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SOUND DIFFRACTION AT WALL IMPEDANCE DISCONTINUITIES IN A CIRCULAR
CYLINDER -- INVESTIGATED USING WIENER-HOPF TECHNIQUE

Y.-C. Cho*
National Aeronautics and Space Admintstration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

Rigorous solutions are presented for sound diffractfon in a circular cyl-
inder with axial discontinuities of the wall admittance (or impedance). Analy-
tical expressions are derived for the reflection and the transmission coeffi-
cients for duct modes. The results are discussed quantitatively in the limits
of small admittance shifts (a) and of low frequencies (ka). One of the more
remarkable results is the low frequency behavior of the reflection coefficient

(Rgo) of the fundamentzl mode. For the mode of a hardwall duct reflected from
the junction with a softwall duct, Rgo .- (1 - vka \/?77—A); this result is
in contrast to the frequency dependence of the reflection from the oper end of
2 hardwall duct, for which RS, » - [1 - (ka)?r2).

NOMENCLATURE
a duct radius
c sound speed
an see eq. (47)
G(X,X;) Green's function; X and X, respectively, being coordinates of
observation and source points
In Bessel function of order m
k w/c, free space wave constant
kmz propagation constant of (m,s) mode
L(B) see eq. (49)
L.(8) see eqs. (55) and (56)
Nmz normalization factor, see eq. (7)
*Physicist.

This paper Is declared & work of the U.S.
Government and therefore is in the nublic domala.
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acoustic pressure
normalized etfgenfunction, see eq. (6)

reflection coefficient for (m,n) mode incident and (m,J) mode "
reflected

cylindrical coordinates of observation point

cylindrical coordinates of source point

surface, see fig, 2

transmission coefficient for (m,v) mode of duct 2 excited by
incidence of (m,n) mode of duct 1

transmission coefficient of (m,n) mode of duct 1 excited by
incidence of (m,v) mode of duct 2

time

particle velocity

Neumann function (Y - Bessel function) of order m

eigenvalue corresponding to (m,s) mode
complex variable, real being conjugate to spatial coordinate
variable x

Fourier transform of vy, see eq. (46)
reduced Green's function, see eq. (28)
N = My admittance shift

Dirac delta function

admittance (pcu/p)

see eq. (C6)

see eq. (8)

density of medium

Fourier transforms of v,

velocity potential
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. angular frequency

INTRODUCT ION

Lined ducts have long been employed as silencers of noise generated in a
fan duct system. The sound attenuation in a long, uniformly lined cylinder is
adequately understood in terms of acoustic wave modes with complex propagation
constants. However, in practice the liners are finite in length, and are some-
times made with segments thus providing discontinuities of the wall impedance.
At the impedance discontinuities, a wave under?ocs diffraction, being partly
reflected and partly transmitted. The reflection accompanies the mode scatter-
ing, and the transmission involves the conversion of the mode to a new set of
modes. In addition to the sound absorption by the liners it has been suspected
that the reflection tg’ the mode conversion can also contribute appreciably to
the noise reduction. Such a contribution still requires a comprehensive
study,.  This paper presents a rigorous treatment using the Wiener-Hopf tech-
niquetz) of the diffraction of a mode due to the discontinuity of the wall im-
pedance in a circular duct. The analysis involves an incident wave of an arbi-
trary mode, and can be expanded to a case of multiple diffractions which occur
in a duct invelving more than one axial discontinuity in the wall impedance.

Similar approaches were used previouszg_gg studies of the diffraction of
the fundamental mode in rectangular ducts. The formal solution involves
infinite product terms, and can be easily manipulated to produce numerical re-
sults in some limiting cases with the fundamental mode incident. However, with
a higher order mode incident, the numerical evaluation requires calculation of
complex eigenvalues of many modes, and the infinite product terms converge
weakly especially when the impedance discontinuity is large. In the present
analysis the formal solution is obtained first, and is used only to determine
the analytical properties of various functions involved in the intermediate
stages of the computation.

FORMULATION AND SOLUTION OF WIENER-HOPF TYPE INTEGRAL EQUATION
Modal Solution

This section begins with a review of modal solutions in a circular duct.
A duct mode corresponds to an eigensolution of the steady wave equation in a
uniform duct which is subject to a homog*n us boundary condition on its wall.
With simple harmonic time dependence e='ot of the field, the wave equation
is reduced to the scalar Helmholtz equation, which is written for cylindrical
coordinates (r,¢,x) as follows:

2 2
1) ) 1 9 ) 2
T T e o k] v = 0. |
('" o ) M

Here k = w/c, and v is the acoustic velocity potential and accordingly, the
particle velocity U and the acoustic pressure p are given by
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= -6*9 (2)

<y

incky, (3)

P

where p 1is the steady density of the medium. The wall boundary condition is
specified in terms of the specific acoustic admittance n:

ey ik
- ikny = 0. (4)
rea r=a

An eigensolution to this problem is obtained as:

. ik x
_ _img ms,
y~e %Q (r)e . (5)

Here Qmg(r) is the normalized Bessel function:

1 r
Qe (r) = §— ("mz a> (6)
me
with the normalization factor given as
_ ?Jm(aml) -
me \/-2' ’
“ma
where
Mg = 1 for Gy = 0,
-1/2 (8)

2 7
] - m_(_:_(_l)g;n_L for a, #0.
me

The solution in equation (5) corresponds to the (m,z) mode, m and & being
integers called the circumferential and radial mode numbers, respectively. The
constant g is the ccrresponding eigenvalue that is obtained as the ith

root of the equation

dJ (u)
o~ ikand (a) = 0, (9)

and kp, 1is the propagation constant given by

2
2 [+ ]
kg = Y K - (-{}£> X (10)
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For an acoustically absorbing wall for which Re(n) > 0, the phases of «

and kmz are chosen such that me

ﬂ'(amt) >0, ”'(°m;) < 0, (11a,b)

R‘(kmz) >0, z“(kmz) > 0. (12a,b)

It follows then from inequality (12a,b) that the solution in equation (5) cor-
responds to the (m,2) mode propagating to the positive x-direction. For the
propagation to the negative x-direction, -kp, 1is used in place of kp,. Note
that the lowest radial mode number is here cﬁosen to be zero, corresponding to
the zeroth (or smallest) root of equation (9).

The problem to be treated here is concerned with the diffraction of a duct
mode due to the axial discontinuity of the wall boundary condition in a circu-
lar cylinder, as illustrated in figure 1. The cylinder is, for convenience,
thought to be composed of two duct elements coupled at x = 0. The elements
are designated by 1 and 2, respectively, for x < 0 and x > 0. The respec-
tive wall admittances are " and Nyt that is, for x <0

oY .
22 - ikng¥ =0, (13)
ar =4 1 r=a
and for x > 0
3y .
— - ikn, ¥ = 0. (14)
[ r=a 2 r=a
The eigensolutions are
. (1)
. 1k( X ,
y ~e'm Qéi)(r\e ma for x < 0, (15)
. (2)
, ik "7x
y ~ oiMe Qéi)(r)e me for x > 0. (16)

Here ng and k are superscripted with 1 and 2, respectively for t?%)
mg

However, the circumferential mode number m 1is a conserved quan-

me

duct elements 1 and 2. The corre<ponding eigenvalues are denoted by a
(2)

and LR

tity because the cyiindrical symmetry is maintained throughout the duct, and

'im¢

the angle dependence e will be often omitted.

Consider an incident wave which is composed of a single mode of the duct
element 1, propagating towards the center (x = 0). Upon arrival at x =0,
the wave is partly reflected and partly transmitted. With the (m,n) mode in-
cident, the resultant wave can be written as, for x <0
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o (1) (1)
k ~ik
Y= f’é&,)(tﬂe1 ™" Rh (e re ™ (17)
J=0
and for x > 0
= . (2)
k
' ’Zfﬂv“ ~2gme ™. e)
v=0

The first term in equation (17) is the incident wave, and ihe second term is
the reflected wave, which is composed of many modes of the duct element 1.
Equation (18) represents the transmitted wave which is composed of many modes
of the duct element 2. The constants RnJ(l) and Tﬂv(l + 2) are the reflec-
tion and the transmission coefficients. The first subscript of the coeffi-
cients is the radial mode number of the incident wave, and the second subscript
the radial mode number of a mode in the reflected or the transmitted wave.
These coefficients will be here determined by using the Wirner-Hopf technique.

Wiener-Hopf Integral Equation

For the formulation of the Wiener-Hopf type integration, we consider the
Green's function, G(i,io), which is a solution of the equation

Q>

N

2 2
(%%_Frfl?+%§ +-a—-2-+ k2> G(i,;o) =—3:6(r- rO)G(Q- ¢0)5(x "Xo)- (19)

@ ax

L%

Let it be subjected to the boundary condition of the duct element 1; the
Green's function js then constructed in terms of the eigensolutions for the
duct element 1:(6)

X

> o} (ryol) (1)
. e _i 2 : 1m(¢—¢0) (r)Q (rO) ik |x X |
G(X,XO) = Z% e mR‘ k(l) e . (20)
M=—wo
2=

In the absence of sources, the acoustic field inside the duct can be
expressed in the integral form

¥(X) =L [mo)eoe(;,;o) - G(i,ioﬁov(io)] e n dsy . (21)

The boundary surface S 1is shown in figure 2 and n is the outward unit vec-
tor normal to the surface. It is convenient to divide the surface integral



into three parts: the integrations on the duct wall, S;, on the cross section
at xg = -=, Sy, anu on the cross section at xp = =, S3, as follows:

Y= Il + 12 + 13. (22)
2n -
a6 ay
Il = @ dQO dXO(Y 'a—r— -6 -a-r) » (23)
0 0
r.=a
0 - 0

]
a6 3y
X -
0 0 0
2w
36 3y
I3 = f dvof rOdrO(\r 3;6 -G .8—)-(6-) . (25)
X o
0 0 0

The integral I3 1is zero because vy and G decay exponentially as xqg + =,
as one can see from equations (18) and (20). As for the integral Ip, v in
equation (17) is used. The contribution from the reflected wave is zero based
on an argqument similar to the arqument for I3, With the expression for the
incident wave and equation (20) inserted into equation (24) one can readily
obtain

. (1)
. ik X
I: ae'm® Q;i)(r)e mno (26)

This is none other than the incident wave. Now turn to the integral Ij. For
xg < 0, ¥ and G satisfy the same boundary condition given in equation (13).
Thus, the integrand is zero for xp < 0, and we have

. 3y
RLI m ay
Il = at dxo( --—aro Ym r%) ’ (27)
r nU

0 0

where vy, 1s the reduced Green's function,

~d
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ikéi)|x-xol.

. i 1 (1) (1)
Ym(r’roix"xo) = = '2' :(r)' le (r)le. (ro)e (28)
me,
L
It is convenient to decompose ¥ as
Y=y, *y. (29)

Here v, is the incident wave, The function ) represents the reflected

wave for x < 0, and also the transmitted wave minus the incident wave for
x > 0. Note that for x > 0 neither ¥; nor ¥y, satisfies the boundary con-

dition in equation (14), although ¥ does. The condition for Y, can be
readily derived as, for x >0

5| = Fknp¥ - iknpve. (30)

r=a
Using equations (29) and (30), and the fact that the incident wave and the
Green's function satisfy the same boundary condition, one obtains

I1 = -ika Ae1m¢.4: ym(r,a;x - xo)v(a,xo)dx0 (31)

where a = n, =Ny It follows from equations (22), (26), and (31) and I3 =0
that

?D(r,x) = -ika & uéra dxoym(r,a;x - xo)[wi(a,xo) + VD(a,xO)]. (32)

Introduce the functions va(x):

vD(a,x) for x >0,

v, (x) = (33)
0 for x < 0.
0 for x > 0,

¥ (x) = (34)
WD(a,x) for x < 0.

Then Equation (32) can be written for r = a as

v.(x) * v (x) = -ika A.4§.w dxovm(a,a;x - xo)[vi(a,xo) + v+(x0)]. (35)

This is a Wiener-Hopf type integral equation.
8
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Fourier Transform Solution

First consider the Fourier transforms of w¥s(x):

0(6) « =L [ v (0", (36)
1 ® iBx

¢_(8) = (x)e ""dx. (37)

_ = “Z: v (x)e "Tdx

With the lowest radial mode number corresponding to the least attenuating mode,
the field L) behaves asymptotically for x + =, as

. (2)
X + ® 'kmo X
Yy ——e . (38)

. m] . [(2)] 2) (1)
Note that, if .%n[kmn is less than /m Kon' | Kmo 1S replaced by k.o (the
incident wave constant) here and in equations (40) and (42) below. And for

X + = o,

. (1)
-ik X
Y X+ M, (39)

It follows that e4+(8) am! ¢_(8) are analytic, respectively, in the upper half
plane (UHP) and in the lower half plane (LHP) of the B8 space. Hcre the half
planes are defined as follows:

su(s) > - [k for uwe, (40)
Im(8) < y"‘[kr(ng)] for LHP. (41)

Note that the two half planes overlap in the region specified by
(ZX] [ (1)]
-7n[kmo <Im(B) < Im kmo .

The functions ¢+(B) and ¢_(8) are both analytic in this region, and the in-
verse transforms are obtained as

v, (x) = 1 ) ¢,(8) -iBx 4 , 43
ﬂ_f e~ 8% g (43)
v_(x) = "o (8)e”® gp. (44)

9
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Note that the integral path is here the real axis, which is in the region spe-
cified by equation (42)
The Fourier transform of equation (35) yields

0,(8) + 0_(8) = ~tka & VZ7 1 (8)[Fpn(8) * 0,(0)]. (45;

Here Tpy, which is obtained in appendix A, is the Fourier transform of yp:

r.(8) = de e'®¢ Yl2:85¢). (46)
And
Fon(8) = mé"l')(a) T
mn TV [ﬁ + k;i
= \/;_;_{' dx vi(a,x)e“x. (47)

The integral in equation (47) is defined only for Jm(8) > - Zu[k;iﬂ . However

an is defined in the entire 8 space except at the pole g = -kﬁé), and con-

stitutes the analytic continuation of the integral for Jm(s) < - .%u[?ﬁi)].
Rearranging equation (45), one obtains

L(s) [o,(8) * Fo(8)] = ~o_(8) *+ F, (), (48)

where

L(B) =1+ ivZx ka & rm(a,a;s). (49)

As shown in appendix A, rm(a,a;s) lﬁl.:.: 0, thus

L(a)l8l * =, (50)

The next step of the Wiener-Hopf technique is to decompose equation (48)
into two factors, one analytic in the UHP and the other analytic in the LHP.
To this end, L(8) shall be factorized first. With the substitution of equation
(A11), equation (49) is written as

ad'(a) - ikan,J (a)
m 2'm
L(B) = SITTaY = TKan, I TaT" (1)

where

10
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a = Q k“o

The numerator and the denominator in equation (51) are even functions of a

for m even, and are odd functions of a for m odd. Thus, for m even the
two factors are entire functions of . For m odd, the two factors are con-

currently multiplied by o« to be made entire functions of 8. In either case,
th?7§ntire functins possess simple zeroes and equation (51) can then be written
as

o] (2l )

]
where

Jé(ka) - ianm(ka)

Lo = JTTka) = Tnyd, (kaT"

(53)

The factorization of L(8) immediately follows:

L(s) = L,(8)/L - (8) (%4)

where
L+(8) = Ly H [1 + —('g'{l [1 + —ns'{l , (55)
10 kmx kmz
= |
L_(8) = H |: - —(%TJ l:l - 'T%Y:] . (56)
- kmz kmt
Note that

L (-8) = LO/L+(8). (57)
Equation (48) can now be written as

L+(3)[’+(S) * an(B)] - L (-kn("ll)) an(a)

@[ ts) e )] - () Fte (58)

11
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Here the term L_ (;ké%))- an(e) has been subtractec from both sides to re-
move the pole of F"m(a) froin the right side.

The left and right sides of equation (58) are analytic, respectively, in
the UHP and the LHP. The two sides are the same and analytic in the common
analytic region spec f’ed in equation (42). Thus they are analytic continua-
tions to each other, and equation (58) defines a runc.fon which is analy*ic
in the entire B8 space. As B + =, La(8) » constant and ex(8) » (1/8).

The aS{gftotic behavior of ex(8) is inferred from the behavior of ¥(x) near
x =0, It follows then that both sides of equation (58) t?g? to be zero
1ike (1/32, as B + ». Accordiny to the Liouville's theorem, the function
must equal zero everywhere, and vne obtains

o (8) = [L_ ( (1))//L (8) - ] Fon(8)s (59)
o_(8) = - [L_ (-k;rll))/L_(s) - l]an(e). (60)

Reflected and Transmitted Waves
The reflected wave is determined from equation (44) with the substitution

of equation (60). The integral in equation (44) can be replaced by a contour
integral aleng a path C closed in the UHP as illustrated in figure 3:

j’r o_(a)e'iex ds for x < O. (61)
C

Y (x) =
Vr

The function e¢_(8) is singular only at the simpie poles B8 = kéz) j=0,1,2,
which corresponded to simple zeroes of L_{(8). Thus, equation (61) involves a
Cauchy type integral, which is readily evaluated as

(1)

-ik
vy (x) = ( ) éi)(a)e ) for x < 0, (62)
J
where
] (1)(a) k(,l))'“- (_k:”l‘))
Rni(1) = Qm(a, T (63)
- l«1) = 1)
m
IEE:
=0 ml Lé] mt

12



ORiGiisL PACE §
OF POOR qQuaLTy

Equation (63? determines the reflection coefficients, which have been dei ined
in equation (17).

The transmitted wave is determined from equation (43) with the substitu-
tion c€ equation (59). The integral in equation (43) is replaced by a contour
integral along a path C' shown in figure 3. The function e, (8) is singular

only at the simple poles at 8 = —kmz , v=0,1,2 corresponding to the simple
zeroes of L+(8). One can then readily obtain

(2), wl)
va(x) = 120 @e™ - oW ae ™ for x>0,  (64)
where )
1 (1) (2)
CRERE TR (1 )‘(T;'"——m (63)
’ Qmy (a) 0 kmn - kmv
= (2) (2)
IEIE:
k
=0 L me v

The second term in the right side of equation (64) 1is none other than the incident
~vave, thus for x > 0 the net field is, from equation (29),

. ik(2)y
v(a,x) = ™ (1. a)Q;E)(a)e my for x > 0. (66)

V=

This is the transmitted wave, and equation (65) determines the transmission
coefficient, which has been defined in equation (18).

DISCUSSION: RECIPROCITY AND LIMITING CASES
Foregning detailed numerical calculations, we will discuss here the lim-
iting cases of a small admittance shift a and of 19w Frequenc1es The dis-
cussion will also include the reciprocity relations.!
Reciprocity Properties
As in appendix R, the infinite products that are explicitly comprised in
equations (63) and (€7 c?n be expressed in terms of the factor L4+ which can

be evaluated numer1cu||y The reflection and the transmission coefficients
can then be written as

13
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1) (1
RM. (1) = -ik & LO“( )"&n) (67)

ST ) L ()

L () W0,

ik A Ymn Ymy
Tm(l.2) = , , - S (ﬂTﬂ (68)
v | *mv ~ “mn +\"mn/

where we have also used equation (57).
Th§ reciprocity relations can be readily established from equations (67)
and (68):

] 1
k( Jg" R0 (1) = kén)RJn(l) (69)

(2)m . (1)ym
kmv Tnv (1 +2) kmn Tvn (2 +1). (70)
Here Tg;(z + 1) is the transmission coefficient for the (m,n) mode generated

in the duct 1 upon the incidence of the (m,v) mode from duct 2. Recall that
reciprocity is a characteristic of a system linear vibration. For a more de-
tailed discussion, one may refer to reference 10.

Small Admittance Shift

When the admittance shif. is small such that lka al << 1, equations (67)

and (68) become simple expressions: As detailed in appendix C, the reflection
and the transmission coefficients are written as

ks LD,

RT.(1) = m_"m + 0j(ka a 2 , 71
) St ofte o] o
mj mn mj

-

(Y
Tﬂv(l +2) =1 - 153— —%?T +0 [(ka A)z] for v = n, (72a)

Ko _

(1) (1)

k8w, 2
& ak(l) [ (1) : k(l)] +0 [(ka a) ] for v #n. (72b)
mv mn

mv

As expected, a very small admittance shift causes very little reflection or
very little mode scattering in the transmission. As a4 increases with a fixed

1A
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nl, the reflection coefficient increases linearly with a. The behavior of the
transmission coefficient may be discussed in two separate cases. For v =n,

the transmission coefficient deviates linearly with a from unity. For v =n,
the transmission coefficient linearly increases with a, and is inversely pro-

; (1) _ (1)
portional to kmv - kmn .

Low Frequency Limit: ka << 1 orlal
In this case, one may be interested in the incidence of the fundamental
mode only. For simplicity, we also assume n o= 0, that is, the duct element 1

is hard-walled. The reflection and the transmission coeffigients are then ap-
proximated as

. K
o == [1- yF - 0 ()] 9
0,1+ 2) = ¢fZK8 4 (%a_) (74)

As ka + 0, the wave will be completely reflected trom the impedance discon-
tinuity. As the frequency increases from zero, the amplitude of the reflection

coefficient decreases from unity as +ka. It is interesting to compare this
with the low frequency behavior of the reflection from the open eni of the
duct. For the latter case,(ll) the reflection coefficient is

2
K
0y - [1- 9], (75)

CONCLUDING REMARKS

The Wiener-Hopf technique has been empluyed to study modal scattering of
sound in a circular cylinder subjected to an axial discontinuity of the wall
impedance. Analytical expressions have been derived for the reflection and
the transmission coefficients. The analytical expressions display some symme-
try properties such as the reciprocity relations, and can be immediately eval-
uated by numerical integration of the factors in the reflection and the trans-
mission coefficients without calculating the complex modal eigenvalues.

The quantitative discussion was confined to the limiting cases of small
admittance shift, and of low frequency. With the small admittance shift, the
rﬁfggction and the transmicsion coefficients depend linearly on the admittance
shift.

The case of low frequency includes the fundamental mode that is incident
from a hard-wall duct and reflected at the junction with a soft-wall duct. At
the very low frequency, the reflection coefficient is almost unity in the au-
plitude and with phase change of 180 degrees. This result is similar to tne
Tow frequency limit for the reflection of the fundamental mode from an open
end of a hard-wall duct. However, the deviation from unity with increasing
frequency is quite different for the two cases. For the present problem, the
deviation is proportional to the square root of the frequency, whereas, for

15



the reflection from the open end, the deviation is proportional to the square
of the frequency.

Another low frequency characteristic is that the deviation of the reflec-
tion coefficient from unity is inversely proportional to the square root of
the admittance of the soft wall.

16
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APPENDIX A

FOURIER TRANSFORM OF GREEN'S FUNCTION

The function r, can be obtained directly from equation (28) by using
equation (46). The procedure is, however, cumbersome. We employ a more ele-
gant method in which ry, 1is obtained as a solution of the Fourier transformed
equation. The equation for the reduced Green's function is

2 2 s(r - rn)e(x - x,)
12 ? 3 2
(? Fraw-gtigt ") Yn{FsTgix = Xo) = . - (A1)
r ax
Consider the integration
! j eq. (Al)e1sc dg (A2)
Vir e
where ¢ = x - x5. Effecting this integration, one obtains
2 2 §(r - ry)
1d d m a 0
2 r - + r (r,r ;8) = ——m———o (A3)
(r‘ ar * dr ;2- ;2-) m 0 verr
where
o2 = (6 - 89)dl. (A4)

The solution can be expressed as
r‘yl(ro)yz(r) for rg<r
1

o = i AS
nl"oi®) VT roh(y;.y,) { -

l"-?‘o

X yl(r)yz(ro) for r < ro .

Here y; and y, are homogeneous solutions of equation (A3), and W is the

Wronskian. It follows from equation (A5) that yl(r) should be analytic at
r = 0, and thus one has

y(r) = 9y (@ 3)- (A6)
The solution y, 1is linearly independent of Y1, and is here chosen as

Y= Ip (0 5) + 8, (= %) (A7)

The constant B is determined from the boundary condition at r = a as given
in equation (13), which was imposed on the Green's function:

17
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d_y2

a-r-_— - 1kn1y2 = 0 at r = a, (Aa)

On inserting equation (A7) into equation (A8), one obtains

aJ';I(a) - ‘ikanlJm(a)

= - . A
B~ - VTaT = Tkan, ¥ (@) (A9)
The Wronskian is obtained as
28
W= &, (A10)
nr‘o
Summarizing equations (A5) to (A10), one obtains for r = rg = a
J_(a)
-1 m
- = 4 . A
I (3,258) 75 ATl = TKanJ(s) (A11)
Using the asymptotic form of Jyp for a large argument=(12) one can show
coylBls = 1
rm(a,a,s).__... <-§> . (A12)

18
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INF INITE PRODUCT TERMS
The infinite products contained explicitly in equations (63) and (65) will

be expressed in terms of the factor L+.
Let Dy denote the infinite product in equation (63):

= k(1) , ’ k(1)
D-I, 1-{1)- 1-—(%)-"‘ . (B1)
' kmzl . kmz
=1 [P

Compared with equation (56), this product can be written as

1im 1 8
P U‘e‘r[ E(TT] 2
m mJ

Using equation (54) and Ls+(g) being analytic in the UHP, one can write equa-
tion (B2) as

1 1im B8
i E_(k NI L&) l: ‘k—a,{l ) (83)
+\mj mj mJ
As no;iced from equation (51) or (52), L(B) possesses a simple pole at
B = k;g). Near the pole, L(B) can be expanded as
2
(1)] (1) ( (1)) ; ( (1))
s - k(1) [“mj omj Im \omj’) = Kanpdn Lon;
L(8) L s , . (84)
g (ol [e - kU.)J
mji “m\"mj mj
On inserting equation (B4) into equation (B3), one obtains
N Y
R ) i o o
+ \"mj 3
where we have used
(1), ( (1) ~ (1))
L In (umj) - ’lkanlJm (umj = 0. (86)

Consider now the infinite product in equation (65):

19
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H k(z> / km
Dz = H 1 - . (87)

220

Compared with equation (56), this product is written as

1im 8
02 = - k(z) L_(B) E - ';(7‘)']- (88)
mv mv
Using equation (54), one obtains
- (2)\ Vim 1 8
D2 =L+ ("mv> 5 . (2) rm[ - [QTJ (89)
My my

Using the expansion of L(g) near the simple zero 8 = k&i), one obtains

(2) P

D, = -ika a L, (kéﬁ)) 3‘%27 : (B10)
m

20
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SMALL ADMITTANCE EXPRESSIONS
Here we will determine the limiting values of the eigenvalues, the

propagation constants, and the factor L+. These limits have been used to
derive equations (71) to (74) from equations (67 and (63).

Small Impedance Jump: |ka al << 1.

Consider the eigenvalue equations derivable from equations (13) and (14):

(x(l)J"'1 (a(l)) - ikanldm (a(l)) =0, (C1)
u(Z)Jr'n (0(2)) - ikanzdm (0(2)> = 0, (C2)

Set
MU (C3)

In the limit of |ka al| << 1, one expects that
lel <« [otV]. (c4)

To determine €, equation (C2) is expanded around u(l) and equation (Cl) is
used to obtain an algebraic equation for e¢. With the first order expansion,
one obtains

€ £ 4 m (CS)

where the mode numbers (m, &) are used as the subscripts on ¢ and 0(1).
Equation (C5) obviously satisfies the inequality (C4). The equation is not

valid 7o the case of °éi) = 0 which is separately treated later. Also it

should be mentioned that the derivation of equation (72a) requires the second

order expansion, which will not be discussed here.
For the proupagation constants, one sets

2) _ (1
a K48 kD] (c6)

Using equations (10), (C3), and (C5), one obtains
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ika a me

e © ak(I) )

me

Unless the frequency is close to the cutoff frequency of the (m,t) mode,

equation (C7) satisfies the inequality

"ml, << ,akéi) .

Set
L+(B) = Logz(a)/gl(a)
where
B
QS(B) = 1 +'k‘('s‘)' ’ s = 1,2.
120 ma

Using equation (C6), one may obtain

. A
@ e | | 41v 2o Sm
2 PSR
=0 ma a [km‘ ]
- K
*9(e)ql- (O T; + (0
4 ak ll * K /5] )

With the substitution of equation (C7), equation (Cl1) is written as
92(6) ” 91(8) [1 - jka a x(B)],

where
LT/ )
x(8) = ma ] + ML
k(I’
ms

(€7)

(c8)

(C9)

(C10)

(C11)

(C12)

(C13)

The function x(8) is a finite and well behaved function of 8 in the UHP.

For equation (53),
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jka a
Lo =1~ Y . (C14)
0 akdm(ka) -‘1kani3h(ka)

From equations (C9), (C12), and (C14),

Ly(8) =1 - ika a [X(B) - m]. (C15)
m m

On inserting equation (C15) into equations (67) and (68), one obtains equations
(71) and (72h). As mentioned earlier, the second order expansion is required
for equation (72a). For equation (72b), we have also used

"r(ni) o "r(n};) [1 + 0(ka A)]. (C16)

Low Frequency Limit: ka << 1 and |al

As in the text, we consider the case of nj = 0 and of the incidence
of the (0,0) mode (the plane wave mode). We have then

b= ny, afd) =0, ki) « k. (C17)

Set aég) = ¢, then the expansion of equation (C2) yields
2 /-2ika a (C18)

and
akég) e /7ka a, (€C19)
Lo = ki (€20)
is

L (kL) =32 <1 . ) (c21)

L, () w2 Zhn ( 2-%) (c22)

wid) = wg! = 1. (C23)
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DUCT ELEMENWT ] ‘+— DUCT ELEMENT 2

Fiqure 1. - Circular cylinder with admittance shift (4 = np-m)
at x = Q {m, n) mede incident; {m, jj modes reflected;
im, vi modes transmitted.
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Figure 2. - Integration surface,
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Figure 3. - Integratior paths C and C' and simple poles.
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