
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-TM-85302)	 MULTI-LEVEL EXPRESSION	 N83-13045	 }
DESIGN LANGJAGE: BEQUIRbliENT LEVEL (111WL-R)
SYSTEM E V ALUATIUN (NASA)	 92 p HC A05/aF c01

	

c 5i:L 09B	 Unclas
G3/b1 03449

m asS Y S T E OV-11 A

r.c

r
^r

't
t
r

i

SOFTWARE ENGINEERING LABORATORYSERIES SEL-80 =

MULTI-LEVEL EXPRESSION DESIGN
LANGUAGE- REQUIREMENT LEVEL

(MEDL-R) SYSTEM EVALUATION

MAY 1990

'vat onai Aeronautics anc
soave Administration

Goddard Space Flight Cewer
Greenreu Mary and 20—

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space Administra-

tion Goddard Space Flight Center (NASA/GSFC) and created for

the purpose of investigating the effectiveness of software

engineering technologies when applied to the development of

applications software. The SEL was created in 1977 and has

three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-

velopment process in the GSFC environment; 	 (2) to measure

the effect of various methodologies, tools, and models on

.this process; and (3) to Identify and then to apply success-

ful development practices.	 The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports

' that includes this document. 	 A version of this document was

also issued as Computer Sciences Corporation document

CSC/TM-80/6093.

The primary contributors to this document include

William Decker	 (Computer Sciences Corporation)
Charles Goorevich	 (Computer Sciences Corporation)

Other contributors include

Arthur Green	 (Computer Sciences Corporation)
Frank McGarry	 (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to

Frank E. McGarry
Code 582.1
NASA/GSFC
Greenbelt, Maryland 20771

fi

i '

f

i
i

I

1.

1

t.

P5

r^

f
I

I t

ORIGINAL D
OF POOR QUALM

ABSTRACT

An evaluation of the Multi-Level Expression Design Language -

Requirements Level (MEDL-R) system was conducted to determine

whether it would be of use in the Goddard Space Flight Center

Code 580 software development environment. The evaluation

is based upon a study of the MEDL -R concept of requirement

languages, the functions performed by MEDL-R, and the MEDL-R

language syntax. Recommendations are made for changes to

MEDL-R that would make it useful in the Code 580 environment.

This document has been prepared in partial fulfillment of

the requirements of Task 990 of National Aeronautics and

Space Administration contract NAS 5-24300.

iih

©RiuINAL PANE 15
OF POOR QUALITY.

TABLE OF CONTENTS

Section 1 - Introduction to Requirements Language. . .	 1-1

1.1 Goals in Using RALs		 1-1
1.2 Use of RAL in Code 580 Environment.		 1-5

1.2.1 GSFC Code 580 Software Development
Environment.. .	 1-6

1.2.2 Criteria to be Applied to Evaluation
of MEDL-R in Code 580 Environment. . .	 1-9

1.3 Examples of Different RALs.		 1-10

1.3.1 PSL/PSA Approach to Requirements
Specification/Analysis	 1-11

1.3.2 MEDL-R Approach to Requirements
Specification/Analysis	 1-14

1.3.3 Comparison Summary	 1-16

Section 2 - MEDL-R Analysis. 		 2-1

2.1 Functional Analysis		 2-1

2.1.1 Create Subsystem	 2-2
2.1.2 Update Subsystem	 2-4
2.1.3
2.1.4

Language Translator. 	
Query Subsystem.

.	 2-5
2-6

2.1.5 Analyzer Subsystem	 2-8
2.1.6 Metric Subsystem		 2-10
2.1.7 Change System Name Subsystem	 2-13

2.2 Flow Diagrams of User/System Interaction.		 2-15
2.3 Structural Analysis		 2-15

2.3.1 MEDL-R System Structure.		 2-22
2.3.2 MEDL-R Data Set Structure. 		 2-22

2.4 Recommended MEDL-R Structure. 		 2-30

Section 3 - MEDL-R Language Syntax	 3-1

3.1 Current MEDL-R Language Syntax. 		 3-1

3.1.1 Identification		 3-5
3.1.2 Description	 3-6
3.1.3
3.1.4

Nature	
Responsibility

.	 3-6
3-7

3.1.5 Originator		 3-7

iii

71

f

ORIGINAL PA^^
OF POOR Q^'A' 1^

TABLE OF CONTENTS (Cont d)
j

Section 3 (Cont'd)

3.1.6 Scope 3-9
3.1.7 Version.		 3-9
3.1.8 Subsystem	 3-9
3.1.9 Source		 3-9
3.1.10 Constraint	 .	 .	 . 3-10
3.1.11 Resulting -From		 3-10
3.1.12 Subject	 3-10
3.1.13 Explanation	 3-11
3.1.14 Status		 3-11
3.1.15
3.1.16

Replaces	
Replaced-Bye

3-11
3-12

3.1.17 Derives .
3.1.18 Derived-From	 3-13
3.1.19 Function-Resolution.		 3-13
3.1.20 Data-Resolut ; .jn.		 3-13
3.1.21 Resource-Resolution.		 3-13

3.2	 Recommended Enhancements to MEDL-R Language 3-14

3.2.1
3.2.2

Identification	
Description.	

F

3-16
3-16

_ 3.2.3 Source		 3-16
3.2.4 Test-Criteria	 3-17
3.2.5 Explanation	 3-17
3.2.6 Subject. 3-17
3.2.7 Constraint		 3-17
3.2.8 Nature		 3-18
3.2.9 Metric		 3-20
3.2.10 Motivation	 3-20	 3
3.2.11 Scope 3-20
3.2.12 Subsystem	 3-22
3.2.13 Derived-From		 3-22

' 3.2.14 Status		 3-22
3.2.15 Replaces	 3-22

_ 3.2.16 Originator	 .	
•	 .	 •	 •	 .	 •

3-25
3.2.17 Developer	 3-25
3.2.18 Reviewer	 3-25
3.2.19 Functional-Resolution.		

•	
3-25

3.2.20 Data-Resolution	 3-25
€F 3.2.21 Resource-Resolution. 		 3-25

3.2 .22 Version	 3-25
•3.2.23 Replaced-By.		 3-25
3.2.24 Derives	 3-26

E

iv

3t & PANE 18
OF POOR QUALITY

TABLE OF CONTENTS (Cont'd)

Section 4 - Evaluation Summary. 4-1

4.1 Evaluation and Recommendations 4-1
4.2 Future Plans for MEDL-R in Code 580 Environment. 4-3

v

Figure

Placement of MEDL-R to GSFC Software
Development Cycle

Flow of Control in Create Subsystem.
Flow of Control in Update Subsystem.
Flow of Control in Language Translator

Subsystem.
Flow of Control in Analyzer

.
Subsystem.	 .

Flow of Control in Query Subsystem
Flow of Control in Change System

Name Subsystem .	 . .
Schematic Representation of

.
MEDL-R Data

Base After Create Subsystem Action
Schematic Representation of MEDL -R Data

Base After Update Subsystem Action
Recommended MEDL-R System Structure.
Current NATURE Keywords in

Hierarchical Form
Recommended NATURE Keywords.
Requirement Evolution as Reflected
by STATUS Keyword

1-1

2-1
2-2
2-3

A-4
2-5
2-6

2-7

2-8

2-9
3-1

3-2
3-3

LIST OF TABLES

Graphic Analysis Commands.
Current Requirement Type Syntax.
Current Requirement Entries.
Current Keywords
Recommended Requirement Entries.
METRIC Keyword Definitions
Recommended STATUS Keywords.

Table

2-1
3-1
3-2
3-3
3-4
3-5
3-6

1-8
	 ,,

2-16
2-17

2-18
2-19
2-20

2-21

2-28

2-29
2-31

3-8
3-19

3-24

2-12
3-2
3-3
3-4
3-15
3-21
3-23

t	
Vi

ORIGINAL PAC` 19
OF POOR QUALITY

SECTION 1 - INTRODUCTION TO REQUIREMENTS LANGUAGES{
t

The lack of proven techniques for specifying and performing

analysis on requirements causes many serious problems in the

development of software systems. To fill this void, a class

of system development tools known as Requirements Analysis
1

Languages (RALs) has become available. Each RAL has its

own approach to the problem of specifying and performing

analysis on requirements. This fact is not surprising, since

no-standard format exists in which requirements are given,'

and requirements analysis is a relatively new concept.

This document presents a summary of work done in evaluating

the Multi-Level Expression Design Language - Requirements

Level (MEDL-R), a RAL that is part of the Multi-Level Ex-

i .
	 pression Design System (MEDSYS) (References 1 and 2). The

remainder of this section contains further definition of

what a RAL is and how RALs fit into the software development

cycle. The Goddard Space Flight Center (GSFC) Code 580 en-

vironment is defined, and the criteria for judging a RAL in

this environment are presented. The conclusion of this sec-

tion is an overview of two different approaches to the prob-

lem of specifying and performing analysis on requirements;

one of these is the MEDL-R approach. Section 2 contains a

1	 detailed analysis of the functions and structure of VIEDL-R,

including the specific strengths and weaknesses of the cur-

rent system. Section 3 contains an analysis of the current

MEDL-R requirements language syntax and some recommendations

for enhancements. Section 4 contains general conclusions

on the system and its applicability to the Code 580 environ-

ment.
i f

1.1 GOALS IN USING RALs

RALs are intended to assist the developer in the creation of

a rigorous statement of a system. The developer reeds =his

1-1

t»
ORIGINAL Pj:4^ ►^
OF POOR QUALITY

automated help because today's systems are too large and too

complex to be developed effectively using manual methods.

The amount of material that must be covered in a system spec-

ification often leads to errors due to

0	 Omissions

e	 Ambiguities

0	 Inconsistencies and contradictions

•	 Lack of clarity and precision

•	 Varying levels of detail

•	 Presence of design type constraints

The cause and effect of each type of error are explained below.

Omissions are either intentional or accidental.	 Intentional

omissions are caused by differing rates in developing the

definition of parts of a system. 	 For example, if the speci-

fications for one subsystem are not available, the specifi-

cations for other subsystems may intentionally omit the speci-

fications for interfacing with the missing subsystem.	 It

is up to the developer either to stop and allow the schedules

to match or to proceed.	 In either case, intentional omis-

sions must be made highly visible to everyone involved in the

specification effort. 	 Accidental omissions typically are

caused by the large volume of material or by a lack of com-

munication between personnel.

An omission (either intentional or accidental) that is en-

countered in the design phase results in either an arbitrary

decision by the design team or a delay while the specifica-

tions are completed.

RALs assist in the detection of omissions in several ways.

First, the format used to enter the requirements into the

system creates a regimented environment. 	 This environment

encourages rigorous and logical organization of the material

before entry.	 Second, the data base created and maintained

ty the RAL is always available- in its current form,. 	 This

__ 1-2

encourages constant reevaluation of the state of completion

of the system and allows project management to concentrate

effort in the areas where weaknesses are apparent. The RAL

assists in reducing the volume of material through categori-

zation or subdivision of the system. Communication bet-aeon

personnel is increased because each person has access to the

current system desdription. If an omission is detected, it

may be flagged and immediately brought to the attention of

all concerned.

Ambiguities occur because the English language is used to

express the original statement of the system. The interpre-

tation of each English statement is dependent upon the indi-

viduals making the statement or reading it.

Ambiguities result in the development of a system that does

Tnot match the original intent of the specifications. As

i with omissions, ambiguities result in (1) delays while wait-

ing for clarification, (2) arbitrary interpretations made in

the design phase, or (3) incorrect designs.

RALs help with the detection of ambiguities through either

the enforced adherence to a rigid description syntax in which

the meanings of terms are fixed or the establishment of fixed

review policies as part of the "analysis" of the require-

ments.

Inconsistencies and contradictions result from poor communi-

cation between zersonnel, as well as from ambiguities and

omissions. The large volume of description required for

even a moderate system tends to isolate each individual in-

volved from the work done by others and thus prevents the

early detection of the causes.

Inconsistencies and contradictions usually result in the

scrapping of part of the system. The inefficiency of dis-

carding completed work results in cost overruns, schedule

1-3

L

Fill

ORIGINAL PAGE IS
OF POOR QUAY I'Y

delays, or even failure to implement the complete system.

When they are detected, contradictions must be treated as

{	 symptoms and traced back to locate the root cause.

RALs can be of aid by helping to eliminate the ambiguities

or omissions that cause inconsistencies and by providing a

tracing mechanism to quickly locate the source of the problem

if one is detected.

Lack of clarity and precision and varying levels of detail

are actually two sides of the same coin. Many individuals

tend to be overly tr.orough in describing a known subject and

to gloss over the description of an unfamiliar topic. The

result is masses of explicit detail that obscure the fact

that some portions of the system are not adequately de-

-scribed. The failure to completely describe the system may

become apparent as late as the system acceptance testing

phase.

RALs can help here in two ways. First, RALs may organize

the specification in a hierarchical (top-down) format; then,

with proper presentation tools, the depth of knowledge on

any giver specification may be examined and the even progress

of development across the entire system ensured. Second,

RALs may use an approach that embodies the idea that each

statement about the system must be testable in the final

system and also encourages the test to be included with the

statement. This virtually eliminates the possibility that

the description lacks precision.

The presence cf design type constraints results from a natu-

ral tendency tc solve problems. Most individuals who work

on system specifications have "graduated" from system design.

The individual's design skill, when combined with a difficul-y

in verbalizing the problem, often results in a design solution

of the problem instead of a clear statement of the p:oblem

to be solved.

1-4

t

ORIGINAL WAGE 11
OF POOR QUALITY

This situation may result in a series of .solutions that ar6

not based upon a conception of the entire system. When the

system is finally brought together, conflicts may arise that

could have been avoided if the constraints imposed by the

"solutions" were not present. Thus, although perhaps sim-

piistic, in some environments the following statement is a

good rule of thumb: Requirement specification states what

a system will do; design specification states how the system

will do it.

RALs can help minimize this difficulty by providing each

specification for a system with an optional trial de3ign

solution. This serves as a constant reminder that the

solution is not the problem.

1.2 USE OF RAL L4 CODE 580 ENVIRONMENT

Section 1.1 describes the purposes and goals of RALs in gon-

eral terms. To obtain a meaningful evaluation of a particu-

lar software tool, the tool must be measured against the

environment in which it will be used. Section 1.2.1 de-

scribes the GSFC Code 580 software development environment

in terms of the current procedures used and the types oZ

software systems developed. Section 1.2.2 presents a set

of criteria (drawn from the description of that environment)

against which each potential RAL must be measured. The

reader is cautioned that the remainder of this document con-

tains opinions, comments, recommendations, and judgments

based on the contents of this section. Other environments

wii.1 demand other sets of criteria that would naturally af-

fect any evaluation. This evaluation is strictly aimed at

determining the suitability of MEDL-R in the Code 580 envi-

ronment.

URIC,INAL PAGZ la
OF POOR QUALITY

1.2.1 GSFC CODE 580 SOFTWARE DEVELOPMENT ENVIRONMENT

GSFC Code 580 is responsible for software development in the

following areas:

•	 Spacecraft attitude determination and control

•	 Spacecraft orbit determination and control

•	 Spacecraft maneuver planning

•	 Mission planning

In Code 580, the software development cycle starts with a
f

contract for the preparation of a formal requirements speci-

fication document.	 The organization preparing this document

is outside of GSFC and is not necessarily the organization

contracted to perform the design, implementation, and in-

tegration and testing of the system. 	 The delivered document

is expected to contain detailed functional (not procedural)

specifications for the system.	 Tha document is prepared by

individuals with approximately 4 to 5 years of experience

in flight dynamics and celestial mechanics applications.	 The

) document is typically delivered within 12 months of the startYP	 Y:,

of the contract.	 The expenditures for this phase of the soft-

ware development cycle are about 25 percent of the total for

a particular system if the system is significantly different

from previous systems. 	 The percentage expenditure is typi-

cally reduced when (as is often the case) the system is simi-

lar to previously developed systems.	 Recently, Code 580 has

initiated new development efforts at a rate of two to three

per year.

The second portion of the software development cycle starts

with a contract for the design, implementation, and integra-

tion and testing of the system. The organization performing

these functions starts with an analysi ,, of the requirement

specifi:,.ticns document. Often the system is similar to

previous systems, resulting in the extensive reuse of code,

1-6 r
E

t-	 OF POOR QUALITY

personnel experience and skills, and documentation. A typ-

ical system spends 12 to 20 months in design, impleitentation,

and integration and testing. The phases are nest easily sep-

arable and often overlap in an iterative way. This results

from a large number of changes to the functional specifica-

tions. Typically, for the first 75 percent of the contract,

two to three nontrivial revisions occur per week. Delivery

dates for fully documented, operational systems are fixed by

spac:craft launch schedules. Code 580 has no control over

these schedules.

The management of the software development efforts in-

Code 580 is characterized by two levels. GSFC provides gen-

eral coordination of the effort. Communication between con-

tractors, progress monitoring, and resolution of schedule

a	
modifications are all directed by GSFC. Contractors provide

tight management of the detailed technical efforts in their

support areas.

Code 580 proposes to use a RAL at the beginning of the design

c
phase to assist in the analysis of the requirements specifi-

cation document (Figure 1-1). The results of the analysis

will be passed to the design team to assist it in coordi-

nating changes in the design work in response to modifica-

tions to the functional specifications.

The use of a RAL in the Code 580 environment is a natural

extension of previous efforts in which other software en-

gineering tools and methodologies have been introduced and

evaluated to determine the benefits to be derived from their

use. Tools such as the automated Process Design Language

(PDL) processor and the Structured FORTRAN WORT) processor

have been evaluated and found to be beneficial in the design

and implsmentation phases, respectively. Code 580 is now in-

vestigating tools to ease the transition from requirements

to design.

F
}

1-7

onam "a x
OF POOR 0O'

j	 "

ANALYSIS
REPORTS

REQUIREMENTS
DOCUMENT

REQUIREMENTS
SPECIFICATION

AND
ANALYSIS
(MEDL•R) REQUIREMENTS

DATA BASE

DESIGN

1

I

I
I

IMPLEMENTATION

^	 e
1	 •

e
I

TESTING

Figure 1-1. Placement of MEDL-R in GSFC
Software Development Cycle

r
r.
L

1-8

ORIGINAL PAGE 18
OF POOR QUALITY.

Code 580 software development results in software systems

that range in size from 5,000 to 120,000 lines of code. A

typical (average) system has 40,000 lines. When possible,

a high-order language (typically FORTRAN) is used. The de-

velopment is done on both PDP-11/70 and IBM S/360 computers.

The software can be characterized as scientific application

systems with little or no real-time or near-real-time re-

quirements. Attitude determination and control systems re-

I4	 quire software to access large data bases and to perform

flight dynamics analysis. Orbit determination and control

{ systems require celestial mechanics software that is mainly

mathematical and algorithmic. Spacecraft maneuver planning

requires mathematical and algorithmic software that models

a particular vehicle's physical and dynamic characteristics.

Mission planning software is the generalized maneuver plan-

ning software that is used to evaluate vehicle performance

while the total mission is still in its definition phase.

1.2.2 CRITERIA TO BE APPLIED TO EVALUATION OF MEDL-R IN
CODE 580 ENVIRONMENT

The following criteria, based upon the needs, resources, and

goals of Code 580, will be used to evaluate MEDL-R:

0	 The system must operate efficiently within the re-

sources of the PDP-11/70 computer allocated for

use by the Software Engineering Laboratory (SEL).

The PDP-11/70 is an interactive, nonbatch facility

with limited print ar capability.

The system must assist Code 580 in performing an

analysis of a requirement specification document

with minimal impact on the schedules for other de-

velopment work. The task of translating the docu-

m.:nt into a form suitable for system analysis should

1-9

be straightforward and should not change the char-

acter of the specifications; that is, they should

remain "functional specifications."

•	 The system must be easy to learn and use effectively.

Personnel without previous experience with the sys-

tem, but with experience with requirements analysis,

should be able to make effective use of the system.

(The user/system interface must be implemented in

a conversational and instructive way.	 c

•	 The system must be adaptable. After the system has

been evaluated through a--tual use, the recommended

changes mLst be easy to implement. GSFC anticipates

that any requirements analysis language will require

some "tuning" to fit its needs, especially in the
areas of the content of analysis reports and the

terms used in the language.

•	 The system must allow changes to the 'requirements

and provide analysis in which the implications of

the changes are presented. GSFC requires a tool

that has dynamic as well as static analysis of the

requirements.

1.3 EXAMPLES OF DIFFERENT RALs

The evaluation of MEDL-R required an examination of other

similar software tools. To supply the background against

which the MEDL-R evaluation was performed, this section dis-

cusses several approaches used to implement RALs. Examples

of available RALs are the Problem Statement Language/Problem

Statement Analyzer (PSL/PSA) (also known as the User Require-

ments Language/User Requirements Analyzer (URL/URA)), the

Input/Output Requirements Language (IORL), and the Require- .

ments Statement Language/Requirements Engineering and Valida-

tion System (RSL/REVS). Each RAL aids in the translation of

p	 1-10

CPIG"vAL PAGE IS
OF POOR QUALITY

a requirements document (a highly abstract, conceptual defi-

nition of a potential system) into a complete set of concrete

and correct statements describing the system. Section 1.3.1

describes the PSL/PSA approach to this problem, and Sec-

tion 1.3.2 describes the MEDL-R approach. Section 1.3.3

briefly summarizes the comparison.

1.3.1 PSL/PSA APPROACH TO REQUIREMENTS SPECIFICATION/
ANALYSIS

The approach used by the majority of RALs available today,

including PSL/PSA (URL/URA), IORL, and RSL/REVS, differs from

the MEDL-R approach. PSL/PSA is used as the example in this

discussion.

The PSL/PSA system is composed of two parts: a syntactically

rigorous language (PSL) and a language analyzer (PSA). PSL/

PSA describes a system with a language composed of "system

elements" (e.g., INTERFACE, INPUT, OUTPUT, SET, GROUP, PROC-

ESS, GENERATE). The interrelationships between elements are

rigorously defined. The developer describes the system in

a language using these elements either during the specifica-

tion process or after a specification document has been pre-

pared. In either case, the developer performs a translation

from text to language elements using a rigid format. The

system elements chosen are terms familiar to system designers.

An advantage of this approach is that the language elements

have been selected such that they (and their relationships)

can be subjected to a rigorous automated analysis by the

language processor (PSA). For example, a defined OUTPUT for

which there is no PROCESS to GENERATE it can be easily de-

tected by PSL/PSA. In addition, the choice of language terms

very familiar to system designers results in a final system

definition that is easily interpreted in the next system de-

velopment phase (system design).

!f
1-11

CRI 'NAL PAGE IS
OF POOR QUALITY

PSL/PSA (and the other similar RALs) attacks the problems

of omission, ambiguity, inconsistency, and contradiction

through the use of a rigid syntax. Omissions are detected

because the number of language elements is limited, and each

relationship is rigorously defined. As with the previous

example, gaps in the specification are readily apparent to

the processing parts of PSL/PSA. Ambiguity is eliminated by

fixing the definition of each language element. Once the

developer assigns a component of the system to a class of

elements, ambiguity is removed. Another individual may then

examine the element class and know the properties of the

system component. Inconsistencies and contradictions are
easily detected because interrelations are rigorously defined.

The syntax used does not allow multiple definitions of any

system component. Only in the case in which subsystems are

specified separately and then combined into the total sys-

tem does a problem with contradictions exist, and even then

the RAL detects the problem immediately upon integration.

PSL/PSA is probably less efficient in eliminating problems
of lack of clarity and precision and varying level of detail.

It includes no provision for supplying test criteria to en-

sure that the final specification is a clear and precise

statement of the system. In addition, it provides no ground

rules for expanding the definition of the system, a lack that

may lead to overspecifying one portion and leaving another

portion in a virtually undefined form.

Perhaps the weakest aspect of the PSL/PSA approach, when com-

pared to the previously stated general goals of a RAL, is in

the elimination of design type constraints. The following

three critical comments can be made about this particular

I.;
r

G
1-12

•

1 11

implementation in regard to the presence of design type con-

straints:

1.	 Due to the translation that takes place, contact

•
may be lost with the original requirement statement.	 The

result of translating the original statement into language

elements is requirements source code that does not resemble

the original text.	 Because of this translation, the result-

ing specifications may not be comprehensible to the origi-

nator.	 The output of this type of RAL is, as previously

noted, in a form easily understood by a designer, but this

eliminates effective feedback to the originator. 	 Part of

the clarification process involves the validation of the

rigorous statement of the system by the originator (who

should be able to verify the final set of requirements di-

rectly in the terms used in the original specification).

An optional DESCRIPTION element in PSL/PSA gives the analyst

the opportunity to enter the original text; but if the

` analyst elects not to do.so , the resulting specification has

i no direct references.

2. The language itself may influence the contents of

the data base and thus the final design. The rigid struc-

ture of the language may result in a restricted statement of

the system requirements, thus removing a certain amount of

flexibility from the design stage. If the syntax of the

RAL is not capable of describing a particular type of solu-

tion system, that system is eliminated from consideration.

The elimination of possible solutions should be part of the

design stage and not part of requirements specification.

3. The potential exists for actually designing the

solution system with this type of RAL. The language is com-

posed of "design terms," and this encourages the emphasis of

detail. These features can lead to the explicit introduction

^ E,
1-13

t

tNW1MAL PAGE 18
OF POOR QUALITY

of design type constraints, which are not desirable at this

(the requirements specification/analysis) stage.

Code 580 has evaluated PSL/PSA in its environment and has

reached the following conclusions;

e	 The PSL/PSA system is too large. A scaled-down

version (URL/URA) was tested on the ISM S/360 com-

puter at GSFC. The decision not to attempt to fur-

ther reduce the program to fit within the resources

of the PDP-11/70 was made because of the complexity

of the system (a quality not unusual in an older,

established system).' The complexity would have

caused difficulties in the implementation of system

extensions that Code 580 found desirable.

The language syntax was not appropriate or particu-

larly easy to use in the specific application of

analyzing a Code 580 requirement specification doc-

ument. PSL/PSA appears to be more of a design tool

than a requirements analysis tool when it is applied

to this application in this environment.

1.3.2 MEDL-R APPROACH TO REQUIREMENTS SPECIFICATION/
ANALYSIS

In the MEDL-R approach, the original statement of a system

requirement is entered into a computer data base in its

English-language form. No translation of the statement is

performed. The statement becomes the central item of each

MEDL-R "requirement." Instead of translation, the developer

adds to the requirement by supplying qualifiers (and in some

cases, quantifiers) that characterize the meaning of the

English text. The relationships between requirements may

also be specified; for example, a requirement may be "de-

rived from" other requirements.

1-14

Ef OwGINAL PACE 19

OF POOR QUALITY

An advantage of the MEDL-R concept of requirement analysis

is the retention of the original statement of the system.

If one particular requirement needs supporting statements to

clarify it, the supporting statements are entered as re-

quirements themselves and are flagged as having been derived

from the original. This procedure allows the total informa-

tion concerning the system to grow without modification to

the original specification.

Unlike the PSL/PSA translat^sd requirement, the MEDL-R text

format is not easily subjected to automated analysis, but

the central position of-the text within the requirement helps

to ensure that the original intent of the specification is

preserved and brought to the attention of the developer at

every opportunity. The MEDL-R system is intended to capture

requirements and support management control and traceability

of requirements.

MEDL-R has few facilities for detecting errors of omission,

ambiguity, inconsistency, and contradiction. These types

of errors must be located and corrected by the user. Omis-

``	 sions might be detected by an examination of the number of

j	 statements in each NATURE category (see Section 3.1.3), on
i

the assumption that each of the categories must be addressed

1	 in some detail in order to adequately describe a system.

This assumption is warranted only to the extent that the

given categories are valid and exhaustive for the type of

system being described. Ambiguities are quite likely to

occur in the MEDL-R requirements because the requirements are

retained in their English -language form. The EXPLANATION

entry (see Section 3.1.13) of each requirement can be used

to note a possible clarification for each questionable state-

ment. Inconsistencies and contradictions car. be detected by

suitable combinations of meaningful SUBJECT categories (see

Section 3 . 1.12) and data vase QUERYs (see Section 2.1.4).

11
1-15

{	 ORIGINAL PAGE IS
OF POOR QUALITY

MEDL-R could be easily modified to help eliminate errors of

lack of clarity and precision and varying level of detail.

TEST-CRITERIA could be added as a new entry in a MEDL-R re-

quirement, thus linking the specification and its validation

procedure. The hierarchical structure of MZDL-R requires

further implementation to give the system a means for check-

ing on the level of detail specified.

MEDL-R excels in eliminating design type constraints. The

requirement specifications are present in the data base in

the form in which they are given by the originator. The

logical development of the full system description is derived

from these in a language understandable by the originator.

The-addition of a new entry (REVIEWED-BY) would signify that

the originator had read, understood, and agreed with each

requirement in the data base.

1. 3.3 COMPARISON SUMMARY

PSL/PSA is composed of a language and a language analyzer.

This RAL's strong points are its ability to detect ambiguity,

omissions, and inconsistencies. It is based on concepts

familiar to system designers. It is a mature, complex tool

that is representative of the mainstream implementation of

RALs.

MEDL-R uses a concept of requirement categorization and an

analyzer to present relationships among requirements by cate-

gory. Its strong points are its adaptability to a hierar-

chical (top-down) evolution of specification and the reten-

tion of :he original specification of the system in terms

understandable to the originator. It is a new concept in

RALs and has not yet reached its maturity. Its implementa-

tion is still in a formative stage and may be modified with

relatively small effort once its failings have been Identi-

fied.

1-16

f.

L

ORIGINAL PAGE 19
OF POOR QUAUiTY

SECTION 2 - MEDL-R ANALYSIS

r
This section provides an analysis of the current MEDL -R sys-

tem. The seven major MEDL-R subsystems are examined as to

their applicability, completeness, and structure. The

T	 strengths and weaknesses of each subsystem are specified,

i	 and, when appropriate, recommendations are made to improve

weaknesses. Section 2.1 discusses the functions performed

by each MEDL-R subsystem, including output reportinq, data

base editing, and analysis capabilities. Section 2.2 pro-

vides flow diagrams of user/system interaction. Section 2.3

describes the system structure and provides an overview of

the relationship between functions and structure. Sec-

tion 2.4 specifies a recommended structure and data flow

for the MEDL-R system based on the comments in Sections 2.1

through 2.3.

2.1 FUNCTIONAL ANALYSIS

The MEDL-R system comprises seven major subsystems:

fi	 •	 Create (CRE)--allows the entering of initial re-

quirements into the system

•	 Update (UPD)--allows the updating of existing re-

quirements or the adding of new requirements

•	 Language Translator (LTR)--allows the movement of

both initial requirements and updated requirements

into the MEDL-R requirements data base

•	 Query (QRY)--allows the user to extract summary

data from the data base based on requirement de-

scriptors and their arguments

•	 Analyzer (ALZ)--supports predefined analyses of the

data base; currently develops reports on the require-

ments data base

2-1

ONGINAL PACE tJ
OF POOR QUALIV.

•
	

Metric (PET)--provides analytic measures of the

data base

•	 Change System Name (CM —provides the user with

access to another MEDL-R data base without exiting

the system

The following subsections presint a detailed description of

each program subsystem, specify the strengths and weaknesses

of each, and provide general recommendations for correcting

the weaknesses.

2.1.1 CREATE SUBSYSTEM

The Create subsystem is used to generate the initial require-

ments source file from a user terminal. Entry is via a

category-by-category prompt (e.g., ENTER DESCRIPTION OF RE-

QUIREMENT >). If the source file already exists when the

Create subsystem is activated, the new requirements are ap-

pended to the existing source file. To avoid unnecessary

prompts, a special "prompt limit" feature exists to control

the amount of data the system will request. Special symbols

are used for various purposes: proper line termination (.

or ..), lists of entries (entries are separated by commas),

nonrequired entry (0 or blank), comment entries (4), and

session termination M. Limited error checking is done

on the user file at the time of entry. If the input source

file is created in the proper format from card input or by

the system text editor, the Create subsystem need not be

exercised. Create subsystem output is used as input to the

Language Translator subsystem.

The strengths of the Create subsystem are as follows:

•	 It provides clear, precise prompts for information,

•	 It can specify the prompt limit.

2-2

3

E

G

F

•	 It may not be invoked after the first invocation of

the Language Translator subsystem.

e	 The use of a variety of control symbols in this

input editor is confusing to the general user,

especially since this subsystem is essentially used

only once.

•	 It performs some checking of inralid keywords and

input errors, a function that should be the job of

the Language Translator subsystem.

General comments regarding the Create subsystem are as

follows:

1. Some errors and inefficiencies have been identified

in the Create subsystem. These are mostly associ-

ated with reinvokinq the subsystem }More passing

the output data set to the Language Translator sub-

system.

2. The input data set to the Language Translator sub-

systems may be a card deck or a data set created

by the system text editor.

3. The Create subsystem is still necessary Sand per-

haps preferable) since its use does not require

direct knowledge of the format of the input data

set.

The idea of specialized editor from which the user can enter

his/her input requirements quickly and with a few basic com-

mands is a good one. However, to be effective, this same

editor must be available at all phases of the requirements

analysis. The input procedure for a requirement must always

appear the same to the user regardless of whether the re-

quirement is part of the initial set, is added later during

data base expansion, or is being updated.

2-3

The Update subsystem is available to the user when all re-

qui-rments data base files for the current system have been
r

specified (currently, six files make up the requirements

data base). The subsystem allows the user to correct or

add to the existing system. Update operations include

changing any user-entered field of an existing requirement,

deleting or adding entries within an existing requirement,

changinga r uuement name or s stem_ name, and .addin all ^	 Y	 g

new requirements to the exist_J nq system. Like Create subsys-

tem output, Update subsystem output is used as input to the

Language Translator subsystem. Unlike the Create subsystem,

the Update subsystem requires as input an existing require-

,_	 ments data base built by the Language Translator subsystem.

The Update subsystem allows the user to (1) list the ura3te

file on a display terminal, (2) change a requirement name,

and (3) enter a new requirement. The Update subsystem has

its own complete set of rules for making changes to require-

ments. These rules are different from those of the Create

subsystem.

The strengths of the Update subsystem are as follows:

•	 Updates can be made quickly.

•	 No syntax checking is performed.

The weakness of this subsystem is that its use requires

direct knowledge of where input information is to be placed.

The general comments made in Section 2.1.1 concerning the

Create subsystem also apply to the Update subsystem. In

addition, as stated in the same subsection, the method of

input, whether the input is a new requirement or an update

to an existing requirement, must appear the same to the user.

2-4

1-1
0R*Wn PAGE 13
OF POOR QUAD tTY

2.1.3 LANGUAGE TRANSLATOR

Using input from either the Create subsystem or the Update

subsystem, the Language Translator subsystem builds or modi-

fies the requirements data base. Once the data base is built

or updated, the input source (either original or updates) is

no longer needed. Once started, the translation and data

base build or update process is completely automatic and re-

quires no user intervention. While performing this task,

the Language Translator subsystem produces a source input

listing file and flags any errors detected. The user must-

use system utilities to purge previous versions of the list-

ing file. When the translation is complete, a message is

sent to the user indicating so and specifying the number of

errors detected. If no unrecoverable errors were detected,

the input source (original or updates) is deleted from the

system. When modifying the requirements data base, the same

PDP-11/70 Files-11 version is retained.

The strengths of the Language Translator are as follows:

e	 It is the only subsystem that modifies the data

base. Thus, as new error checks and more compli-

cated language translations are identified, only the

modules in this subsystem need be expanded.

e	 It organizes the requirements into one complete set,

which can then be listed by the Analyzer subsystem.

The weaknesses of the Language Translator subsystem are as

follows:

e	 The user has no direct connection to the six files

comprised in the requirements data base; merely

listing them does not present the requirements to

the user in a clear, precise statement. Provisions

are made to dump the contents of the current data

base files as well as to provide listings files on

disk. In both cases a separate offline utility

fi

i'
2-5
	 i

WOW- PAGE IS
,,,f POOR QUA'-''V

program must be
run

to view the output (i.e., pro-

gram SUMRZL for a dump of the requirements data

base avid systems utility programs for a display of

the translators listing file). Normally * to look

at the data
base in detail, the user enters the

Analyzer subsystem. At the translation point,, the

user is usually interested only in requirements

that have been modified or just entered into theFit

	

	 system U.e. # interested in ensuring that they were

receiveS1 properly). Thus, software to examine only
now or modified requirements immridiately after*

translation would be useful.

1&&	 The deletion of the input data by the system is not
optional. To eliminate the possibility of losing

information in the event of a system crash or a

large number of recoverable errors, the deletion

of the input files should be a uset option.

2.1.4 QUERY SUBSYSTEM

The Query subsystem allows the user to search the require-

ments data base for items that have text in common. The

QUERY command has the general form

< statement-type >	 string > [{,d} < stringor

where [] indicates optional parts of the command, { } indi-

cates that a selection is to be made, < string > is an ar-

bitrary character string of less than 30 characters, and

< statement-type > may be any of the following: NATURE,

VERSION, MOTIVATION, SUBJECT, STATUS, DESCRIPTION,

t

ORIGINAL 1>AG 15
OF POOR QUALITY

FUNCTION-RESOLUTION, DATA-RESOLUTION, RESOURCE -RESOLUTION,

or SUBSYSTEM-RESPONSIBILITY. The following are examples:

QRY > SUBJECT

QRY > NATURE DATA

QRY > SUBJECT = OPERATING- SYSTEM OR I/O

The output from a QUERY command is a list, displayed on the

user's screen, of all requirement identifiers (IDs) that

satisfy the specified condition. These requirement IDs are

also used on an output file along with their DESCRIPTION and

VERSION; following termination of the MEDL-R system, the

user can use system utilities to list their contents on a

lineprinter or cathode ray tube (CRT) terminal. There are

some additional rules concerning use of the Query subsystem;

however, unlike the rules of the Create . subsystem, they

minimally affect the user.

The strengths of the Query subsystem are as follows:

0	 It provides a high degree of flexibility in search-

ing through requirements for inconsistent and

ambiguous terms.

Its "and/or" option enhances the search capability.

The weaknesses of the Query subsystem are as follows:

It is extremely slow for large data bases.

The QUERY command syntax is not sufficiently general

to handle many types of questions about the data

base. A helpful modification would be the capability

to allow searching on two different statement types

(e.g., QRY > SUBJECT = INPUT AND STATUS = ACTIVE).

Like other XEDL-R subsystems, the Query subsystem

creates files that the user must leave the system

to examine.

ORIGINAL PAGE E3
OF POOR QUALITY

e	 The subsystem cannot access several MEDL-R state-

ment types (e.g., ORIGINATOR, SOURCE, SCOPE,

EXPLANATION). With modification, in certain en-

vironments or with certain types of systems, the

l	 Query subsystem could produce beneficial informa-

tion about these types.

2.1.5 ANALYZER SUBSYSTEM

The Analyzer subsystem is primarily used to allow the user

to examine and obtain lineprinter copies of the requirements

data base. The Analyzer subsystem accepts the following

commands:

•	 SUMMARY

•	 LISTNAME _ < name >

f	 •	 LISTALL
F

i	 FRS

The SUMMARY command produces three tables that provide sta-

tistics on the NATURE I keyword, the SUBJECT t keyword, and

relation types. The LISTNAME command produces a listing of

all information contained in the data base about a specified

requirement ID. The LISTALL command performs the same func-

tion as LISTNAME; however, the Analyzer subsystem automat-

ically performs a LISTNAME for every re quirement ID contained

i.	 in the data base. The FRS command builds the Formatted Re-

quirements Statement file, which can be spooled to the line-

printer for an easily readable, formatted hardcopy output of

the requirements in the data base. Individual requirements

or all requirements can be specified for the final FRS file.

(The FRS format closely resembles the format used by the

Update subsystem when presenting a requirement for modifi-

cation.)

Language keywords are described in Section 3.

2-8

11
2-9

ORIGINAL PAGE tS
OF POOR QUALITY

Provisions were built into the Analyzer subsystem to perform

specific analysis on COMPLETENESS, COMPLEXITY, and CONSISTENCY,

but these capabilities have not yet been implemented.

The strengths of the Analyzer subsystem are as follows:

•	 it allows the generation of a lineprinter copy of
the requirements data base, including the following
information for each requirement: number of changes,

origin data, last edit date, and completion date.

Each requirement is formatted to fit on one stand-

ard 8-1/2-by-11-inch page, with overflow pages im-

mediately following.

•	 It allows "stubs" for additional analysis.

The weaknesses of the analyzer subsystem are as follows:

•	 The SUMMARY report contains statistics about the

entire data base, usually on a number-and-percentage

basis (e.g., the number and the percentage of re-

quirements containing NATURE keywords). The user

has no control over the content of this report, and

the data are automatically inserted into the Analyzer

subsystem output file.

•	 As with the Create subsystem, some errors in the

Analyzer subsystem have been identified. For ex-

ample, (1) the percentages presented in the SUMMARY

report are not correct, (2) the DESCRIPTION text,

presented as part of the LIST and FRS output, may

be truncated at the end of a line. The last is

disastrous if words such as "not," "all," "some,"

and so forth are lost; misunderstandings also may

arise when SMM-OBC becomes SMM.

c

Two general comments must be made about the Analyzer sub-

system:

1. The purpose of the Analyzer subsystem in its present

form might be more apparent to the user if it were

called the Report Generator subsystem.

2. The SUMMARY report, currently produced as an option

in the Analyzer subsystem, should be expanded for

the following purpose. Many entries in the standard

MEDL-R requirement are in the form of strings. The

Query and Metric subsystems perform operations based

upon the matching of strings from one requirement

with strings from other requirements. A misspelled

or incomplete string will not result in a match with

the "accepted" form of the string (e.g., I/0-DEVICE

will not match with IO-DEVICE, IJO-DEVICES, r 1/0-

DEVISE). The SUBJECT summary, cjrrently included

in the SUMMARY report, provides the user with a

way of detecting these near-duplicates.. The user

may locate and modify the SUBJECT strings (using

the Query and Update subsystems) if inconsistencies

are present. The suggested expansion would add op-

tional summaries of the current strings in each of

the following statement types: VERSION, SUBSYSTEM,

SOURCE, CONSTRAINT, FUNCTION-RESOLUTION, DATA-

RESOLUTION, RESOURCE-RESOLUTION, SCOPE, ORIGINATOR,

RESPONSIBILITY, REPLACES, and DERIVED-FROM.

2. 1.6 METRIC SUBSYSTEM

The Metric subsystem provides analytic measures of the data

base. It differs from the Analyzer subsystem in that it

does not derive its information directly from the require-

ments data bass but instead requires a routine to transform

I

2-10

ORIGINAL PAGE 13
OF POOR QUALITY

the data base into a form suitable for graphic analysis.

The transformed output is divided into two parts: part 1

contains the NATURE, SUBJECT, and MOTIVATION relationships;l

part 2 contains the RESOURCE -RESOLUTION relationships. A

relationship is defined between any two requirements if they

have the same NATURE, SUBJECT, MOTIVATION, or FUNCTION -

RESOLUTION, DATA-RESOLUTION, or RESOURCE-RESOLUTION. A count

of the number of identical relationships is maintained. For

an initial requirement to be transformed, it must meet the

following criteria: (1) the VERSION and STATUS of the re-

quirement match that requested by the user in the Metric

subsystem; (2) the requirement is not OBSOLETE; and (3) the

requirement does not contain a REPLACED-BY or DERIVES state-

ment.

Once the requirements have been transformed, graphic analysis

can be performed. Table 2 -1 (the contents of which are taken

from Reference 1) lists the allowable commands and the func-

tions performed in this analysis. The analysis is very for-

mal in that it performs accepted mathematical techniques.

The results of the analysis are presented in-matrix format.

Of the seven MEDL-R subsystems, the Metric subsystem is the

one in which the least experience has been gained in its use

and operation. This is because only parts, rather than a

complete set, of requirements have been translated for analy-

sis. Nevertheless, a few observations on this subsystem can

be made:

1. Trq mathematics performed, although probably very

powerful, are presented in the requirements docu-

ment (Reference 1) in terms unfamiliar to most

people doing requirements analysis. The benefit

"The language elements MATURE, SUBJECT, MOTIVATION, and so
forth, are described in detail. in Section 3.

2-11

W,

I

I

OR.1?"1^'.L F", 	 13

o F. Poo Q'JAUI ^

Table 2-1. Crapnic Analysis Commands

COMMAND FUNCTION

PRELIMINARY GRAPH TRANSFORMATION

STABLE COMPUTE ADJACENCY MATRIX FROM INPUT
GRAPH MATRIX

DISTANCE COMPUTE DISTANCE MATRIX FROM ADJACENCY
OR SEQUENCE MATRIX

RELABEL n REARRANGE NODES. n IS NUMBER OF ITERA-
TIONS OF REARRANGEMENT

WEIGHT APPLY LINK WEIGHTING FACTORS

DECOMPOSITION AND EVALUATION

CLUSTER n DEFINE CLUSTERS. n IS CLUSTER OEFINITION
METHOD I - 0, CLUSTERING ALGCRITHM; s J.
USER ENTRY. t.e.. USER ENTERS NUMBER OF
CLUSTERS IN AN 13 FORMAT FOLLOWED BY
VALUES OF THESE CLUSTERS ;N AN 13 FORMAT)

FVALUATE COMPUTE STRENGTH AND COUPLNG MEASURES
OF A GRAPH DECOMPOSITION

ANOREU	 n PERFORM ANOREU'S DECOMPOSITION BASED ON
A SIMILARITY MATRIX. n IS ANDREU'S "p '
VALUE

HOUSEKEEP I NG AND FILE MAINTENANCE

PRINT PRINT CURRENT MATRIX

STAT COMPUTE STATISTICS ON CURRENT .MATRIX

RELOAD	 n RESTORE CURRENT MATRIX FILE OF TYPE n I 	 1,
ADJACENCY	 . 2. WEIGHTS, - 3. DISTANCE,
s. SEQUENCE)

STORE SAVE CURRENT MATRIX

SUBMAT SUBMATRICIZE CURRENT MATRIX

EXIT MT THIS TYPE OF RELATIONSHIP MATRIX AND
RETURN TO SELECT OTHER RELATIONSHIP
MATRIX OR EXIT TO RETURN TO COMMAND
LANGUAGE INTERPRETER CLII

I

0a
N0

2-12i

I	
-

ORIGINAL RAGE IS
OF POOR QUALITY

to be derived by the user in going through this

analysis is unclear.

2. The matrix format is awkward. in the case of a

large data base (say, 100 requirements), the out-

put appears as a series of 100-by-100 matrices,

which are impossible to present clearly on a termi-

nal or a printer.

3. This subsystem (and not the Analyzer subsystem)

should contain the planned COMPLEXITY, COMPLETENESS,

and CONSISTENCY functions, since most analysis will

eventually require transformations.

4. As is the case with the MEDL-R system in general,

this subsystem maintains many files that the user

cannot interpret or has no general interest in fol-

lowing a run. These files should be scratch files.

2.1.7 CHANGE SYSTEM NAME SUBSYSTEM

The Charge System Name subsystem allows the user to change

from one MEDL-R data base to another without exiting the

MEDL-R system. This subsystem is provided with good syntax

checking of the system name requested. Changing from one

data base to another is the only function performed.

This important subsystem could be expanded to perform ad-

ditional functions. For instance, there is currently no

provision within the MEDL-R system for combining two or

more data bases into one. Such a capability would be useful

in the analysis of large systems that can be conceptualized

as a set of subsystems. The subsystems could be analyzed

for internal consistency before combination. The capability

for analysis by subsystem before integration would result

in the following:

e	 A significant increase in run-time efficiency while

Query, Analyzer, or Metric subsystem operations are

11

2-13

OR Iq

OF POOR QUALITY

performed--Soma of the options under these subsys-

tems involve the analysis of requirement-to-

requirement relationships. The number of such

relationships is proportional to the square of the•

total number of requirements.

e	 A possible Feduction in errors caused by confusion--

There is a limit to the number of items an individ-

ual can keep track of simultaneously. The MEDL -R

system provides many aids in tracking requirements;

however, these aids only raise the limit and do not

eliminate it.

•	 A method of measuring the coupling between subsys-

tems (possibly by use of To Be Supplied (TBS) stubs)

Another potential, but probably less useful, capability would

be that of creating of a separate data base from a subset of

requirements in an existing MEDL-R data base. This feature

would be useful when a new system is created using a portion

of a previously defined system. The capability for isolating

a portion for a MEDL-R data base would result in the follow-

ing:

e	 Cost savings derived from reuse of a set of require-

ments to define the baseline for a similar system

•	 Flexibility in the reorganization of a system into

• new set of subsystems--Once a system is defined,

• trial organization into subsystems would be use-

ful in locating an organization wi- h minimal cou-

pling.

e	 A provision for a converse of the merge capability

previously suggested--The user would be free to

combine merging and isolating to perform reorganiza-

tions to suit his/her own particular needs.

2 -14

	

a	 CJR^^: 1	 ^ ; ^L'tr ^^

OF POOR QUALITY

2.2 FLOW ^IAGRAMS OF USER/SYSTEM INTERACTION

	

i
	

This section provides six flow diagrams (Figures 2-1 through

2-6) depicting the interaction between the user and the

MEDL-R system. When compared, these figures show the rela-

tive level of user interaction for each subsystem. 	 i

In these figures, squares represent processes, ellipses con-

tain MEDL-R prompts, and items enclosed in quotation marks

represent user input. Items not in quotation marks, ellipses,

or squares represent classes of responses for which knowl-

edge of the proper syntax is required (e.g., the "valid

entry" response, for which the user must know what consti-

tutes a valid entry).

The Language Translator subsystem, representing one extreme,

shows a minimum of interaction. The Update subsystem, repre-

senting the other extreme, is by far the most complex and

shows a high degree of interaction. The Metric subsystem

is not diagrammed because of the insufficient experience

with this subsystem mentioned in Section 2.1.6.

Two conclusions can be drawn from the figures:

s	 The two language editor subsystems, Create and	 s

Update, differ in the level of complexity in user

interaction.

e	 The prompting, in most cases, appears to be clear.

The prompt indicates both the desired type of input

and the position of the user in the system hierarchy.

2.3 STRUCTURAL ANALYSIS

This section describes anA evaluates the MEDL-R system struc-

ture and data set structure.

r.	
2-15

s:	 r ..'s)

^h

H 14

guars

v

4

m

a
N

41

0w41

U
w
0

0

IN

CT

Cs.

O

+- I - "
 .3

OF 	
QUALITY

I if

2-16

OF pt3GR Q j' iL TY

3-17

I
y

a^

N

m

R!

C

0
w

oq
U

w^
0

d.

N

11

a

04

ORIa. -IAA. VAZZ rs
OF POOR QUALITY

LANGUAGE
CU > OPTION: 	 rRANSLATION

"QTR"

Figure 2-3. Flow of Control in Language
Translator Subsystem

2-18

[

|

0213 -.	 ®-®
QgJA T

|\

.

_
2 ! n 7 ^^,

\%)} \K\k \
- }2!! ai;;7

«\i	 ; ®2 n

.	 { ;
 ;,)

! }
e

, z [c	 .

^ n

£9}2z)/	 2

/i§lk..

5 / ^
c

, § <

c
^ ¥

oF
^

^ k\t \
^k §k! /

;5

§ -
\^ \

I

`t) \ ^

[°	
t

k\	 ^	 ^}\ \§?^
\

. ;^̂ -	 ,
- !

)^ / ƒ	 \\/ ^27'^ w

\41 ^^\	 '

! ` 3

\
ku!

} !!} k
! §	 i$@ ;kk\§

|

-§
 m

^

2-19

^

is

E

i

1

i

OMINAL PAGE IS
OF POOR O«ALITY

CLOSE FILE
SYSMWWMLQRY

	

CU > OPT'IQN:	 INVALID
SYNTAX

	

QRY	 OPIN PLE	 ►ARSE USM_SySTtMNAM4.QA	 QRY >	 ~tqn qwt"	 INPUT

NO

SEARCH FOR
ANUMtMINT

11MING QUPY

LIST RlGUIREMENT 10ENTIFICATION AT
TERMINAL., AOO 10ENTIFICATION, VERSION,
ANO QESCRI►TION TO FILE SYSTIMNAME.QAV

Figure 2-5. Flow of Control in Query Subsystem

2-20

cp

OF POOR QUALITY

VALID SYSTEM NAMECLI > OPTION: 1

CS	

' \
CLI >

ENTER SYSTEM NAME-

INVALID SYSTEM NAME

Figure 2-6. Flow of Control in C!
S y stem Name Subsyste!

T	
2-2.

1

c

ri

f

0RIGINAL PACE 13
OF POOR QUALITY

2.3.1 MEDL-R SYSTEM STRUCTURE

The source code for the MEDL-R system is written entirely in

the PDP-11 FORTRAN IV PLUS language. The system is highly

modular, and the functional components are easily matched

to subsystem module hierarchies.

Each module is coded using system-wide naming conventions;

this is aided by the liberal use of the INCLUDE compiler

directive for COMMON block code. A marginally acceptable

technique of using the INCLUDE directive for repetitive

executable code (notably error recovery sequences) is also

used.

The source code is complete even to the extent of FORTRAN

routines from the Martin Marietta Aerospace Storage System

(MASS).

2.3.2 MEDL-R DATA SET STRUCTURE

This section describes the function, content, and format of

all MEDL-R system data files and the specific accesses to

each file by the various MEDL-R subsystems.

The file-naming convention used by the MEDL-R system is

as follows:

Svstemname.XXX

where Systemname is the user's name for the collection of

requirements to be analyzed by the MEDL-R system (this name

is supplied to the Command Language Interpreter control

module and is used to create the PDP-11 file structure),

and XXX is the data file type. The data files are described

in Section 2.3.2.1 through 2.3.2.8.

2.3.2.1 RFI File

The RFI file contains the initial requirements for a new

MEEDL-R system. The file format is sequential fixed-lengt!

2-22

f'a

C

ORIGINAL PAGE IS
OF POOR QUALITY

card image records, each containing ASCII data only. The

disk name of this file is Systemname.RFI.

The RFI file is created or extended by the Create subsystem.l

The presence of this file is determined by the Command Lan-

guage Interpreter control module, and the presence or ab-

sence of the RFI file is used to allow or disallow some user

options (see Reference 1, page II-2). The RFI file is read

f '	 by the Language Translator subsystem and is deleted upon the

successful completion of a data base build by that subsystem.

The RFI file is useful if a set of requirements is created

offline. The usefulness would be even greater if an option

(existed to create an RFI-like file from a subset of require-

ments in an existing MEDL-R data base.

2.3.2.2 UPD File

The UPD file contains the updates to an existing MEDL-R sys-

tem. The file format is sequential fixed-length card image

records, each containing ASCII data only. The disk name of
this file is Systemname.UPD.

The UPD file is created or extended by the Update subsystem.

The presence of this file is determined by the Command Lan-

guage Interpreter control module, and the presence or ab-

sence of the UPD file is used to allow or disallow some user

options (see Reference 1, page II-2). The UPD file is read

by the Language Translator subsystem and is deleted upon the

successful completion of a data base update by that subsys-

tem.

2.3.2.3 LTR File

The LTR file is the listing of the Language Translator sub-

system actions for each data base build or update. This

I_ the FORMAT of the input card imace were known, the :..le
f	 could be created offline.

1
2-23

L

r	 ORIGINAL PAGE 13
OF POOR QUALITY.

file contains a copy of the data input to the Language Trans-

lator subsystem and any warning and error messages generated

in response to the input. The listing is terminated with a

summary of errors, statistics, and a completion message. The

file format is sequential variable-length records with car-

riage control. The disk name of this file is Systemname.LTR.

A new version of this file is created each time the user

invokes the Language Translator subsystem. After the MEDL-R

session, the user may list the LTR file version(s) at the

terminal or on the lineprinter.

^•	 2.3.2.4 QRY File

The QRY file is the output listing of the Query subsystem.

The file contains a copy of the user's QUERY request followed

by the IDENTIFICATION, DESCRIPTION, and VERSION of each re-

quirement that matches the QUERY (see Sections 3.1.1, 3.1.2,

and 3.1.7 for the definitions of IDENTIFICATION, DESCRIPTION,

and VERSION, respectively). The file format is sequential

variable-length records with carriage control. The disk

name of this file is Systemname.QRY.

A new version of this file is created each time the user

invokes the Query subsystem. After the MEDL-R session, the

user may list the QRY file version(s) at the terminal or on

the lineprinter.

2.3.2.5 ALZ File

The ALZ file is one of two output listings of the Analyzer

subsystem. The file contains the reports generated by the

SUMMARY, LISTALL, and LISTNAIME commands (see Section 2.1.5).

The file format is sequential variable-length records with

carriage control. The disk name of this file is

S_ystemname.ALZ.

C
2-24

ORIGINAL PAGE 13
OF POOR QUALITY

A new version of this file is created each time the user

invokes the Analyzer subsystem and uses a SUMMARY, LISTALL,

or LISTNAME command. After the MEDL-R session, the user

may list the ALZ file version(s) at the terminal or on the

lineprinter.

2.3.2.6 FRS File

The FRS file is one of the two output listings of the Ana-

lyzer subsystem. The file contains the report generated by

the FRS command (see Section 2.1.5). The file format is

sequential variable-length records with carriage control.

The disk name of this file is Systemname.FRS.

L^ A new version of this file is created each time the user in-

vokes the Analyzer subsystem and uses the FRS command. After

the MEDL-R session, the user may list the FRS file version(s)

at the terminal or on the lineprinter.

2.3.2.7 MAT, ADJ, WGT, DIS, and SEQ Files
a

The MAT, ADJ, WGT, DIS, and SEQ files are storage files for

partial or intermediate forms of the matrices used in the

Metric subsystem. The format of each file is sequential

variable-length binary records. The disk names of these

files are Systemname . MAT, Systemname .ADJ, Systemname.WGT,

Systemname . DIS, and Systemname.SEQ.

The creation and reuse of these files are controlled by the

STORE and RELOAD commands within the Metric subsystem. As

mentioned in Section 2.1.6, little experience has been gained

with this subsystem.

2.3.2.8	 Ail,	 AL2, AL3s RE1, RE2, and RE3 Files

The AL1, AL2, 1L3, RE1, RE2, and RE3 files form the central

MEDL-R data base. These files contain all information sup-P
plied by the user. The formats are direct-access fixed-

length binary records.
,

The disk names of these files are

t
2-25

r

Systemname.AL1, Systemname.AL2, Systemname.AL3, Systemnams

Systemname.RE2, and Systemname.RE3.

The data base is created or modified by the Language Trans

lator subsystem through the use of MASS utility routines.

The presence of the data base is determined by the Command

Language Interpreter control module, and its presence or a

sence is used to allow or disallow some user options (see

Reference 1, page II-2). The data base is read by the Query,

Analyzer, and Metric subsystems as the source of information

for all processing performed by these subsystems.

The MEDL-R data base is organized into two groups of three

files each. The first group, called relation ALLNAMES, con-

sists of the AL1, AL2, and AU files. The second group,

called relation RELS, consists of the RE1, RE2, and RE3 files.

The first file of each group (AL1 or RE1) is termed a Tuple

Description Table (TD'"). This file contains pointers to the

end of the other two files in the group. The TDT also points
to the Alphanumeric Data File (discussed below), a section

of which describes the organization of data in the files.

The second file of each group (AL2 or RE2) is termed a Tuple

File (TF). This file contains links that describe the re-

lationship between data items. The AL2 file links a sequen-
tial key field through a MEDL-R requirement entry-type code

to a pointer to an entry in the alphanumeric data. The RE2
file links every record (entered by the user) from the re-

quirement IDENTIFICATION through a MEDL-R requirement entry-

type code to a pointer to the first occurrence of the actual

alphanumeric data.

The third file of each group (AL3 or RE3) is termed an Alpha-

numeric Data File (ADF). This file contains two sections.

The first section contains alphanumeric tags that describe

the fields of a record in the associated T r.. This section

A

2-26

t	 ,

ORIGINAL PAGE IS
OF POOR QUALITY

is overhead and is simply an extension of the TDT that points

to it. (The presence of this section is probably a conse-

quence of the restriction of alphanumeric data to the ADF.)

This section is present in both the AL3 and RE3 files.

The second section (present in AL3 only) contains an example

of earn MEDL-R keyword, string, or text entered by the user.

A simplified schematic of the organization of the MEDL -R data

base is shown in Figure 2 -7. The data base is shown after

the MEDL-R source has been passed from the Create subsystem

to the Language Translator subsystem. (The sample of the

MEDL-R'source is not complete, since the Create subsystem

demands that the DESCRIPTION and NATURE entries always be

present; the source shown is intended as a simple example.)

The user has specified the STATUS of both requirement R-1

and R-2 as ACTIVE and the STATUS of R-3 as SOFT. The linking

pointers start in RE2 and can be traced through AL2 to AL3.

The same data base is shown after an update in Figure 2-8.

The user has employed the Update subsystem to change the

STATUS of requirement R-2 to OBSOLETE and then invoked the

Language Translator subsystem. (For clarity, the sample of

MEDL-R source is not shown in the UPD file format.)

The organization of MASS files is quite flexible and should

{ be adaptable to any of the proposed modifications to the

MEDL-R system.

The source code for the standalone utility SUMREL is sup-

plied with the MEDL-R system. SUMREL produces a formatted

dump of either the ALl,'AL2, and AL3 files or the RE1, RE2,

and RE3 files.

Because MASS is only mentioned, and not cited, in the MEDL-R

documentation, SUMREL listings were used to analyze the

structure of the MEDL-R data base.

lu
	

2-27

S

O
a
J W

0Za►- a y
^ s s

? Oa

Z

a
J

W W
> >

a a
^ N N^ M y

c a O a 0 a
i:ns;ns^n

W^
.J

RC

Ia0
w

W •.'1

^
V C

'^1 C
^J y
fi, L

C >\
Q) A
:n
y ^

y O
r~i ^
U U

J

y J

J

:1 Wr
Qa

I`
. n

Q J
N

V
N
7
J

crw

ORIGINAL C
k.- ..

OF POOR QUlt;.^T't

- N !1 f Xn

	^ 	 J

I

I

O	 I

	

^c	 =	 I

W	 I

W < >	 I

>	

/I
Z a O a
0-O W N

N N u7

JI N to
N LLW `^W
s— a a a

N	 ^
J—

VI 'J1 N

.J W
^ > cWc

W O 'Ŝ
2 2 ^

i
II

I/rIzc

Q)
0

a
a

— N M R ^n

O '^
F^ V !n	 ;n

C-4

i z (^	 N
a
i L

,ono ^xTQ_^

2-28

r

ORIGINAL PAGE

OF POOR QUMLI

er .- ,n a \

me++ D
SQ

-C
QQ

ORIGINAL PAC: is
OF POOR Q'UALI ► f

i

2.4 RECOMMENDED MEDL-r STRUCTURE

This section specifies a recommended structure and data flow

for the MEDL-R system based on the comments in Sections 2.1

through 2.3. This recommended structure should allow the

system to accept new language features and new analysis

capabilities.

As previously stated, the current structure of centralizing

the operations around the language translation step is an

l	 excellent scheme. The function division of the modules into

Create, Update, Query, Analyzer, and Metric subsystems is

also good. The use of the MASS data base structure 	 equally

good (although better documentation is needed if serious

work in modifying it is to be accomplished',. The basic crit-

icisms of the structure, specified below, are details of

design and implementation:

•	 There should be onl y one editor (used for both new

input and modifications to old).

•	 Upon entering or modifying a requirement, the lan-

guage translation should take place immediately

withcut: user command. This eliminates many files,

reduces complexity, and gives the user immediate

feedback as to the validity of the enterer re quire-

ments.

•	 The only saved files should be the requirements data

base. All other fil--s should be directed to the

user terminal or linecrinter and should be deleted

after used.

The analyzer subs y stem should be renamed the Report

Generator subsystem, and the Metric subs •,stem is

really the first analysis module.

Figure 2-9 shows a structure that mc_ts the requirements

scec_:_ed above. The onl y new trocess -dentified _s _hat of

2-30

U`%lU : l,A . Fr tr'c lZf

j

	

	 OF POOR QJALITY

r

REQUIREMENTS
DATA SASE

RETRIEVE
REQUIREMENT

AL1	 (- 1 	RE3

REQUIREMENT	 LANGUAGE

	

EDITOR	 TRANSLATOR

QUERY	 REPORT GENERATION	 ANALYSIS
(CUR R ENT ANALYZER)	 CURRENT METRIC)L	

I46	 t
1	 7	 j

'	 1 av
	USER	 UNEPRINTER

TERMINAL

Figure 2-9. Recc-mmendec MEDL-R S y stem Structure

2-31

ORIGMIAL ^yin: r
OF POOR Q^J/d ITY

retrieving a requirement froin the requirements data base.

This allows the editor to modifv t:, e requirement (if it

currentl y exists).

1

-3-1

OF puUi. t;JALIV

SECTION 3 - MEDL-R LA:10L'AGE SYNTAX

This section summari:es the languace syntax currently

by the MEDL-R system. Section 3.1 evaluates t
h
e lanau;

elements as to thAir applicabilit y:, completeness, strut

strengths, and weaknesses. Section 3.: specifies recom-

mended enhancements to the lanquave .

_ . 1 CURRENT ME2 L-R LANGUAGt SYNTAX

The current version of the MEDL-R s y stem ex p resses s,,•stem

requirements according to the followinc structure:

•	 A s%-stem is a data base that contains the specifi-

cations (requirements) for one potential problem

definition.

•	 a recuirement is an individual data structure within

the data base. a requirement is composed of up to

21 types Of information (entries` that define,

clarify, or categorize that req,iirement.

•	 An entry is the smallest unit of data that is ac-

cessible to the MEDL-R s\ • stem. Each of the 21 pcs-

sible entries must be of the for: (tvpe) specifiec'

for that parti.ular entry.

•	 The tv-_e of an entry ma y be tex-, te% •wcrd, or s_ inn.

Table 3-1 specifies the rules for correctly fcrTinq

each type and the entries allowed for each :ype.

Table 3-2 summarizes the :1 requirement entries supporter:

by the current version of the MEDL-R s , -stem. 1b:e 3-3 :_sts

the Keywords currently available. The entries and the key-

words are specificaily defined in Reference 2.

The use ^. three entr y types makes t e MEDL-R s y stem syntax

I
_.ex_c1e.	 The text t ,,--,e permits _.:a stcrace

• ^at is readab^e, understar.d^b:e. and mear.in,:`_ ._ `cut: tc

^-1

Y^

Table 3-1. Current Requirement Type Syntax

TYPE	 I	 DESCRIPTION	 I

TEXT	 I ANY _!NE OF TEXT 'S ACCEPTED TEXT IS TERMINATED P TWO CONSECLTI VE
I PERIODS DESCRIPTION AND EXPLANATION ARE THE ONL Y TEXT ENTRIES.

KEYWORD KEYWORDS ARE PHEDEFINED T ERMS USED TO CLASSIF'/ THE REQUIREMENT
)THE SPECIFIC KEYWORDS ARE LISTED IN TABLE 3-3.1 THE RULES =OR SPECIFY-
ING A KEYWORD ARE AS FOLLOWS. THE EXACT SPELLING 'AS SHOWN IN
TABLE 3-31 (UP TO 16 CHARACTERS) IS REQUIRED =0R EACH KEYWORD NO
EMBEDDED 9LANKS. COMMAS. OR PERIODS ARE ALLOWED. COMMAS SEPARATE
KEYWORDS APPEAF,ING IN LISTS PERIODS TERMINATE LISTS OR SINGLE KEY-
WORDS. THE NATURE AND RESULTING-FRCM ENTRIES ALLOW LISTS OF KEY.
WORDS. T HE STATU', AND SCOPE ENTRIES ALLOW THE SELECTION OF ONLY
ONE KEYWOFiO

STRING	 A STRING IS A USER-DEFINED SEQUENCE OF UP TO 30 CHARACTERS. THE FIRST
CHARACTER MUST BE ALPHABETIC. Ta r_ RULES F OR VALID CHARACTERS,
SEPaRATORS. AND TERMINATORS ARE THE SAME AS FOR KEYWORDS. THE
IDENTIFiCAT10N, RESPONSIBILIT Y ORIGINATOR, VERSION, SUBSYSTEM. AND
SOURCE ENTRIES ALLOW ONL Y ONE STRUNG. THE SUBJECT. REPLACES.
REPLACED-11y, OERIVES, DERIVED-XROM. FUNCTION-RESOLUTION, DATA,
RESOLUTION, AND RESOURCE-RESOLUTION ENTRIES ALLOW LISTS OF STRINGS.
THE CONSTRAINT ENTRY REQUIRES A SPECIAL STRING,'AiHICH IS OESCRIBEC
ON PAGE 11 . 13 OF Q E=ERENCE 2. THIS ENTRY IS REQUIRED ONLY WHEN THE
NATURE KEYWORD PERFORMANCE !S SPECIFIED

s

I
iry

f^

3-2

`L

ORIG M'"'L .1G^ r j
OF POOR QUALITY

r I

Tsbie 3-2. Curren* Recuirement Entries

ENTRY	 I	 TYPE	 I	 LIST' I	 MEANING

IDENTIFICATION STRING NAME TAG OF THIS REQUIREMENT

DESCRIPTION TEXT ENGLISH EXPRESSION OF REQUIRE-
MENT

NATURE KEYWORD	 L CATEGORY

RESPONSIBILITY I	 STRING NAME OF PERSON, GROUP

ORIGINATOR STRING	 I NAME OF PERSON, GROUP

SCOPE I	 KEYWORD RANGE OF INFLUENCE

VERSION STRING AUDIT

SUBSYSTEM STRING PART OF SYSTEM

SOURCE STRING DOCUMENT REFERENCE

CONSTRAINT STRING	 I QUANTITY

RESULTING-FROM
I

KEYWORD	 L MOTIVATION

SUBJECT STRING	 I	 L USER CATEGORY

EXPLANATION TEXT MISCELLANEOUS INFORMATION

STATUS KEYWORC	 I CURRENT STANDING

REPLACES I	 STRING	 L OVERRIDDEN REQUIREMENT

REPLACED-BY STRING	 L OVERRIDING REQUIREMENT

DERIVES STRING	 L SUBSEQUENT REQUIREMENT

DERIVED-FROM STRING	 L ORIGINATING REQUIREMENT

FUNCTION- STRING	 L MODULE NAME
RESGLUTION

OATA•RESOLUTION I	 STRING	 L DATA SET NAME

RESOURCE- STRING	 L SPECIFIC 14ARDWARE
RESOLUTION Il

AN L IN THIS COLUMN INDICATES THAT ONE OR MORE STRINGS OR KE Y WOROS MA v 3E
PRESENT IN THE ASSOCIATED ENTRY

aa
N
N

i

r

3-4

is
lya
j

AC-IVE
50 FT
OBSOLETE

COMPANY-GOALS	 I
COMPANY-STANDARDS	 i
CUSTOMER-DIRECTION
CUSTOMER-STANDARDS
REAL-JVORLO-MODEL
QUALI TY -CONSIOERAT!ONS j
ECONOMICS
POLITICS

RESULTING-FROM

STATUS

OF

3-3. Current Kevwor.s

RY	 I	 KEYWORDS

DEVELOPMENT
TECHNIQUES
TOOLS
METHODOLOGY
MANAGEMENT
MANPOWER
BUDGET
SCHEDULES
END-ITEMS
FACILITY
HARDWARE
OPERATING-SYSTEM
LANGUAGES
PRODUCT
INTERNAL
PROCEDURAL
STRUCTURAL
TEMPORAL
DATA
INTERFACE
EXTERNAL
OPERATIONAL
PERFORMANCE
USER-INTERFACE
TGT-FACI LITY
HARDWARE
OPERATING-SYSTEM
LANGUAGES
EXISTING-SOFTNARE

GLOBAL
LIMITED

ORICINI AI PX:̂ _-_ to

OF POOR QUALITY

the developer and to the originator of a software system.

The ke yword type allows the MEDL-R system to impose a built-ir.

set of categories upon requirements. The string type supplies

a common format for requirement names (which can be used for

tags and pointers) and for user-defined quantities (names of

people, specialized categories, or actual items). No sug-

gested improvement to the MEDL-R s ystem involves an enlarge-

ment of the set of permissible types.

i	 Sections 3.1.1 through 3.1.21 describe the MEDL-R s y stem en-

tries. (Each entry is described in detail in Reference 2.)

Each section includes (where ap p licable) a specific analysis

of the entrv's app licability, completeness, structure,

strengths, and weaknesses. Manv of these factors are cor.-

sidered in measuring the usability of the entry in current

or future analysis. appro priate recommendations concerning

how and when to use the individual language elements are also

provided.

3.1.1 IDENTIFICATION

The IDENTIFICATION entry is the ;Weans of referring to a par-

ticular requirement from another requirement or b y any of

the existina anal ysis procedures.

This entry may be sup p lied by the MEDL-R s y stem (in the

Create mode) or by the user (in the Update mode). When sup-

p1iec: by the MEDL-R system, the IDENTIFICATION secuence is

R-1, R-2, and so forth. Duplicate IDENTIFICATIONS are gen-

erated by the MEDL-R s y stem if the Create subsystem is used

more than once before prccessinc proceeds to the Language

? Translator subs stem. In the Update Node, an y valid string

may be used for IDENTIFICATION. This is the preferred nam-

ing method, because the user :nay label the _equi__ment with

a .:"me ind_cati-3e of its ccr.terts.

r
3

ORIG "I"AL 1 AG *_. is
OF POOR QUALITY

rr

	 3.1.2 DESCRIPTION

The DESCRIPTION entry contains the English-langua ge exp res-

sion of the requirement. The entire requirement is depend-

ent upon a clear and unambiguous statement in this entry.

DESCRIPTION is not currently subjected to analysis by the

MEDL-R system (except for text-fragment searches by the

Query subsystem). DESCRIPTION is expanded, annotated, qual-

ified, categorized, and so forth, by the remaining entries

of the requirement. DESCRIPTION is the core of the MEDL-R

system concept. The user, however, may benefit from the

following suggestions. The text entered here should be both

concise and clear. Conciseness is desirable because the

[QRY data set will contain a complete co py of the DESCRIPTION

entry of every matching requirement each time it matches a

[query. Clarity is desirable because these DESCRIPTIONs :Jill

be reported alone and out of context. DESCRIPTION is, as

it should be, a mandatory entry to form a requirement.

3.1.3 NATURE

The NATURE keyword is the primary classification of the re-

quirement. The current set of available ke ywords (see

Table 2-3) attempts to present a universal classification

scheme; that is, every possible requirement should fit under

one or more of the keyword-,.

The NATURE keyword set is one of the most important features

of the MEDL-R system. A user should full y understand the

meaning s of each of the keywords and should state the re-

quirements with the keywords in mind. In this wa y , the kev-

I	 words can indicate which areas additional recuirements

should address. This generality leads to a criticism of the

^.	 current :NATURE ke yword set. A user should be able to tailor

the set to :Hatch inherent qualities of a specific t ype of

fsystem. The current set is too general and provides limited

guidance for a specific application.

3-6

ORIGITN'A . P"r7' 19
OF POOR QUALITY

A second criticism of the NATURE entry is that although the

entry contains an imp licit structure, this structure is not

implemented or enforced in the MEDL-R s ystem. Figure 3-1

shows the implied structure as a hierarchy. Currently, a

user may tag a requirement with the NATURE kayword LANGUAGES.

The hierarchv list shows that this is ambiguous. A require-

ment tagged with both DEVELOPMENT and EXIS'T'ING-SOFTWARE is

obviously incorrect, but this tagging is currently allowed

by the ME:)L-R system. On the other hand, a requirement

tagged with DE VELOPMENT, FACILITY, and HARDWARE (enforcing.

the hierarchy) is clearly different =rom a requirement tagged

with PRODUCT, TGT-FACILITY, and HARDWARE.

A third criticism is that it is difficult to remember the

spelling and definition of all NATURE keywords. The user

must either use the list presented in the user's guide (Ref-

erence 2) as a re`erence or rel y solely upon a remembered

subset.

3.1.4 RESPONSIBILITY

The RESPONSIBILITY entry tracks the implementation of the

requirement into the design phase.

RESPCNSIBILITY may be specified in the Quer y mode, thus col-

lecting, as a group, those requirements that.will be rasolved

by a particular person or group.

3.1.5 ORIGINATOR

The CRIGINATCR entry tracks a requirement tack to its origin.

Tracking zap to very L--n=or _ant it questions arise ..oncerning

the re,uirement's =unction, motivation, content, and so forth.

CRIGINATOR is not available in the =uery mode. Thus, it is

difficult to collect one originator's requirements into one

package (e.g., to submit a request for ralidation	 the

finalized requirements to each originator).

3-7

3-8

0R!C9^^c,v_ R,'!r 	 S
CAF POOR Qi iALi,rf

1 .	 DEVELOPMENT
TECHNIQUES

TOOLS
METHODOLOGY

MANAGEMENT
MANPOWER

BUDGET
SCHEDULES
ENO-ITEMS

FACILITY

t HARDWARE
OPERATING-SYSTEM

1

	

	 LANGUAGES
PRODUCT

INTERNAL
PROCEDURAL
STRUCTURAL
TEMPORAL
DATA
NTERFACE

EXTERNAL
OPERATIONAL
PERFORMANCE
USER-INTERFACE

TGT-FACILITY
HARDWARE
OPERATING-SYSTEM
LANGUAGES
EXISTING-SOFTWARE

Figure 3-1. Current NATURE Keywords in
-_erarchical Form

OF POOR QUHLIT%

3.1.6 SCOPE

The SCCPE entry indicates how the requirement is to relate

to the sy stem. The current choice of GLOBAL or LIMITED kev-

-.acrds for SCOPE tends to be meaningless unless the boundaries

of influence are in some way indicated :dhen LIMITED is speci-

Pied. The SCOPE entry is thus not fully used by the MEDL-R

system language, and the explanation of this entry in Ref-

Terence 2 does not hel p the user to ^nderstard its use.

1
3.1.7 VERSION

The VERSION entry is intended to help determine the stage of

the s-! stem at which the re quirement was added.

Because this entry is supplied by the user, misspellin:,.,̂ , , in-

accuracies, or blunders will negate its our-pose. Currently,

the `4EDL-R s ys gem does nct assize in this housekeeping chore.

3.1.3 SUBSYSTEM

T`:e SUBSYSTEM entry supplies a name for the particular per-

tion of the system to which `he requirement applies.

This entry is tied strongly to the SCOPE entry ccncept. The

`^.EDL-R syster., should recognize this connection and prompt

the user to supply valid relationsh_cs.

1

	 3.1.9 SOURCE

T!ie SOURCE entry traces the requirement to a written _t ocu-

ment and is thus very important.

If the MEDL-R s ystem is used to enter and anal •3 ze a se= of

I
re quirements ;and not as a tool to ::elo ce ,.elcc the re quire-

ments) , c.his entry can be used to determIne wcet::er the re-

quirement was entered correctly. In developin g rec uireme^ts,

SOURCE can be used to refer to supper__nc evidences.

3-9

OWGINAL Pitt-i:.
OF POOR QUALITY

3.1.10 CONS': RAINT
i

r	 The CONSTRAINT entry allows for a "quantitative restriction"
1

as a requirement. It is cermitted only wher. NATURE kevword
Pr RrOR""ANCE is supplied. The quantity ;gust be expressec as
a rate (e.g., 30-FRA1dES/SECON0). Currently, there is no

analysis of this entry. This entry was apparently planned
I	 for some purpose other than further clarification 	 the re-

quirement (as seen by the restriction on entry units). The

present restriction to express the quantity as a rate results
in confusion when this cannot be done (e.g., if the user

I wishes to note a requirement for the amount of in-core mem-

ory) .

3.1.11 RESULTING-:ROM

The RESULTING-FROrl entry indicates the moti ,.ation for includ-
ing the requirement. The current set of available keywords

is specified in Table 3-3.

The name of this entry ma y cause it to be confused with the
DERIVED-FROM entry.

RESULTING-FROM ke ywords are hard to remember and do not cover
311 reasons for including a requirement. As with t:he NATURE

ke ywords, this set of keywords should be tailored to t-e
specific motivations important to the _,ser.

3.1.12 SUBJECT

The SUBJECT entry is intended for user-sup p lied keywords.
any valid string or strings may be entered. Such an entry

gives the user a chance to c_ ,_-^ss-reference requirements in
terms specific to the system.

The SUBJECT entry is a potentially useful device. The ;ser

I	 should select 3 _invited number of SUBjECT strin g s and t=v

^.	 to stick to t:,em. This procedure s;.culd limit the problems
with input errors and _sspei_ • ngs	 Suchinput errors and

3-10

OkwnvNL PAGE 19
OF POOR QUALITY

.misspellings can be serious because the MEDL-R system does

not -validate this entry.

The SUMMARY repoit produced by the Analyzer subs y stem con-

tains a list of SUBJECT strings and should be checked fre-

quently to detect the presence of misspellings.

3.1.13 EXPLANATION

The EXPLANATION enter contains any expanded text relating to

the reauirement. The EXPLANATION entry is used tn supple-

ment the DESCRIPTION entev.

The EXPLANATION eritry is not reported in Query mode, and thus

the restriction of conciseness suggested in Se=tien 3.1.2

does not apply. Any applicable text should be entered into

EXPLANATION, including comments, questions, historical data,

and so forth. EXPLANATION is not subjected to Query mode

anal`3 sls.

3.1.14 STATUS

The STATUS en
t
ry indicates the curr^_nt standing of the re-

quirement as it is a pplicable to the current system.

The STATUS keywords .arc s pecified in Table 3•-3. The keyword

SOFT is not an acce pted tern and might not have a distinct

meaning to all users. T'-ie ke yword ACTIVE is also unclear

due to the many different shades of me_:,ing asscciated with

the word. The STATUS keywords snould indicate t ..".e progress

of a requirement from proposal to fi n al acceptance.

The keyword OBSOLETE does not, as it should, automatically

remove a recuirement frcm inclusion by all anal.-s_s subs y s-

tems .

3.1.15 REPLACES

:'!:e REPLACES en ,:=: indicate: _:.at the cur _• ent recuiz:Cment

overrides another recuirement. The striag or str_ncs entered

declare -- he overridden recuirement ' s :DEN'::_ 17.:, ION .

3-11

I

`	 ORON AL PAI"Z 'I
OF POOR QUALIV

Currently, this entry is not used by the f ,IEDL-R sysr.em to

its f •;11 extent. The user is responsible for .Waxing the
corresck^neinc REPLACED-BY entry in the overridden require-

Merts. In addition, the user probably should charge the

^.	 overridden re quirements' STATUS entries to OBSOLETE. Thase

actions are very important in maintaining a consistent MEDL-R

j ,	 data base.

3.1.16 REPLACED-BY

The REPLACED-BY entry indicates that the current recuirement

has been overridden by another requirement. The string or

strings entered declare the overriding requirement's IDENTI-

FICATION.

This entry is the complement of to REPLACES entry; the com-

ments concerning that entry also apply here.

An implied relation hip exists between this entry and the

STATE'S entry. A replaced requirement should automatically

be given a STATE'S of OBSOLETE.

3.1.17 DERIVES

The DERIVES entry indicates another requirement in the s ,.-s-

tem that ..as evolved from the ^ur gent require-ment. The

string o., strings entered declare the evolved requirement's

IDENTIFICATIONs.

The DERIVES entry provides the 1.^.nk (s) needed when a tec:^.-

nique of decomposition is used to develop a set of system

recuirements.

Currentiv, :his - ztr_ is nct used by the AEDL-R s y s.em to its

fullest extent. The -,:ser is res ponsible =or :Waking the cor-

{	 responding DERIVED-FROM en ­.:­-r in the evolved recuirement, as

'Nei1 as for ensuring th at _ .e evolved requirement actually

exists. Again, checks suc : as this would ',:e-l p in ma inta ining
a consistent data base, as 'dell as flag ;otential errors in
t"e racuirementc.

3-12

i

C

I:

I

ORIGIN'
OF POO:.

3.1.18 DERIVED-FROM

The DERIVED-FROM entry indicates that the current require-

ment has evolved from another requ-remen*_. The string or

strings entered declare the "parent" requirement's IDE yT T_-

F I CAT IOP: .

This entry is the complement of the DERIVES entrv; the com-

ments concerning that entry also ap ply here.

3.1.19 FUNCTION-RESCLUTION

The FUNCTION-RESOLUTION entr y is a link with the design

prase. The string or strings entered are name = of actual.

modules designed to resolve the requirement.

The usefulness of this entry depends upon the implementation

of tiie Multi-Level Expression Design Language - Des-i qn level

(MEDL-D) system. The need for this entry in the requirement

statement or analysis phase is doubtful, and the entry should

be avoided to maintain a clear se paration cetwee-, s pecifica-

tion and desi gn work.

3.1.20 DATA-RESOLUTION

The DATA-RESOLUTION entry is a link with the design prase.

The string or strings entered are names of actual data sets

that contain information specified by, or needed to implement,

the requirement.

The comments concerning FUNCTION-RESOLUTION also apply to

this entrv.

3.1.21 RELSOURCE-RESOLUTION

The RESOURCE-RESOLUTION en--r,,, is a link with the design

phase. The string or strings entered are names for the de-

signed s-,-stem resources (hardware, time, or s pace, neec.ed

to resolve the requirement.

3 -13

F

E
i
a j

{'	 1i

T
^r

Ur F OOrt Q UTALI i T'1"

The comments concerning

this entry.

3.2 RECOMMENDED ENHANC

fThe recommendations for

into t::ree categories:

{	 tions.

MICTION-RESOLUTION also ap p ly to

-MENTS TO `^.EDL-R LANGUAGE

enhancing the MEDL-R language fall

orga^ization, additions, and dele-

The recommended reorganization o= recuirement entries is

presented in Table 3 -4. The hierarchy of the entries indi-
cates relative importance (top entries are mandatory) and

progress through the requirements phase (top entries are

available at the start of the recuirements oiase; bottom

entries are sup p lied at the end of the requirements phase

or at the star= of the design phase).	 "e reorganized se-

cuence should also be reflected in the sequence of prompts

in the edit/create functions of the KEDL-R system.

The list of entries in Table 3-4 is divided into seven groups.

Tnis grouping should be reflected in the sections of an y re-

vised Forma_ted Requirement Statement (FRS) report. Each

group described below is composed of entries with a common.

theme:	 -

•	 Group 1 contains entries that are either essen-

`

-a1

I	 to the MEDL-R system conce pt or good requirement

specifications in general.

•	 Group 2 contains entries that refine, supplement,

or expand the information in Group 1.

•	 Group 3 entries recuire user judg7 ent to character-

ize the r=_cuirament.

•	 Group 4 co.itains entries that show the decomposition

of the systen into components or the re-f inement of

one reouire!-ent into con.sec ,_, ent or decendent re-

cuiremen-.s .

3-14

0R10 11 ,,I - F, A '13 613

OF POOP Q 111, `. I Y

Table 3-4. Recommended Re quirement Entries

GROUP ENTRY TYPE LIST2 MEANING

1 IDENTIFICATION STRING NAME TAG OF THIS REQUIREMENT

1 'DESCRIPTION TEXT ENGLISH-LANGUAGE EXPRESSION
OF THIS REQUIREMENT

1 SOURCE STRING OOCUMENT REFERENCE

I TEST-CRITERIA TE,YT BENCHMARK OESCRPTION

2 EXPLANAmON TEXT MISCELLANEOUS INFORMATION

2 SUBJECT STRING L USER CATEGORY

2 CONSTRAINT STRING QUANTITY

3 NATURE KEYWORD L CATEGORY

3 METRIC KEYWORD L SOFTWARE QUALITY GOAL

3 MOTIVATION KEYWORD L REASON FOR THIS REQUIREMENT

4 SCOPE KEYWORD RANGE OF INFLUENCE

4 SUBSYSTEM STRING PART OF SYSTEM

S OERIVEO-FROM STRING L ORIGINATING REQUIREMENT

5 STATUS KEYWORD CURRENT STANDING

5 REP:-ACES STRING L CVERRIOOEN REQUIREMENT

6 ORIGINATOR STRING NAME OF PERSON, GROUP

6 DEVELOPER STRING NAME OF P ERSON. GROUP

6 REVIEWER STRING NAME OF P ERSON. GROUP

7 FUNCTION-RESOLL170N STRING L	
I

MODULE NAME

7 DATA-RESOLUTION STRING L	
1

0ATA SET NAME

7 RESOUR E RESOLU TION STRING _	 I SPEC;FiC HARDWARE

)RE STRINGS OR KEYWORDS MAY BE PRESENT IN

3-13

fURK31N ;L PAGE 13
OF POOR QUALITY

•	 Group 5 contains entries that show the current

standing of the requirement.

•	 Groin 5 is devoted to naming the individuals or

organizations assigned to each role in requirements
anaivsis.

•	 Group 7 entries link the re quirement with the de-
sign.

Sections 3.2.1 through 3.2.21 present either the recommenda-

tions for enhancement of an entry retained from the current

t	
NIEDL-R system requirement or the reasons for including pro-

posed new entries. Section 3.2.22 through 3.2.24 present

the justification for deleting three of the current entries

(VERSICN, REPLACED-BY, and DERIVES).

3.2.1 !DENT7FICAT70N

The MEDL-R system should alwa ys prompt the user to supply
the entry. The weaknesses of the current default sequence

(R-1, R-2, and so forth) are inherent and would be present

in any other default sequence.

By forcing the user to name each requirement, the MEDL-R
system could 'help to organize the user's visualization of

the structure of the recuire.me_^.-s daza base. Sample naming
conventions provided by the user _= re mnemcnics that irdics_e
the requirement contents, original document section and pace

number, or any other categorizing scheme.

3.2.2 DESCRIPTION

No changes to the D-SCR7?' - '	 n*_ • are rec	 .N entry 	 ommende d

3.2.3 SOURCE

The SOURCE entry should be mandatcry to ensure the re_en-
tion of a 1-ink

with an authorita_ive re=erence . The use
of this entry will assist _ne reduction of the volume c:
-^a _erial sct.:all y entered into the '4E:)L - R da_a base. The

3-16

y
r

ORICINAL Pr- : IS
Or POOR QUALITY

f-
resolution of a detected inconsistenc y , ambiguity, or con-

tradiction will be simplified by the inclus i on of this entr•.,.

3.2.4 TES'_'-CRITERIA
f

1	 The TEST-CRITERIA entr-i is a recommended addition to the

`4EDL-R system requirement. The TEST-CRITERIA entry would

be a text entry containing a procedure, benchmark, or other

met:.od for validating the re quirement's presence in the final

sv,ten.

The T°_ST-CRITERIA entry, if present, would help ensure that

the DESCRIPTION entry is a precise and unambi guous state-

ment.

3.2.3 EXPLANATION

No changes to the EXPLANATION entry are recommended.

3. ? .6	 SUBJEC'!''

Each SUBJECT string entered by the user should be c^ecked

against a master list of previously entered S T BJECT strings

of other requirements. If the string is alr=-adv part of the

list, the `.EDL-R system will assume that the user w-i.shes to

connect the new requirement with others containir,3 the string.

If to string is not found, the entry is possibly a misspell-

ing of a previous string. The KEEL-R system Shcold notify

the user that the SUBJECT about to be entered is new and

allow the user to correct the spelling if an old stri:ig was

the intended entry.

3.2.7 CONSTRAINT

T"e scecified fcrmat of the CONSTRAINT string entry shculc

be relaxed to allow the user tc enter CONSTRAINTs that are

not excressed onl y as a rate. This recommendation is con-

tingent upon a finding that the MEDL-D s ystem dces not :e-

qu_re CONSTRAINT to be ex= ressed as a =ate.

3-17

ORIGINAL P.,AF Vrr

OF POOR QUA +TZ

3.2 .8 NATURE

c
The NATURE entry should be enhanced by the following two

changes. First, the existing NATURE keyword list should be

modified according to the list shown in Figure 3-2. This

enhanced list takes into account the complete software li=e

I
cycle and contains some asrects not _eze-enced in the current

list (,maintenance, documentation, and testing). Second, the

1	

MEDL-R system should prompt the user for NATURE ke ywords in

a way that takes advantace of the h_erarchical structure of

Figuz,-- 3-2. This may be done through menu promr,ts. This

method of s pecifying the keywords has two advantages:

(1) the hierarchical structure is ensured, and (2) the user

d--s not have to memorize (or consult) the user's manual when

entering MATURE keywords. For example, if the recuirement

is "to produce a specific document," the user/M.EDL-R system

interaction might be

MEDL-R > (NATURE)

1 DEVELOPMENT

2 PRODUCT

3 POST-PRODUCT

USER	 > 2

XEDL-r > (PRODUCT)

1 OVERALL

2 INTERNAL

3 EXTERNAL

4 TARGET-FACILITY

3 DOCUMENTATION

6 TESTING

USER	 >

i,

3-18

WENT
TALL
iNIQUES
OVERALL
TOOLS
METHODOLOGY

IAGEMENT
OVERALL
PROGRESS-REPORTING
MANPOWER
BUDGET
SCHEDULES
DELIVERABLES

ELOPMENT.FAC;UTY
OVERALL
HARDWARE
OPERATING-SYSTEM
LANGUAGES

JECTED-EYOILITION
OVERALL
ENHANCEMENTS
FACILITY-CHANGES
PROVISIONS-FOR-EXPANSION

ORIGINAL Ph i`

OF POOR QJALITY

PRODUCT
OVERALL
INTERNAL

OVERALL
PROCEDURAL
STRUCTURAL
TEMPORAL
DATA
NTERFACE

EXTERNAL
OVERALL
OPERATIONAL
OERFORMANCE
USERiNTERFACE

TARGET FACILITY
OVERALL
HARDWARE
OPERAT!NG-SYSTEDA
LANGUAGES
REUSABLE EXISTING-SOFTWARE

OOCLiMENTATION
OVERAL'.
WORKING-TITLE
TOPICS-COVEPEO
OEL:VER Y MEDIUM
NONSTANDARO-RE:VESTS

TESTING
OVERALL
BENCHMARKS
=RITICAL SP O OR-DETECTION RECOVER"

POST-PRODUCT
OVERALL
INSTALLATION

OVERALL
STAGES
VALIDATION

RAINING
MAINTENANCE

OVERALL
PROBLEM-REPORTING
.;ASILiTY

SUPOCRT
OVERALL
.ONSULTATION
NEW FIELEAS:',

Figure 3-2. Reccmmenced '\IRTCRE Ice rvcr`s

3-19

ORTI
OF PU,-

MEDL-R > (OCCL;MEN: TICN)

1 OVERALL

2 'niORRING-TIT LE

3 TOPICS-COVERED

4 DELIVERY-MEDIUM

5 NON-STANDARD-REQUESTS

USER	 > 2

The keyword OVERALL found in the prompt indica

requirement cannot be subcategorized further a

tional prompts are not required.

This enhancement leaves the NATURE entry or)en-

the user need not memorize all keyword scellin

3.2.3 METRIC

The proposed METRIC re quirement entry is a :.ev

The specific kEywords and their definitions, t

Reference 3, are presented in Table 3-5.

This entry will provide a "design to" criterio_

of requiremen*_s may be satisfied by any one of a large number

of potential systems. If the requirements identify guidelines

for apolicable software quality factors, the number of octen.-

tlal solution s'3 stems is reduced because "noncualit ,," s y s-

tems are excluded.

3.2.10 MOTIVATION

The current RESULTING-FROM entry should be changed to a

MOTIVATION entry. The current name is easli y confused with

another MEDL-R s ystem entrv, DER_VED-=ROM. No reccmmen.da-

tions are made for changin g the current keyword

3.2.11 SCOPE

The imzlicit relationshi p between. the SCCPE entry and the

SUBSYSTEM entry should be implemented.

3-20

3-

Tabl

KEYWORD DEFINITION

INTEGRITY SYSTEM'S CONTROL OVER UNAUTHORIZED ACCESS TO DATA OR SOFTWARE IN
THE SYSTEM

USABILITY EASE WITH WHICH THE SYSTEM CAN BE LEARNED OR OPERATED OR THE EASE
WITH WWCH INPUT DATA ARE PREPARED OR OUTPUT DATA ARE INTERPRETED

CORRECTNESS EXTENT TO WHICH THE SYSTEM SATISFIES ITS SPECIFICATIONS OR FULFILLS
THE MISSION OBJECTIVES

RELIABILITY EXTENT TO WHICH THE SYSTEM 'S EXPECTED TO PERFORM ITS iNTENDcD
FUNCTION WITH PRECISION AT ANY TIME

MAINTAINABILITY TARGET LEVEL OF EFFORT NEEDED TO LOCATE AND REPAIR SYSTEM FAULTS
ONCE THE SYSTEM IS OPERATIONAL

TESTABILITY EASE WITH WHICH THE SYSTEM CAN BE TESTED TO ENSURE THAT IT
P ERFORMS ITS iNTENOED FUNCTION

FLEXIBILITY EASE WITH WHICH THE OPERATIONAL SYSTEM CAN BE MODIFIED

REUSEABILITY EXTENT TO WHICH THE SYSTEM CAN BE USED IN ANOTHER APPLICATION

PORTABILITY EASE WITH WHICH THE SYSTEM CAN BE 7^IANSFERREO F ROM ONE HARDWARE
CONF I GURATION AND;OR SOFTWARE EN 3 IRONMENT TO ANOTHER

INTEROPERABILITY EASE WITH WHICH THE SYSTEM CAN BE COUPLED TO ANOTHER SYSTEM

EFFICIENCY AMOUNT OF COMPUTING RESOURCES AND CODE ALLOCATED AND USED BY
THE SYSTEM TO PERFORM ITS FUNCTION

VOTE. THE INCLUSION OF ONE OR MORE OF THESE KEYWi
THE REQU!PEMFNT ADDRESSES THAT ASPECT OF '

If the SCOPE keyword LIMITED is entered, the SUBSYSTEM entry

should become mandator y . Th e SUBSYSTEM names then would

definitivel y describe the limits of the requirement.

Conversely, if a SUBSYSTEMM entry is :Wade, the MEDL-R s•3 stem

should insert the ke yword LIMITED for SCOPE.

3.2.12 SUBSYSTEM

The recommended enhancement to the SUBSYSTEM entry is de-

scribed in Section 3.2.11.

3.2.13 CERIVED-FROM

The XEDL-R system should be modified to compare the require-

ment IDENTIFICAT T_ON(s) entered under the DERIVED-FROM entry

with the list of requirement IDENTIFICATION(s) present in the

data base. If the DERIVED-FROM entry does not name a recuire-

ment in the data base, the MEDL-R system should give the user

the o pportunity to change the entry. The system should issue

a warning if the DERIVED-FROM entry names a re quirement whose

STATUS is OBSOLETE.

3.2.14 STATUS

The current set of STATUS keywords (ACTIVE, S.,FT, and OBSC-

LETE) does not completely reflect the evolution of a requir_'e-

ment. To obtain a better understanding of the evolution of

a recuirement, use of the kevwcrds s pf•cified in Tab?.e 3-6 is

recommended.

I
Figure 3-3 demonstrates the ._,olution of a requirement as

it is reflected in Table 3-6.

3.2.13 PEPLaCES

^.	 The MEDL-R s y stem should be modified to compare the reciire-

men- I^ENTIFICATION ls) entered under the REPLACES entr ^ w^ t:.

the list .,f requirement IDENTIFICATION(s) pre sent in the da ta

I '	 base. If the REPLACES entr•7 does not name a recuirement in

the data base, t: e	 s-jste:n should give _he user --.'-e

f'
3-22

PAID:

STAT

EFINITION

H NOT 'MUCH IS KNOWN. IT IS EXPECTED
IAY BECOME OBSOLE T E. TENTATIVE iS THE

EW) ABOUT WHICH THE MAJORITY OF
T IS EXPECTED TO PROGRESS TO REVIEWED.

(ERYTHING" IS KNOWN. IT HAS BEEN
:VIEWER WHO HAS CONSIDERED IT TO BE
E' TO OTHER REQUIREMENTS IT MAY
i OVERY OF AN ERROR OR THROUGH A
C;FICATIONS, BUT THERE IS A vERY GOOD
IT OF THE FINAL SYSTEM

OOUBT EXISTS ABOUT THE APPLICAS'LITY,
IIS REQUIREMENT, AND WHET HER IT WILL
CATIONS 'vVITHOUT MODIFICATION IS
1EMENT MAY BECOME EITHER OBSOLETE OR
OLUTION OF THE DISPUTE

ASON HAS SEEN MARKED F OR NO FURTHER
;EMENTS ARE RETAINED AS REMINDERS OF
AAY NOT BE CHANGED iN ANY WAY

INTERA
SPECIFIC

PROC

ARCHIVE

Figure 3-3. Recuirement Evolution as Reflected
by STATUS Keyword

3-24

(Ir
ORiGiN-,,:. PAG Z N

OF POUR QUALITY

opportunity to change the entry. The system should issue a

warning if the REPLACES entry names a requirement whose

STATUS is OBSOLETE.

3.2.16 ORIGINATOR

No chances to the ORIGINATOR entry are recommended.

3.2.17 DEVELOPER

The name of the current RESPONSIBILITY entr y should be

changed to DEVELOPER. The current name might be confused

with the proposed new entry REVIEWER, which names a person
or group with a particular '.kind of responsibility.

3.2.13 REVIEWER

The REVIEWER entry should be added to the MEDL-R system re-

quirement. This entry is intended to include the name of a

person (or group) who has the res ponsibility of certifying

that the requirement is complete and correctly related to

other requirements. This person (or group) is responsible

for recommending a change in the STATUS entry from ACTIVE

to either QUESTIONED or REVIEWED (see Section 3.2.14).

3.2.19 FUNCTIONAL-RESOLUTION

No changes to the FUNCTIONAL-RESOLUTION entry are recommended.

3.2.20 DATA-RESOLUTION

No changes to the DATA-RESOLUTION entry are recommended.

3.2.21 RESOURCE-RESOLUTION

No changes to the RESOURCE-RESOLUTION entry are recommended.

3.2.22 VERSION

{	
The IiERSION entry should not be used for individual re quire-

{	 ments; instead, the system should perform this housekeeping

task. The system version name can be expected to remain

constant over several MEDL-R sessions (at least). 7 e

3-25

CRION1,M.
'
G7 13

f

	 OF POOR QUALITY

current operation of manually specifying the version for

each requirement can lead to erroneous entries.

Because the version name is a valid component of each re-

quirement when the re quirement is considered outsice the data

base, user control is still necessary. It would be 'setter

to specify a version name at the start of each session and

to allow the MEDL-R sy stem to attach the name to each re-

.,uirement modified or created during the session.

3.2.23 REPLACED-BY

The REPLACED-BY entry should not be used for individual re-

cuirements. The MEDL-R s ystem si.culd be modified to resolve

a REPLACES entry with an automatic REPLACED-BY entry under

the appropriate requirement. This modification would re-

lieve the user of a romplicated, error-prone bookkeeping

task.

This modification has many ramifications that would affect

the STATUS and DERIVED-FROM entries. The full extent of

the :modifications is estimated to be quite large; however,

the benefits of automating this task would be realized in a

reduction in errors and the development of a s y stematic and

reliable tracin g and auditing method.

3.2.24 DERIVES

The DERIVES entry should not be used for individual recuire-

ments. The MEDL-R system should be modified to resolve a

DERIVED-FROM entry with an automatic :)='VES entry under the

r-	 appropriate requirements.

As in the case of the REPLACED-BY en ,:ry, this deletion would

require extensi ,:e p lanning and design prior to implementa-

r
	

tion. The benefits realized from this :modification would

be similar to those :mentioned in Section 3.2.23.

3-26

I !

ORl:;I% i IGF (7
OF POOR QJAU7*

SECTION 4 - E,'A"I CATION 5UM ;R1'

This sect'-on summarizes the results of the MEDL-R system

evaluation and proposes a sequence of implementation foz. the

recommended modifications to the system.

I
4.1 EIALUATIOIJ AND RECOMMENDATIONS

The evaluation and recommendations are based on experience

in processing small numbers of requirements with the MEDL-R

system. The current version of the MEDL-R s y stem tends to

discourage the user from entering large numbers of re q uire-

ments because of inadequacies in its implementation and

difficulty in interpreting the final results. Thus, the

evaluation and recommendations are directed toward improw.ng

the_`4EDL-R system from an operational standpoint, with the

hope that an improved system will attract a larger user com-

muni.:v. The validity of the MEDL-R system concept of require-

ments analysis can be tested only after a number of users

are familiar with it in varied applications, at which point

enhancements to the analysis performed might also be attempted.

The major findings resulting from the evaluation of the

MED IA.-R s y stem are as follows:

•	 The MEDL-R system represents a good starting point
in the develeoment of a new concept of Requirements

I	
Analysis Languages (RA.Ls).

I	 •	 The MEDL-R s y stem contains the majority of functions

desirable in the Code 580 environment.

•	 The XEDL-R s ystem adheres to an interactive approach

(rather than a batch approach) to RAI's.

(.	 •	 The majority of the components of t^e . ,IEDL-R tang'-age

syntax are pertinent and -,se--:,,;l to Code 530.

t •	 The curr ent structure O. the S`., 5tem can :^e mCd -- f i2^

..	 into a more o perational impleme:73 tion.

^^ 4-1	 "^

ORIGINAL PA:i '.: "3

F

Of POOR QUALITY

The recommended changes to the MEDL-R s ystem are =aecifically

directed toward correcting some awkwardn--sses in the retails

1	 of implementation and improving the MEDL-R systei.: opera-

tionally. The most important change to be :Wade to MEDL-R

would be reorganization of the system as outlined in Sec-

tion 2.4. The most extensive portion of this effort would

be the consolidation of the two current edit subsystems

,Create and Update) into one subsystem. The single edit

Isubsystem would isolate direct user contact with the require-

ments into one nort?.on o= the syster: and thus reduce the pro-f .	 -
graxning effort required b y furt::er enhancement, extension,

oz modification to the language syntax. One subsystem would

also reduce the user's learning time, because only one edit

procedure would need to be learned. The reor ganization effort

would also be directed toward eliminating superfluous exter-

nal files and aliowin5 better online reporting capability.

Following the reorganization of the MEDL-R system, the lan-

guage syntax modifications would be implemented. The rec-

{	 ommended modifications are classified below:

•	 -:ew language entries--TEST-CRITERIA (Section 3.2.4),

%1ETRIC (Section 3 . 2 . 9) , end REVIEWER (Section 3 . 2 . 18)

a	 Default values for entries--SCOPE (Section. 3.2.11),

STATE'S (Section 3.2.14) , a.id VERSION (Section 3.2.22) ;

the recommended enhancements would improve overall

configuration control

0	 Revised keywords (and their presentation in a menu
Z orma .) - NA=RE (Section 3 . 2 . 9) and .:TAY='S (Sec-

tion 3. Z. 1.4)

•	 Automatic program-sup p lier alues zor some entries

based on the current -value of other -SCOPE ant

l	 SUBSYSTEM (Section 3.2.11), DER_V_D-.ROM and DERT_VES

(Section 3.2.24) , and REPLACES and REPLACED-BY

4-2

ORIGINAL P,"Q'I

,^F POOR QJALi; d

(Section 3.2.23); the recommended enhancement would

-represent an automatic linking feature to ensure

the credibility of the data base and allow additional

analysis

other recommended modifications to zhe MEDL-R s ystem such

as (i) extending the QUERY syntax to a more general form

covering a larger subset of -..e MEDL-R entries (Section 2.1.4)

and (2) expandinc the content of the ^% al y zer subs y stem SUM-

MARY report (Section 2.1.5) could also be implemented after

the reorganization of the ME DL-R s ystem structure. These

changes represent the only pro posed improvements to the

analysis portion of the MEDL-R system. The proposed new

functions of combininc MEDL-- re quirement data bases and

creating a subset data base kzection 2.1.7) would be imple-

mented (as all new anal ysis features should bA) only after

more experience is rained with large requirement systems.

4.2 FUTURE PLANS FOR MEOL-R IN CODE 580 EV'JIRCNMENT

Code 580 p ro poses to conduct a pilot test of the MZ DL-R sys-

tem as it is currently installed on the PDP-11 70 in the

Software 7-ngineering Lal^oratory (SEL) . Several development

casks currently being monitored by the SEA., will use MEDL-R

as part of t.:e recuirement szecification analysis ohase. A

senior analyst with ap proximately 3 to 4 years' experience

in Code 580 software develoament will extract the functional

Goecifications from the re quirements document. The srecifi-

cations will be translated to the MED T--R langua ge, and an

attempt will be made to Link the s pecifl`ations to

-g rogram modules, aza sets, or sys*em resc l '.^,,es. 17t:^.°r f°_a-

t:lr°_s of ME DL-R will Je tested at _n e discretion of the ana-

lyst. The results of the p ilot tests s;:ould be available in

s p rin g 1981.

4-3

OMOINAL ra 7 13
OF POOR QUALIV Y

f	
REFERENCES

1. Martin Marietta aerospace, Multi-Level Exaress_cn Design
Svstem Recuirements Level Description Manual, P. Sche__er

^s

land A. Musser, February 1979

2. -	 MEDL-R Language User's Guide, P. Schef-er and
A. Musser, February -979

3. Rome air Development Center, Factors in Software Quality,
Vol ,.=e II T_, RADC-TR-77-369, Preliminary Handbook on Soft-
ware Quality foi an Acquisition Manager, J. McCall,
P. Richards, and G. Walters, November 1-977

a

R-1

BIBLIOGRAPHY OF SEL LITERATURE

Anderson, L., "SEL Library Software User's Guide," Computer
Sciences-Technicolor Associates, Technical Memorandum, June
1980

Bailey, J. W., and V. R. Basili, "A Meta--Model for Software
Development for Resource Expenditures," Proceedings of the
Fiftn International Conference on Software Engineering.
New York: Computer Societies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
19z'fl,

Bas t11, V. R.. "The Software Engineering Laboratory: Objec-
tiv:s," Proceedings of the Fifteenth Annual Conference on
Computer Personnel Research, August 1977

Basili, V. R., "Models and Metrics for Software Management
and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical
Memorandum, October 1980

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: Computer Societies

I	 Press, 1990 (also designated SEL-80-008)

IBasili, V. R., and J. Beane, "Can the Parr Curve Help with
the Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, Rio.

Basili, V. R., and K. Freburger, "Programming Measurement
and Estimat:.on in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

Basili, V. R., and T. Phillips, "Evaluating anu Comparing
Software hietrics in the Software Engineerin g Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-
%ty' trics, March 1981

Basili, V. R., and T. Phillips, "Validating Metrics on Proj-
ect Data," University of Maryland, Technical Memorandum,
December 1981

1	 B-1

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

Basili, V. R., and M. V. Zelkowitz, "Operational Aspects of
a Software Measurement Facility," Proceedings of the

i

Software Life Cycle Management Workshop, September 1977

Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Works op, August

Basili, V. R., and M. V. 7elkowitz, "Measuring Software De-
r	 velopment Characteristic s :n the Local Environment," Com-

puters and Structures, ?august 1978, vol. 10

Basili, V. R., and M_ 4, °_c:ikowitz, "Analyzing Medium Scale
Software Development," Pr-Dceedings of the Third Interna-
tional Conference on Software Engineering. New York: Com-
puter Societies Press,

Church, V. E., "User's Guides for SEL PDP-11/70 Programs "
Computer Sciences Corporation, Technical Memorand •.im. March
1980

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designate SEL-77-005)

Hislop, G., "Some rests of Halstead Measures" (piper p-e-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for `.he Unive r sity of Maryland, December
1978)

Mapp, T. E., "Applicability of the Rayleigh curve to the SEL
Environment" (papar prep%red for the University of Maryland,
December 1978)

Miller, A. M., "A Survey of Se ral Reliability Models"
(paper prepared for the Univers :y of Maryland, December
1978)

I .	 B-2

National Aeronautics and Space Administration (NASA), NASA
Software Research Technology Workshop (proceedings), March

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978

Perricone, B. T., "Relationships Between Computer Software
and Associated Errors: Empirical Investigation" (paper pre-
pared for the University of Maryland, December 1981)

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity" (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher
Order Languages Study: Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977

Software Engineering Laboratory, SEL-76-001, Proceedings
From the First Summer Software Engineering Workshop, August
1976

--, SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

--, SEL-77-002, Proceedings From the Second Summer Software
Engineering Workshop, September 1977

--, SEL-77-003, Structured FORTRAN Preprocessor (SFORT),
B. Chu, D. S. Wilson, and R. Beard, September 1977

--, SEL-77-009, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

-	 SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M. C'Neill,
S. R. Waligora, and C. E. Goorevich, January 1978

--, SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Neill, S. R. '.aalicora, and
C. E. Goorevich, February 1978

--, SF.L-73-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

B-3

--, SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Guide, D. S. Wilson, 8. Chu, and G. Page,
September 19 78

--, SEI,-78-005, Proceedings From t`!e Third Summer Software
Engineering Workshop, September 1978

--, SEL-78-006, GSFC Software Engineering Research Require-
ments Analysis Study, P. A. Scheffer, November 1978

SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

--, SEL-79-002, The Software Engineering Laboratory: Rela-
tionship Equations, K. Freburger and V. R. Basili, May 1979

--, SEL-79-003, Common Software Module Repository (CSMR)
System Description and User's Guide, C. E. Goorevich,
S. R. Waligora, and A. L. Green, August 1979

--, SEL-79-004, Evaluation of the Caine, Farber, and Gordon
Program Design Language (PDL) in the Goddard Space Flight
Center (GSFC) C^;e 580 Software Design Environment,
C. E. Goorevich, A. L. Green, and F. E. McGarry, September
1979

--, SEL-79-005, Proceedings From the Fourth Summer Software
Engineering Workshop, November 1979

-	 SEL-80-001, Configuration Analysis Tool (CAT) Functional
Requirements/Specifications, F. K. Banks, C. E. Goorevich,
and A. L. Green, February 1980

--, SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker,
C. E. Goorevich, and A. L. Green, May 1980

--, SEL-80-003, Multimission Modular Spacecraft Ground Su p
-port System (MSS/GSSS) State-of-the-Art Computer System

Com atibi ity Study, T. Weidon, M. McClellan, P. Liebertz,
et al., May 1

--, SEL-80-004, System Description and User's Guide for Code
580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

--, SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

--, SEL-8u-006, Proceedings From the Fifth Annual Software
Engineering Workshop, November 1980

B-4

--, SEL-80-007, An Appraisal of Selected Cost/Resource
mation Models for Software Systems, J. F. Cook and
F. E. McGarry, December 19 80

--, SEL-81-001, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981

--, SEL-81-002, Software Engineering Laboratory (SEL) D
Base Organization and User's Guide, D. C. Wyckoff, G. P
F. E. McGarry, et al., September 1981

--, SEL-81-003: Software Engineering Laboratory (SEL) D
Base Maintenance System (DBAM) User's Guide and System
scription, D. N. Card, D. C. Wyckoff, G. Page, et al.,
September 1981

--, SEL-81-004, The Software Engineering Laboratory,
D. N. Card, F. E. McGarry, G. Page, et al., September 1

--, SEL-81-005, Standard Approach to Software Developme
V. E. Church, F. E. McGarry, G. Page, et al., September

--, SEL-81-006, Software Engineering Laboratory (SEL) D
ment Library (DOCLIB) System Description and User's Gui^.,
W. Taylor and W. J. Decker, December 1981

--, SEL-81-007, Software Engineering Laboratory (SEL) Com-
pendium of Tools, W. J. Cecker, E. J. Smith, A. L. Green,
et al., February 1981

--, SEL-81008, Cost and Reliability Estimating Models
(CAREM) User's Guide, J. F. Cook and E. Edwards, February
9

--, SEL-81-009, Software Engineering Laboratory Programmer
Workbench Phase 1 Evaluation, W. J. Decker, A. L. Green, and
F. E. McGarry, Marc h

--, SEL-81-010, Performance and Evaluation of Independent
Software Verification and Integration Process, G. Page and
F. E. McGarry, May 1981

--, SEL-81-01), Evaluating Software Development by Analysis
of :^.nge Data, D. M. Weiss, November 1981

--, SEL-81-012, Software Engineering Laboratory, G. 0.
Picasso, December 1961

--, SEL-81-013, Proceedings From the Sixth Anneal software
Engineering Workshop, Decer^her 1981

B-5

--, SEL-81-014, Automated Collection of Software Engine
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September

Turner, C., G. Caron, and
dium," Data and Analysis
cation, April 1981

Turner, C., and G. Caron, "A Comparison of RADC and NASA/SEL
Software Development Data," Data and Analysis Center for
Software, Special Publication, May 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratorv, Technical Memorandum, July 1979

Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Droceedings of the Twelfth Conference on
the Interface of Statistics and Comr)ut.er Science. New York:
Computer Societies Press, 1979

Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To
Evaluate Software Engineering Methodologies," Proceedings of
the Fifth International Conference on Software Engineering.
New York: Computer Societies Press, 1981

G. Brement, "NASA/SEL Data Cc
Center for Software, Special Publi-

{	 B-6

w

	GeneralDisclaimer.pdf
	0010A02.pdf
	0010A03.pdf
	0010A04.pdf
	0010A05.pdf
	0010A06.pdf
	0010A07.pdf
	0010A08.pdf
	0010A09.pdf
	0010A10.pdf
	0010A11.pdf
	0010A12.pdf
	0010A13.pdf
	0010A14.pdf
	0010B01.pdf
	0010B02.pdf
	0010B03.pdf
	0010B04.pdf
	0010B05.pdf
	0010B06.pdf
	0010B07.pdf
	0010B08.pdf
	0010B09.pdf
	0010B10.pdf
	0010B11.pdf
	0010B12.pdf
	0010B13.pdf
	0010B14.pdf
	0010C01.pdf
	0010C02.pdf
	0010C03.pdf
	0010C04.pdf
	0010C05.pdf
	0010C06.pdf
	0010C07.pdf
	0010C08.pdf
	0010C09.pdf
	0010C10.pdf
	0010C11.pdf
	0010C12.pdf
	0010C13.pdf
	0010C14.pdf
	0010D01.pdf
	0010D02.pdf
	0010D03.pdf
	0010D04.pdf
	0010D05.pdf
	0010D06.pdf
	0010D07.pdf
	0010D08.pdf
	0010D09.pdf
	0010D10.pdf
	0010D11.pdf
	0010D12.pdf
	0010D13.pdf
	0010D14.pdf
	0010E01.pdf
	0010E02.pdf
	0010E03.pdf
	0010E04.pdf
	0010E05.pdf
	0010E06.pdf
	0010E07.pdf
	0010E08.pdf
	0010E09.pdf
	0010E10.pdf
	0010E11.pdf
	0010E12.pdf
	0010E13.pdf
	0010E14.pdf
	0010F01.pdf
	0010F02.pdf
	0010F03.pdf
	0010F04.pdf
	0010F05.pdf
	0010F06.pdf
	0010F07.pdf
	0010F08.pdf
	0010F09.pdf
	0010F10.pdf
	0010F11.pdf
	0010F12.pdf
	0010F13.pdf
	0010F14.pdf
	0010G01.pdf
	0010G02.pdf
	0010G03.pdf
	0010G04.pdf
	0010G05.pdf
	0010G06.pdf
	0010G07.pdf
	0010G08.pdf
	0010G09.pdf

