves and are flagged as having been derived
from the original. This procedure allows the total informa-
tion concerning the system to grow without modification to
the original specification.

Unlike the PSL/PSA translatsd requirement, the MEDL-R text
format is not easily subjectad to automated analysis, but

the central position of -the text within the requirement helps
to ensure that the original intent of the specification is
preserved and brought to the attention of the developer at
every opportunity. The MEDL-R system is intended to capture
requirements and support management control and traceability
of requirements.

MEDL-R has few facilities for detecting errors of omission,
ambiguity, inconsistency, and contradiction. These types

of errors must be located and corrected by the user. Omis-
sions might be detected by an examination of the number of
statements in each NATURE category (see Section 3.1.3), on
the assumption that each of the categories must be addressed
in some detail in order to adequately describe a system.

This assumption is warranted only to the extent that the
given categories are valid and exhaustive for the type of
svstem being described. Ambiguities are quite likely to
occur in the MEDL-R requirements because the requirements are
retained in their English-language form. The EXPLANATION
entry (see Section 3.1.13) of each requirement can be used

to note a possible clarification for each questionable state-
ment. Inconsistencies and contradictions can be detected by
suitable combinations of meaningful SUBJECT categories (see
Section 3.1.12) and data base QUERYs (see Section 2.1.4).

1-15

i

re o

ORIGINAL PAGE IS
OF POCR QUALITY

MEDL-R could be easily modified to help eliminate errors of
lack of clarity and precision and varying level of detail.
TEST-CRITERIA could be added as a new entry in a MEDL-R re-
quirement, thus linking the specification and its validation
procedure. The hierarchical struccure of MZDL-R requires
further implementation to give the system a means for check-
ing on the level of detail specified.

MEDL-R excels in eliminating design type constraints. The
requirement specifications are present in the data base in
the form in which they are given by the originator. The
logical development of the full system description is derived
from these in a language understandable by the originator.
The: addition of a new entry (REVIEWED-BY) would signify that
the originator had read, understood, and agreed with each
requirement in the data base.

1.3.3 COMPARISON SUMMARY

PSL/PSA is composed of a language and a language analyzer.
This RAL's strong points are its ability to detect ambiguity,
omissions, and inconsistencies. It is based on concepts
familiar to system designers. It is a mature, complex tool
that is representative of the mainstream implementation of
RALS.

MEDL-R uses a concept of requirement categorization and an
analyzer to present relationships among requirements by cate-
gory. 1Its strong points are its adaptability %o a hié:ar-
chical (top-down) evolution of specification and the reten-
tion of :he original specification of the system in terms
understandable to the originator. It is a new concept in
RALs and has not yet reached its maturity. Its implementa-
tion is still in a formative stage and may be modified with
relatively small effort once its failings have been identi-
fied.

1-16

[——

—

e

[

[ame—

-

s e e e . - = gd e . d RN

ORIGINAL PAGE 19
OF POOR QUALITY

SECTION 2 - MEDL-R ANALYSIS

This section provides an analysis of the current MEDL-R sys-
tem. The seven major MEDL-R subsystems are examined as to
their applicability, completeness, and structure. The
strengths and weaknesses of each subsystem are specified,
and, when appropriate, recommendations are made to improve
weaknesses. Section 2.1 discusses the functions performed
by each MEDL-R subsystem, including output reporting, data
base editing, and analysis cap,bilitios. Section 2.2 pro-
vides flow diagrams of user/system interaction. Section 2.3
describes the system structure and provides an overview of
the relationship between functions and structure. Sec-

tion 2.4 specifies a recommended structure and data flow

for the MEDL-R system based on the comments in Sections 2.1
through 2.3.

2.1 FUNCTIONAL ANALYSIS
The MEDL-R system comprises seven major subsystems:

° Create (CRE)--allows the entering of initial re-
quirements into the system

] Update (UPD)~-allows the updating of existing re-
quirements or the adding of new requirements

] Language Translator (LTR)=-=-allows the movement of
both initial requirements and updated requirements
into the MEDL-R requirements data base

° Query (QRY)=--allows the user to extract summary
data from the data base based on requirement de-
scriptors and their arguments

° Analyzer (ALZ)~-supports predefined analyses of the

data base; currently develops reports on the require-

ments data base

2-1

e e e L L e 2R 5

ORIGINAL PAGE 19 |
OF POOR QUALITY

e Metric (MET)--provides analytic measures of the
data base

° Change System Name (CSN)--provides the user with
access to another MEDL-R data base without exiting
the system

The following subsections present a detailed description of
each program subsystem, specify the strengths and weaknesses
of each, and provide general recommendations for correcting
E the weaknesses. '

i 2.1.1 CREATE SUBSYSTEM

The Create subsystem is used to generate the initial require-

ments source file from a user terminal. Entry is via a

. category-by~-category prompt (e.g., ENTER DESCRIPTION OF RE-

!i QUIREMENT >). If the source file already exists when the
Create subsystem is activated, the new regquirements are ap-

] pended to the existing source file. To avoid unnecessary
prompts, a special "prompt limit" feature exists to control

i the amount of data the system will request. Special symbols !

s are used for various purposes: proper line termination (.

! or ..), lists of entries (entries are separated by commas),

‘ nonrequired entry (0 or blank), comment entries (#), and

/5 session termination ($). Limited error checking is done

3} on the user file at the time of entry. If the input source

file is created in the proper format from card input or by

the system text editor, the Create subsystem need not be

exercised. Create subsystem output is used as input to the

Language Translator subsysten.

The strengths of the Create subsystem are as follows:

[] It provides clear, precise prompts for informatien.
) It can specify the prompt limic.

——— i

ORIGINAL PAGE 19
-OF POOR QUALITY

The weaknesses of this subsystem are as follows:

It may not be invoked after the first invocation of
the Language Translator subsysten.

The use of a variety of control syubols in this
input editor is confusing to the general user,
especially since this subsystem is essentially used
only once.

It performs some checking of invalid keywords and
input errors, a function that should be the job of
the Language Translator subsystem.

General comments regarding the Create subsystem are as

follows:

l.

Some errors and inefficiencies have been identified
in the Create subsystem. These are mostly associ-
ated with reinvoking the subsystem before passing
the output data set to the Language Translator sub-
systen.

The input data set to the Language Translator sub-
systems may be a card deck or a data set created
by the systom text editor.

The Create subsystem is still necessary (and per-
haps preferable) since its use does not require
direct knowledge of the format of the input data
set.

The idea of specialized editor from which the user can enter
his/her input requirements quickly and with a few basic com-
mands is a good one. However, ©o be effective, this same
editor must be available at all phases of the requirements

analysis.

The input procedure for a reguirement must always

appear the same to the user regardless of whether the re-
quirement is part of the initial set, is added later during
data base expansion, or is being updated.

2-3

F
H
;

st v . =mﬂ=$=:, e e . S —

. [
s

gﬂwﬁﬁél- -
oF POOR QUALTY

2.1.2 UPDATE SUBSYSTEM

The Update subsystem is available to the user when all re-
qui-:nents data base files for the current system have been
specified (currently, six files make up the requirements
data base). The subsystem allows the user to correct or
add to the existing system. Update operations include
changing any user-entered field of an existing requirement,
deleting or adding entries within an existing requirement,
changing a requirement name or system name, and adding all
new requirements to the existing system. Like Create subsys-
tem output, Update subsystem output is used as input to the
Language Translator subsystem. Unlike the Create subsysten,
the Update subsystem requires as input an existing require-
ments data base built by the Language Translator subsystem.

The Update subsystem allows the user to (l) list the urlate
file on a displ_.y terminal, (2) change a requirement name,
and (3) enter a new requirement. The Update subsystem has
its own complete éet of rules for making changes to require-
ments. These rules are diffecrent from those of the Create
subsysten.

The strengths of the Update subsystem are as follows:

] Updates can be made gquickly.
Y No syntax checking is performed.

The weakness of this subsystem is that its use requires
direct knowledge of where input information is to be placed.

The general comments made in Section 2.l.1 concerning the
Create subsystem also apply to the Update subsystem. In
addition, as stated in the same subsection, the method of
input, whether the input is a new requirement or an update

to an existing requirement, must appear the same to the user.

2-4

auwm “Qﬂ]

[i—)

- |

£

[a——

-

ity

S e

n e T

a

ORIGINAL PAGE IS
OF POOR QUALITY

2.1.3 LANGUAGE TRANSLATOR

Using input from either the Create subsystem or the Update
subsystem, the Language Translator subsystem builds or modi-
fies the requirements data base. Once the data base is built
or updated, the input source (either original or updates) is
no longer needed. Once started, the translation and data
base build or update process is completely automatic and re-
quires no user intervention. While performing this task,

the Language Translator subsysten produces a source input

listing file and flags any errors detected. The user must.

use system utilities to purge previous versions of the list-

ing file. When the translation is complete, a message is
sent to the user indicating so and sbecifying the number of
errors detected. If no unrecoverable errors were detected,
the input source (original or updates) is deleted from the
system. When modifying the requirements data base, the sanme
PDP-11/70 Files-ll version is retained.

The strengths of the Language Translator are as follows:

° It 18 the only subsystem that modifies the data
base. Thus, as new error checks and more compli-
cated language translations are identified, only the
modules in this subsystem need be expanded.

] It organizes the requirements into one complete set,
which can then be listed by the Analyzer subsystem.

The weaknesses of the Language Translator subsystem are as
follows:

° The user has no direct connection to the six files
comprised in the requirements data base; merely
listing them does not present the reguirenents to
the user in a clear, precise statement. Provisions
are made to dump the contents of the current data
base files as well as to provide listings files on
disk. 1In both cases a separate offline utility

2«%

| ——

R rinsng

Wronniig

ey

AT

3
INAL PAGE 18
O POOR QUALITY

program must be run to view the output (i.e., pro-
gram SUMREL for a dump of the requirements data
base a.d systems utility programs for a display of
the translators listing file). Normally, to look
at the data base in detail, the user enters the
Analyzer subsystem. At the translation point, the
user is usually interested only in requirements
that have been modified or just entered into the
system (i.e., interested in ensuring that they were
receiveg properly). Thus, software to examine only
new or modified requirements immcdiately after
translation would be useful.

) The deletion of the input data by the system is not
optional. To eliminate the possibility of losing
information in the event of a system crash or a
large number of recoverable errors, the deletion
of the input files should be a user option.

2.1.4 QUERY SUBSYSTEM

The Query subsystem allows the user to search the require-
ments data base for items that have text in common. The
QUERY command has the general form

< statement-type > =[< string > [{389} < string >]]

where [] indicates optional parts of the command, { } indi-
cates that 2 selection is to be made, < string > is an ar-
bitrary character string of less than 30 characters, and

< statement-type > may be any of the following: NATURE,
VERSION, MOTIVATION, SUBJECT, STATUS, DESCRIPTION,

v
o

N

LR
ey [r— e
»

-

ORIGINAL PAGE i3
OF POOR QUALITY

FUNCTION~RESOLUTION, DATA~RESOLUTION, RESOURCE-RESOLUTION,
or SUBSYSTEM-RESPONSIBILITY. The following are examples:

QRY > SUBJECT
QRY > NATURE = DATA
QRY > SUBJECT = OPERATING-SYSTEM OR I/0

The output from a QUERY command is a list, displayed on the
user's screen, of all requirement identifiers (IDs) that
satisfy the specified condition. These requirement IDs are
also used on an output file along with their DESCRIPTION and
VERSION; following termination of the MEDL-R system, the
user can use system utilities to list their contents on a
lineprinter or cathode ray tube (CRT) terminal. There are
some additional rules concerning use of the Query subsystem;
however, unlike the rules of the Create subsystem, they
minimally affect the user.

The strengths of the Query subsystem are as follows:

) It provides a high degree of flexibility in search-
ing through requirements for inconsistent and
ambiguous terms.

° Its "and/or" option enhances the search capability.
The weaknesses of the Query subsystem are as follows:
° It is extremely slow for large data bases.

) The QUERY command syntax is not sufficiently general
to handle many types of questions about the data

base. A helpful modification would be the capability

to allow searching on two different statement types
(e.g., QRY > SUBJECT = INPUT AND STATUS = ACTIVE).

® Like other MEDL-R subsystems, the Query subsystem
creates files that the user must leave the system
to examine.

2=7

e s ey e,

ORIGINAL PAGE IS
OF POOR QUALITY

) The subsystem cannot access several MEDL-R state-
ment types (e.g., ORIGINATOR, SOURCE, SCOPE,
EXPLANATION). With modification, in certain en-
vironments or with certain types of systems, the
Query subsystem could produce beneficial informa-
tion about these types. .

2.1.5 ANALYZER SUBSYSTEM

The Analyzer subsystem is primarily used to allow the user
to examine and obtain lineprinter copies of the requirements
data base. The Analyzer subsystem accepts the following
commands:

o SUMMARY
® LISTNAME = < name >
° LISTALL)

(Y FRS

The SUMMARY command produces three tables that provide sta-
tistics on the NATUREl keyword, the SUBJECTI keyword, and
relation types. The LISTNAME command produces a listing of
all information contained in the data base about a specified
requirement ID. The LISTALL command performs the same func-
tion as LISTNAME; however, the Analyzer subsystem automat-
ically performs a LISTNAME for every reguirement ID contained
in the data base. The FRS command builds the Formatted Re-
quirements Statement file, which can be spooled to the line-
printer for an easily readable, formatted hardcopy output of
the requirements in the data base. Individual requirements
or all requirements can be specified for the final FRS file.
(The FRS format closely resembles the format used by the
Update subsystem when presenting a requirement for modifi-
cation.)

lLanguage keywords are described in Section 3.

2-8

ORIGINAL PAGE IS
OF POOR QUALITY

Provisions were built into the Analyzer subsystem to perform
specific analysis on COMPLETENESS, COMPLEXITY, and CONSISTENCY,

but these capabilities have not yet been implemented.

!f The strengths of the Analyzer subsystem are as follows:

It allows the generation of a lineprinter copy of
the requirements data base, including the following
information for each requirement: number of changes,
origin data, last edit date, and completion date.
Each requirement is formatted to fit on one stand-
ard 8-1/2-by-ll-inch page, with overflow pages im-
mediately following.

It allows "stubs" for additional analysis.

The weaknesses of the analyzer subsystem are as follows:

r
L ®

The SUMMARY report contains statistics about the
entire data base, usually on a number-and-percentage
basis (e.g., the number and the percentage of re-
quirements containing NATURE keywords). The user

has no control over the content of this report, and
the data are automatically inserted into the Analyzer
subsystem output file.

As with the Create subsystem, some errors in the
Analyzer subsystem have been identified. For ex-
ample, (1) the percentages presented in the SUMMARY
report are not correct, (2) the DESCRIPTION text,
presented as part of the LIST and FRS output, may
be truncated at the end of a line. The last is
disastrous if words such as "not," "all," "some,"
and so forth are lost; misunderstandings also may
arise when SMM-OBC becomes SMM.

ORIGINAL PAGE 1S
OF POOR QUAUITY

Two general comments must be made about the Analyzer sub-

system:
1.

The purpose of the Analyzer subsystsi in its present
form might be more apparent to the user if it were
called the Report Generator subsystenm.

The SUMMARY report, currently produced as an option
in the Analyzer subsystem, should be expanded for
the following purpose. Many entries in the standard
MEDL~R requirement are in the form of strings. The
Query and Metric subsystems perform operations based
upon the matching of strings from one requirement
with strings from other requirements. A misspelled
or incomplete string will not result in a match with
the "accepted" form of the string (e.g., I/0-DEVICE
will not match with IO-DEVICE, I/O-DEVICES, r I/0-
DEVISE). The SUBJECT summary, currently included

in the SUMMARY report, provides the user with a

way of detecting these near-duplicates. The user
may locate and modify the SUBJECT strings (using

the Query and Update subsystems) if inconsistencies
are present. The suggested expansion would add op-
tional summaries of the current strings in each of
the following statement types: VERSION, SUBSYSTEM,
SOURCE, CONSTRAINT, FUNCTION-RESOLUTION, DATA-
RESOLUTION, RESOURCE-RESOLUTION, SCOPE, ORIGINATOR,
RESPONSIBILITY, REPLACES, and DERIVED-FROM.

2.1.6 METRIC SUBSYSTEM

The Metric subsystem provides analytic measures of the data

base.

It differs from the Analyzer subsystem in that it

does not derive its information directly from the require-
ments data base but instead requires a routine to transform

2-10

Wm—— |

&

Y

;

-3

i s S A T S Ea v e AR o R gt -

ORIGINAL PACE 1S
OF POOR QUALITY

the data base into a form suitable for graphic analysis.

The transformed output is divided into two parts: part 1
contains the NATURE, SUBJECT, and MOTIVATION rolationships;l
part 2 contains the RESOURCE-RESOLUTION relationships. A
relationship is defined between any two requirements if they
have the same NATURE, SUBJECT, MOTIVATION, or FUNCTION-
RESOLUTION, DATA-RESOLUTION, or RESOURCE-RESOLUTION. A count
of the number of identical relationships is maintained. For
an initial requirement to be transformed, it must meet the
following criteria: (1) the VERSION and STATUS of the re-
quirement match that requested by the user in the Metric
subsystem; (2) the requirement is not OBSOLETE; and (3) the
requirement does not contain a REPLACED-BY or DERIVES state-
ment.

Once the requirements have been transformed, graphic analysis
c;n be performed. Table 2-1 (the contents of which are taken
from Reference 1) lists the allowable commands and the func-
tions performed in this analysis. The analysis is very for-
mal in that it performs accepted mathematical technigues.

The results of the analysis are presented in matrix format.

0f the seven MEDL-R subsystems, the Metric subsystem is the
one in which the least experience has been gained in its use
and operation. This is because only parts, rather than a
complete set, of requirements have been translated for analy-
sis. Nevertheless, a few observations on this subsystem can
be made:

1. Tha mathematics performed, although probably very
powerful, are presented in the requirements docu-
ment (Reference 1) in terms unfamiliar to most
people doing requirements analysis. The benefit

lThe language elements NATURE, SUBJECT, MOTIVATION, and so
forth, are described in detail in Section 3.

2-11

R sAYe B

ORIGINAL PA
OF POOR QUALITY

L5

Table 2-1. Craphic Analysis Commands

COMMAND

FUNCTION

PRELIMINARY GRAPH TRANSFORMATION
STABLE

DISTANCE

RELABEL n

WEIGHT

OECOMPOSITION AND EVALUATION
CLUSTER n

FVALUATE

ANDREU = n

HOUSEKEEPING AND FiLE MAINTENANCE
PRINT
STAT
RELOAD = n

STORE
SUBMAT
EXIT

COMPUTE ADJACENCY MATRIX FROM INPUT
GRAPH MATRIX

COMPUTE DISTANCE MATRIX FROM ADJACENCY
OR SEQUENCE MATRIX

REARRANGE NODES; n IS NUMBER OF ITERA-
TIONS OF REARRANGEMENT

APPLY LINK WEIGHTING FACTORS

OEFINE CLUSTERS: n IS CLUSTER DEFINITION
METHOD (= 0, CLUSTERING ALGORITHM: = 0,
USER ENTRY, i.e., USER ENTERS NUMBER OF
CLUSTERS IN AN I3 FORMAT FOLLOWED B8Y
VALUES OF THESE CLUSTERS IN AN 13 FORMAT)

COMPUTE STRENGTH AND COUPLNG MEASURES
OF A GRAPH DECOMPOSITION

PERFORM ANDREU'S DECOMPOSITION BASED ON

A SIMILARITY MATRIX; n IS ANDREU'S "p”
VALUE

PRINT CURRENT MATRIX

COMPUTE STATISTICS ON CURRENT MATRIX
RESTORE CURRENT MATRIX FILE OF TYPEn (= 1,
ADJACENCY: = 2, WEIGHTS; = 3, DISTANCE; =
4, SEQUENCE)

SAVE CURRENT MATRIX

SUBMATRICIZE CURRENT MATRIX

EXIT THIS TYPE OF RELATIONSHIP MATRIX AND
RETURN TO SELECT OTHER RELATIONSHIP

MATRIX OR EXIT TO RETURN TO COMMAND
LANGUAGE INTERPRETER (CLI)

/7282780

L 2

it ——

ORIGINAL PAGE IS
OF POOR QUALITY

to be derived by the user in going through this
analysis is unclear.

2. The matrix format is awkward. In the case of a
large data base (say, 100 requirements), the out-
put appears as a series of 100-by-100 matrices,
which are impossible to present clearly on a termi-
nal or a printer. o

3. This subsystem (and not the Analyzer subsystem)
should contain the planned COMPLEXITY, COMPLETENESS,
and CONSISTENCY functions, since most analysis will
eventually require transformations.

4. As is the case with the MEDL-R system in general,
this subsystem maintains many files that the user
cannot interpret or has no general interest in fol-
lowing a run. These files should be scratch files.

2.1.7 CHANGE SYSTEM NAME SUBSYSTEM

The Change System Name subsystem allows the user to change
from one MEDL~R data base to another without exiting the
MEDL-R system. This subsystem is provided with good syntax
checking of the system name requested. Changing from one
data base to another is the only function performed.

This important subsystem could be expanded to perform ad-
ditional functions. For instance, there is currently no
provision within the MEDL-R system for combining two or

more data bases into one. Such a capability would be useful
in the analysis of large systems that can be conceptualized
as a set of subsystems. The subsystems could be analyzed
for internal consistency before combination. Thd.capability
for analysis by subsystem before integration would result

in the following:

® A significant increase in run-time efficiency while
Query, Analyzer, or Metric subsystem operations are

2=-13

i
{
!
i
|
i
H

-

g R S e e) P s T

ORiGinss #inGE IS

OF POOR QUALITY

performed-~Some of the options under these subsys-
tems involve the analysis of requirement-to-
requirement relationships. The number of such
relationships is proportional to the square of the.
total number of requirements.

A possible reduction in errors caused by confusion--
There is a limit to the number of items an individ-
ual can keep track of simultaneously. The MEDL-R
system provides many aids in tracking requirements:
however, these aids only raise the limit and do not
eliminate it.

A method of measuring the coupling between subsys-
tems (possibly by use of To Be Supplied (TBS) stubs)

Another potential, but probably less useful, capability would
be that of creating of a separate data base from a subset of
requirements in an existing MEDL-R data base. This feature
would be useful when a new system is created using a portion
of a previously defined system. The capability for isolating
a portion for a MEDL-R data base would result in the follow-

ing:

Cost savings derived from reuse of a set of require-
ments to define the baseline for a similar system

Flexibility in the reorganization of a system into
a new set of subsystems--Once a system is defined,
a trial organization into subsystems would be use-
ful in locating an organization wi’h minimal cou-

pling.

A provision for a converse of the merge capability
previously suggested--The user would be free to
combine merging and isolating to perform reorganiza-
tions to suit his/her own particular needs.

2-14

L et

T el S WS ab |
Gr\n.:.nf.i. [a2 TEA is

OF POCR QUALITY

2.2 FLOW NIAGRAMS OF USER/SYSTEM INTERACTION

This section provides six flow diagrams (Figures 2-1 through
2-6) depicting the interaction between the user and the
MEDL-R system. When compared, these figures show the rela-
tive level of user interaction for each subsysten.

In these figures, squares represent processes, ellipses con-
tain MEDL-R prompts, and items enclosed in gquotation marks
represent user input. Items not in quotation marks, ellipses,
or squares represent classes of responses for which knowl-
edge of the proper syntax is required (e.g., the "valid
entry" response, for which the user must kncw what consti-
tutes a valid entry).

The Language Translator subsystem, representing one extreme,
shows a minimum of interaction. The Update subsystem, repre-
senting the other extreme, is by far the most complex and
shows a high degree of interaction. The Metric subsystem

is not diagramined because of the insufficient experience

with this subsystem mentioned in Section 2.1.6.

Two conclusions can be drawn from the figuras:

o The two language editor subsystems, Create and
Update, differ in the level of complexity in user
interaction.

) The prompting, in most cases, appears to be clear.

The prompt indicates both the desired type of input
and the position of the user in the system hierarchy.

2.3 STRUCTURAL ANALYSIS

This section describes ani evaluates the MEDL-R system struc-
ture and data set structure.

2-15

R R . S N R

e Wl bRl

waisdsqng 23€91D UT TOIJUOD JO MOTd

*1-z 2anb1d

Anue pyra,
LY LIWOUd
WINI < WD

e v

{

2-16

HY INVYNPIILSAS
IW 150D

HN/A) LN 1TCT NOILDIS 338
14W0Md HILNG < YD HY INVYNNILSAS
INS N3O

.....
. .

L4

woysksqng @3epdn uy [OIUOCD Jo mota

*Zz-z 2xnb1d

2-17

ORIGINAL PAGE IS
OF POOR QUALITY

LANGUAGE
CLi > OPTION: TRANSLATION

.

Figure 2-3. Flow of Control in Language
Translator Subsystem

2-18

*

wa3sdksqng a9@zATeuy UT [OIJUOD JO MOTJd °p-g 2Inbrg

AONNOJ 10N

/

ISVA VIVO NI

b - 43

Z WV IWVYNWILSAS

LNIWIYINDIY 10103 < W .N.. HINZAY 4
HO4 HOMVIS VIS < 7 ol PZwﬂ‘uz.gwx
AHIAI 40
’ ONILSIT V¥ 0OV
aONNO4 A
9 Z €2 NOILD3S 33S) ONNO4
SHIIWVNWILSAS
3714 N3O

SHA IWVYNWIISAS SHAINVNWIISAS AHING ONIL'H
IN4 0L ELLE] LN3IWIHINDIH
ANIWININDIY HO4 HOUV3IS

/ 01 INIWIHINDIY
1YH1 40 ONILISH AH3IAI 40
SH4 NV OV 1NN ONILSIT SH4 NV 00V

SH4 INVNWILISAS

ONNO4 LON &

3301
SHA'IWVYNWILSAS o INIWIHINDIY
3114 35010 00 MIRBRIPIRIYS = 21412345 40
— INVNISIHL.. ONiLS! ¥V 0OV
LWVASIL,
N.. Z W INYNWILSAS f ; 335
- 314 01 4. AHYWINS.. ...Nmquﬂwnhw _.wﬂun.
i AHVWWNS 0OV 34 N3O

IVYNIWYIL LY

i ra\
2 u. AHVYWWNS 1S A INOI IO < 11D
OC

ZW INVNWILSAS
ERLEIE Lol

'
—— e —) *

2-19

L

-

ORIGINAL PAGE 19
POOR ouaLITY

CLOSE FiLl
YSTEMNAME.QRY
e W\‘

' INVALIO
m SYNTAX \

Rl OPEN FLE PARSE USER
INPUT

SYSTEMNAME.QRY| QrY > . "
\.tu SECTION 2.3.2.41 uaer mout” =

VALID
SYNTAX

SEARCH FOR
ARQUIREMENT
FITTING QUERY

\

FOUND

/

LUST ARQUIREMENT IDENTIRCATION AT
TERMINAL: ADD IDENTIRICATION, VERSION,
AND CESCRIPTION TO FILE SYSTEMNAME.QAY

180/

Figure 2-5. Flow of Control in Query Subsystem

2-20

- —

—.

S

—_— e

ORIGINAL prcre

N £
ER L CTSR 15

OF POOR QuALITY

——

CU > OPTION: VALID SYSTEM NAME

"CSNC 4 cu >
ENTER SYSTEM NAME:
INVALID SYSTE@

Figure 2-6. Flow of Control in Change
System Name Subsvstem

Zevag

e N RTUR

E

B Y R [

ORIGINAL PACE I3
OF POOR QUALITY

2.3.1 MEDL-R SYSTEM STRUCTURE

The source code for the MEDL-R system is written entirely in
the PDP-11 FORTRAN IV PLUS language. The system is highly
modular, and the functional components are easily matched

to subsystem module hierarchies.

Each module is coded using system-wide naming conventions:;
this is aided by the liberal use of the INCLUDE compiler
directive for COMMON block code. A marginally acceptable
technique of using the INCLUDE directive for repetitive
executable code (notably error recovery sequences) is also
used.

The source code is ccmplete even to the extent of FORTRAN
routines from the Martin Marietta Aerospace Storage System
(MASS) .

2.3.2 MEDL-R DATA SET STRUCTURE

This section describes the function, content, and format of
all MEDL-R system data files and the specific accesses to
each file by the various MEDL-R subsystems.

The file-naming convention used by the MEDL-R system is
as follows:

Svstemname. XXX

where Systemname is the user's name for the collection of
requirements to be analyzed by the MEDL-R system (this name
is supplied to the Command Language Interpreter control
module and is used to create the PDP-1l file structure),

and XXX is the data file type. The data files are described
in Section 2.3.2.1 through 2.3.2.8.

2.3.2.1 RFI File

The RFI file contains tihe initial requirements £or a new
MEDL~-R system. The £ile format is secuential Zixecd-length

2-22

- ORIGINAL PAGE IS
[5 ‘ OF POOR QUALITY

card image records, each containing ASCII data only. The
disk name of this file is Systemname.RFI.

. The RFI file is created or extended by the Create suhsystem.l

The presence of this file is determined by the Command Lan-
guage Interpreter control module, and the presence or ab-
sence of the RFI file is used to allow or disallow scme user
options (see Reference 1, page II-2). The RFI file is read
by the Language Translator subsystem and is deleted upon the
successful completion of a data base build by that subsystem.

The RFI file is useful if a set of requirements is created
offline. The usefulness would be even greater if an option
[existed to create an RFI-like file from a subset of require-
ments in an existing MEDL-R data base.

i: 2.3.2.2 UPD File

The UPD file contains the updates to an existing MEDL-R sys-
tem. The file format is sequential fixed-length card image
records, each containing ASCII data only. The disk name of
this file is Systemname.UPD.

The UPD file is created or extended by the Update subsystem;

The presence of this file is determined by the Command Lan-

guage Interpreter control module, and the presence or ab-

sence of the UPD file is used to allow or disallow some user

options (see Reference 1, page II-2). The UPD file is read
k by the Language Translator subsystem and is deleted upon the
& successful completion of a data base update by that subsys-
- tem.

2.3.2.3 LTR File

The LTR file is the listing of the Language Translator sub-
system actions for eacnh data base build or update. This

4If the FORMAT of the input card imace were xnown, the £file
could be created offline.

2-23

ORIGINAL PACE 19
OF POOR QUALITY,

file contains a copy ¢f the data input to the Language Trans-
lator subsystem and any warning and error messages generated
in response to the input. The listing is terminated with a
summary of errors, statistics, and a completion message. The
file format is sequential variable-length records with car-
riage control. The disk name of this file is Systemname.LTR.

A new version of this file is created each time the user
invokes the Language Translator subsystem. After the MEDL-R
session, the user may list the LTR file version(s) at *he
terminal or on the lineprinter.

2.3.2.4 QRY File

The QRY file is the output listing of the Query subsystem.
The file contains a copy of the user's QUERY request followed
by the IDENTIFICATION, DESCRIPTION, and VERSION of each re-
quirement that matches the QUERY (see 3ections 3.1.1, 3.l.2,
and 3.1.7 for the definitions of IDENTIFICATION, DESCRIPTION,
and VERSION, respectively). The file format is sequential
variable-length records with carriage control. The disk

name of this file is Systemname.QRY.

A new version of this file is created each time the user
invokes the Query subsystem. After the MEDL-R session, the
user may list the QRY file version(s) at the terminal or on
the lineprinter.

2.3.2.5 ALZ rFile

The ALZ file is one of two output listings of the Analyzer
subsystem. The file contains the reports generated by the
SUMMARY, LISTALL, and LISTNAME commands (see Section 2.1.3).
The file format is sequential variable-length records with
carriage control. The disk name of this £f£ile is
Syvstemname.ALZ.

2-24

s e 4

| S—

4

L A

ORIGINAL PAGE IS
OF POCR QUALITY

A new version of this file is created each time the user
invckes the Analyzer subsystem and uses a SUMMARY, LISTALL,
or LISTNAME command. After the MEDL-R session, the user
may list the ALZ file version(s) at the terminal or on the
lineprinter.

2.3.2.6 FRS File

The FRS file is one of the two output listings of the Ana-
lyzer subsystem. The file contains the report generated by
the FRS command (see Section 2.1.5). The file format is
sequential variable-length records with carriage control.
The disk name of this file is Systemname.FRS.

A new version of this file is created each time the user in-
vokes the Analyzer subsystem and uses the FRS command. After

- the MEDL-R session, the user may list the FRS file version(s)

at the terminal or on the lineprinter.

2.3.2.7 MAT, ADJ, WGT, DIS, and SEQ Files

The MAT, ADJ, WGT, DIS, and SEQ files are storage files for
partial or intermediate forms of the matrices used in the
Metric subsystem. The format of each file is sequencial
variable-length binary records. The disk names of these
files are Systemname.MAT, Systemname.ADJ, Systemname.WGT,
Systemname.DIS, and Systemname.SEQ.

The creation_and reuse of these files are controlled by the
STORE and RELOAD commands within the Metric subsystem. As
mentioned in Section 2.1.6, little experience has been gained
with this subsystem.

2.3.2.8 ALl, AL2, AL3, REl, RE2, and RE3 Files

The ALl, AL2, /L3, REl, RE2, and RE3 files form the central
MEDL-R data base. These files contain all information sup-
plied by the user. The formats are direct-access fixed-
length binary records. The disk names of these files ars

2-25

A . [S RO e e

ORIGINAL PACE I3
OF POOR QUALITY

Systemname.ALl, Systemname.AL2, Systemname.AL3, Systemname.REl,
Systemname.RE2, and Systemname.RE3.

The data base is created or modified by the Language Trans-
lator subsystem through the use of MASS utility routines.
The presence of the data base is determined by the Command
Language Interpreter control module, and its presence or ab-
sence is used to allow or disallow some user options (see
Reference 1, page II-2). The data base is read by the Query,
Analyzer, and Metric subsystems as the source of information
for all processing performed by these subsystems.

The MEDL-R data base is organized into two groups of three
files each. The first group, called relation ALLNAMES, con-
sists of the ALl, AL2, and AL3 files. The second group,
called relation RELS, consists of the REl, RE2, and RE3 files.

The first file of each group (ALl or REl) is termed a Tuple
Description Table (TDT). This file contains pointers to the
end of the other two files in the group. The TDT also points
to the Alphanumeric Data File (discussed below), a section

of which describes the organization of data in the files.

The second file of each group (AL2 or RE2) is termed a Tuple
File (TF). This file contains links that describe the re-
lationship between data items. The AL2 file links a sequen-
tial key field through a MEDL-R requirement entry-type code
to a pointer to an entry in the alphanumeric data. The RE2
file links every record (entered by the user) from the re-
quirement IDENTIFICATION through a MEDL-R requirement entry-
type code to a pointer to the first occurrence of the actual
alphanumeric data.

The third file of each group (AL3 or RE3) is termed an Alpha-
numeric Data File (ADF). This file contains two sections.
The first section contains alphanumeric tags that describe
the fields of a record in the associated TF. This section

2-26

o e R e e S O

ORIGINAL PAGE IS
OF POOR 'QUALITY

is overhead and is simply an extension of the TDT that points
to it. (The presence of this section is probably a conse-
quence of the restriction of alphanumeric data to the ADF.)
This section is present in both the AL3 and RE3 files.

The second section (present in AL3 oniy) contains an example
of eacn MEDL-R keyword, string, or text entered by the user.

A simplified schematic of the organization of the MEDL-R data
base is shown in Figure 2-7. The data base is shown after
the MEDL-R source has been passed from the Create subsystem
to the Language Translator subsystem. (The sample of the
MEDL-R ‘scurce is not complete, since the Create subsystem
demands that the DESCRIPTION and NATURE entries always be
present; the source shown is intended as a simple example.)
The user has specified the STATUS of both requirement R-l

and R-2 as ACTIVE and the STATUS of R-3 as SOFT. The linking
pointers start in RE2 and can be traced through ALZ2 to AL3.

The same data base is shown after an update in Figure 2-8.
The user has employed the Update subsystem to change the
STATUS of requirement R-2 to OBSOLETE and then invoked the
Language Translator subsystem. (For clarity, the sample of
MEDL-R source is not shown in the UPD file format.)

The organization of MASS files is quite flexible and should
be adaptable to any of the proposed modifications to the
MEDL-R system.

The source code for the standalone utility SUMREL is sup-
plied with the MEDL-R system. SUMREL produces a formatted
dump of either the ALl,"AL2, and AL3 files or the REl, RE2,
and RE3 files.

Because MASS is only mentioned, and not cited, in the MEDL-R
documentation, SUMREL listings were used to analyze the
structure of the MEDL-R data base.

2=-27

uoTI0oV waysdAsqng ajeaa) 19313y
9sed eled Y-T0IW JO uoTiejuasaaday orjewdog

140S ‘SN1VIS
€H 03y

JAILIV ‘SNIVIS
ZH 03

JAILIV SNLVIS
L H'03Yy

‘J1V3IHI WOYJ

01 LNdNI

SNIVIS
SNivis
SNivis

HOLVISNVHL 39VNONY

"L-7 @an51g

(1an
Lv

™
-NMmMeT WO

tan
u 134
™
»
s
7
5
L O
-
Z3
O G -
02 L g]
X=] ;
e z
ri ﬂ
e
I avIHYIA0
— ¢ _ 1SN1VIS
: S3IA10S3Y)
3G +) v o1
€3y YILNIOJ

(1 INIWIHIND3IY
SIAN0S3IY)

SNivS
ai
al
SNIVIS
al

27V 01 H3LINIOd

(41)
[£1]

V1iVa JIHIWNNVH

01 HIINIOd

41
w

6
L)
/
9
S
v

o
!

vne~ND

-N "M

1405
EH
Y

IAILOV

AGV3IHH3IA0

|

(30v)
€w

OF POOR QUALITY

08/282¢L

uoTloy wajlsAsqng ajepdn 19313V
aseqg ejed ¥Y-IAAW JO uotrlejuasaiday OTIewdyosg

"Nﬂvﬂl

F——— = — — ==

aviHH3IA0

(30v)
€3N

*g-z @2anbiy

£iv

uan OB
134 _ sty
31370580 SNIvIS
ZY 03H
:31vadN WoY4
YOLVISNVH1 JOVNONV 1
01 INdNI
P
A 9 SNIVIS oo [—1 ™ 31310880
e SN1vIS £ S SN1VIS 6 6 140S
s snavis [v [o~ | ¥ a 8 " cu
1 SN1YIS £ € a —1¢ zY
z SN1YLS 1 z SNLVIS 9 9 JAILDV
i ol c | S| ___tw
(11 v — —
L 0 € -
. v - 9::—53]
l *IL
30V)

=29

o™

ORIGINAL PAGE I¥
OF POOR QUALITY

2.4 RECOMMENDED MEDL-R STRUCTURE

This section specifies a recommended structure and data flow
for the MEDL-R system based on the comments in Sections 2.1
through 2.3. This recommended structure should allow the
system to accept new language features and new analysis
capabilities.

As previously stated, the current structure of centralizing
the operations around the language translation step is an
excellent scheme. The function division of the modules into
Create, Update, Query, Analyzer, and Metric subsystems is

also good. The use of the MASS data base structure is equally
good (although better documentation is needed if serious

work in modifying it is to be accomplished). The basic crit-
icisms of the structure, specified below, are details of
design and implementation:

® There should be only one editnr (used for both new
input and modifications to old).

® Upon entering or modifying a requirement, the lan-
guage translation should take place immediately
withcut user command. This eliminates many files,
reduces complexity, and gives the user immediate
feedback as %o the validity of the entered regquire-
ments.

@ The only saved files should be the requirements data
base. All other files should be directed to the
user terminal or lineprinter and should be deleted
after used.

] The Analyzer subsystem should e renamed the Report
Generator subsystem, and the Metric subsyvstem is
really the first analysis module.

Figure 2-9 shows a structure that mea2ts the reguirements

specified above. The cnly new process identified is <hat of

2-30

») LT |
ORIGINAL PAGE

K]

(OF POOR QUALITY

, REQUIREMENTS
} DATA BASE
| RETRIEVE p /N
REQUIREMENT [
, D >
REQUIREMENT LANGUAGE
EDITOR —» TRANSLATOR [*—

.

REPORT GENERATION
(CURRENT ANALYZER)

ANALYSIS
(CURRENT METRIC)

USER LINEPRINTER
TERMINAL

Figure 2-9. Recommencded MEDL-R System Structure

i
b :

7282/80

OF‘”"""" DA™ 1™
UGHNAL VAN o

OF POOR QUALITY

retrieving a requirement froin the requirements cdata base.
This allows the editor to modify the reguirement (if it

currently exists).

(8]
I
w
o

. < B A s e e~

P

[,

T“P"‘! {
JiN .

OF POOR CUALITY

SECTION 3 - MEDL-R LANGUAGE SYNTAX

This section summarizes the language syntax currently used
by the MEDL-R system. Section 3.l evaluates the language
elements as to their applicability, completeness, structure,
strengths, and weaknesses. Section 3.2 specifies recom-
mended enhancements to the language.

3.1 CURREN[MEDL-R LANGUAGL SYNTAX

The current version of the MEDL-R system expresses system
requirements according to the following structure:

® A system 1s a data base that contains the specifi-
cations (requirements) for one potential problem
definition.

) A requirement is an individual data structure within

the data base. A requirement 1s composed of up to
21 types of information (entries) that define,
clarify, or categorize that reguirement.

® An entrv is the smallest unit of data that is ac-
cessible to the MEDL-R system. Each of the 2l pos-
sible entries must be of the form (tvpe) specified
for that particular entry.

@ The type of an entry may be tex+t, keyword, or st -ing.
Table 3-1 specifies the rules for correctly forring

each type and the entries allowed for each cype.

Table 3-2 summarizes the 2l requirement entries supported
by the current versicn of the MEDL-R system. Table 3-3 lists
the keywords currently available. The entries and the Xey-

-~

words are specifically defined in Reference 2.

The use of three entry types makes the MEDL-R s
£lexible. The text type permits the stcorage Of informaczion

that is readable, uncderstandable, and meaningful both to

3=1

-

Table 3-1. Current Requirement Type Syntax

TYPE

DESCRIPTION

TEXT

| kEYWORD

STRING

ANY LINE QF TEXT !S ACCEPTED. TEXT IS TERMINATED PY TWO CONSECUTIVE
PERIODS. DESCRIPTION AND EXPLANATION ARE THE ONLY TEXT ENTRIES.

KEYWORDS ARE PREDEFINED TERMS USED TO CLASSIFY THE REQUIREMENT.

(THE SPECIFIC KEYWORDS ARE LISTED IN TABLE 3-3.) THE RULES FOR SPECIFY-

ING A KEYWORD ARE AS FOLLOWS., THE EXACT SPELLING (AS SHOWN IN
TABLE 3-3) (UP TO 16 CHARACTERS) IS REQUIRED FOR EACH KEYWQORD. NO
EMBEDDED S3LANKS, COMMAS, OR PERIODS ARE ALLOWED. COMMAS SEPARATE
KEYWORDS APPEARING IN LISTS. PERIODS TERMINATE LISTS OR SINGLE KEY-
WORDS. THE NATURE AND RESULTING-FRCM ENTRIES ALLOW LISTS OF KEY-
WORDS. THE STATUS AND SCOPE ENTRIES ALLOW THE SELECTION OF ONLY
ONE KEYWORD.

A STRING IS A USER-DEFINED SEQUENCE OF UP TO 30 CHARACTERS. THE FIRST
CHARACTER MUST BE ALPHABETIC. THE RULES FOR VALID CHARACTERS,
SEPARATORS, AND TERMINATORS ARE THE SAME AS FOR KEYWORDS. THE
IDENTIFICATION, RESPONSIBILITY, ORIGINATOR, VERSION, SUBSYSTEM, AND
SOURCE ENTRIES ALLOW ONLY ONE STRING. THE SUBJECT, REPLACES,
REPLACED-8Y, DERIVES, DERIVED-FROM, FUNCTION-RESOLUTION, DATA-
RESOLUTION, AND RESOURCE-RESOLUTION ENTRIES ALLOW LISTS OF STRINGS.
THE CONSTRAINT ENTRY REQUIRES A SPECIAL STRING, WHICH 1S DESCRIBED
ON PAGE 111-13 OF REFERENCE 2. THIS ENTRY IS REQUIRED ONLY WHEN THE
NATURE KEYWORD PERFORMANCE IS SPECIFIED

B aaeadile Lo opBa

ORIGINAT

v
-1

nre e

Pl Ly

OF POOR QUALITY

Table 3-2. Current Requirement Entries
ENTRY TYPE List! MEANING }
IDENTIFICATION STRING NAME TAG OF THIS REQUIREMENT
DESCRIPTION TEXT ENGLISH EXPRESSION OF REQUIRE-
MENT
NATURE KEYWORD L | CATEGORY
RESPONSIBILITY STRING | NAME QOF PERSON, GROUP
ORIGINATOR STRING l NAME OF PERSON, GROUP ‘
SCOPE KEYWORD ! RANGE OF INFLUENCE '
VERSION | STRING | AuDIT
SUBSYSTEM STRING ' PART OF SYSTEM
SOURCE STRING DOCUMENT REFERENCE
CONSTRAINT STRING ! QUANTITY
RESULTING-FROM KEYWORD | L MOTIVATION
SUBJECT STRING i L USER CATEGORY
EXPLANATION TEXT ; MISCELLANEQUS INFORMATION
STATUS KEYWORD I CURRENT STANDING
REPLACES STRING : L | OVERRIDDEN REQUIREMENT
| REPLACED-8Y | STRING | L OVERRIDING REQUIREMENT {
DERIVES | STRING | SUBSEQUENT REQUIREMENT v
DERIVED-FROM STRING L | ORIGINATING REQUIREMENT
FUNCTION- | stRinG L MODULE NAME
RESOLUTION ' 1
DATA-RESOLUTION | STRING L DATA SET NAME
RESOURCE- STRING L SPECIFIC HARDWARE
RESOLUTION

'an L IN THIS COLUMN INDICATES THAT ONE OR MORE STRINGS OR KEYWORDS MAY 3E

PRESENT IN THE ASSOCIATED ENTRY

3=3

7282/80

Table 3-3. Current Keywords

ENTRY KEYWORDS ‘

NATURE DEVELOPMENT
TECHNIQUES

TOOLS
METHODOLOGY
MANAGEMENT
MANPOWER
BUDGET
SCHEDULES
END-ITEMS
FACILITY
HARDWARE
OPERATING-SYSTEM
LANGUAGES
PRODUCT |
INTERNAL J
PROCEDURAL ;
STRUCTURAL |
TEMPORAL |
DATA i
INTERFACE .
EXTERNAL
OPERATIONAL
PERFORMANCE ;
USER-INTERFACE |
TGT-FACILITY

HARDWARE
OPERATING-SYSTEM
LANGUAGES

EXISTING-SOF TWARE

SCOPE GLOBAL

f LIMITED
RESULTING-FROM | COMPANY-GOALS
COMPANY-STANDARDS
CUSTOMER-DIRECTION
CUSTOMER-STANDARDS
REAL-WORLD-MODEL
QUALITY-CONSIDERATIONS |

ECONOMICS
POLITICS
|
STATUS | acTIvE 13
| SOFT |
T n
| OBSOLETE 3

ORIGINAL PAGE IS
OF POOR QUALITY

the developer and to the originator of a software system.

The keyword type allows the MEDL-R system to impose a built-in
set of categories upon requirements. The string type supplies
a common format for requirement names (which can be used for
tags and pointers) and for user-defined quantities (names of
people, specialized categories, or actual items). No sug-
gested improvement to the MEDL-R system involves an enlarge-
ment of the set of permissible types.

Sections 3.1.1 through 3.1.21 describe the MEDL-R system en-
tries. (Each entry is described in detail in Reference 2.)
Each section includes (where applicable) a specific analysis
of the entry's applicability, completeness, structure,
strengths, and weaknesses. Many of these factors are con-
sidered in measuring the usability of the entry in current

or future analysis. Appropriate recommendations concerning
how and when to use the individual language elements are also
provided.

3.1.1 IDENTIFICATION

The IDENTIFICATION entry is the means of referring to a par-
ticular requirement from another requirement or by any of

the existing analysis procedures.

This entry may be supplied by the MEDL-R system (in the
Create mode) or by the user (in the Update mode). When sup-
pliec by the MEDL-R system, the IDENTIFICATION sequence is
R-1, R-2, and so fortn. Duplicate IDENTIFICATIONs are gen-
erated by the MEDL-R system if the Create subsystem is used
more than once before processing proceeds to the Language
Translator subsystem. In the Update mode, any valid string
may be used for IDENTIFICATION. This is the preferred nam-
ing methed, because the user may label the reguirement with

2 name indicative of its contents.

ORIGIVAL PAGE (S
OF POOR QUALITY

3.1.2 DESCRIPTION

The DESCRIPTION entry contains the English-language expres-
sion of the requirement. The entire requirement is depend-
ent upon a clear and unambigucus statement in this entry.
DESCRIPTION is not currently subjected to analysis by the
MEDL-R system (except for text-fragment searches by the
Query subsystem). DESCRIPTICON is expanded, annotated, gqual-
ified, categorized, and so forth, by the remaining entries
of the requirement. DESCRIPTION is the core of the MEDL-R
system concept. The user, however, may benefit from the
following suggestions. The text entered here should be both
concise and clear. Conciseness is desirable because the

QRY data set will contain a complete copy of the DESCRIPTION
entry of every matching requirement each time it matches a
guery. Clarity is desirable because these DESCRIPTIONs will
be reported alone and out of context. DESCRIPTION is, as

it should be, a mandatory entry to form a ragquirement.

3.1.3 NATURE

The NATURE keyword is the primary classification of the re-
quirement. The current set of available keywords (see

Table 2-3) attempts to present a universal classification
scheme; that is, every possible requirement should fit under

one or more of the keywords.

The NATURE keyword set is one of the most important features
of the MEDL-R system. A user should fully understand the
meanings of each of the keywords and should state the re-
quirements with the keywords in mind. 1In this way, the key-
words can indicate which areas additional requirements
should address. This generality leads to a criticism of the
current NATURE kevword set. A user should be able to tailor
the set to match inherent gqualities of a specific type of
system. The current set is too general and provides limited

guidance for a specific application.

3=6

e

ORIGINAL PAGE 1S

OF POOR QUALITY

A second criticism of the NATURE entry is that although the
entry contains an implicit structure, this structure is not
implemented or enforced in the MEDL-R system. Figure 3-1
shows the implied structure as a hierarchy. Currently, a
user may tag a requirement with the NATURE keyword LANGUAGES.
The hierarchy list shows that this is ambiguous. A require-
ment tagged with both DEVELOPMENT and EXISTING-SOFTWARE is
obviously incorrect, but this tagging is currently allowed

oy the MEDL-R system. On the other hand, a requirement
tagged with DEVELCPMENT, FACILITY, and HARDWARE (enforcing,
the hierarchy) is clearly different from a requirement tagged
with PRODUCT, TGT-FACILITY, and HARDWARE. .

A third criticism is that it is difficult to remember the
spelling and definition of all NATURE keywords. The user
must either use the list presented in the user's guide (Ref-
erence 2) as a reference or rely solely upon a remembered
subset.

3.1.4 RESPONSIBILITY

The RESPONSIBILITY entry tracks the implementation of the
requirement into the design phase.

RESPONSIBILITY may be specified in the Query mode, thus col-
lecting, as a group, those requirements that. will be rasolved
by a particular person or group.

3.1.5 ORIGINATOR

The ORIGINATCR entry tracks a requirement back to its origin
Tracking can be very important if guestions arise concerning
b
-

the reguirement's function, motivation, content, and so for

ORIGINATOR is not available in the Query mocde. Thus, it is
difficult to collect one originator's requirements into one
package (e.g., to submit a request Zor wvalidation of the

re

finalized guirements to each originator).

ORIGINAL PAG:

-
Lzt .
RIS LD

OF POCR QUALITY

DEVELOPMENT

TECHNIQUES
TOOLS
METHODOLOGY

MANAGEMENT
MANPOWER
BUDGET
SCHEDULES
END-ITEMS

FACILITY
HARDWARE
OPERATING-SYSTEM
LANGUAGES

PRODOUCT

INTERNAL
PROCEDURAL
STRUCTURAL
TEMPORAL
DATA
INTERFACE

EXTERNAL
OPERATIONAL
PERFORMANCE
USER-INTERFACE

TGT-FACILITY
HARDWARE
OPERATING-SYSTEM
LANGUAGES
EXISTING-SOFTWARE

182/

Figure 3-1. Current NATURE Keywords
H.erarchical Form

in

ORIGINAL PAC

OF POOR QUALITY
3.1.6 SCOPE
The SCOPE entry indicates how the reguirement is to relate
to the system. The current choice of GLOBAL or LIMITED key-
words for SCOPE tends to be meaningless unless the boundaries
of influence are in some way indicated when LIMITED is speci-
fied. The SCOPE entry is thus not fully used by the MEDL-R
system language, and the explanation of this entry in Ref-
ference 2 does not help the user to understand its use.

3.1.7 VERSION

The VERSION encry is intended to help determine the stage of
the system at which the requirement was added.

Because this entry is supplied by the user, misspellinus, in-
accuracies, or blunders will negate its purpose. Currently,

the MEDL-R systcem does not assist in this housekeeping chore.
3.1.8 SUBSYSTEM

The SUBSYSTEM entry supplies a name for the particular por-
tion of the system to which the requirement applies.

This entry is tied strongly to the SCOPE entry concept. The
MEDL-R system should reccgnize this connection and prompt
the user to supply valid relationships.

3.1.9 SOURCE

The SOURCE entry traces the requirement to a written c&ocu-

ment and is thus very important.

If the MEDL-R system is used to enter and analvze a set of
regquirements {(and not as a tool to help develcp the regquire-
ments), this entry can be used to determine whether the re-
guirement was entered correctly. In developin¢ reguirements,

SOURCE can be used to refer to supporting evidences.

3=9

ORIGINAL PAGE IS
OF POOR QUALITY

3.1.10 CONSTRAINT

The CONSTRAINT entry allows for a "quantitative restricticn”
as a requirement. It is permitted only when NATURE keyword
PERFORMANCE is supplied. The gquantity must be expressed as
a rate (e.g., 20-FRAMES/SECOND). Currently, there is no
analysis of this entry. This entry was apparently planned
for some purpose other than further clarification of the re-
quirement (as seen by the restriction on entry units). The
present restriction to express the guantity as a rate results
in confusion when this cannot be dcne (e.g., if the user
wishes to note a requirement for the amount of in-core mem-
ory) .

3.1.11 RESULTING-FROM

The RESULTING-FROM entry indicates the motivation for includ-
ing the requirement. The current set of available keywords
is specified in Table 3-3.

The name of this entry may cause it to be confused with the
DERIVED-FROM entry.

RESULTING-FROM kevwords are hard to remember and dc not cover
all reasons for including a requirement. As with the NATURE
keywords, this set of keywords should be tailored to the

specific motivations important to the user.
3.1.12 SUBJECT

The SUBJECT entry is intended for user-supplied keywords.
Any valid string or strings may be entered. Such an entry
gives the user a chance to cross-reference requirements in
terms specific to the system.

The SUBJECT entry is a potentially useful device. The user
should select a limited number of SUBJECT st

to stick to them. This procedure should limit the problems

with inpat errors anc misspellings. Such input errors and

3-10

OKIGINAL PAGE IS
OF POOR QUALITY

misspellings can be serious because the MEDL-R system does
not validate this entry.

The SUMMARY report produced by the Analyzer subsystem con-
tains a list of SUBJECT strings and should be checked fre-
quently to detect the presence of misspellings.

3.1.13 EXPLANATION

The EXPLANATION entry contains any expandecd text relating to
the requirement. The EXPLANATION entry is used to supple-
ment the DESCRIPTION entry.

The EXPLANATION entry is not reported in Query mode, and thus
the restriction of conciseness suggested in Secticn 3.1.2
does not apply. Any applicable text should be entered into
EXPLANATION, including comments, questions, historical data,
and so forth. EXPLANATION is not subjected to Query mode
analysis.

3.1.14 STATUS

The STATUS entry indicates the curraent standing of the re-
quirement as it is applicable to the current system.

The STATUS keywords are specified in Table 3--3. The keyword
SOFT i1s not an accepted term and might not have a distinct
meaning to all users. The keyword ACTIVE is also unclear
due to the many different shades of mez2ning associated with
the word. The STATUS keywords should indicate the progress

of a requirement from proposal to final acceptance.

The keyword OBSOLETE does not, as it should, automatically
remove a requirement from inclusion by all anal,sis subsys-

tems.
3.1.15 REPLACES

The REPLACES entry indicates that the current requirement
overrides ancther regquirement. The 3tring or strings entered

declare the overridden recuirement's IDENTIFICATION.

3-11

o —

ORIGINAL PASE 13
OF POOR QUALITY

Currently, this entry is not used by the MEDL~R system to

its full extent. The user is responsible for making the
corresponding REPLACED-BY entry in the overridden reguire-
ments. In addition, the user probably should change the
overridden requirements' STATUS entries to OBSOLETE. Thase
actions are very impecrtant in maintaining a consistent MEDL-R
data base.

3.1.16 REPLACED-BY

The REPLACED-BY entry indicates that the current requirement
has been overridden by another requirement. The string or
strings entered declare the overriding requirement's IDENTI-
FICATION.

This entry is the complement of the REPLACES entry; the com-
ments concerning that entry also apply here.

An implied relationship exists between this enury and the
STATUS entry. A replaced requirement should automatically
be given a STATUS of OBSOLETE.

3.1.17 DERIVES

The DERIVES entry indicates another requirement in the sys-
tem that uas evolved from the current requirement. The
string or strings entered declare the evolved reguirement's
IDENTIFICATIONS.

The DERIVES entry provides the link(s) needed when a tech-
nigque of decomposition is used to develop a set of system
recuirements.

Currently, this entry is not used by the MEDL-R system to its
fullest extent. The user is responsible €or making the cor-
responding DERIVED-FROM entrv in the evolved reguirement, as
well as for ensuring that the 2evcolved requirement actually
exists. Again, checks such as this would lelp in maintaining
a consistent data base, 2as well as flag potential errcrs in

the raquirements.

—

ORIGINAL P71
OF POOR

3.1.18 DERIVED-FROM

The DERIVED-FROM entry indicates that the current regquire-
ment has evolved from another requ.rement. The string or

PR

strings entered declare the "parent" requirement‘s IDENTI=-
FICATION.

This entry is the complement of the DERIVES entry:; the com-
ments concerning that entry alsc apply here.

3.1.19 FUNCTION-RESCLUTION

The FUNCTION-RESOLUTION entry is a link with the design
phase. The string or strings enterecd are names of actual
modules designed to resolve the regquirement.

The usefulness of this entry depends upon the implementation
of the Multi-Level Expression Design Language - Design Level
(MEDL-D) system. The need for this entry in the requirement
statement or analysis phase is doubtful, and the entry should
be avoided to maintain a clear separation between specifica-
tion and design work.

3.1.20 DATA-RESOLUTICN

The DATA-RESOLUTION entry is a link with the design plLase.

The string or strings entered are names of actual data sets
that contain information specified by, or needed to implement,
the requirement.

The comments concerning FUNCTION-RESOLUTION also apply to
this entry.

3.1.21 RESOURCE-RESOLUTION

The RESOURCE--RESOLUTION entrvy is a link with the design
phase. The string or strings entered are names for the de-
signed svstem rescurces (hardware, time, or space) neeced

to resolve the requirement.

3+13

.-

A
OF FOOR QUALITY,

The comments concerning FUNCTION-RESOLUTION also apply to
this entry.

3.2 RECOMMENDED ENHANCEMENTS TO MEDL-R LANGUAGE

The recommendations for enhancing the MEDL-R language fall
into taree categories: organization, additions, and dele-
tions.

The recommended reorganization of requirement entries is
presented in Table 3-4. The hierarchy of the entries indi-
cates relative importance (top entries are mandatory) and
progress through the requirements phase (top entries are
available at the start of the requirements phase; bottom
entries are supplied at the end of the requirements phase
or at the start of the design phase). The reorganized se-
quence should also be reflected in the sequence of prompts
in the edit/create functions of the MEDL-R system.

The list of entries in Table 3-4 is divided into seven groups.
This grouping should be reflected in the sections of any re-
vised Forma:ted Requirement Statement (FRS) report. Each

group described below is composed of entries with a common

theme:

° Group l contains entries that are either essential
to the MEDL-R system concept or Jood regquirement
specifications in general.

® Group 2 contains entries that refine, supplement,
or expand the information in Group 1.

e Group 3 entries require user judgment to character-
ize the regquirement.

e Group 4 co.tains entries that show the decomposition

of the systen into components or the refinement of
one reguirement into conseguent or dependent re-

guirements.

3-14

ORIGINAL PAZE (S
OF POCR QUALITY

Table 3-4. Recommended Requirement Entries

GROUP ENTRY TYPE LsT? MEANING
1 IDENTIFICATION STRING NAME TAG OF THIS REQUIREMENT
1 DESCRIPTION TEXT ENGLISH-LANGUAGE EXPRESSION
OF THIS REQUIREMENT
1 SOURCE STRING DOCUMENT REFERENCE
1 TEST-CRITERIA TEXYT BENCHMARK DESCRPTION
2 EXPLANATION TEXT MISCELLANEQUS INFORMATION
2 SUBJECT STRING L USER CATEGORY
2 CONSTRAINT STRING QUANTITY
3 NATURE KEYWORD L CATEGORY
3 METRIC KEYWORD L SOFTWARE QUALITY GOAL
3 MOTIVATION KEYWORD L REASON FOR THIS REQUIREMENT
R SCOPE KEYWORD RANGE OF INFLUENCE
4 SUBSYSTEM STRING PART OF SYSTEM
4 DERIVED-FROM STRING L ORIGINATING REQUIREMENT
5 STATUS KEYWORD CURRENT STANDING
5 REPLACES STRING L OVERRIDDEN REQUIREMENT
6 ORIGINATOR STRING NAME OF PERSON, GROUP
8 DEVELGPER STRING NAME OF PERSON, GROUP
6 REVIEWER STRING NAME OF PERSON, GROUP
7 FUNCTION-RESOLUTION STRING L MODULE NAME
7 DATA-RESOLUTION STRING L DATA SET NAME
7 RESOURLE-RESOLUTION STRING L SPECIFIC HARDWARE

3AN L IN THIS COLUMN INDICATES THAT ONE OR MORE STRINGS OR KEYWORDS MAY BE PRESENT IN
THE ASSOCIATED ENTRY.

w
1
'_l
w

lmzrm

TR TR,y =

M e e

—

0y T ey e

-~

ORIGINAL PAGE IS
OF POOR QUALITY

® Group 5 contains entries that show the current
standing of the regquirement.

) Groug 6 1is devoted to naming the individuals or
organizations assigned to each role in reguiremernts
analysis.

] Group 7 entries link the requirement with the de-
sign.

Sections 3.2.1 through 3.2.21 present either the recommenda-
tions for ennancement of an entry retained from the current
MEDL-R system requirement or the reasons for including pro-
posed new entries. Section 3.2.22 thrcugh 3.2.24 present
the justificaticn for deleting three of the current entries
(VERSION, REPLACED-BY, and DERIVES).

3.2.1 IDENTIFICATION

The MEDL-R system should always prompt the user to supply
the entry. Theo weaknesses of the current default segquence
(R=1, R-2, and so forth) are inherent and would be present
in any other default sequence.

By forcing the user to name each regquirement, the MEDL-R
system could help to organize the user's visualization of
the structure of the requirements data base. Sample naming
conventions provided by the user ars mnemcnics that indicate
the requirement contents, original document section and page

number, or any other categorizing scheme.

3.2.2 DESCRIPTION

No changes to the DESCRIPTION entry are racommendec.
3.2.3 SOURCE

The SOURCE entryv should be mandatory to ensure the reten-
tion of a link with an authoritative reierence. The use
of this entrv will assist the reduction of the vclume of

material actually entered into the MEDL-R data base. The

ol . L L A

ORICINAL PAGE (S
OF POOR QUALITY

resolution of a detected inconsistency, ambiguity, or con-
tradiction will be simplified by the inclusicn of this entry.

3.2.4 TEST-CRITERIA

The TEST-CRITERIA entrv is a recommended addition to the
MEDL-R system requirement. The TEST-CRITERIA entry would

be a text entry containing a procedure, benchmark, or other
method for validating the requirement's presence in the final
sy.tenm.

The TEST-CRITERIA entry, if present, would help ensure that
the DESCRIPTION entry is a precise and unambiguous state-
ment.

3.2.5 EXPLANATION
No changes to the EXPLANATION entry are recommended.
3.2.6 SUBJECT

Each SUBJECT string entered by the user should be checked
against a master list of previously entered SUBJECT strings
of other requirements. If the string is already part of the
list, the MEDL-R system will assume that the user wishes to
connect the new requirement with others containing the string.

£ the string is not found, the entry is possibly a misspell-
ing of a previous string. The MEDL-R system should notify
the user that the SUBJECT about to be entered is new and
allow the user to correct the spelling if an old string was
the intended entry.

3.2.7 CONSTRAINT

The specified format of the CONSTRAINT string entry should
be relaxed to allow the user toc enter CONSTRAINTs that are
not expressed only as a rate. This recommendation is con-
tingent upon a f£inding that the MEDL-D system does not ze-
gquire CONSTRAINT to be expressed as a rate.

- ™

ORIGINAL PAOE IS
OF POOR QUALITY

3.2.8 NATURE

The NATURE entry should be enhanced by the following two
changes. First, the existing NATURE keyword list should be
modified according to the list shown in Figure 3-2. This
enhanced lis% takes into account the complete software life
cycle and contains some asrects not .eferenced in the current
list (maintenance, documentation, and testing). Second, the
MEDL-R system should prompt the user for NATURE keywords in

a way that takes advantage of the hierarchical structure of
Figure 3-2. This may be done through menu promrts. This
method of specifying the keywords has two advantages:

(1) the hierarchical structure is ensured, and (2) the user
dce2s not have to memorize (or consult) the user's manual when
entering NATURE keywords. For example, if the requirement

is "to produce a specific document," the user/MEDL-R system
interaction might be

MEDL-R > (NATURE)
1 DEVELOPMENT
2 PRODUCT
3 POST-PRODUCT

v

USER v

MEDL-R > (PRODUCT)
1 OVERALL

2 INTERNAL

3 EXTERNAL

4 TARGET-FACILITY
5 DOCUMENTATION

6 TESTING

USER > 5

3=18

OR‘G'- ! AL P. :1;. :S
OF POOR QJﬂUTY

DEVELCPMENT
OVERALL
TECHNIQUES
OVERALL
TOOLS
METHODOLOGY
MANAGEMENT
OVERALL
PROGRESS-REPORTING
MANPOWER
8UDGET
SCHEDULES
OELIVERABLES
OEVELOPMENT-FACILITY
QVERALL
HARDWARE
QPERATING-SYSTEM
LANGUAGES
PROJECTED-EVOLUTION
OVERALL
ENHANCEMENTS
FACILITY-CHANGES
PROVISIONS-FOR-EXPANSION
PROOUCT
QVERALL
INTERNAL
OVERALL
PROCEDURAL
STRUCTURAL
TEMPORAL
DATA
INTERFACE
EXTERNAL
QVERALL
QPERATIONAL
PERFORMANCE
USER-INTERFACE
TARGET-FACILITY
OVERALL
HARDWARE
QPERATING-SYSTEM
LANGUAGES
JEUSABLE-ZX!ISTING-SOFTWARE
DOCUMENTATION
OVERAL.
WORKING-TITLE
TOPICS-COVERED
DELIVERY-MEDIUM
NONSTANDARD-REQUESTS
TESTING
OVERALL
SENCHMARKS
CRITICAL-ERROR-DETECTION-RECOVERY
POST-PRODUCT
OVERALL
INSTALLATION
OVERALL
STAGES
VALIDATION
“RAINING
VIAINTENANCE
OVERALL
PROBLEM-REPORTING
LABILITY
SUPPORT
QVERALL
CONSULTATION
NEW-RELEASZS

R

Figure 3-2. Recommencded NATURE Xeyworcs

3=-19

mams™

ORIGIN ! |
OF PUUR o

MEDL-R > (DOCUMENTATION)

OVERALL

WORKING-TITLE

TOPICS-COVERED

DELIVERY-MEDIUM

NON-STANDARD-REQUESTS

wm e N

USER > 2

The keyword OVERALL found in the prompt indicates that the
requirement cannot be subcategorized fur*her and that addi-
tional prompts are not required.

This enhancement leaves the NATURE entry open-ended, and
the user need not memorize all keyword spellings.

3.2.9 METRIC

The proposed METRIC reguirement entry is a iieyword type.
The specific keywords and their definitions, taken from
Reference 3, are presented in Table 3-5.

This entry will provide a "design to" criterion. Each set
of requirements may be satisfied by any one of a large number
of potential systems. If the reguirements identify guidelines
for applicable software quality factors, the number of poten-
tial solution systems is reduced because "nonguality" sys-

tems are excludecd.
3.2.10 MOTIVATION

The current RESULTING-FROM entry should be changed to a
MOTIVATION entry. The current name is easily confused with
ancther MEDL-R system entry, DERIVED-FROM. No reccmmenca-

tions are made for changing the current keyword list.
3.2.11 SCOPE

The implicit relationship between the SCOPE entry and %he

SUBSYSTEM entrv shoculd be implemented.

3=20

e

ORICH e -
OF PCCR QUALITY

Table 3-5. METRIC Keyword Definitions

MAINTAINABILITY

TESTABILITY

FLEXIBILITY

REUSEABILITY

PORTABILITY

INTEROPERABILITY

EFFICIENCY

KEYWQRD DEFINITION

INTEGRITY SYSTEM'S CONTROL OVER UNAUTHORIZED ACCESS TO DATA OR SOFTWARE IN
THE SYSTEM

USABILITY EASE WITH WHICH THE SYSTEM CAN BE LEARNED OR OPERATED OR THE EASE
WITH WHICH INPUT DATA ARE PREPARED OR QUTPUT DATA ARE INTERPRETED

CORRECTNESS EXTENT TO WHICH THE SYSTEM SATISFIES ITS SPECIFICATIONS OR FULFILLS
THE MISSION OBJECTIVES

RELIABILITY EXTENT TO WHICH THE SYSTEM 'S EXPECTED TO PERFORM ITS INTENDED

FUNCTION WITH PRECISION AT ANY TIME

TARGET LEVEL OF EFFORT NEEDED TO LOCATE AND REPAIR SYSTEM FAULTS
ONCE THE SYSTEM IS OPERATIONAL

EASE WITH WHICH THE SYSTEM CAN BE TESTED TO ENSURE THAT IT
PERFORMS ITS INTENDED FUNCTION

EASE WITH WHICH THE OPERATIONAL SYSTEM CAN BE MODIFIED

EXTENT TO WHICH THE SYSTEM CAN BE USED IN ANOTHER APPLICATION

EASE WITH WHICH THE SYSTEM CAN BE TRANSFERRED FROM ONE HARDWARE
CONFIGURATION AND/OR SOFTWARE ENVIRONMENT TO ANOTHER

EASE WITH WHICH THE SYSTEM CAN BE COUPLED TO ANOTHER SYSTEM

AMOUNT OF COMPUTING RESOURCES AND CODE ALLOCATED AND USED BY
THE SYSTEM TO PERFORM ITS FUNCTION

NOTE: THE INCLUSION OF ONE OR MORE OF THESE KEYWORDS UNDER THE METRIC ENTRY INDICATES THAT

THE REQU!REMENT ADDRESSES THAT ASPECT OF THE SYSTEM

1821

\,‘i.’.i.' y .-.'~; -y
OF POOR QUALITY.

If the SCOPE keyword LIMITED is entered, the SUBSYSTEM entry
should become mandatory. The SUBSYSTEM names then would
definitively describe the limits of the requirement.

Conversely, if a SUBSYSTEM entry is made, the MEDL-R system
should insert the keyword LIMITED for SCOPE.

3.2.12 SUBSYSTEM

The recommended enhancement to the SUBSYSTEM entry is de-
scribed in Section 3.2.1l1l.

3.2.13 DPERIVED-FROM

The MEDL-R system should be modified to compare the require-
ment IDENTIFICATION(s) entered under the DERIVED-FROM entry
with the list of requirement IDENTIFICATION(s) present in the
data base. 1If the DERIVED-FROM entry does not name a require-
ment in the data base, the MEDL-R system should give the user
the opportunity to change the entry. The system should issue
a warning if the DERIVED-FROM entry names a requirement whose
STATUS 1is OBSOLETE.

3.2.14 STATUS

The curfent set of STATUS keywords (ACTIVE, SOFT, and OBSO-
LETE) dces not completely reflect the evolution of a regquire-
ment. To obtain a better understanding of the evolution of

a reqguirement, use of the keywords specified in Table 3-6 is
recommended.

Figure 3-3 demonstrates the evolution ¢of a requirement as

it is reflected in Table 3-6.
3.2.15 REPLACES

The MEDL-R system should be modified to compare the reguire-
ment IDENTIFICATION(s) entered under the REPLACES entrv with
the list of requirement IDENTIFICATION(s) present in the data
base. If the REPLACES entry does not name a reguirement in

the data base, the MEDL-R system should give the user =zhe

3=22

PRSI

ﬁgiétﬁ,x!. PAGE 1§
OF POOR QUALI

Table 3-6. Recuormended STATUS Keywords

KEYWORD

DEFINITION

TENTATIVE

ACTIVE

REVIEWED

QUESTIONED

OBSOLETE

A NEW REQUIREMENT ABOUT WHICH NOT MUCH IS KNOWN. IT IS EXPECTED
TO PROGRESS TO ACTIVE, BUT IT MAY BECOME OBSOLETE. TENTATIVE IS THE
DEFAULT FOR STATUS

A REQUIREMENT (WHICH MAY BE NEW) ABOUT WHICH THE MAJORITY OF
MEDL-R INFORMATION IS PRESENT. IT IS EXPECTED TO PROGRESS TO REVIEWED,
8UT IT MAY 3ECOME QUESTIONED

A REQUIREMENT ABOUT WHICH “EVERYTHING" IS KNOWN. IT HAS BEEN
VALID\TED BY AN INDEPENDENT REVIEWER WHO HAS CONSIDERED IT TO BE
COMPLETE AND CORRECTLY RELATED TO OTHER REQUIREMENTS. IT MAY
BECOME OBSOLETE DUE TO THE DISCOVERY OF AN ERROR OR THROUGH A
CHANGE IN THE ORIGINATOR’'S SPECIFICATIONS, 8UT THERE IS A VERY GOOD
CHANCE THAT IT WILL BECOME PART OF THE FINAL SYSTEM

A REQUIREMENT THAT IS DISPUTED. DOUBT EXISTS ABOUT THE APPLICAB'LITY,
FEASIBILITY, AND SO FORTH, OF THIS REQUIREMENT, AND WHETHER IT WILL
BE INCLUDED IN THE FINAL SPECIFICATIONS WITHOUT MODIFICATION IS
UNCERTAIN. A QUESTIONED REQUIREMENT MAY BECOME EITHER OBSOLETE OR
ACTIVE, DEPENDING UPON THE RESOLUTION OF THE DISPUTE

A REQUIREMENT THAT FOR ANY REASON HAS BEEN MARKED FOR NO FURTHER
CONSIDERATION. OBSOLETE REQUIREMENTS ARE RETAINED AS REMINDERS OF
“BLIND ALL.EYS” OR ERRORS AND MAY NOT BE CHANGED IN ANY WAY

3=23

- ra

c,'..‘\n." “ ENS y

OF POUR &
FORMAL
SPECIFICATION
DOCUMENT
ADDTIONAL
INFORMATION REVIEW
CLARIFICATION
DESIGN
INTERACTIVE PHASE
SPECIFICATION
PROCESS
REJECTION

RECONSIDERATION

OBSOLETE

\

\

ARCHIVE

Requirement Evolution as Reflected

Figure 3-3.
by STATUS Keyword

3=24

142100

ORIGINAL PAGE [
OF POOR QUALITY

opportunity to change the entry. The system should issue a
warning 1f the REPLACES entry names a raguirement whose
STATUS is CBSOLETE.

3.2.16 ORIGINATOR
No changes to the ORIGINATOR entry are recommended.
3.2.17 DEVELOPER

The name of the current RESPONSIBILITY entry should be
changed to DEVELOPER. The current name might be confused
with the proposed new entry REVIEWER, which names a person
or group with a particular kind of responsibility.

3.2.18 REVIEWER

The REVIEWER entry should be added to the MEDL-R system re-
quirement. This entry is intended to include the name of a
person (or group) who has the responsibility of certifying
that the requirement is complete and correctly related to
other reguirements. This person (or group) is responsible
for recommending a change in the STATUS entry from ACTIVE
to either QUESTIONED or REVIEWED (see Section 3.2.14).

3.2.19 FUNCTIONAL-RESOLUTION

No changes <o the FUNCTIONAL-RESOLUTION entry are recommended.
3.2.20 DATA-RESOLUTION

No changes to the DATA-RESOLUTION entry are recommended.
3.2.21 RESOURCE-RESOLUTION

No changes to the RESOURCE-RESOLUTION entry are recommended.
3.2.22 VERSION

The VERSION entry should not be used for individual recuire-
ments; instead, the system should perform this housekeepin
task. The system version name can be expected to remain

constant over several MEDL-R sessions (at least). The

3=25

'ﬁ——— Pt gy
Y P

ORIGINAL [AGE (S
OF POOR QUALITY

current operation of manually specifying the version for
each requirement can lead to erroneous entries.

Becaus2 the version name is a valid component of sach re-
quirement when the requirement is considered ocutside the data
base, user control is still necessary. It would be better

to specify a versicn name at the start of each session and

to allow the MEDL-R syétem to attach the name to each re-
quirement modified or created during the session.

3.2.23 REPLACED-BY

The REPLACED-BY entry should not be used for individual re-
quirements. The MEDL-R system sitould be modified to resolve
a REPLACES entry with an auvtomatic REPLACED-BY entry under
the appropriate regquirement. This modification would re-
lieve the user of a complicated, error-prone bookkeeping
task.

This modification has many ramifications that would affect
the STATUS and DERIVED-FROM entries. The full extent of
the modifications is estimated to be guite large; however,
the benefits of automating this task would be realized in a
reduction in errors and the development of a systematic and
reliable tracing and auditing method.

3.2.24 DERIVES

The DERIVES entry should not be used for individual regquire-
ments. The MEDL-R system should be modified to resolve a
DERIVED-FROM entry with an automatic DERIVES entry under the
appropriate reguirements.

As in the case of the REPLACED-BY en+<rv, this deleticn would
require extensive planning and design prior to implementa-
tion. The benefits realized from this modification would

be similar to those mentioned in Section 3.2.213.

3=26

ORIGINAL PAGT 19

OF POCR QUALITY

SECTION 4 - EVALUATINN SUMMARY

This section summarizes the results of the MEDL=-R system
evaluation and proposes a sequence of implementation for the
recommended modifications to the system.

4.1 EVALUATION AND RECOMMENDATIONS

The evaluation and recommendations are based on experience

in processing small numbers of requirements with the MEDL=-R
system. The current version of the MEDL-R system tends to
discourage the user from entering large numbers of require-
ments because of inadequacies in its implementation ard
difficulty in intorpreting the final results. Thus, the
evaluation and recommendations are directed toward improving
the MEDL-R system from an operational standpoint, with tne
hope that an improved system will attract a larger user com-
munity. The validity of the MEDL-R system concept of reguire-
ments analysis can be tested only after a number of users

are familiar with it in varied applications, a:t which point
enhancements to the analysis performed might also be attempted.

The major findings resulting from the evaluation of the
MEDL-R system are as follows:

] The MEDL-R system represents a good starting point
in the develcpment of a new concept of Reguirements
Analysis Languages (RALs).

° The MEDL-R system contains the majority of functicns
desirable in the Code 580 environment.

. The MEDL-R system adheres to an interactive approaca
(rather than a batch approach) to RALs.

® The majority of the components of the MEDL-R language

syntax are pertinent and useful to Code 580.

® The current structure of the system can be mcdified

into a more operaticnal implementation.

4-1

ORIGINAL PAGE I3
OF POOR QUALITY

The recommended changes to the MEDL-R system are specifically
directed toward correcting some awkwardnesses in the details
of implementation and improving the MEDL-R systelL opera-
tionally. The most important change to be macde to MEDL-R
would be reorganization of the system as outlined in Sec-
tion 2.4. The most extensive portion of this effort would

be the consolidaticn of the two current edit subsystems
(Create and Updat=2) into one subsystem. The single edit
supbsystem would isolate direct user contact with the require-
ments into one portion of the system and thus reduce the pro-
gramming effort reguired by further enhancement, extension,
or mcdification to the language syntax. One subsystem would
also reduce the user's learning time, because only one edit
orocedure would need to be learned. The reorganization effort
would also be directed toward eliminating superfluous exter-
nal files and allowing better online reporting capability.

Following the reorganization of the MEDL-R system, the lan-
guage syntax modifications would be implemented. The rec-
ommended mndificaticns are classified below:

W lew language entries--TEST-CRITERIA (Seccion 3.2.4),
METRIC (Section 3.2.9), a2né REVIEWER (Section 3.2.18)

® Default values for entries=--SCOPE (Sectior. 3.2.11),
STATUS (Sectiomn 3.2.14), aand VERSION (Section 3.2.22);
the recommended enhancements would improve overall
configuration contrel

® Revised keywords (and their presentation in a menu
forma+) --NATURE (Section 3.2.8) and ¢TATUS (Sec-

tion 3.2.14)

® Automatic program-suppliec alues f£or some entries
based on the current value of others- -SCOPE anc

UBSYSTEM (Secticn 3.2.11), DERIVED-FROM and DERIVES

(Secticn 3.2.24), and REPLACES and REPLACED-3Y

~

~

4-2

)

[N o Ll 4
i 2l 5)
A4 A™ L LR 1) S Lm

OF POOR QUALI

3

-, W

-
i

(Section 3.2.23); the recommended enhancement would
reprasent an automatic linking feature to ensure

the credibility of the data base and allow additicnal
analysis

Other recommended modifications to the MEDL-R system such

as (1) extending the QUERY syntax tc a more general form
covering a larger subset of the MEDL-R entries (Section 2.1.4)
and (2) expanding the content of the Analyvzer subsystem SUM-
MARY report (Section 2.1.5) could also be implemented after
the reorganization of the MEDL-R svstem structure. These
changes represent the only proposed improvements to the
analysis portion of the MEDL-R system. The proposed new
functions of combining MEDL- - reguirement data bases and
creating a sukset data base (section 2.1.7) would be imple-
mented (as all new analysis features should be) only after

more experience is gained with large reguiremant systems.

4.2 FUTURE PLANS FOR MEDL-R IN CODE 580 ENVIRONMENT

Code 580 proposes to conduct a pilot test of the MEDL-R sys-
tem as it is currently installed on the PDP-11/70 in the
Software Engineering Laboratoryv (SEL). Several develocvment
tasks currently being monitored by the SEL will use MEDL-R
as part of tne requirement specification analysis phase. A
senior analyst with approximately 3 to 4 years' experience
in Code 580 software development will extract the functional
specifications from the requirements document. The specifi-
cations will be translated to the MEDL-R language, and an
attempt will be made to link the specifications %o actual
program modules, data sets, or system resovrrces, Other Zea-
tures of MEDL-R will be tested at the discreticn of the ana-
lyst. The results of the pilot tests should be availabls in

spring 1981.

ORIGINAL PAGT I3

SIS TR ot

OF POOR QUALITY

RETERENCES

Martin Marietta Aerospace, Multi-Level Expressioa Design
System Reguirements Level Description Manual, P. Scheffer
and A. Musser, February 1979

--, MEDL-R Language User's Guide, P. Schefier and
A. Musser, rebruary 1979

Rome Air Development Center, Factors in Software Qualitvy,
Volume III, RADC-TR-77-369, Preliminary Handbook on Soft-

ware Quality for an Acguisition Manager, J. McCall,
P. Richards, and G. Walters, November 1577

BIBLIOGRAPHY OF SEL LITERATURE

Anderson, L., "SEL Library Software User's Guide," Computer
Sciences-Technicolor Associates, Technical Memorandum, June
1980

Bailey, J. W., and V. R. Basili, "A Meta-Model for Software
Develcpment for Resource Expenditures," Proceedings of the
Fiftnh International Conference on Software Engineering.

New York: Computer Societies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

Bastli, V. R., "The Software Engineering Laboratory: Objec-
tivss," Proceedings of the Fifteenth Annual Conference on
Computer Personnel Research, August 1977

Basili, V. R., "Models and Metrics for Software Management
and Engineering," ASME Advances in-Computer Technology,
January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical
Memorandum, October 1980

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

Basili, V. R., and J. Beane, "Can the Parr Curve Help with
the Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1

Basili, V. R., and K. Freburger, "Programming Measurement
and Estimat:on in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

Basili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Lahoratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-
1ty Metrics, March 1981

Basili, V. R., and T. Phillips, "Validating Metrics on Proj-
ect Data," University of Maryland, Technical Memorandum,
December 1981

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

Basili, V. R., and M. V. Zelkowitz, "Operational Aspects of
a Software Measurement Facility," Proceedings of the
Software Life Cycle Management Workshop, September 1977

Barili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978
Basili, V. R., and M. V. Zelkowitz, "Measuring Software De-

velopment Characteristics :n the Local Environment," Com-
puters and Structures, August 1978, vol. 10

Basili, V. k., and M. V. 7Zeclkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: Com-
puter Societies Press, 1978

Church, V. E., "User's Guides for SEL PDP-11/70 Programs,"
Computer Sciences Corporation, Technical Memorandum. March
1980

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES

for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for tne University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for “he University of Maryland, December
1978)

Mapp, T. E., "Applicability of the Rayleigh Curve to the SEL
Environmer £t" (paper prep~red for the University of Maryland,
December 1978)

Miller, A. M., "A Survey of Se ral Reliability Models"

(paper prepared for the Univers .y of Maryland, December
1978)

National Aeronautics and Space Administration (NASA), NASA
Software Research Technology Workshop (proceedings), March
1980

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran-

- dum, May 1978

Perricone, B. T., "Relationships Between Computer Software
and Associated Errors: Empirical Investigation" (paper pre-
pared for the University of Maryland, December 1981)

Reiter, R. W., "The Nature, Organization, Measurement, and °
Management of Software Complexity" (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher
Order Languages Study: Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977 .

Software Engineering Laboratory, SEL-76-001, Proceedings
From the First Summer Software Engineering Workshop, August
1976

--, SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1971

--, SEL-77-002, Proceedings From the Second Summer Software
Engineering Workshop, September 1977

--, SEL-77-003, Structured FORTRAN Preprocessor (SFORT),
B. Chu, D. S. Wilson, and R. Beard, September 1977

--, SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

--, SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M. C'Neill,
S. R. Waligora, and C. E. Goorevich, January 1978

--, SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

--, SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki ard F. E. McGarry, June 1978

g

- pp— + = -

--, SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Guide, D. S. Wilson, B. Chu, and G. Page,
September 1978

--, SEL-78-005, Proceedings From the Third Summer Software
Engineering Workshop, September 1978

-, SEL-78-006, GSFC Software Engineering Research Require-
ments Analysis Study, P. A. Scheffer, November 1978

--, SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

--, SEL-79-002, The Software Engineering Laboratory: Rela-
tionship Equations, K. Freburger and V. R. Basili, May 1979

--, SEL-79-003, Common Software Module Repository (CSMR)
System Description and User's Guide, C. E. Goorevxch,
S. R. Waligora, and A. L. Green, August 1979

--, SEL-79-004, Evaluation of the Caine, Farber, and Gordon
Program Design Language (PDL) in the Goddard Space Flight
Center (GSFC) Code 580 Software Design Envirorment,

C. E. Goorevich, A. L. Green, and F. E. McGarry, September
1979

--, SEL-79-005, Proceedings From the Fourth Summer Software
Engineering Workshop, November 1979

--, SEL-80-001, Configuration Analysis Tool (CAT) Functional
Requ1rements[Spec1f1catlons, F. K. Banks, C. E. Goorevich,
and A. L. Green, February 1980

--, SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker,
C. E. Goorevich, and A. L. Green, May 1980

--, SEL-80-003, Multimission Modular Spacecraft Ground Sup-
port System (MSS/GSSS) State-of-the-Art Computer System/
Compatibi ity Study, T. Weldon, M. McClellan, P. Liebertz,
et al., May 1980

--, SEL-80-004, System Description and User's Guide for Code
580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

--, SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

--, SEL-80-006, Proceedings From the Fifth Annual Software
Engineering Workshop, November 1980

B-4

~--, SEL-80-007, An Appraisal of Selected Cost/Resource Esti-
mation Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

--, SEL~81-001, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981

--, SEL-81-002, Software Engineering Laboratory (SEL) Data
Base Organization and User's Guide, D. C. Wyckoff, G. Page,
F. E. McGarry, et al., September 1981

--, SEL-81-003, Software Englneerlng Laboratory (SEL) Data
Base Maintenance System (DBAM) User's "Guide and System De-
scription, D. N. Card, D. C. Wyckoff, G. Page, et al.,
September 1981

--, SEL-81-004, The Software Engineering Laboratory,
D. N. Card, F. E. McGarry, G. Page, et al., September 1981

--, SEL-81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, G. Page, et al., September 1981

--, SEL-81-006, Software Engineering Laboratory (SEL) Docu-
ment Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, December 1981

--, SEL-81-007, Software Eng1neer1ng7Laboratory (SEL) Com-
pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,
et al., February 1981

--, SEL-81-008, Cost and Reliability Estimating Models
(CAREM) User's Guide, J. F. Cook and E. Edwards, February
1981

--, SEL-81-009, Software Engineering Laboratory Programmer

Workbench Phase 1 Evaluation, W. J. Decker, A. L. Green, and
¥F. E. McGarry, March 1981

--, SEL-81-010, Performance and Evaluation of Independent
Software Verification and Integration Process, G. Page and
F. E. McGarry, May 1981

--, SEL-81-01]), Evaluating Software Development by Analysis
of Ch.nge Data, D. M. Weiss, November 1981

--, SEL-81-012, Software Engineering Laboratory, G. O.
Picasso, December 1981

--, SEL-81-013, Proceedings From the Sixth Annual Software
Engineering Workshop, Decerber 1981

--, SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory SEu '

A. L. Green, W. J. Decker, and F. E. McGarry, ptember 1981

Turner, C., G. Caron, and G. Brement, "NASA/SEL Data Compen-
dium, " Data and Analysis Center for Software, Special Publi-
cation, April 1981

Turner, C., and G. Caron, "A Comparison of RADC and NASA/SEL
Software Development Data," Data and Analysis Center for
Software, Special Publication, May 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science. New York:
Computer Societies Press, 1979

Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To
Evaluate Software Engineering Methodologies," Proceedings of
the Fifth International Conference on Software Engineering.
New York: Computer Societies Press, 1981

	GeneralDisclaimer.pdf
	0010A02.pdf
	0010A03.pdf
	0010A04.pdf
	0010A05.pdf
	0010A06.pdf
	0010A07.pdf
	0010A08.pdf
	0010A09.pdf
	0010A10.pdf
	0010A11.pdf
	0010A12.pdf
	0010A13.pdf
	0010A14.pdf
	0010B01.pdf
	0010B02.pdf
	0010B03.pdf
	0010B04.pdf
	0010B05.pdf
	0010B06.pdf
	0010B07.pdf
	0010B08.pdf
	0010B09.pdf
	0010B10.pdf
	0010B11.pdf
	0010B12.pdf
	0010B13.pdf
	0010B14.pdf
	0010C01.pdf
	0010C02.pdf
	0010C03.pdf
	0010C04.pdf
	0010C05.pdf
	0010C06.pdf
	0010C07.pdf
	0010C08.pdf
	0010C09.pdf
	0010C10.pdf
	0010C11.pdf
	0010C12.pdf
	0010C13.pdf
	0010C14.pdf
	0010D01.pdf
	0010D02.pdf
	0010D03.pdf
	0010D04.pdf
	0010D05.pdf
	0010D06.pdf
	0010D07.pdf
	0010D08.pdf
	0010D09.pdf
	0010D10.pdf
	0010D11.pdf
	0010D12.pdf
	0010D13.pdf
	0010D14.pdf
	0010E01.pdf
	0010E02.pdf
	0010E03.pdf
	0010E04.pdf
	0010E05.pdf
	0010E06.pdf
	0010E07.pdf
	0010E08.pdf
	0010E09.pdf
	0010E10.pdf
	0010E11.pdf
	0010E12.pdf
	0010E13.pdf
	0010E14.pdf
	0010F01.pdf
	0010F02.pdf
	0010F03.pdf
	0010F04.pdf
	0010F05.pdf
	0010F06.pdf
	0010F07.pdf
	0010F08.pdf
	0010F09.pdf
	0010F10.pdf
	0010F11.pdf
	0010F12.pdf
	0010F13.pdf
	0010F14.pdf
	0010G01.pdf
	0010G02.pdf
	0010G03.pdf
	0010G04.pdf
	0010G05.pdf
	0010G06.pdf
	0010G07.pdf
	0010G08.pdf
	0010G09.pdf

