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SOUND DIFFRACTION AT WALL IMPEDANCE DISCONTINUITIES IN A CIRCULAR

CYLINDER - INVESTIGATED USING WIENER-HOPF TECHNIQUE

Y.-C. Cho*
National Aeronautics and Space Administration

Lewis Research Center
'Cleveland, Ohio 44135

ABSTRACT

Rigorous solutions are presented for sound diffraction in a circular cyl-
inder with axial discontinuities of the wall admittance (or impedance). Analy-
tical expressions are derived for the reflection and the transmission coeffi-
cients for duct modes. The results are discussed quantitatively in the limits
of small admittance shifts (a) and of low frequencies (ka). One of the more
remarkable results is the low frequency behavior of the reflection coefficient

w
 (R

o00 ) of the fundamental mode. For the mode of a hardwall duct reflected from

the junction with a softwall duct, R00 + - (1 - vTa- VUFa); this result is
in contrast to the frequency dependence of the reflection from the open, end of

a hardwall duct, for which R00 + - [1 - (ka)2/2^.

NOMENCLATURE

a	 duct radius

c	 sound speed

Fmn
	 see eq. (47)

G(x 9 x0 )	 Green's function; x and x0 , respectively, being coordinates of

observation and source points

Jm 	Bessel function of order m

k	 w/c, free space wave constant

k ML	 propagation constant of (m,L) mode

L(o)	 see eq. (49)

L*(B)	 see eqs. (55) and (56)

Nmt	 normalization factor, see eq. (7)

— W P Wys^TST.
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p	 acoustic pressure

Qmt	 normalized eigenfunction, see sq. (6)	 I

R
nj
	 reflection coefficient for (m en) mode incident and (m,j) mode

reflected

(r,q,x)	 cylindrical coordinates of observation point

(rO,vD,xO) cylindrical coordinates of source point

S	 surface, see fig. 2

T-v(1 + 2) transmission coeff i cient for (m,v) mode of duct 2 excited by

incidence of (men) mode of duct 1

TMn(2 + 1) transmission coefficient of (men) mode of duct 1 excited by

incidence of (m,v) mode of duct 2

t	 time

+u	 particle velocity

Ym	Neumann function (Y - Bessel function) of order m

amt	 eigenvalue corresponding to (m,&) mode

s	 complex variable, reAl being conjugate to spatial coordinate

variable x

B;

rm Fourier transform of	 Ym, see eq. (46)

Ym reduced Green's function, see eq. (28)

A n2 - n 1 , admittance shift

SW Dirac delta function

n admittance (ocu/p)

"mt
see eq.	 (C6)

IAmt
see eq. (8)

P density of medium

a& Fourier transforms of 	 era

Y velocity potential
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angular frequency

INTRODUCTION

Lined ducts have long been employed as silencers of noise generated in a
fan duct system. The sound attenuation in a long, uniformly lined cylinder is
adequately understood in terms of acoustic wave modes with complex propagation
constants. However, in practice the liners are finite in length, and are some-
times made with segments thus providing discontinuities of the wall impedance.
At the impedance discontinuities, a wave undergoes diffraction, being partly
reflected and partly transmitted. The reflection accompanies the mode scatter-
ing, and the transmission involves the conversion of the mode to a new set of
modes. In addition to the sound absorption by the liners it has been suspected
that the reflection M the mode conversion can also contribute appreciably to
the noise reduction. 	 Such a contribution still requires a comprehensive
study This paper presents a rigorous treatment using the Wiener-Hopf tech-
nique (2 ) of the diffraction of a mode due to the discontinuity of the wall im-
pedance in a circular duct. The analysis involves an incident wave of an arbi-
trary mode, and can be expanded to a case of multiple diffractions which occur
in a duct involving more than one axial discontinuity in the wall impedance.

Similar approaches were used previous) it studies of the diffraction of
the fundamental mode in rectangular ducts. l'S1 The formal solution involves
infinite product terms, and can be easily manipulated to produce numerical re-
sults in some limiting cases with the fundamental mode incident. However, with
a hier order mode incident, the numerical evaluation requires calculation of
comp ex eigenvalues of many modes, and the infinite product terms converge
weakly especially when the impedance discontinuity is large. In the present
analysis the formal solution is obtained first, and is used only to determine
the analytical properties of various functions involved in the intermediate
stages of the computation.

FORMULATION AND SOLUTION OF WIENER -HOPE TYPE. INTEGRAL EQUATION

Modal Solution

This section begins with a review of modal solutions in a circular duct.
A duct mode corresponds to an eigensolution of the steady wave equation in a
uniform duct which is subject to a homo"npous boundary condition on its wall.
With simple harmonic time dependence e- 1161 of the field, the wave equation
Is reduced to the scalar Helmholtz equation, which is written for cylindrical
coordinates (r,v,x) as follows:

(-FI 
ar r ^r + 

a
te

♦ 1
T +k2 v ' 0.	 (1)

r ab	 ox

Here k - w/c, and v is the acoustic velocity potential and accordingly, the

particle velocity u and the acoustic pressure p are given by

3
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u = v v,
	

(2)

	

p = ipckv,	 (3)

where p is the steady density of the medium. The wall boundary condition is

specified in terms of the specific acoustic admittance n:

avl	 =ar r_a - !knv r=a 0.

An eigensolution to this problem is obtained as:

ik x
v - eim'fQMINe ML .

Here Qmt (r) is the normalized Bessel function:

QML(r) = f m Jm Cam p, a)

with the normalization factor given as

N _ aJm(amd
me

-'/7 11 a

where

umR = 1	 for aML = 0,

2 +	 2 -1/2

= 1 - m 
(
—^

ll
an 	 foramp # 0.

\amA,/

The solution in equation (5) corresponds to the (m,e) mode, m and i being
integers called the circumferential and radial mode numbers, respectively. The

constant ami is the corresponding eigenvalue that is obtained as :he eth

root of the equation

dJ (a)
a ^a - ikanJm(a) = 0 1	(9)

and kmR is the propagation constant given by

k	 -	 k- (amp ).(10)
mR	 a'

(4)

(5)

(6)

(7)

(8)

4
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For an acoustically absorbing wall for which Rs(n) > 0, the phases of amt,
and 

kmE 
are chosen such that

Rs ( am R ) > 0,	 100(aME) < 0,	 (lla,b)

Rs(kmE ) > 0,	 Ywl kmE ) > 0.	 (12a,b)%

It follows then from inequality (12a,b) that the solution in equation (5) cor-

responds to the (m,t) mode propagating to the positive x-direction. For the
propagation to the negative x-direction, km 	 is used in place of km t . Note
that the lowest radial mode number is here cAosen to be zero, corresponding to

the zeroth (or smallest) root of equation (9).

The problem to be treated here is concerned with the diffraction of a duct

mode due to the axial discontinuity of the wall boundary condition in a circu-

lar cylinder, as illustrated in figure 1. The cylinder is, for convenience,

thought to be composed of two duct elements coupled at x = 0. The elements
are designated by 1 and 2, respectively, for x < 0 and x > 0. The respec-
tive wall admittances are n 1 and n2 : that is, for x < 0

arl - iknlfI
	

= 0,	 (13)
r=a	 r=a

and for x > 0

ar	
- ik n2 y I 	 = 0.	

(14)

r= a	 r= a

The eigensolutions are

ik(1)x

- e im(' QM(r)e 
m 	

for x < 0,	 (15)
ME

A(2)x
4, ` e im9P Q (2) (r) 2 

m8	
for x > 0.	 (16)

ME

Here 
Qm, 

and 
kmt 

are superscripted with 1 and 2, respectively for the

duct elements 1 and 2. The corresponding eigenvalues are denoted by a (l)
ME

and am, ) . However, the circumferential mode number m is a conserved quan-

tity because the cylindrical symmetry is maintained throughout the duct, and

the angle dependence e im(f will be often omitted.

Consider an incident wave which is composed of a single mode of the duct

element 1, propagating towards the center (x = 0). Upon arrival at x = 0,

the wave is partly reflected and partly transmitted. With the (m,n) mode in-
cident, the resultant wave can be written as, for x < 0

5
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	ik (1) x	 -ik(1)x
T 
= Qmn) (r)e mn	 +	 RM (1)Q(')(r)e	 and

J =0

and for x > 0

ik(2)x

_	 Tn^(1 	 - 2)Qm^)(r)e my

V=0

The first term in equation (17) is the incident wave, and the second term is
the reflected wave, which is composed of many modes of the duct element 1.
Equation (18) represents the transmitted wave which is composed of many modes

of the duct element 2. The constants R m (1) and Tm (1 • 2) are the reflec-

tion and the transmission coefficients. The first subscript of the coeffi-
cients is the radial mode number of the incident wave, and the second subscript
the radial mode number of a mode in the reflected or the transmitted wave.
These coefficients will be here determined by using the Wirner-Hopf technique.

Wiener-Hopf Integral Equation

For the formulation of the Wiener-Hopf type integration, we consider the

Green's function, G(z,x' 0 ), which is a solution of the equation

2	 2

r ar r ar +	 +	 + k
2 G(x,xp) = r a(r- 	 rO ) d ( ,R - fO )6(x - x0 ).	 (19)

Let it be subjected to the boundary condition of the duct element 1; the
Green's functio q is then constructed in terms of the eigensolutions for the
duct element 1:16)

	

im(q-t))	

m	

Q(1)(r)Q(1)(r ) 	 ik (1) Ix-x
G(x,z )	

-i	
e	

0	 mR	 mR	 0 
e ma	

0i•	
(20)

0 -	 k
m=	 ma

In the absence of sources, the acoustic field inside the duct can be
expressed in the integral form

w(x') 
IS 
	 [,r(z0 )vO G(x',z0 ) - G(x,z0 )v0 ,r(x'0 ) 	 n dSO. (21)

The boundary surface S is shown in figure 2 and n is the outward unit vec-

tor normal to the surface. It is convenient to divide the surface integral

(17)

(18)

6
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into three parts: the integrations on the duct wall, S1, on the cross section
at x0 - -•, S 2 , any on the cross section at x 0 - •, S 3 , as follows:

T - 1 1 + 12+ I3'	 (22)

2w	 •

I1-ad90 f0

dx0rar -G ar 	 ,
0	 0 r0-a

(23)

W

aG	 ar	
(24)I 2	d^0	 rOdrO - ^axO+GaxO	 '

 ) x0---
0	 0

2,r

I 3	dip0	 rOdrO Y aG - G ax ^	 (25)
0	 0

f00

x0M•

The integral I3 is zero because t and G decay exponentially as x0 	 •,
as one can see from equations (18) and (20). As for the integral I2, r in
equation (17) is used. The contribution from the reflected wave is zero based

on an argument similar to the argument for I3. With the expression for the
incident wave and equation (20) inserted into equation (24) one can readily
obtain

ik(I)xIL = eimlp Qmn)(r)e mn

This is none other than the incident wave. Now turn to the integral I1. For
x 0 < 0, r and G satisfy the same boundary condition given in equation (13).
Thus, the integrand is zero for x 0 < 0, and we have

y im^	 aYm	 ar /I I	ac	 dx0 (r r - 'm ar J

	

0	

(11r0-0
0

where I,r is the reduced Green's function,

(26)

(27)

7
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1	 Q(1)(r)Q(1)(r )eikmi)ix-x01.
	

(28)

0	 m	 0

R	
mt

It is convenient to decompose T as

IF = If i + 
TD

.
	

(29)

Here 
Ti 

is the incident wave. The function 
YD 

represents the reflected

wave for x < 0, and also the transmitted wave minus the incident wave for
x > 0. Note that for x > 0 neither 

Ti 
nor r 	 satisfies the boundary con-

dition in equation (14), although T does. The condition for 
Y  

can be

readily derived as, for x > 0

aTD

ar	 = ikn2^ - ikn l ^r i .	 (30)

r=a

Using equations (29) and (30), and the fact that the incident wave and the
Green's function satisfy the same boundary condition, one obtains

I 1 = -ika ee imip f Ym(r,a;x - x 0 )f(a,x0 )dx 0	(31)
0

where e = n2 - n l . It follows from equations (22), (26), and (31) and I 3 - 0

that

IF (r,x) = -ika e f dx Y (r,a;x	 x 0 
)[W 

i 
(a,x ) + w (a,x J.	 (32)D	

0	
O m	 -	 0	 D	 0

Introduce the functions T*(x):

If D (a,x)	 for x > 0,

	

+ ( x ) _	 ( 33)

	

to	 for x<0.

	

0	 for x > 01

	

T - ( x ) =	 (34)

Y D (a,x)	 for x < 0.

Then Equation (32) can be written for r = a as

	

lr + (x) + r- ( x ) = -ika e f ^ dx0 ym (a,a;x - x 0 )lf i (a,x 0 ) + t+ (x0 ),.	 (35)

This is a Wiener-Hopf type integral equation.

8
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Fourier Transform Solution

First consider the Fourier transforms of r*(x):

•+ (s) _	
1
f Y+(x)e'sxdx,	

(36)

VT1_K 

• (^) s	 1	 /'°° r (x)eioxdx.
	 (37)

With the lowest radial mode number corresponding to the least attenuating mode,
the field v0 behaves asymptotically for x -* •, as

ik(2)x

If x—^ a m0	 (38)

Note that, if la I mn)]k(1 	 is less than 9"`Lk(2)J , k (2) is replaced by kmn ) (the
incident wave constant) here and in equations (40) and (42) below. And for

X ^ - 00,

-ik(1)x

	

110 x-- -^ a 	 (39)

It follows that •+( 8) amd ®_(8) are analytic, respectively, in the upper half
plane (UHP) and in the lower half plane (LHP) of the 8 space. Hcre the half

planes are defined as follows:

	

9«r (8) > - 9M I mo )]	 for UHP,	 (40)

,MC(8) < 9Mr[k (2 	for LHP.	 (41)

Note that the two half planes overlap in the region specified by

k 
(2	

< )OX(o) < Y^[k (1)]_- AS I MO
)l	 MO

The functions •+(9) and o_(s) are both analytic in this region, and the in-
verse transforms are obtained as

?+( x ) =	
1

f^ •+(8)e-18x d8,	 (43)

Y_( x ) =	 1 
J	

® (8)e
-i8x 

d8.
V/r	 -

	 (44)

9
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Note that the integral path is here the real axis, which is in the region spe-
cified by equation (42)

The Fourier transform of equation (35) yields

a (s) + •-(s) _ -ika a ^ rm( B )[Fmn(
s ) + •+ (6)] .
	 (45)

Here rm, which is obtained in appendix A, is the Fourier transform of ym:

rm(s) =	 1 J
	

do ei9c trm(a,a ;t)•
^ _.

And

Fmn(s) e
iQ	 a)mn)(

s + kmn

	

=	 1
	4

dx vi (a,x)eisx
I
	

.

^/^ *  0

The integral in equation (47) is defined only for ?,w ( s) > - Aft 0 A . However

Fmn is defined in the entire s space except at the pole s	 -0 1) , and con-
mn

stitutes the analytic continuation of the integral for ?.K(s) < - ?NC [k()].
mn

Rearranging equation (45), one obtains

L(s)[o+ (s) + Fmn (s)] _ -a_(s) + Fmn (s),	 (48)

where

	

L(s) = 1 + iv7w- ka a rm (a,a;e).	 (49)

As shown in appendix A, rm (a,a;9) 1s1 — 0, thus

L(s)"' 4 - 1.	 (50)

The next step of the Wiener-Hopf technique is to decompose equation (48)

into two factors, one analytic in the UHP and the other analytic in the LHP.
To this end, L(s) shall be factorized first. With the substitution of equation

(All), equation (49) is written as

	

L(s)	
ctX(a) - ikan2Jm(a)	

(51)
= a m a -	 anlma.

where

(46)

(47)

10
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a - a j1k7 - 9

The numerator and the denominator in equation (51) are even functions of a

for m even, and are odd functions of a for m odd. Thus, for m even the
two factors are entire functions of s. For m odd, the two factors are con-
currently multiplied by a to be made entire functions of 8. In either case,
thIntire functins possess simple zeroes and equation (51) can then be written

LB L 	 1—	
B	

1+	
9	 1_	 B	 1+	 e	 1

( )	 p	 kkm"T	
k	 T	 ^T	

( )

IL-0	
m^	 mt /	 mt	 mt

where

Jm(ka) - in2Jm(ka)

LO = m ca - n 1 m ca '	 ( 53)

The factorization of L(B) immediately follows:

L (B) - L .* (B)/ L - (B)	 (54)

where

.

	

L+(B) - L 	 1 + km 	 1 + ^T	 (55)

L-0	 mt	 mt

L_(B)

	 fl 
	 (56)
kTT

L-0	 mt	 mt ]I

Note that

L-(-B) = L0 /L +(B).	 (51)

Equation (48) can now be written as

L+(B)[i+(B) + Fmn (B)] - L_ (-k ( ' ))F,n,;(B)

= L-(Bj^ a_(B) + Fmn (B)] - L- (01)) F n (B,.	 (58)
mn

11
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Here the term L_ (-kmn ))• F
mn

(p) `+as been subtracted from both sides to re-

move the pole of F
mn

(s) from the right side.

The left and right sides of equation (58) are analytic, respectively, in
the UHP and the LHP. The two sides are the same and ' analytic in the common
analytic region specified in equation (42). Thus they are analytic continua-
tions to each other, 4 and equation (58) defines a runc',.ion which is analy"ic
in the entire o space. As 6 + •, L* (B) + constant and a* ( 9 ) + (1/ 0)•
The as,,yy^^ totic behavior of •* (a) is inferred from the behavior of Y(x) near
x = 0.	 ItIt follows then that both sides of equation (58) trod to be zero
like ( 1 /B), as B + •. Accordin;.4 to the Liouville's theorem, JJ the function
must equal zero everywhere, and one obtains

a+(o) _ IL_ (kmn(l))/L+(o) - 1J Fmn (e),	 (59)

•_(s) _ - L - (-kmn('))/L_(o)  - 
1] Fmn (B)•	 (60)C

Reflected and Transmitted Waves

The reflected wave is determined from equation (44) with the substitution

of equation (60). The integral in equation (44) can be replaced by a contour
integral along a path C closed in the UHP as illustrated in figure 3:

r_(x)	 1	
f 

o_(e)e
-tsx

 dg	 for x < 0.	 (61)
2w	 C

The function o_(9) is singular only at the simnpie poles 6 = kmn ) j = 0,1,2,

which corresponded to simple zeroes of L (B). Thus, equation (61) involves a

Cauchy type integral, which is readily evaluated as

—ik(1)x
Y_(x) =	 Rmj(1)Qm^)(a)e	

mj	
for x < 0,	 (62)

where

	

Rm (1) = 
Qmnl)(a)	

kml)l- \
-Knn)) .

-	 —	 ) 	
(63)

m1

Qmj (a)
	

kmj +kmn

v	 i ll)	
k^l)

^	 1 - m

t=0	 -	 t4j

12
l
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Equation (63) determines the reflection coefficients, which have been defined
in equation (11).

The transmitted wave is determined from equation (43) with the substitu-

tion r` equation (59). The integral in equation (43) is replaced by a contour
Integral along a path C' shown in figure 3. The function s+ (9) is singular
only at the simple poles at a = -k (2) , v = 0,1,2 corresponding to the simplc-

MV

zeroes of L+(B). One can then readily obtain

ca	

1(2)x	 ik(1)x'1+(x) -	
Tmv( 1

 - 2) (2)	 my	 _ Qmn) W e mn	
for x > 0,	 (64)

v=

where	

(	 1
Q(1)(a)	

L - \ K(1) /	 k(2)
TM (1 -2 ) _ mn	 mn	 my	

(65)

	

Q( a)	 L	 kmn - T

	

k (2)	 r	 k(2)

1 
_ my	

1 - my

	

L 
k̂ j	 k M

	

j,--0	 R#v

The second term in the right side of equation (64) is none other than the incident

wave, thus for x > 0 the net field is, from F,quation (29),

ik(2)x

,Y(a,x) =	 Tm( 1 - a)Q(2) We 
my	

for x > 0.	 (66)
Mv

V=

This is the transmitted wave, and equation (65) determines the transmission

coefficient, which has been defined in equation (18).

DISCUSSION: RECIPROCITY AND LIMITING CASES

Foregoing detailed numerical calculations, we will discuss here the lim-

iting cases of a small admittance shift a and of lqwfrequencies. The dis-

cussion will also include the reciprocity relations. tl0

Reciprocity Properties

As in appendix R, the infinite products that are expl i citly comprised in

equations (63) and (f-j c1n be expressed in terms of the factor L+ which can
be evaluated numericuily. 2 ) The reflection and the transmission coefficients
can then be written as

13
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Lou (1)u(1)

Rm -(1) _	 -ik e	 m' mn	 (67)

akmj kmn + kmj	
L+W L+ (kmj"))

L + CO2)/ VIMIJ(2)Tn v( 1 - 2) =	 ik a	 (68)

aka kmv -kmn	 L+ 
kmn /

where we have also used equation (57).
The reciprocity relations can be readily established from equations (67)

and (68):

kmj)Rnj(1) - kmn)Rjn(1)'	
(69)

k(mv )Tm (1 - 2) 
= kmn)Tm (2 - 1).	 (70)

Here Tm (2 . 1) is the transmission coefficient for the (m,n) mode generated
vn

in the duct 1 upon the incidence of the (m,v) mode from duct 2. Recall that

reciprocity is a characteriscic of a system linear vibration. For a more de-
taiied discussion, one may refer to reference 10.

Small Admittance Shift

When the admittance shif,, is small such that Ika at << 1, equations (67)
and (68) become simple expressions: As detailed in appendix C, the reflection
and the transmission coefficients are written as

-ik a u(1)u(1)

R -(1) a	 mn m	 + 0 ka e ) 2],	 (71)nj	 ak	 k	 + k
mj I mn	 mj

ik Au

(1)12

T^v (1	 2)	 1 -	 7T + 0 [(ka e) 2]	 for v = n,	 (72a)

mn

ik a u(1.)u(1)
mn my	 + 0 1(ka e) 2]	 for v # n.	 (72b)

akak

_(l 

kmv - k mn ]

As expected, a very small admittance shift causes very little reflection or

very little mode scattering in the transmission. As a increases with a fixed

14
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q1, the reflection coefficient increases linearly with a. The behavior of the
transmission coefficient may be discussed in two separate cases. For v - n,

the transmission coefficient deviates linearly with a from unity. For v = n,
the transmission coefficient linearly increases with e, and is inversely pro-

portional to 011) - 01).

Low Frequency Limit: ka << 1 orlal

In this case, one may be interested in the incidence of the fundamental
mode only. For simplicity, we also assume n 1 = 0, that is, the duct element 1

is hard-walled. The reflection and the transmission coefficients are then ap-
proximated as

R00(1) 
r 

^1	 e + 0 \eal^'	 (73)

T00 (1 2)	 1A + 0 (
k_
as/.	

(74)

As ka + 0, the wave will be completely reflected from the impedance discon-

tinuity. As the frequency increases from zero, the amplitude of the reflection

coefficient decreases from unity as VFa. It is interesting to compare this
with the low frequency behavior of the reflection from the open enj of the

duct. For the latter case,( 11 ) the reflection coefficient is

CR00	
- 1 - (ka) 21 .	 (75)

J

CONCLUDING REMARKS

The Wiener-Hopf technique has been employed to study modal scattering of

sound in a circular cylinder subjected to an axial discontinuity of the wall
impedance. Analytical expressions have been derived for the reflection and

the transmission coefficients. The analytical expressions display some symme-
try properties such as the reciprocity relations, and can be immediately eval-

uated by numerical integration of the factors in the reflection and the trans-
mission coefficients without calculating the complex modal eigenvalues.

The quantitat 4 ve discussion was confined to the limiting cases of small
admittance shift, and of low frequency. With the small admittance shift, the

reflection and the transmission coefficients depend linearly on the admittance
shift.

The case of low frequency includes the fundamental mode that is incident

from a hard-wall duct and reflected at the junction with a soft-wall duct. A,t
the very low frequency, the reflection coefficient is almost unity in the a ,n-
plitude and with phase change of 180 degrees. This result is similar to the
low frequency limit for the reflection of the fundamental mode from an open

end of a hard-wall duct. However, the deviation from unity with increasing
frequency is quite different for the two cases. For the present problem, the

deviation is proportional to the square root of the frequency, whereas, for

15
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the reflection from the open end, the deviation is proportional to the square
of the frequency.

Another low frequency characteristic
tion coefficient from unity is inversely
the admittance of the soft wall.

is that the deviation of the reflec-
proportional to the square root of
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FOURIER TRANSFORM OF GREEN'S FUNCTION

The function rm can be obtained directly from equation (28) by using
equation (46). The procedure is, however, cumbersome. We employ a more ele-
gant method in which rm is obtained as a solution of the Fourier transformed
equation. The equation for the reduced Green's function is

a	 M 2	 82	 2)	 a(r - ro )6(X	 XO)

	

F Tr r Tr - 
-7 + --7 + k Ym(r,r

O
;x - XO)	

r	
(Al)

r	 ax

Consider the integration

feq. (Al)e'
oc d4	 (A2)

where c	 x	 x O . Effecting this integration, one obtains

d	 d _ m 
2	

2) rm(r,ro;o)	
6(r - ro)

	

UF r UFF -7 + ^	 9	 (A3)

	

r	 v"2—w r

where

	

02 
= (k 

2 _ 
s 
2 

)a 
2	

(A4)

The solution can be expressed as

Yi(r 
O)Y2 

(r)	 for r 0 < r

rm (r,ro;s) -	 1	
(A 5)

OW(yl-y2) 
lr-r 0 

1 

yl(r 
)Y2 (r,)
	 for r < r 0 .

Here yj and y2 are homogeneou!, solutions of equation (A3), and W is the

Wronskian. It follows from equation (A5) that y l (r) should be analytic at
r - 0, and thus one has

	

yj (r)	 im	
a(01 -^ ) -

The solution y2 is linearly independent of y l , and is here chosen as

W im (a L) + B ym (a n) .	 (A7)Y2 	 a	 a

The constant B is determined from the boundary condition at r . a as given
in equation (13), which was imposed on the Green's function:

(A 6)

17
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y2

	ar - 
ikn

ly2 - 
0	 at r - a.	 (A8)

On inserting equation (A7) into equation (A8), one obtains

aJm(a) - ikanlJm(a)

B=	 a	 a -	 an d m a.	
(A9)

m 

The Wronskian is obtained as

W = ng
	

(A10)

0

Summarizing equations (A5) to (A10), one obtains for r - r0 = a

J (a)
rm (a,a,8) _ -1	 a -mi an	 a	

(All)

	

aim
	 lm

Using the asymptotic form of Jm for a large argument ; ( 12 ) one can show

rm(a.a,$)IBI-- X01 s^ . 	 (Al2)

18
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INFINITE PRODUCT TERMS

The infinite products contained explicitly in equations (63) and (65) will

be expressed in terms of the factor L+.
Let D1 denote the infinite product in equation (63):

	

(1)	 (1)

D 1 	1 - - 2	 1 - k° mi
	

(B1)

	

t.1
km ^t
	^#j	

kmj,

Compared with equation (56), this product can be written as

D1	 li
k( 1 ) ^ 1 —	

(B2)
mi	 L	 mi

Using equation (54) and L+(o) being analytic in the UHP, one can write equa-

tion (B2) as

D1	
1 )	

lim(1) L(s) 1 — =	 (B3)

L+	 / B 'kmj	 kmj ]

As noticed from equation (51) or (52), L(s) possesses a simple pole at

g = kmj ) . Near the pole, L(s) can be expanded as

2	 l
s	 k ( 1 ) I

p mj
)
J	 [amj )Jm (amj)) — ikan2Jm (Qmj))J

L(B) -- mi 	 (B4)
a kmjm J 

amj	
8 kmj

On inserting equation (B4) into equation (63), one obtains

( 1 )	 2
D1 =
	 ika a	 um-	 (B 5)

	

L+ kmj	 aKmjj^

where we have used

Q(1)Jm (0 (1)) — ikan,Jm (a(1)) = 0.	 (66)
mj

Consider now the infinite product in equation (65):

19
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k(2)60k(2)
D2 	1—k^	 1—k—^-	 (67)

t	 mR	 '#v	
mA.

Co^pared with equation (56), this product is written as

D2	
lim(2) L_(o) 1 — '	 .	 (B8)

B 
i kmv	 kmv ]

Using equation (54), one obtains

D2 
= L+ (k(2))lim
	 1	 1 — B	 (B9)

J g k (2) r(^ 	 k T
my	 my ]

Using the expansion of L(s) near the simple zero s = km^ ) , one obtains

u(?) 2
D2 = —ika a L+ (k(2))	

J
mv
^)	

(B10)
a

20

r1



ORIGINAL P ^: _ ;z;

APPENDIX C	 OF POOR QUALITY

SMALL ADMITTANCE EXPRESSIONS

Here we will determine the limiting values of the eigenvalues, the

propagation constants, and the factor L+. These limits have been used to
derive equations (71) to (74) from equations (67 and (68).

Small Impedance Jump: {ka aI << 1.

Consider the eigenvalue equations derivable from equations (13) and (14):

a (1) Jm (a (1) ) - ikan l Jm (a (1)) - 0,	 (Cl)

0 (2) Jm (a (2)
)
 - ikan2Jm (a (2)

)
 = 0.	 (C2)

Set

a(2) - 0 (1) = E.	 (0)

In the limit of aka Al << 1, one expects that

	

del << la( 1 )I.	 (C4)

To determine e, equation (C2) is expanded around a (1) and equation (C1) is
used to obtain an algebraic equation for e. With the first order expansion,

one obtains

-ika a[P(1),2
ML

emt	 —	 (C5)
aMt

where the mode numbers (m,t) are used as the subscripts on E and a(1).
Equat i on (C5) obviously satisfies the inequality (C4). The equation is not

vali^ 1'c- the case of an' ) - 0 which is separately treated later. Also it

should be rientioned that the derivation of equation (72a) requires the second

order expansion, which will not be discussed here.
For the propagation constants, one sets

a
 Ik

(2) - k (1)]	 K	 (C6)ML	 me	 me'

Using equations (10), (C3), and (C5), one obtains
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akmt

Unless the frequency is close to the cutoff frequency of the (m,t) mode,
equation (C7) satisfies the inequality

1,% 0, << I mt)I.
Set

L+(s) = L092(s)/91(s)

where

95(9) =	 1 +9
	

,	 s = 1,2._ ST

t=0 kmt

Using equation (C6), one may obtain

	

92 ( 8 ) ,^	 1 + 9	 _	 aKmt

t=0	

k
- M a L (1ML

m

^ g 1 (9) 1 —	
Kmt	 .

ak
mt	1 

+ k(')/
L

ML

With the substitution of equation (C7), equation (C11) is written as

9 2 (9) a g 1 (s) 11 — ika a x(s)],

where

v(1^ 2	 k(1)

	

X(0)
	 mt	 1 + m 

kk	 9
mt—/

(C1)

(C8)

(C9)

(C10)

(C11)

(C12)

(C13)

The function x(9) is a finite and well behaved function of 9 in the UHP.
For equation (53),

22



ORIGINA's- F,'.%-'. "i
OF POOR QUALITY

LO = 1 - a	
a ika aan	

a	
(C14)

	

m	 lm

From equations (0), (C12), and (C14),

	

L+ (s) = 1 – ika a Cx( e) 	1'	 (C15)
an

L	 m	 lm
a
 1

On inserting equation (C15) into equations (67) and (68), one obtains equations

(71) and (72h). As mentioned earlier, the second order expansion is required
for equation ( 72a). For equation (72b), we have also used

umv) g 
umv) 11 + 0(ka e)).	 (C16)

Low Frequency Limit: ka << 1 and lal

As in the text, we consider the case of nl = 0 and of the incidence
of the (o,o) mode (the plane wave mode). We have then

a = n2, 200) = 0, k00 ) = k.	 (C11)

Set a (2) = e, then the expansion of equation (C2) yields

c r -2 ika a	 (C18)

and

ak(2)v7ITa e,	 (C19)

LO 9 ^,	 (C20)

L (k (1) )k 	 s —a 1 +	
a	

(C21)+	 00 	 ka	 2 i n

L	 a 2 7 1	
a

(C22)+ (k(2))
 00	 ' c	 ^ '

(2) 
r 

(1)	 1	
(C23)

N00	 u00 = '
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DUCT ElflY O 1 + DUCT E11:AINT 2

a	 + im,n1	 jm.vi

	

I m.h	 I	
x

	

r pcur/p.rll x • D	 L 
Pcur/p,n2

Figure 1. -Circular cylinder with admittance shift IG • 772-+111
at x • Q im,ni mode incident; 1m,ji nodes reflected;
Im, vi modes transmitted.

1
i

S 2	S1	
S3 ~1

i	\ 	 i

S • S 1 + S 2 • S3

Figure 2. - Integration surface.
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Fiqure 3. - Integration paths C and C' and simple poles.
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