
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TECHNICAL

MEMORANDUM

NASA TM- 52516

	

	 v^DRS
G
S ^ FpCiU^

C C.

PSEUDO-RANDOM NUMBER GENERATOR FOR THE SIGMA V COMPUTER

By Stanley N. Carroll
Systems Dynamics Laboratory

(NASA —TM-82516) PSEUDO— RANDOM NUMBER	 N83-23084
GENERATOR FOR THE SIGMA S rtim p wrFQ iun .ee

1 . p HC A021LIF Au 1	 CSCL 12A

Unclas
G3/64 03267

February 1983

'III
r

i!

1

i
r
s

t
k

Y

NASA

George C. Marshall Space Flight Center
Ma;vshall Space Flight Center, Alabama

TRCHNICAI_ RF_PC!RT STANDARD TITLE PAGE
1.	 REPORT N0. ACCESSION NO. 9,	 RECIPIENT'S CATALOG N0,

NASA TM-82516
72,G0VEkNMENT

4,	 TITLE AND SUBTITLE 5.	 REPORT DATE

Pseudo-Random Number Generator for the Sigma V FebruaKy 1983
8.	 PERFORMING ORGANIZATION CODE

Computer
7,	 AUTHOR(S) S. PERFORMING ORGANIZATION REPOR Y #

Stanley N. Carroll
9.	 PERFORMING ORGANIZATION NAME AND ADDRESS 10.	 WORK UNIT NO.

George C. Marshall Space Flight Center 11.	 CONTRACT OR GRANT NO.

Marshall Space Flight Center, Alabama	 35812
18. TYPE OF REPORT fit PERIOD COVERED

12,	 SPONSORING AGENCY NAME AND ADDRESS

National Aeronautics and Space Administration Technical Memorandum

Washington, D.C.	 20546 14.	 SPONSORING AGENCY CODE

15,	 SUPPLEMENTARY NOTES

Prepared by Systems Dynamics Laboratory, Science and Engineering.

id,	 ABSTRACT

A technique is presented for developing a pseudo-random number generator based on the linear
congruential form. The two numbers used for the generator are a prime number and a corresponding
primitive root, where the prime is the largest prime number that can be accurately represented on a
particular computer. 	 The primitive root is selected by applying Marsaglia's lattice test. 	 The technique
presented has been applied to write a new random number program for the Sigma V computer. The new
program, named S:RANDOMI, is judged to be superior to the older program named S: RANDOM. For
applications requiring several independent random number generators, a table is included showing several
acceptable rrimitive roots. 	 The technique and programs described in the report can be applied to any
computer having word length different from that of the Sigma V.

ORIGINAL PAGE 19'
OF POOR QUALITY

17,	 KEY WORDS 18.	 DISTRIBUTION STATEMENT

Pseudo-random
Random-number generator

Unclassified —Unlimited
Prime number
Primitive root

19,	 SECURITY CLASSIF. (of this report) UR I T Y CL ASSIF. (of this page) 21.	 N0, OF PAGES 22.	 'RICE

Unclassified

EC
Unclassified 17 NTIS

MSFC - rarm 3797 (may 1969)
For sale by National Technical information Service, Springfield, Virginia 22151

i

i

P1	
.1

ACKNOWLEDGMENT

The author gratefully acknowledges the advice and assistance of Mr. Warren Adams of the Systems
Dynamics Laboratory, Marshall Space Flight Center.

ii

t
I	 i

TABLE OF CONTENTS

INTRODUCTION ...

LATTICE TEST

PRIMITIVE ROOT SEARCH

RANDOM 1 PROGRAM ..

APLGENERE',LTOR

CONCLUSIONS AND RECOMMENDATIONS ..

APPENDIX — PRIMITIVE ROOTS OF PRIME NUMBERS

REFERENCES

LIST OF TABLES

Table	 Title	 Page

1. Sample Primitive Roots of 2 31 — 1 ... 	 8

2. Search Summary for FORTRAN Generator 	 9

3. Search Summary for APL Generator ..	 10
a;

	

A-1.	 Primitive Roots of Prime Number 19 .. 	 12

TECHNICAL MEMORANDUM

PSEUDO-RANDOM NUMBER GENERATOR FOR THE
{	 SIGMA V COMPUTER

INTRODUCTION

.	 This report describes a basic approach for developing a random number generator. Although the
approach is not restricted to a specific computer, the concept is illustrated with application to the Sigma
V computer at the Marshall Space Flight Center. As will be seen later, a few of the specific computer
characteristics must be accounted for when preparing code for some of the routines.

Many of the more popular pseudo-random number generators use the linear congruential form

Z(i+l) = Z(i) * C Mod (M)
	

(1)

Here M and C are integers and Z(i) is the previous number. The expression Mod (M) implies the product
Z(i)*C be expressed as the remainder for modulus M. Many choices are available for selecting the
integers M and C to build a random number generator; however this report is intentionally restricted to
the special case where M is a prime number and C is a primitive root of M. Other choices for selecting
M and C may be found in Reference 3, The definition and pertinent properties of a primitive root are
covered in the Appendix. Although by strict definition this report deals only with pseudo-random
numbers, the terms pseudo-random and random are used interchangeably unless a specific distinction is
needed for clarity.

A highly desirable characteristic of any random number generator is a long cycle length, or period,
where cycle length is the count of distinct numbers generated before any number is repeated. The type
of generator discussed herein has a cycle length of exactly M-1. This maximum length period only
applies when C is a primitive root; if -C is not a primitive root the maximum period is in the range of
2 to (M-1)/2. An example of this property is illustrated in the Appendix which contains a sample table
dealing with the prime number 19.

The above definition of cycle length infers that any sequence of M-1 consecutive numbers must
contain all integers between 1 and M-1. This feature provides the generator with the property of being
uniformly distributed. The random property is based on the order, or position, of the M-1 integers
within a given string. Thus, as can be deduced from the above equation, the random property is con-
trolled by the primitive root. Also, each primitive root will "shuffle" the M-1 integers into a different
order. Dividing the integer sequence by the number M produces a new sequence with elements on the
open interval (0,1). Elements of this new sequence are said to be uniformly distributed over the range
0 to 1, exclusive. A major reason for developing a high quality uniformly distributed random number
generator is that it in turn is the basic element for constructing different number generators with other
type distributions, e.g., Poisson, normal, etc.

The user of a random number generator should be aware that most generators have some degree
of limitation. Although a particular generator may receive an excellent rating based on previous applica-
tion and utilization, this rating does not guarantee that the generator will be suitable for a future

T

ti,

application significantly different from what has been done in the past. An example of this is cited later
where a particular generator is ideal for 2 dimensional problems, but the same generator can cause errone-
ous res^ilts when used in 3 dimensional problems. To avoid misusing a generator, the user should become
familiar with the generator's characteristics and limitations.

Every primitive root yields the same set of numbers but in a different sequence, thus one strongly
suspects that some of these sequences will yield better results than other sequences. The primitive roots
which give the better sequences should be used for the constant C in equation (1). Likewise, some of
these sequences show very poor traits and the corresponding primitive roots should not be used for this
application. The tool for determining which primitive root to use and which to discard is provided by
the lattice test.

LATTICE TEST

The lattice test developed by Marsaglia [4] is a theoretical method for evaluating pseudo-random
number generators based on the linear congruential form. This test is based on the way the numbers are
generated and does not require a sample for statistical analysis. The only two numbers needed to execute
the lattice test are M and C.

A problem of many generators is the lack of independence betv eon pars, triplets, etc. Results
from the lattice test give a qualitative measure of this independence and onl; a minimum amount of
computational effort is required. The test itself constructs an n-lattice cell in n-space. Measure of good-
ness is determined by the ratio of the largest cell dimension to the smallest cell dimension. In 3-space
the perfect generator would have a cubic lattice; whereas, a bad generator would take the form of a very
long tube having a small cross sectional area. In the section on APL Generators an example is given of a
generator having a very good 2-lattice structure but a very poor 3-lattice structure.

For n dimensions the lattice test uses the n rows of the following matrix form:

I	 C	 C2	 ...	 Cn— I

0	 M	 0	 ...	 0

0	 0	 M	 ...	 0

0	 0	 0	 ...	 M

ORIGINAL PAGE 19

OF p00R QUALITY,

Next Marsaglia's BEST2 algorithm is applied to the above matrix. Defining the rows as Pi and Pj (i < j)
the steps of BEST2 are:

1) If PjPj T < PiPiT, interchange Pi and Pj

2) Replace Pj by (Pj — L*Pi); L is the integer closest to P.ipjT/PiPiT.

2

3) If for new l'j, PJI	 PiPi3, increment j and go to 1, otherwise go to I without
incrementing j.

Repeat BEST2 between all pairs of rows until no alternations occur. Measure of goodness is the ratio

f

Pit 11 11 ,17/1) 1 P i T

Guidelines on judging "good" from "bad" ue given by Marsaglia. A ratio less than 2 is good while a
ratio larger than 3 is bad.

To construct a good random number generator one is faced with the problem of finding it favor-
able primitive root which gives it small cell size ratio. The criteria to have it large cycle length requires
M to be very large (around 2.1 billion on the Sigma). A large M howeve r means many primitive roots
(around 500 million) must be analyzed, thus, because of the large quanoty of cases involved, performing
it search on the entire spectrum to find the absolute best is deemed impractical, instead, the approach
used was to search it reasonably sized interval and find ;ill primitive roots with acceptable cell size ratios.
The next section discusses the prince number selection for building the random number generator
S:RANDOMI and the criteria used to pica: candidate primitive roots.

DR!MITI E Onn"r C^ADIIU

`fife Sigma V computer is a 32 bit word machine and the largest positiv. integer which c, ,̂ n be
represented is

M = 2 31 - I = 2,147,453,047

This integer happens to be it prince number, hence it was selected as the value to use in constructing the
random number program S: RANDOM I. To use this value of M requires it special integer multiplication
routine to avoid overflow problems that would occur with standard FORTRAN multiplication. Tile
Intrinsic FORTRAN multiplication of 2 integers return in answer that is tine right most 32 bits of it
04 bit word; thus, anytime a product w(juircs more than 31 bits for the numerical representation, the
re turned answer will be in error. To avoid this problem the added multiplication routine utilizes tie full
04 bits. Also, additional steps were incorporated into the multiplication routine to reduce the 04 bit
result to a remainder for modulus M. The modulus operation insures the final output cam; not be larger
than M-1 and therefore can be accurately represented with 32 bits. Thus, no computer overflow prob-
lems can occur using this multiplication 1-outille.

Following tine technique outlined in the Appendix, all primitive roots can easily be found once
any primitive root is known. A computer program for finding tine least positive primitive root is
currently oil the Sigma V in tine author's account. With the aid of this program tit: least positive printi-
tive, root of M was determined to be 7. The technique outlined in the Appendix shows that since 5 is
relative prime to M-t , then another primitive root must be

7 5 Mod (M) = 10,507

3

y,

I^

r

ii

9

I

i

a

Although the above number is frequently cited in the literature [1,4J , tlus number does not exhibit
an outstanding lattice structure; in fact it does not rate high among the first few primitive roots
generated. Using 7 as a base for the calculations, Table 1 summarizes the lattice test results for the first
15 primitive roots. The output number listed under each Li is the ratio of the largest cell size dimen-
sion to the smallest cell size dimension. The root sum squared of the 4 numbers, L2 through L5, is
shown under the]leading, RSS. The computer program used to generate the data provided only the
RSS value for the primitive root 7. In the lower part of the table the data has been sorted according
to increasing RSS values. Although one of these entries, exponent of 47, has ratios less than 2 for all
dimensions tested, the entry has a RSS value which is 65 percent larger than the theoretical minimum of
2. Because the objective was to construct a generator which would be suitable for a wide range of
applications, more emphasis was put oil 	 the primitive root(s) with all 	 small RSS	 -
value(s).

To find a selection of primitive roots having reasonably small RSS values, a program was wriiten
to search a specified interval and output to the line printer the status on all new constants found which
were better than the best found up to that point. Also, if a number was found with a RSS value within
a few percent of the best RSS value then this number was also recorded. At the start of the search the
percentage used was 10 percent, later it was dropped to 5, then 2.5, and finally to 1. The interval
search was done in two phases. For the first part the search (i.e., exponents of 7) extended up to
80,000. No limitations were placed on the magnitude of acceptable primitive roots, and the minimum
tolerance was down to 2.5 percent at the end of the search interval. For the second phase the interval
was extended to 1 million but the acceptable primitive roots were constrained to be bigger than 500
million. One reason for adding the constraint was to speed up the search procedure; a second reason
was the preference to have primitive roots in the range between mid-size to large. A cunstant I percent
oil 	 tolerance band was used for the second phase.

Table 2 contains a summary of the relevant output data which was generated by this search.
Since only 0.046 percent of the total interval was searched no claim is made that these primitive roots
are the best. They do however provide a basis for a very good random number generator for dimensions
not exceeding 5. Should the need exist the information contained in Table 2 offers the user many
excellent options for constructing independent generators. The last entry, C = 660,b01,212, is the value
used in the FORTRAN version of S: RANDOM 1.

RANDOMIPROGRAM

A binary file named B:RANDOM I is on the Signna V in the account name SCARROLL. This 	
6file has two separate pseudo-random number generators plus the ,, necessary 64 bit multiplication	 G

routines, The distributions for the two generators are the uniform and the normal. Names and calling
arguments for these two subroutines are: 	 -

Uniform: RNDU (X,N)

and

Normal: RNDN (X,N) .
l

4

5

Each subroutine must be initialized to establish the starting value for the random number calcu-
lations [i.e., Z(0)1. Initialization is done by calling the subroutine with a negative or zero value for N.
Each subroutine has the intrinsic starting value, J0, of

JO = 123,456,789

Initialization is done by the operation:

Z(0) = (JO)-N Mod (M)

After the call to initialize the subroutine all subsequent calls should be done with N positive. Specifics
of each subroutine follows:

Uniform:

a) Range of output variable X is between G and 1.

b) N specifies the number of different random numbers to generate. The program can generate
N numbers in one call in lieu of using N calls to get N numbers.

c) If N is larger than 1, main program must have a dimension statement for variable X.

Normal:

a) Output variable is X. Distribution has a mean of zero and standard deviation one.

b) Same as b under Unifonn.

c) Same as c under Uniform.

d) Implementation technique uses Marsaglia's rectangle-wedge-tail method as outlined in Refer-
ence 3. This method has essentially perfect accuracy and a very fast execution time. It requires only
one uniform number calculation approximately 88 percent of the time.

This binary file is available to any interested user. To conserve computer memory the user should
use the LYNX command to link B:RANDOMLSCARROLL with their binary file name in lieu of copyirig
the file to the individual's account. The file B:RANDOMI contains four separate subroutines; in addition
to the two random number programs named above, there are two multiplication routines named MULA
and MULMOD.

I	 '
I	 '
l

t

APL GENERATOR

The APL software package on the Sigma V computer uses the same form generator as equation
(1) but with

C = 65,539 = 3 + 216	
ORIGINAL PAGE 19

OF POOR QUALITY
and

M = 231 = 2,! 47,483,648

While this generator may be satisfactory for some applications, hidden trouble can result for applications
where groups of 3 random numbers are used. A warning message about this generator can be found in
Reference 2, where a derivation is given to show the correlation between three consecutive integers within
the sequence.

The following results were obtained by a pplying the lattice test to the APL generator. The
parameter N is the dimension and Li, i =2,3,4,5, has the same meaning as used previously.

N	 L2	 L3	 L4	 L5
b=

2	 1.0

3	 2.0	 1819

43.V	 928	 936

5	 1.1	 173	 179	 179

For each value of N, the N-1 numbers represent the ratio of the N-1 cell dimensions to the smallest cell
dimension. Except for two discrepancies these numbers agree with those found in Reference 4; the
reference gives a 528 for L3 instead of a 928, and a 173 instead of a 179 for L4. The reference material
is suspected to be in error since the data was extracted from another reference, and exact agreement
occurs in ; out of the 10 numbers.

The above mentioned correlation problem is also inherent to the generator using

C=3+218

and

M = 235

This generator is discussed in Reference 4, and it also has appeared in some computer software packages.

To provide Sigma V APL users a better generator, a request was made to add an APL optionr,
r,.

P :	 which would be basically the same as that developed in FORTRAN. The only difference between the
P -.

two generators is the choice for the multiplicative constant. The request to improve the APL version is
documented in Reference 6, together with an explanation on the deficiency of the existing generator.

' The value of C selected for FORTRAN will not work in APL because the mantissa in APL should be
limited to about 56 bits. This is approximately the level where round off errors start to occur. Since
31 bits are required for Z(i), the number C must be limited to no more than 25 bits (33,554,432) to

6

satisfy the 56 bit constraint. Three numbers were found which were considered satisfactory. These
numbers are tabulated in Table 3. Actually, two new APL options were added to the Sigma V, these
being denoted by APL1 and APL2. For APL1 the multiplicative constant is 16,807; for APL2 the
constant is 29,903,947. In both cases the value for M is the same as used in the FORTRAN version.
These APL options are obtained from lo ggi ng on by requesting APLI or APL2 instead of the normal
APL.

Both primitive roots selected were tested in APL language to insure • there were no overflow or
round off problems with multiplication. Test results obtained in APL were verified by doing the same
operation in FORTRAN using the 64 bit integer multiplication routine.

CONCLUSIONS AND RECOMMENDATIONS

Tlus effort has produced an improved version for a random number ge perator and is available
to all Sigma V users in both FORTRAN and APL. The recommendation is made that use of the older
FORTRAN program named S:RANDOM be terminated and replaced with the new version S:RANDOMI.

i

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE ; SAMPLE PRIMITIVE ROOTS OF 23I - I
'i

EXPONFNT MULTIPLIER RSS L? L3 L4 L5
OF 7 C„

1 7 43403600.0
5 16807 8.7 7.60 3.39 2.07 1.67

13 252246292 38.4 1.25 38.04 5.15 1.31

17 52959638 3.6 1.03 1.28 2.FF 1.29
19 44709615 6.1 ?.18 4.73 2.59 1.911
23 680742115 6.8 3.40 5.28 2.17 1.29
25 1144106930 4.3 1.38 2.11 3.17 1.49
29 373956417 3.6 1.59 1.21 2.52 1.70
37 655362362 4.1 1.114 1.96 2.52 2.15
41 1615021558 37.0 36.51 1.61 4.5 3.45
43 1P26645n50 261.1 3.15 261.00 6.97 2.01
47 613157876 3.3 1.74 1.13 1.93 1.67
53 12877671117 3.9 1 . 13 2.116 2.46 1.3p	 k
59 1693265200 6.5 2.04 2.41 3.35 4.54
61 1365616214 4.5 3.39 1.41 2.1P 1.411

ARRANGED BY INCREASING RSS VALUE

U7 613157876 3.3 1.74 1.13 1.93 1.67
17 52958638 3.6 1.09 1.28 2.PP 1.29
29 373956417 3.6 1.59 1.21 2.52 1.70

53 1287767147 3.9 1.13 2.46 2.46 1.38

37 655382362 4.1 1.44 1.96 2.52 2.15
25 1144108930 4.3 1.38 2.11 3.17 1.49
61 1365616214 4.5 3.39 1.41 2.18 1.41
19 44748q615 6.1 ?..18 4.73 2.59 1.94

59 1693265200 6.5 2	 04 2.41 3.35 4.54
23 630742115 6.8 3.40 5.28 ?.17 1.29
5 16807 8.7 7.60 3.39 2.n7 1.67

41 1615021558 37.0 36.51 1.61 4.59 3.115
13 252246?92 38.4 1.25 38.04 5.15 1.31
43 1826645050 261.1 3.15 261.00 6.97 ?.01	 <'

1 7 43403600.0

s

ORIGINAL PACE 13

OF POOR QUALITY

TABLE 2. SEARCH SUMMARY FOR FORTRAN GENERATOR

Fxponont C Value PFC!

7 Hot- Vnowr, , but very large

16, p n7 P.7 7.60 1.10 0 .07 1.67

17 q, 6 3 P n.F 1.01 i.? p 2. pp 1.20

1 17 Al^,lq7,P76 ^.l 1.711 1.1 1 1. 0 1 1.(,7

127 992'51p'017 ?.9 1.04 1.?6 1.16 1.9P,

2 06 5 6?Q,070,p)j5 J.n? 1.07 1.4 9 1.41.1

R2 1, pqcl" O R 1.1 1. ? 1 1 1.17 1.19 1.3R

7P7 0 1, 6 4 0 , n (14,7?? P . 1; 1.111 1.16 1 .;) C; 1.^6

0347 701'.j04' if-() :3, 4 1.
n

il 1.10 i.? r- 1.^

4h, X15 J'Q() q'?111,783 37 1.0r,

1 1 0 R 3,67P,114 ^7 1 . 0? 1 .24 1.14 1.12

5 n,,	 Ll 1 oQo	 r' sl -" qn() ?11 1 . n11 1.1 A 1 . 2^ 1.21

76, c,67 199^61p46.600

2) 1 1, x+ 07 1,1n0	 775	 r1ol 1.0)-1 1.26 1.10 J.??

" 11 7,073 1.0? 1.1 0 1.0 p 1.30

?" p , F?R 1
1
9 7	 41 (1, N ?.Qo 1.11; 1 . r1p

d7Z 9
6 1 q 1,?QP,400,71(;) . - I 1.(' ^ 1.11

r 1 1 1117 1
o l r, , 01- p ?p 111

A
1	 n7	 1	

1

^00 , 1)()5 ?,112,?pi,o1n po i . i2l i.o p 1 .	 1

X6) 1 , 1177 6,7, 7 p? 7. 2n 1 . r)? 1.1? 1 . 1 0 1 . ;)6

1111?;,?.; 10 c" r)	 Ll	 c P;) ?.? 1i i.in 1	 .	 i l l 1	 .	 i f) 1 . 19

F-6n,•S9 r-(, (), F'r 1 , ;) 1:' D.?") 1 . r)P 1 . nil 1.17 1 . 16

usuii^ 4L PAM 19

TABLE 3. SEARCH SUMMARY FOR APL GENERATOR
OF POOR QUALITY

Search w xponent. C	 vnl lie R:'Cl) [.? 1.3 1.4	 1.r)
ranT,F

76567 1,	 3 r, ,	116,fn0 ?	 3 1.01 1.11 1.1 0; 	1.13

POK- NOTI P I C,
1?nK

1?nK- lllp,'ahl ?,171,1111 ?.gyp 1.0? 1.() r 1.? F 	1.79
1M

60,),117n 20,on1,047 ?,^1I 1.04 1.1 1.?2	 1.r)()

NOTIaINr
?If

,.,_ ?	 n g cl 	 hid 10, 4 ?P, 306 ?. ^^ 1 . rr 1 . 19 1 .	 1 . ??^

* - Unlito W-r-d for rnrIv Fortrnn °tuHv

3

i

ry	 ,

i

l^

^-1

j#10

1

f

MONO0

r:

i
^i

ORIC°!N11Y_ PACw 1113

OF POOR QUaLl` Y
APPENDIX

PRIMITIVE ROOTS OF PRIME NUMBERS

This Appendix discusses the definition and pertinent properties of a primitive root. The
discussion is supplemented by an example using the prime number 19.

Definitions:

M: prime number.

M1: M-1.	 u

S: set of integers between 1 and MI, inclusive.

p: member of set S.

Primitive Root:

Consider the sequence

pIp2,p3 pn Mod (M),n<M1
	

(A-1)
	 u

Since each element is calculated by Mod (M), no element can be larger than M1, and at least one element
will be unity provided n is extended to MI. Consider the case when the remainder is unity, i.e.,

1 = pn Mod (M) .	 (A-2)

i

	The definition of a primitive root is associated with what values of n satisfy (A-2). The number p is said
	 v,

to be a primitive root of M if the smallest value for n satisfying (A-2) is M1. For this case the sequence
in (A-1) will contain all elements of the set S, i.e., all the integers between 1 and M1 will appear in some
pseudo-random order and no number will appear twice.

Cycle length is defined as the number of integers in the sequence before any repetition occurs;
hence, the cycle length for a primitive root is always M1. Table A-1 shows all possible sequences for the
prime number 19. All candidate primitive roots, p, are listed in the first column; for each row, the
18 columns correspond to the powers of p per (A-1). Looking across the row for p = 2, observe that
the first time the integer 1 appears is for n = 18; 0 Qrefore, by the above definition, a primitive root

	 n

of 19 is the number 2.

Knowing any primitive root, all other primitive roots can be found in an easy manner. The
steps for this are:

I) Factor MI

?;	 2) Form pn Mod (M), n= 1,2 MI.

3) The result in (2) is a primitive root if n is relative prime to M1.

r	

I1

I

0

u

q

OF POOR QUA ' l Y'V

In the sample table those numbers which are relative prime to 18 are indicated by an asterisk above the
number. This data shows that, in addition to the integer 2, other primitive roots are 13, 14, 15, 3, and
10. Note that all primitive roots are obtained by this procedure regardless of the starting primitive root.

{

	

	 Most techniques for findingg primitive roots do so by firs finding the least positive root. In
principle the algorithm for accomplishing this procedure is to start with the test number 2 and form the

powers of 2. Looking at 2 n , if this number (after applying modulus M) is I but n is not MI, then incre-
ment the test number by I and start the process over. Continue this process until the first primitive root
is found. In practice there are tceveral short cuts which speed up the process and save considerable com-
puter time. First, this test is not required beyond the midpoint, n = MI/2. If at the midpoint a unity
remainder has not been calculated and the value for the midpoint calculation is MI, then the test number
must be a primitive root. r; further reduction in required work is that not all powers of p must be
tested. The factors of MI determine which powers must be checked [5]. This reference shows that all
possible cycle lengths are some combination of the factors of M1. In the example for M = 19,

M1=M-I=2*3*3

and the only possible cycle lengths are 2, 3, 6, 9, and 18. Also, the table shows that only the exponents
6 (= 18/3) and 9 (= 18/2) must be checked to test if the number is a primitive root. This short cut saves
a lot of tune since the minimum number of power to check is equal to the numb e3 of distinct factors of
M 1, which typically fall between 2 and 7.

TABLE A-l. PRIMITIVE ROOTS OF PRIME NUMBER 19

y f z 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2
3
4
5
6
7
8
9

10
11
12
13
14
15

2
3
4
5
6
7
8
9

10
11
12
13
14
15

4
9

16
6

17
11

7
5
5
7

11
17

6
16

8
8
7

11
7
1

18
7

12
1

18
12

8
12

16
5
9

17
4
7

1 1
6
6

11
7
4

17
9

13
15
17

9
5

11
12
16

3
7
8

14
10

2

7
'1

11
7

11
1
1

11
11

1
1

11
7

11

14
2
6

16
9
7
8
4

15
11
12
10

3
13

9
6
5
4

16
11

7
17
17

7
11
16

4
5

18
18

1
1
1
1

18
1

18
1

18
18
18
18

17
16

4
5
6
7

1 1
9
9

11
7
6
5
4

15
10
16

6
17
11
12

5
14

7
8
2

13
3

11
11

7
11

7
1
1
7
7
1
1
7

1 1
7

3
14

9
17

4
7
8
6

13
11
12
15

2
10

6
4

17
9
5

11
7

16
16

7
11

5
9

17

12
12
11

7
11

1
18
11

8
1

18
8

12
8

5
17

6
16

9
7

11
4
4

11
7
9

1 6
6

10
13

5
4

16
11
12
17

2
7
8
3

15
14

1
1
1
1
1
1
1
1
1
1
1
1
1
116

17
18

16
17
18

9
4
1

11
11
18

5
16

1

4
6

18

7
7
1

17
5

18

6
9
1

1
1

18

16
17

1

9
4

18

11
11

1

5
16
18

4
6
1

7
7

18

17
5
1

6
9

18

1
1
1

!'

12

e

f

1. Atkinson, A. C.: Tests of Pseudo-Random Numbers. Applied Statistics, Vol. 29, pp. 164-171.

2. Forsythe, G. E3., et al.: Computer Methods for Mathematical Computations. Prentice Hall, 1977.

3. Knuth, D. E.: The Art of Computer Programming, Volume 2, Seminumerical Algoritluns.
Addison Welsey, 1969,

4. Marsaglia, G.: The Structure of Linear Congruential Sequences. In Applications of Number
Theory to Numerical Analysis, S. K. Zaremba (ed.), Academic Press, 1972.

r

5. Ore, O.: Number Theory and Its History. McGraw-Hill, 1948.

6. Rheinfurth, M.: Marshall Space Flight Center Memorandum, E?D01-34-82, April 1982.

1
i

rs

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf

