
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 





v0

W

a

4

e

COMPARISON OF MEASURED AND PREDICTED FLIGHT

ORIGINAL PAGE IS 	
EFFECTS ON HIGH-BYPASS COAXIAL JET EXHAUST NOISE
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Abstract

A recently developed semi-empirical model for
predicting the noise generated by conventional-
velocity-profile coaxial jets is compared with full-
scale flight data and model-scale simulated flight
data for high-bypass nozzles. The prediction model
has been shown to agree with small-scale static data
for primary jet velocities front 215 to 795 m/s for a

wide range of area, temperature and velocity ratios
between streams. However, there were insufficient
model nozzle, simulated flight data available at that

time to permit validation of the flight effects pre-
diction. The comparisons presented in this paper
demonstrate that the prediction methcd is also valid

in flight.

In order to validate the coaxial jet noise pre-
diction in flight and eliminate questions about

contaminating noise sources such as engine core and
airframe, the prediction is first compared with

simulated flight model nozzle data. Experimental
data are utilzied from the two most commonly used
types o %ght simulation f cilities; namely, wind
tunnels 4- and free jets 10 . Comparisons with
data from both types of facilities are useful since
neither method is universally accepted because of the
problems involved with correctly making all the
transformations and corrections necessary to project
such data to actual flight conditions. After estab-

lishing the validity of the jet mixing noise predic-
tion companions are then made with full-scale eight
datat7 with th contributions of airframe noise
and core noiseL9 also taken into account.

Introduction	 Nomenclature

Accurate noise prediction methods are required 	 (All dimensions are in SI units unless noted.)
in order to predict the environmental impact of air-
port operations on the surrounding communities, as f

well as for the realistic design of new aircraft and
the development of noise reducing modifications to OASPL
existing aircraft.	 To be credible, these prediction

methods must be validated by comparison with experi-

mental data,	 Recently, an improved prediction method R

for the noise generated by conventional-velocity-
profile coaxial jets was developed and validated with SPL
static, model nozzle data.	 This method was shown

to agree with the data for primary jet velocities
from 215 to 795 m/s for a wide range of area, temper- T

ature and velocity ratios between the streams. 	 The

prediction also includes the effects of flight, but y

there were insufficient simulated-flight model nozzle
data available in the open literature to permit the Y

flight effects predicted to be validated. 	 In

addition, full-scale engine comparisons require
estimation of the contributions of other noise a
sources, such as engine core and air-frame. 	 Thus,
the question of flight effects was not resolved in
reference 1, and is the subject of the present paper. o

The numerous aspects if the mechanisms of noise
generation by coaxial jets are not fully understood,
and therefore, the necessity of predicting jet noise
has led to the development of empirical procedures. Subscripts

The NASA interim prediction method for jet noise	 and

several different methods based on extension of the C

Society of Automotive Engineers (SAE) methods for

circular jets 3 have been widely used.	 The NASA

interim method, based on exte lion of the earlier F
studies of Olsen and Friedman and Williams, et al.5
has been shown to agree reasonably well with full- J

scale static and flight data 6 for low to
moderately-high bypass ratio coaxial jets.	 The cir-

cular jet method (also in Ref. 2) on whjL h that S

prediction was based was later improved 	 by incor-
porating a more fundamentally correct formulation of 0

source convection effects based on the theoretl'cal

developments of Goldstein $ and Ffowcs Williams y . 1

The desirability of further minor improvements in the
static directivity and spectra near the peak nojV 2
angle was shown by the comparisons of Gutierrez 	 .

Therefore, the improved method was envolved and	
*AIAA Member.

validated by comparison with the static model data 	 This oaperIsdecioreda work of the U.S.
of Goodykoontz, et al. 1-12 and Tanna, et al. 13 .	 Government and therefore is in the public domain.
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1/3-octave-band center frequency

overall sound pressure level, dB re 20

pN/m2

source-to-observer distance

1/3-octave-band sound pressure level, dB
re 20 uN/m2

total temperature

velocity

minimum (perpendicular) distance of

observer from engine axis (Fig. 10).

directivity angle from inlet axis
(Fig. 10), deg.

standard deviation, square root of mean

square predicted minus experimental OASPL,
d6

relative to center of core nozzle exit
plane

flight or simulated flight level

relative to assumed jet noise source
location

static level

aircraft (or flight simulation)

fully-expanded primary (inner) jet

fully-expanded secondary (outer) jet.
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Wi^,,dd tunnel measurements also were obtained by
Cockinglb in the Royal Aircraft Establishment (RAE)
7.2-m diameter open-throat win g tunnel. No correc-
tion was made for distributed source position effects
in Ref. 15, so the approximate method of Ref. 1 was
used to estimate these effects. These corrections
are rather large since the microphones were located
on a sideline only 32 primary nozzle diameters from

the jet axis. The primary nozzle diameter was 65 mm

with a secondary-to-primary area ratio of 2.5 and
coplanar exits. The experimental data are reported
on a lossless basis; i.e., the predicted effects of
atmospheric absorption have been removed from the
data.

These results15 were the first to confirm a
key assumption in formulating the NASA prediction
procedures; namely, the assumption that the secondary
stream has a negligible influence on the light
effect. Based on these findings Cocking l suggested
a flight effects formulation quite sim i lar to that
incorporated in the present prediction'.

Only limited spectral results were reported in

Ref. 15. The data reported here are for a high sub-
sonic primary je t velocity, V1 - 446 m /s, and
primary total temperature, T1 . 880 K, with a
secondary-to-primary velocity ratio, V2'/ V1 - 0.6,

and wind tunnel velocities, Vo - 6 mis (pseudo-
static) and 40 m/s. Results at model scale are shown
in Fig. 4 for corrected directivity angles, e - 81,
111 and 138 deg., corresponding to uncorrected angles
of 90, 12U and 145 deg. tOata at 53 deg. appear to
exhibit anomalously high ow-frequency noise not seen
in any other data set, so these results are excluded.)
At e - 138 deg. the agreement is rather good both in
spectral shape and, as indicated by the OASPL, in

level. At the more forward angles, the agreement in
level is still fairly good, but the peaks of the

predicted spectra are at somewhat higher frequencies

than those of the experimental spectra. On the
average„ the static OASPL is overpredicted by 0.3 dB
with a 0.9 dB standard deviation, and the flight

OASPL is overpredicted oy 1.3 dB with a 1.5 dB
standard deviation. The static to flight OASPL

increment is underpredicted by an average of 0.9 dB
with a standard deviation of 1.0 dB.

Model Nozzle Free Jet Comparisons

The free jet (Fig. 5) has a significant advan-
tage to offer compared with the wind tunnel in that
the microphones can be located outside the flow and
in the far field, thus minimizing the reverbera-
tion, background noise and source distribution
problems. However, the transformation is much more
difficult and controversial, especially due to the

effect of acoustic propagation through the free
jet/ambient shear layer.

The free jet data were obtained by Fogg 16 of
General Electric in an anechoic chamber with a 1.22-m

diameter free jet containing a 15-cm equivalent dia-
meter coaxial nozzle. These data were projected to

flight using the procedure developed in reference 22
and do not include source position corrections.
Source position corrections are estimated herein for
these comparisons from Ref. 1. The data were

obtained under static conditons and with a free jet
velocity, Vo, of 107 m/s at approximate takeoff
conditions. The results have been scaled by a linear
factor of about 9 to represent a full-size engine at
a 457-m altitude level flyover on a standard day.

Model Nozzle Wind Tunnel Comparisons

In order to validate the coaxial jet noise pre-
diction in flight, comparisons are shown in this
section with model nozzle data obtained from two wind
tunnels. The wind tunnel (Fig. 1) offers a rela-
tively straight-forward means of simulating flight
effects; however, this approach is not without
problems. High background noise levels and rever-
berations force the noise measurements to be made
relatively close to,the source, which necessitates
correcting for near-field and source distribution.
These corrections are quite significant for jet
noise.

Overall sound pressure level (OASPL) directivity
and spectral sound pressure level (SPL) plots will
be shown to facilitate comparisons. In many cases

the ordinate scale will be broken to avoid overlap in

the data sets shown. Statistical comparisons will be
discussed for the OASPL in terms of a standard devia-
tion and an average over-prediction (or under-predic-
tion). These statistical comparisons are described

in more detail later under "Summary of Mode ', Nozzle
Companions."

Boeing Wind Tunnel

The first set of wind tunp9l data considered
were obtained by Lu and Lanter 	 in a 2.7- by 2.7-m
wind tunnel lined with foam wedges. These data were
corrected for background noise and extranlated to
the far field using the method of Jaeck	 . These
data were obtained at approximate takeoff power

setting for static conditions as well as for two wind
tunnel velocities, V - 61 and 98 m/s. The data
have been scaled up gy a linear factor of 12 to re-
present a typical full-size single engine nozzle at
a 305-m altitude level flyover on a standard day.

Directivity. - Flyover OASPL directivity pat-
terns and the corresponding static-to-flight incre-
ments are shown in figure 2. The general agreement
is quite good. The static OASPL is underpredicted
by an average of 0.2 dB with a standard deviation of
1.3 d3. For simulated flight, the average under-
prediction is 0.3 dB with a 1.3 dB standard devia-
tion. The flight noise level relative to the static
level is underpredicted by 0.1 dB with a 1.4 dB
standard deviation.

Spectra. - Spectral comparisons for the

preceding Boeing wind tunnel cases are shown in
figure 3. In the forward quadrant (e = 70 deg.) and

simulated overhead position (e = 90 deg.) the general
spectral shape is predicted fairly well except for a
mid-frequency dip in the experimental data. This
apparent dip may be due in some degree to the pr
sence of some excess facility noise above 400 Hzk
Aft quadrant results at e = 110, 130 and 150 deg. ara
somewhat similar in agreement to the forward quadrant
except that the high frequency noise is overpredicted
in the static case. The reduction in peak-SPL fre-
quency with increasing flight velocity is less exper-
imentally than is predicted. This leads to some
underprediction of the high frequency noise in
flight. If the experimental data are contaminated

at high frequency and the high frequency levels
should be lower, it might be that the prediction
would show better agreement in flight but somewhat
poorer agreement under static conditions than
figure 3 indicates.



In order for the flight comparions to be mean-

ingful, the accuracy of the prediction must first
be established for full-scale static data. Com-
parions will be limited to low frequency to minimize
the influence of turbomachinery noise. Since core

noise is also a low frequency source, it must be
taken into account. For this purpose the recrotly

developed correlation of von Glahn and Krejsa 	 is

used to predict the core noise at e = 120% and the
directivity of Ref. 6 is used to obtain the core
noise spectrum at other angles. Comparison is made
with ^fe full-scale CF6 engine data of Doyle and

Moore .
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Directivity. - Flyover OASPL directivity 	 Spectral comparisons are shown in Fig. 9 for
patterns a-̂nodt e corresponding static-to-flight 	 approximate takeoff, cutback and approach conditions
increments are shown in Fig. 6. In general, the	 at directivity angles of 29, 58, 87, 117, 138 and
agreement is fairly good, except near e - 90 deg., 	 159 deg. relative to the center of the core nozzle
where there is an apparent inconsistency in the 	 exit plane. (The corresponding angles for the dis-

k	 experimental data which is worse under simulated 	 tributed jet noise source are 27, 54, 82, 112, 134,
i	 flight conditions. Due largely to this questionable and 156 deg., and the source position corrections

region there is an average overprediction of 0.8 dB 	 are significant.) The comparisons are limited to
in the static case with a standard deviation of 1.1dB frequencies of 2000 Hz or less since turbomachinery
while in the flight c4sm the average overprediciton	 tones are dominant at higher frequencies. Jet mixing
is 1.3 dB with a standard deviation of 2.6 dB 	 In	 noise is predicted to be dominant over core noise
terms of the static-to-flight increment, there is an evenfor the approach conditions. The agreement is
overprediction of the flight level by 1.0 dB with a 	 good at low frequencies, especially at large angles
2.0 dB standard deviation.	 approaching the jet axis. The high experimental

levels at middle frequencies, especially noticable in
Spectractra . - Spectral comparisons for the pre- 	the forward quadrant, may be due to boardband turbo-

ceding cases are shown in figure 7. There is a machinery noise, as suggested by Krejsa 2 . These
tendency, especially under static conditons, for the full-scale comparions support the volidity of the
predicted spectra to peak at a higher frequency than coaxial jet mixing noise prediciton , but quantita-

the experimental spectra, leading to an overpredic- 	 tive comparisons would be questionable because of the

tion of high frequency noise. This problem is 	 uncertain contribution of broadband turbomachinery

reduced in flight, particularly in the aft quadrant 	 noise. The core noise levels are too low to permit

(e - 128 and 148 deg.) where jet mixing noise is most an assessment of the core noise prediction with far-
important and the agreement with the simulated flight field data. However, this validation has been

spectra is quite good.	 successfully performed using a unique triple-cohereaQe
technique incorporating internal and far-field data 19.

Summary of Model Nozzle Comparisons

The preceding sections established that the

prediction l agrees with model nozzle data under
both static and simulated flight conditions. The
variation of agreement as a function of angle for

the various data sets is shown in figure 8. The
static model OASPL comparisons indicate a combined

average overprediction of 0.3 dB and a 1.1 dB

standard deviation. This is a slightly smaller over-
prediction than the 0.5 d6 reported in reference 1,
and the standard deviation is significantly less than
the 1.8 dB reported therein. As used throughout this
paper and in reference 1, the standard deviation does
not include a correction for the mean error; thus, it
represents an absolute measure of agreement. However,
for the small mean errors involved, the effect of
correcting for the mean error is insignificant (less

than 0.1 dB). In terms of the flight level relative
to static the combined average overprediction is 0.2
dB and the standard deviation is 1.6 dB. The
absolute flight level is overpredicted by an average
of 0.3 dB, and the standard deviation is 1.9 dB.

Full-Scale Engine Comparisons

The ultimate application of this prediction

procedure is to full-scale engines on flying air-
craft, so it is important to demonstrate that full-
scale levels are accurately predicted. Comparisons
are presented first with static data and then with

flight data.

Static

Flight

Comparison is now made with the flight data
obtained in joint NA§4-Society of Automotive
Engineers experiment on a Boeing 747 airplane
powered by JT9D engines. The flight geometry is
shown in figure 10. These results were obtained at
approximate cutback conditions for a closest approach

distance, Y, of 124 m, at a flight velocity, Vo, of
86 m/s. (The microphone was on a 100-m sideline, and

the altitude was about 70 m.) In addition to core

noise, airfram noise must be accounted for, and the
method of Fink ^B is used*.

Spectral comparisons are shown in figure 11 for

directivity angles of 30, 60, 90, 120 and 150 deg.
(Source position corrections are negligible at this.

distance.) Jet noise is predicted to be dominant at
low frequency, with its frequency range of dominance
increasing with increasing e. At frequencies low
enough to be free of turbomachinery noise, which

includes the jet noise dominant region, the agreement
is rather good. These comparisons provide further

support to the prediciton procedures, but quantita-
tive comparisons for any one source would be
difficult and the contribution of turbomachinery
noise is uncertain.

Conclusions

The recently developed NASA-Lewis prediction

model for conventional-velocity-profile coaxial jet
mixing noise is shown to agree with flight and simu-
lated flight data. Comparions of the prediction of
overall sound pressure level with static, model
nozzle data indicates a standard deviation of 1.1 dB,
including an average overprediction of 0.3 dB. These
results are in better agreement than earlier static,
model comparisons. Comparisons with model nozzle
wind-tunnel and free-jet simulated flight data, in
terms of flight level relative to static indicate a
standard deviation of 1.6 dB, including an average
overprediction of 0.2 dB. Absolute simulated flight

I:

i

i
* Calculations performed by W. Wiltshire of the NASA
Langley Research Center. 	 i ;,
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level comparisons indicate a standard deviation of
1.9 08, including an average overprediction of 0.3 d8.

i	 Full-scale static ano flight comparioios support the
l accuracy of the prediction method, but quantitative

statistical comparions would be uncertain because of
the contributions of other noise sources.

References

I. Stone, J. R., Groesbeck, D. E., and Lola, C. L.,
"Conventional Protile Coaxial Jet Noise Predic-
tion." AIAA J., Vol. 21, No. 3, Mar. 1983,
pp. 336=7477.

2. Stone, J. K., "Interim Prediction Method for Jet
Noise," NASA TM X-71618, 1974.

3. "Gas Turbine Jet Exhause Noise Preoiciton,"
Aerospace Recommended Practice 876, SAE, 1978.

4. Olsen, W. A., and Friedman, R., "Jet Noise from
Coaxial Nozzles over a Wide Range of Geometric
ano Flow Parameters," AIAA Paper 74-43, Jan.
1974.

5. Williams, T. J., Ali, M. R. M. H., ano
Anderson, J. S., "Noise and Flow Characteristics
of Coaxial Jets," Journal of Mechanical
En ineerint , Seience^ o	 N^ o. 2. Apr. 1969,p . -

6. Stone, J. R., "Prediction of In-Flight Exhaust
Noise for Twloojet and Turbofan Engines," Noise
Control Engineering, Vol, 10, No. 1, Jan.-Te—o.
9^, pp. 4'-4̂ 6.

7. Stone, J. R., and Montegani, F. J., "An Improved

Preoiction Method for the Noise Generated in
Flight by Lircular Jets," NASA TM-81470, 198U.

d. Goldstein, M. E., and Howes, W. L., "New Aspects
of Subsonic Aerodynamic Noise Theory," NASA TN

U-7158, 1973.

9. Ffowcs Williams, J. E., "The Noise from
Turbulence Convecteo at High Speed," Royal
Society of Lonoon. Philosophical Transactions.
SeriesA, Vol.-255; 1963, pp. 469-503.

1U. Gutierrez, U. A., "Effect of Facility Variation
on the Acoustic Lharacteristics of Three Single
Stream Nozzles," NASA TM-81635, 1980.

11. Goodykoontz, J. H., and Stone, J. k.,
"Experimental Study of Coaxial Nozzle Exhaust
Noise," AIAA Paper 79-U631, Mar. 1979.

12. Stone, J. R., Goodykoontz, J. H., and
Gutierrez, U. A., "Effects of Geometric ana
Flow Field Variables on Inverted-Velocity-
Profile Coaxial Jet Noise ana Source Distribu-
tions," AIAA Paper 79-0635, Mar. 1979.

13. Tanna, H. K., Dean, P. U., and Burrin, R. H.,
"The Generation and Radiation of Supersonic Jet
Noise, Vol. III: Turbulent Mixing Noise Data,:
Lockheed-Georgia Co. LG75ERO133 - Vol-3,
AFAPL-TR-76-65-Vol-3, 1976.

14. Lu, H. Y., and Lanter, S. K., "Simulation of
High Bypass Ratio Engine Jet Noise Flight
Effects by Model Jet Wind Tunnel Test," AIAA
Paper 80-1030, June 1980.

15. Cocking, a. J., "Prediciton of Flight Effects
on Jet Noise," AIAA Paper 76-555, July 1976.

16. Fogg, R. G., "CF6-32 Jet Model Testing Data
Report," General Electric Company, TM-8U-65,
Feb. 1980.

17. Willshire, W. L., "Groung Effects on Aircraft
Noise for a Wide-800y Commercial Airplane,"
AIAA Paper 81-1988, Oct. 1981.

18. Fink, M. R., "Airframe Noise Prediction
Method," United Technologies Research Center,
FAA-RU-77-29, Mar. 1977.

19. von Glahn, U., ano KreJsa, E., "Correlation of
Core Noise Obtained by Three-Signal-Coherence
Techniques." NASA TM-83012, 1982.

2U. Jaeck, C. L., and Atencio, A., Jr., "Static and
Wind-Tunnel; Near Field /Far Jet Noise Measure-
ments from Model Scale Single Flow Baseline and
Suppressor Nozzles," AIAA Paper 77-1303,
Uct. 1977.

21. Struut, F. G., Boeing Commercial Airplane Co.,
Personal Communication, Oct. 1981.

22. Clapper, W. S., Stringas, E. J., "High Velocity
Jet Noise Source Location and Reduction, Task
4-Development/Evaluation of Techniques for
'Inflight' Investigation," General Electric
Company, FAA-RD-76-79-4, Feb. 1977.

23. Uoyle, V. L., and Moore, M. T., "Core Noise
Investigation of the CF6-50 Turbofan Engine,"
General Electric Company, Cincinnati, OH,
R79AEG395, Jan. 1980. (NASA CR-159749)

24. KreJsa, E. A., "New Techniques for the Direct
Measurement of Core Noise from Aircraft
Engines," AIAA Paper 81-1587, July 1981.

.A.	 u



ORIGINAL PAG_ 13

OF POOR QUALITY

s
a^

MODELNOZZLE

i	 ®.-NOISE SOURCE
B r SOUND PATH

TUNNEL	 i r-MICROPHONE
;LOW r..a.	 ' It ARRAY OR

i TRAVERSE

Figure 1. - Wind tunnel flight simulation.
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Figure 2. - Comparison of prodlction l with high-bypass-ratio
model nozzlgstatic and simulated flight directivity In Boeing
wind tunnel at approximate takeoff conditions. Scaled to
full-size engine at 305 m flyover.
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Figure 5, - Free Jet flight simulatim.
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Figure 7. - Continued.
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