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Rbstract

A recently developed semi-empirical modei for
predicting the noise generated by conventional-
velocity-profile coaxial jets is compared with full-
scale flight data and model-scale simulated flight
data for high-bypass nozzles. The prediction model
has been shown to agree with small-scale static data
for primary jet velocities from 215 to 795 m/s for a
wide range of area, temperature anc velocity ratios
between streams. However, there were insufficient
model nozzle, simulated flight data available at that
time to permit validation of the flight effects pre-
diction. The comparisons presented in this paper
demonstrate that ihe prediction methcd is also valid
in flight.

Introduction

Accurate noise prediction methods are required
in order to predict the environmental impact of air-
port operations on the surrounding communities, as
well as for the realistic design of new aircraft and
the development of noise reducing modifications to
existing aircraft. To be credible, these prediction
methods must be validated by comparison with experi-
mental data. Recently, an improved prediction method
for the noise generated by conventional-velocity-
profile coaxial jets was diveloped and validated with
static, model nozzle data.!* This method was shown
to agree with the data for primary jet velocities
from 215 to 795 m/s for a wide range of area, temper-
ature and velocity ratios between the streams. The
prediction also includes the effects of flight, but
there were insufficient simulated-flight model nozzle
data available in the open literature to permit the
flight effects predicted to be validated. 1In
addition, full-scale engine comparisons require
estimation of the contributions of other noise
sources, such as engine core and air-frame. Thus,
the question of flight effects was not resolved in
reference 1, and is the subject ¢f the present paper.

The numerous aspects of the mechanisms of noise
generation by coaxial jets are not fully understood,
and therefore, the necessity of predicting jet noise
has led to the development of empirical procedurss.
The NASA interim prediction method for jet noise¢ and
several different methods based on extension of the
Society of Automotive Engineers (SAE) methods for
circular jetsd have been widely used. The NASA
interim method, based on exteasion of the earlier
studies of Olsen and Friedman® and Williams, et al.
has been shown to agree reasonably well with full-
scale static and flight data® for low to
moderately-high bypass ratio coaxial jets. The cir-
cular jet method (also in Ref. 2) on which that
prediction was based was later improved’ by incor-
porating a more fundamentally correct formulation of
source convection effects based on the theoret&ca]
developments of Goldstein® and Ffowcs Williams>,

The desirability of further minor improvements in the
static directivity and spectra near the peak noiae
angle was shown by the compariions of Gutierrez*V,
Therefore, the improved method! was envolved and
validated by comparisoni with the static model_data
of Goodykoontz, et al. 1-12 3pnd Tanna, et al.ld,

In order to validate the coaxial jet noise pre-
diction in flight and eliminate questions about
contaminating noise sources such as engine core and
afrframe, the prediction is first compared with
simulated flight model nozzle data. Experimental
data are utilzied from the two most commonly used
types oi flgght simulation f%ci1fties; namely, wind
tunnelsi4-15"and free jets 16, Comparisons with
data from both types of facilities are useful since
neither method is universally accepted because of the
problems involved with correctly making all the
transformations and corrections necessary to project
such data to actual flight conditions. After estab-
1ishing the validity of the jet mixing noise predic-
tion1 comparions are then made with full-scale
datal? with th
and core nois

f&ight
contributions of airframe noise
also taken into account.

Nomenclature

(A11 dimensions are in SI units unlegs noted.)

f 1/3-octave-band center frequency

OASPL overall sound pressure level, dB re 20
ulN/m

R source~to-observer distance

SPL 1/3-octave-band sound pressure level, dB
re 20 uN/mé

T total temperature

v velocity

Y minimum (perpendicular) distance of
observer from engine axis (Fig. 10).

e girectivity angle from inlet axis
(Fig. 10), deg.

c standard deviation, siquare root of mean
sguare predicted minus experimental OASPL,

Subscripts

C relative to center of core nozzle exit
plane

F flight or simulated flight level

J relative to assumed jet noise source
location

S static level

0 aircraft (or flight simulation)

1 fully-expanded primary (inner) jet

2 fully-expanded secondary (outer) jet.

*ATAA Member.
This oaper is declared a work of the U.S.
Government and therefore is in the public domain.
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In order to validate the coaxial jet noise pre- wiwg tunnel measurements also were obtained by
diction in fiight, comparisons are shown in this Cockingl in the Royal Afrcraft Establishment (RAE)
section with model nozzle data obtained from two wind 7,2-m diameter open-throat wind tunnel. No correc-
tunnels, The wind tunnel (Fig. 1) offers a rela- tion was made for distributed source position effects
tively straight-forward means of simulating flight in Ref. 15, so the approximate method of Ref. 1 was
effects; however, this approach is not without used to estimate these effects. These corrections
problems, High background noise levels and rever- are rather large since the microphones were located
berations force the noise measurements to be made on a sideline only 32 primary nozzle diameters from
relatively close to the source, which necessitates the jet axis., The primary nozzle diameter was 65 mm
correcting for near-field and source distribution. with a secondary-to-primary area ratio of 2.5 and
These corrections are quite significant for jet coplanar exits. The experimental data are reported
noise. on a lossless basis; i.e., the predicted effects of
Overall sound pressure level (OASPL) directivity atmospheric absorption have been removed from the
and spectral sound pressure level (SPL) plots will data. ‘
be shown to facilitate comparisons. In many cases These resultsiS were the first to confirm a
the ordinate scale will be broken to avoid overlap in key assumption in formulating the NASA prediction
the data sets shown. Statistical comparisons will be procedures; namely, the assumption that the secondary
discussed for the 0ASPL in terms of a standard devia- stream has a negligible influence on the g]1ght
tion and an average over-prediction {(or under-predic- effect. Based on these findings Cocking1 suggested
tion). These statistical comparisons are described
in more detail later under "Summary of Mode: Nozzle
Comparions."

Model Nozzle Wind Tunnel Comparisons

a flight effects formulation quite sim}]ar to that
incorporated in the present prediction*.

Only limited spectral results were reported in
Ref. 15. The data reported here are for a high sub-
sonic primary jer velocity, V] = 446 m/s, and
primary total temperature, T} = 880 K, with a
secondary-to-primary velocity ratie, Vo '/ V] = 0.6,
and wind tunnel velocities, Vo = 6 m/s (pseudo-
static) and 40 m/s. Results at model scale are shown
in Fig. 4 for corrected directivity angles, ¢ = 81,
111 and 138 deq., corresponding to uncorrected angles
of 90, 120 and 145 deg, /Data at 53 deg. appear to
exhibit anomalously high ow-frequency noise not seen
in any other data set, so these results are excluded.)

Boeing Wind Tunnel

The first set of wind tunYEI data considered
were obtained by Lu and Lanter!® in a 2.7- by 2.7-m
wind tunnel lined with foam wedges. These data were
corrected for background noise and extraggfated to
the far field using the method of Jaeck Y. These
data were obtained at approximate takeoff power
setting for static conditions as well as for two wind

tunnel velocities, Vo = 61 and 98 m/s. The data
have been scaled up gy a linear factor of 12 to re-
present a typical full-size single engine nozzle at
a 305-m altitude level flyover on a standard day.

Directivity. - Flyover OASPL directivity pat-
terns and the corresponding static~to-flight incre-

ments are shown in figure 2. The general agreement
is quite good. The static OASPL is underpredicted
by an average cf 0,2 dB with a standard deviation of
1.3 d8. For simulated flight, the average under-
prediction is 0.3 d8 with a 1.3 dB standard devia-
tion. The flight noise level relative to the static
level is underpredicted by 0.1 dB with a 1.4 dB
standard deviation,

Spectra. - Spectral comparisons for the
preceding Boeing wind tunnel cases are shown in
figure 3. In the forward quadrant (e = 70 deg.) and

simulated overhead position (e = 90 deg.) the general

spectral shape is predicted fairly well except for a
mid-frequency dip in the experimental data. This
apparent dip may be due in some degree to the prg—
sence of some excess facility noise above 400 Hz 2,

At o = 138 deg. the agreement is rather good both in
spectral shape and, as indicated by the OASPL, in
level. At the more forward angies, the agreement in
level is sti1l fairly good, but the peaks of the
predicted spectra are at somewhat higher frequencies
than those of the experimental spectra. On the
average, the static OASPL is overpredicted by 0.3 dB
with a 0,9 dB standard deviation, and the flight
OASPL is overpredicted oy 1.3 dB with a 1.5 dB
standard deviation. The static to flight OASPL
increment is underpredicted by an average of 0.9 dB
with a standard deviation of 1.0 dB.

Model Nozzle Free Jet Comparisons

The free jet (Fig. 5) has a significant advan-
tage to offer compared with the wind tunnel in that
the microphones can be located outside the flow and
in the far field, thus minimizing the reverbera-
tion, background noise and source distribution
problems. However, the transformation is much more
difficult and controversial, especiaily due to the
effect of acoustic propagation through the free

Aft quadrant results at e = 110, 130 and 150 deg. are
somewhat similar in agreement to the forward quadrant
except that the high frequency noise is overpredicted
in the static case. The reduction in peak-SPL fre-
quency with increasing flight velocity is less exper-
imentally than is predicted. This leads to some
underprediction of the kigh frequency noise in
flight. If the experimental data are contaminated

at high frequency and the high frequency levels
should be lower, it might be that the prediction
would show better agreement in flight but somewhat
poorer agreement under static conditions than

figure 3 indicates.

jet/ambient shear layer.

The free jet data were obtained by Foggl6 of
General Electric in an anechoic chamber with a 1.22-m
diameter free jet containing a 1l5-cm equivalent dia-
meter coaxial nozzle. These data were projected to
flight using the procedure developed in reference 22
and do not include source position corrections.
Source position corrections are estimated herein for
these comparisons from Ref. 1. The data were
obtained under static conditons and with a free jet
velocity, V,, of 107 m/s at approximate takeoff
conditions. The results have been scaled by a linear
factor of about 9 to represent a full-size engine at
a 457-m altitude level flyover on a standard day.
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Directivity. -~ Flyover OASPL directivity
patterns and the corresponding static-to-flight
increments are shown in Fig. 6. In general, the
agreement is fairly good, except near o = 90 deg.,
where there is an apparent inconsistency in the
experimental data which is worse under simulated
flight conditions. Due largely to this questionable
region there is an average overprediction of 0.8 dB
in the static case with a standard deviation of 1.1dB
while in the flight c&sa the average overprediciton
is 1.3 dB with a standard deviation of 2.6 dB. In
terms of the static-to-flight increment, there is an
overprediction of the flight level by 1.0 dB with a
2.0 dB standard deviation.

Spectra. - Spectral comparisons for the pre-
ceding cases are shown in figure 7. There is a
tendency, especially under static conditons, for the
predicted spectra to peak at a higher frequency than
the experimental spectra, leading to an overpredic-
tion of high frequency noise. This problem is
reduced in flight, particularly in the aft quadrant
(6 = 128 and 148 deg.) where jet mixing noise is most
important and the agreement with the simulated flight
spectra is quite good.

Summary of Model Nozzle Comparisons

The preceding sections established that the
prediction! agrees with model nozzle data under
both static and simulated flight conditions. The
variation of agreement as a function of angle for
the various data sets is shown in figure 8. The
static model OASPL comparisons indicate a combined
average overprediction of 0.3 dB and a 1.1 dB
standard deviation. This is a slightly smaller over-
prediction than the 0.5 dB reported in reference 1,
and the standarg deviation is significantly less than
the 1.8 dB reported therein. As used throughout this
paper and in reference 1, the standard deviation does
not include a correction for the mean error; thus, it
represents an absolute measure of agreement. However,
for the small mean errors involved, the effect of
correcting for the mean error is insignificant (less
than 0.1 dB). In terms of the flight level relative
to static the combined average overprediction is 0.2
dB and the standard deviation is 1.6 d8. The
absolute flight level is overpredicted by an average
of 0.3 dB, and the standard deviation is 1.9 dB.

Full-Scale Engine Comparisons

The ultimate application of this prediction
procedure is to full-scale engines on flying air-
craft, so it is important to demonstrate thdat full-
scale levels are accurately predicted. Comparisons
are presented first with static data and then with
flight data.

Static

In order for the flight comparions to be mean-
ingful, the accuracy of the prediction must first
be established for full-scale static data. Com-
parions will be limited to low frequency to minimize
the influence of turbomachinery noise. Since core
noise is also a low frequency source, it must be
taken into account. For this purpose the reCthly
developed correlation of von Glahn and Krejsat” is
used to predict the core noise at e = 120, and the
directivity of Ref. 6 is used to obtain the core
noise spectrum at other angles. Comparison is made
with %%e full-scale CF6 engine data of Doyle and
Moore=?,

Spectral comparisons are shown in Fig, 9 for
approximate takeoff, cutback and approach conditions
at directivity angles of 29, 58, 87, 117, 138 and
159 deg. relative to the center of the core nozzle
exit plane. (The corresponding angles for the dis-
tributed jet noise source are 27, 54, 82, 112, 134,
and 156 deg., and the source position corrections
are significant.) The comparisons are limited to
frequencies of 2000 Hz or less since turbomachinery
tones are dominant at higher frequencies. Jet mixing
noise is predicted to be dominant over core noise
even for the approach conditions. The agreement is
gooa at low frequencies, especially at large angles
approaching the jet axis. The high experimental
Tevels at middle frequencies, especially noticable in
the forward quadrant, may be due to boardband turbo-
machinery noise, as suggested by Krejsa24, These
full-scale comparions support the Vflidity of the
coaxial jet mixing noise predicitont, but quantita-
tive comparisons would be questionable because of the
uncertain contribution of broadband turbomachinery
noise. The core noise levels are too low to permit
an assessment of the core noise prediction with far-
field data. However, this validation has been
successfully performed using a unique trip]e-coherque
technique incorporating internal and far-field datalv.

Flight

Comparison is now made with the flight data
obtained in joint NAig—Society of Automotive
Engineers experiment!/ on a Boeing 747 airplane
powered by JT9D engines. The flight geometry is
shown in figure 10. These resulis were obtained at
approximate cutback conditions for a closest approach
distince, Y, of 124 m, at a flight velocity, Vo, of
86 m/s. (The microphone was on a 100-m sideline, and
the altitude was about 70 m.) In addition to core
noise, airfram? noise must be accounted for, and the
method of Finkl8 is used*.

Spectral comparisons are shown in figure 11 for
directivity angles of 30, 60, 90, 120 and 150 deg.
(Source position corrections are negligible at this .
distance.) Jet noise is predicted to be dominant at
low frequency, with its frequency range of dominance
increasing with increasing e. At frequencies low
enough to be free of turbemachinery noise, which
includes *he jet noise dominant region, the agreement
is rather good. These comparisons provide further
support to the prediciton procedures, but quantita~
tive comparisons for any one source would be
difficult and the contribution of turbomachinery
noise is uncertain.

Conclusions

The recently developed NASA-Lewis prediction
model for conventional-velocity-profile coaxiai jet
mixing noise is shown to agree with flight and simu--
lated flight data. Comparions of the prediction of
overall sound pressure level with static, model
nozzle data indicates a standard deviation of 1.1 dB,
including an average overprediction of 0.3 dB. These
results are in better agreement than earlier static,
model comparisons. Comparisons with model nozzle
wind-tunnel and free-jet simulated flight data, in
terms of flight level relative to static indicate a
standard deviation of 1.6 dB, including an average
overpredirtion of 0.2 dB. Absolute simulated flight

* Caiculations performed by W. Willshire of the NASA
Langley Research Center.



tevel comparisons indicate a standard deviation of

1.9 a8, including an average overprediction of 0.3 dB.

Full-scale static ano flight comparions support the

accuracy of the prediction method, but quantitative

statistical comparions would be uncertain because of
the contributions of other noise sources.
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Figure 2, - Comparison of prwdlcuonl with high-bypass-ratio
model noulti jtatlc and simulated flight directivity in Boeing
wind tunnel*® at approximate takeoff conditlons, Scaled to
full-size engine at 305 m flyover,



SOWND PRESSURE LEVEL, SPL, dB

ORIGINAL PrGE 1
OF POOR

QUALITY

FEE STREAM
PRED. EXP, VELOCITY, V,

_____ o ~0m/s
. i | 61 m/s
—— 98 m/s

Y T N T S B W R P EN Lol

il 1o Ll Lo bl |

10 2 50 100 20 500 1K XK 5K
FREQUENCY, f, Hz

(a) Directivity angle, 8 = 70 deg.
(b) Directivity angle, 8 = 90 deg,
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wind tunnel?® at approximate takeoff conditions, Scaled to
full-size englne at 305 m flyover,
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copianar nozzle static and simulated flight spectra
in Royal Alrcraft Establishment (RAE) wind tunnel, 15
Primary jet velocity, Vy = 446 m/s, and total tem-
perature, T; = 880K; secondary-to-primary velocity
ratio, Vy/Vy = 0.6,
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Figure 11, - Comparison of predlctionl' 18z 19 with

(light spectral for B-747 airplane with JT9D engines
at 79 porcent speed, Ground microphone; minimum
source-to-observer distance, Ya 124 m (Fig, 10, );
flight velocity, Vou 86 m/s,
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