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Introduction

Particulate contamination on astronomical mirrors degrades
performance in two ways: (1) by information loss by extinction
of light; (2) background and noise from scattering, especially
"forward" or Fraunhofer scattering. The proposal for this grant
pointed out that these effects were not generally understood, and
it outlined an ambitious pilot program to (1) measure particulate
effects on telescope optical performance; (2) develop
prophylactic and cleaning procedures suitable for groundbased
observatories; (3) investigate by computational modelling the
effects on telescopes in space; (4) communicate our results and
concerns within the astronomical community.

In 1982 July the Principal Investigator joined the Space
Telescope Science Institute, changing the profile of activity on
this grant, but with important effect for Space Telescope. A
timely assessment of the contamination problem for ST exposed a
major concern that is now grouped with a handful of technical
problems receiving serious attention for the first time. The ST
mirror is now visibly dirty, and the problems of cleaning it and
maintaining it free of dust are major challenges to the principal
contractors. The work supported by this grant was instrumental
in identifying and publicizing this problem.

Our program had three main thrusts: observational,
engineering and theoretical. During the one year grant period we
have (1) developed CCD procedures to document the optical
efficiency and the magnitude and distribution of scattered light
in the Whipple Observatory 24" telescope (2) contracted,
installed and operated an electrostatic dust precipitator on that
telescope; (3) computed numerically the optical effects of
certain particulate populations on telescope performance with
applications to our Whipple Observatory measurements and to the
Space Telescope; (4) reported to the ST Contamination Control
Committee aned ST Science Working Group on particulate effects on
ST.

Observations

We uzed the SAO CCD and photometer to obtain star images to
document the Surface brightness profile in the range 3"-300" off
axis. The 10 :1 required dynamic range is achieved with several
exposures of different durations. A Couder mask at the front of
the telescope removes the secondary support diffraction spikes,
so the images have cylindrical symmetry and the signal at an off-
axis angular distance can be integrated in an angular strip.
Figure A is such a result. The bump at 25" is aue to an-
internal reflection: CCD up to window down to CCD again.

While we obtained believable scattered light profiles by
combining sequential exposures, we did not achieve complete
confidence in our absolute normalization procedures, so



comparisons between the light scattering on different days,
before and after mirror washing, are not in hand.

Dust precipitator

The grant purchased the services of Dr. Stuart Hoenig's shop
to construct an electrostatic precipitator unit for the closed-
tube 24" telescope on Mt. Hopkins. This effort is described in
Hoenig's article "Electrostatic dust protection for optical
elements" in Applied Optics 21, pp565-569, 1982.

Theory

The appended report on ST particulate contamination is an
exegesis of our current modelling efforts. It concluded that
particulate contamination posed a threat to certain ST science
programs and that the situation was not currently understood or
under control. This problem is now receiving considerable
attention in the ST Project.
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APPENDIX

REPORT ON ST PARTICULATE CONTAMINATION
7 September

ROBERT A. BROWN, Instrument Scientist, ST ScI
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`	 1.0 INTRODUCTION

The ST SWG has set a requirement that ST perform on orbit with

<1t light loss on each of the primary and secondary mirrors due

to particulate contamination. 	 No more than half the total

allowable dPgration is allowed before launch. This optical

efficiency requirement has been interpreted by the ST

Contamination Control Committee as corresponding to <1% surface

area coverage.

I find no evidence that Fraunhofer diffraction has been consid-

ered in developing ST particulate contamination requirements.

That mechanism is shown below to (1) double the particle optical

extinction (so the correct contamination requirements are 0.25%/

0.5% surface area coverage before/after launch), and (2) produce

"scattered" light that will impede certain observing programs.

It was reported at the 30 August 1982 meeting of the Contamina-

tion Control Committee that no procedures are currently in place

at Perkin-Elmer to measure surface particulates and certify a

cleanliness level. P-E reports that the ST primary mirror is

currently not visibly clean.

I have taken the view that the Institute may have an ( unstaffed )

investigatory/advisory role with respect to the OTA similar to

that described for the SIs in the ISB Management Plan. The

following sections lay out (1) the physical principles behind

particulate degradation of the ST optical performance including

the Fraunhofer diffraction mechanism, and (2) my . current

understanding of prelaunch particulate contamination monitoring

and control. I recommend that the Institute promote a fresh look

1 A
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at this problem, possibly resulting in corrective procedures to

5
be instituted at P-E, Lockheed, then KSC to block particulate

accumulation in the prelaunch phase and to plan realistically for

the optical impact of particulates on science programs.

2.0 PARTICULATE SCATTERING

This treatment of particulate scattering uses a circular disk

(radius-a) as the fundamental element. The effects of more

complex particles or of populations may be found b y linear super-

position. The disk lies flat on the primary mirror, and star-

light is incident normal to the circular face, with flux- *F.

Kirchoff diffraction theory is valid for

disk circumference2wa -
wavelength	 - r__

and in that regime the particle extincts light from the incident

parallel beam at rate:

extinction rate - ,rF • 2 • -ffa 2 ph s-1 .

The factor two is composed of two equal parts as follows. One

unit is intercepted on the disk surface then absorbed or back-

scattered (diffusely or specularly). Attention to the second

unit of extinction is the main contribution of the current

work: this is forward scattering by Fraunhofer diffraction.

Since the telescope mirror folds the "forward" onto the

"backward" direction, both mechanisms direct scattered light

toward the ST focal plane. However, the diffuse scattering will

be distributed over a hemisphere whereas Fraunhofer diffraction

is approximately collimated in a cone of half-angle 0.6 X/a.

Since diffracted light is less baffled and dilute than light

scattered by particle upper surfaces, it has greater potential

for general fogging of the ST field.

2 A
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Larger particles (a>100 u) can threaten observations in high

c	 contrast regions, especially programs relying on the f/288 FOC

`	 apodizing pupil to reduce bright object aperture diffraction

(calculated in the next section).

2.1 ST APERTURE DIFFRACTION

it will be useful in the following to compare particulate

scattering to the Airy pattern of the primary (including the

central obscuration but ignoring the spider):

wa 2 (1-e 2 )	 J (x)	 J (ex) 2
I (e;A) = AF	 °	 4	 1	 - e2	 1	 (1)
A	 a	 x	 ex

('Ioung, Appl. Opt. 1, pp. 1874-1878, 1970), where

a o = 1.2 x 10 6 u ( outer radius of primary) ,

e = 0.37 ( radius obscuration ratio),

2va 0

x	 e (= k0e)

Asympotically,

J
l 
(x)	

0x 	x>>  7.177 cus(x-2.36)	 X3/2 (average)

and	 Ta02 
(1-e2)(1-E1

I 
A 
(e;.%) --- -is-0-64  if 	 2	 3

X	 X

1;

_ (0.64)(0.13) 
TF 

X
	 1	 = 1.1x10 -3 %F -	 1

8 ^2	 a0—	 a0

for

9» 
2xa 0

3A
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IA ( ^ )al' 	 2-2.51og	 *,	 10.1 + 7 .5 logo	 mag aresec-

for 5000 A and 8 in aresec, and the surface brightness is lower

by 1 magnitude at 2000 A . n l" is the solid angle of one square aresec.

2.2 DIFFUSE SCATTERING

Assume the particle upper surface is a Lambertian scatterer,

albedo = 1 (worst case). The equivalent astronomical intensity

due to one particle is

I s lti 
*A2	 (COi9 . 1) _ *F

L
	 *	 (2)

where A a area of primary and f = fractional surface area covered

by the particle. Since particle size is immaterial, the final

expression works if f is the total surface fraction covered by

dust. The brightness may be expressed

I	
2

-2.5 log —A- — Is 	 (4.848x10 -6 )	 27.8-2.5logf	 mag aresec-2,

which is the surface brightness for zeroth magnitude flux onto

the primary mirror. For f=0.01 the value is 32.8 mag aresec-21?

which is plotted with the Fraunhofer diffraction results

developed below.

2.3 FRAUNHOFER DIFFRACTION

Figure 1 illustrates Babinet's principle: an obstruction has the

same diffraction pattern as the complementary screen. This means

that the particulate disk scatters light in the same pattern and

total amount as if it were a same-sized hole in An otherwise tot-

ally black primary mirror coating.

4A
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Flammer (J.App. Phys. 24, pp. 1224-1231, 1953) shows tae natural

extension for ka*0 through the Mie and Rayleigh scattering

regimes, but we treat here only the Fraunhofer case for which

ka»1, resulting in the Airy diffraction pattern of a telescope

of radius-a. The equivalent astronomical intensity is
2

*a2	 2 Jl(x)I F (e; a,a) - I F —Ia - f— x --
a	

-

where 41 - first order Bessel function and

X = 2ya 9.

Figures 2 and 3 visualize the angular dependence of I F, an

enmeshed function of particle size and wavelength.

Randomly Faced particles of	 the	 same	 size additively	 combine

intensity.	 Let f(a)	 be the continous density function giving the
fractional area covered per unit a,	 thin the total intensity is

a2 2 J	 (x)
f(a)	 a2	 x

2
daI F (e;a)	 - IF 2 	 S

X 2
(3)

where the integral extends from a l - smallest size for which

kal > 1 to a2 . 10 3 u, the largest reasonable dust particle size.

The Fraunhofer scattered intensity due to a variety of dust

distributions (Figure 4) is presented in the following sections.

2.3.1 Power Law Distribution f(a) - kaa

a
i

terest because (1)

the MIL-STD-1246A

4) and. (2) the

is observed in

A . J. 128, pp.

The case a--1 is analytic and has special in-

it has a possible connection to reality through

specification system (illustrated in Figure

associated a-2 scattering angular dependence

ground-based telescopes (e.g. de Vaucouleurs,

486-488,1958). Eq. 3 becomes:

,
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_ 2	 x2 4 Ji(x)
kI F ($;X)	 WE - k	 4-2

(2*)	 x

	

TF k	 -2 fj2 (x) + j2(Xj

1

xl

where k-f/ln (a2/a1 ) and fa fractional obscuration due to all

particles. Figure 5 shows the result for a l - lu, a2 10 3 v,

and a - 2000 A and 5000 A. Also shown are the (1) mean asymtotic

ST aperture diffraction pattern (Section 2.1) and (2) the diffuse

scattering for t-0.01 (Section 2.2). 	 Note the wavelength

independent section varying inversely as angle squared.

Figure 6 shows numerical integrations for the power laws

a - 0, -0.5, -1.0 for f - 0.01 and a - 5000 A. The flatter

distributions have relatively more large particles, producing

greater central brightness.

2.3.2 LMSC Trial Distribution

The discrete size distribution in Table 1 was received 8/20/82

from D. Tenerelli of LMSC (through W. Fastie). Figure 7 shows

the associated summation of Eq.(3) (labled "original"), plus the

result of an invented but reasonable extrapolation for a a 100-

500u	 (labled	 "extended.")	 Adding	 the	 larger particles

dramatically increases the central surface brightness.

The "updated" LMSC trial data in Figure 4 is radically lower in

surface coverage (fC 0.1t), but favors the larger particles. The

scattered light from this distribution would resemble Figure 7

but at a lower level.

I
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3.0 IMPACT OF PARTICLES ON ST SCIENCE INVESTIGATIONS

L
c

	

	 The foregoing work for a nominal 1% particulate contamination by

area implies:

1. Particulates extinct 2 x 1% . 2% of the incident light.

2. Fraunhofer diffraction	 generally dominates	 diffuse

tackscatter.

3. The dust-scattered light equals the ST primary Airy

pattern at a point inside about 10" and dominates outside

(sensitive to larger particles).

4. Wide-angle Fraunhofer diffraction (sensitive to smaller

particles) is lower for shorter wavelengths.

5. The central brightness of the dust scattering patter:. is

higher for shorter wavelengths.

The following sections relate these conclusions to ST optical

performance.

3.1 NEAR-IN SCIENCE

Here is meant observations in regions of high contrast, such as

searches for stellar companions or studies of faint, extensive

atmospheres of stars or planets. With 1% particulate contamina-

tion, the primary Airy pattern would supply the dominant back-

ground brightness inside about 5-10" for most SI's. However the

f/288 FOC camera incorporates an apodizing mask on a re-imaged

pupil plane specifically to reduce the Airy pattern `or imaging

ac e ^ 1". The f/288 camera gives highest optical performance At

a1600A.	 At that wavelength, the current scattered light

7 A
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calculations for 18 contamination indicate there will be no

apozing benefit for c S 3 0 , and it will be only a couple of

magnitudes aresec at a-1".

This result is sensitive to particles of radius a ,100u , and

Figure 8 dramatizes this point: it shows the number density and

associated fractional contrmination required to match the Airy

diffrac tion pattern at a-5" with diffraction from single-sized

particles of radius 25u<a<500u .

3.2 FAR-OUT SCIENCE

Here is meant fogging of faint object observations due to wider-

angle scattering due to both the Franuhofer and the diffuse,

upper-surface mechanisms. By the former mechanism, each stellar

image has a halo characterized by Figs. 6-8 but with ord.:nate

values m + om ( e), m=magnitude of the star. The typical net

effect -an be computed from a star count (nm=8 stars deg-2 of

magnit a -m) and Table 2 shows the result using Allen's mean

values ('117) with an average Figure 1J curve, e hi is the radius
brighter than 23 mag aresec-2 for a star of magnitude m. The sky

fr^ction brightened above that level is

F	 I (Fm = n  ,rem(deg)) - 1.08
m=0

This value varies approxirately as fractional coverage to the 2/3

power.

To find the field brightening due to diffase scattering with 18

coverage, we use the coincidence that the average starlight fal-

ling on the ST mirror is r guivalent to -two m-0 stars in the

visible:

8A
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Solid angle of tube opening = 4.8 x 10`2 sr	 160 drg2,

Mean starlight = 119 m=10 stars deg-2.

Flux on ST primary = 1.9 m=0 stars,

so the "diffuse" line on Figs. 5-7 reads almost directly in

typical surface brightness:

IL - 32.9 mag arsec-2 , which is utterly negligible.

4.0 CURRENT STATUS AND PLANNED TESTS

I attended a meeting of the ST Contamination Control Committee at

P-E in Danbury, CT on 8/31/82. I had been invited by J. Olivier,

ST Chief Engineer, to present my concerns on particulate con-

tamination, though that committee is not able to respond directly

to out--of channels concerns on ST optical performance.

P-E reviewed its understanding of particulate requirements: (1)

that it is not contractually required to meet any hard

specification. (e.g. MIL-STD-1246A); 1.2) that it has no procedures

for particulate measurements; (3) that it was working toward a

"visibly clean" critereon but conceded that meeting it was

unlikely and in any case difficult to verify.

P-E reports that after a cumulative exposure of -50 hours to a

class X0 5 clean room environment, the ST primary is not now

visibly clean.	 This implies greater than 0.03-0.10% obscuratiou or 0.06-

0.2% optical extinction. P-E plans to clean-off particulates at the

last moment before baffling, and after that there are no planned

cleanings or inspections. Baffling occurs about a year before

shipment to Lockheed.

P-E was given a.. action item to document the current particulate

contamination of the ST primary mirror.

9 A
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t	 Table.. 1 LNSC Suggested Particle Size Distrbution (Tennelli 8/20/82)
r

a

Original 1

0.5

1.0

2.0

5.0

10.0

15.0
20.0
30.0

50.0

Discrete Equivalent continuous3

A ft -2 fi Aa	 ( u) f(a) - fa) - f j/Aa

104 8.4 x 10-8 0.5 1.7 x 10-7

105 3.4 x 10-6 0.75 4.5 x 10-6

105 1.4 x 10-5 2.0 7.0 x 10-6

105 8.4 x 10-5 4.0 2.1 x 10-5

5 x 10 4 1.7 x 10-4 5.0 3.5 x 10-5

105 7.6 x 10-4 5.0 1.5 x 10-4
3 x 105 4.1 x 10-3 7.5 5.5 x 10-4

105 3.0 x 10-3 15.0 2.0 x 10-4

5 x 104 4.2 x 10-3 3S 1.2 x 10-5

Extended 2

100. 9.5 x 103 3.2 x 10-3 	50 6.4 x 10-5

150. 4.2 x 103 3.2 x 10-3	SA 6.4 x 10-5

200. 2.4 x 10 3 3.2 x 10-3 	75 4.3 x 10-5

300. 1.1 x 103 3.2 x 10-3 	150 2.1 x 10-5

500. 3.8 _ 10 2 5.; x 10-3 	-- --

1. Integrates to 1.2% coverage, normalized to 1s in scattering

calculations

2. Integrates to 2.8% coverage, normalized to 1% in scattering

calculations

3. Plotted on Figure 4 normalized to 1% coverage.

ORIGINAL r :,	 Sr
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Table 2.

Computation of sky fraction brightened to < 23 mag arsec-2 by

Fraunhofer diffraction ( visible light).

m n., (deg-2 ) em	 (deg) Fm

0 7.9 x 10-5 0.28 1.9 x 10-5

1 3.2 x 10-4 0.22 4.9 x 10-5

2 1.4 x 10-3 0.18 1.4 x 10-4

3 4.9 x 10°
3

0.14 3.0 x 10-4

4 1.8 x 10-2 0.11 6.8 x 10-4

5 5.0 x 10 -2 J. 088 1.2 x 10-3

6 1.4 x 10-1 0.055 1.3 x 10-3

7 4.0 x 10 -1 0.044 2.4 x 10-3

8 1.1 0.035 4.2 x 10-3

9 3.0 0.0 0.0

Total 0.010 F
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BABINET'S PRINCIPLE

P	 U, (P)	 I, (P) _ 
I 
U, (P) 12

P	 U2 (P) , 12 (P) _ 1 U2 (P) (2

P	 U3 (P) = 0 = U, (P) +U2 (P)
s	

••• U 1 (P) _ -U2 (P)

••• I, (P) = I2(P)

Figure 1. Illustration of Babinet's Principle. The diffracted
amplitudes in direction P must sum to zero for screens 1 and 2.
since the screen sum is opaque. This implies the intensities are equal.
Thus the diffraction pattern for an obscuring particle is the
same as that of a clear hole of the same size and shape.



Examples

B in oresec , a = 6000

a	 1 81x = 3.83 1

10 µ 7500
I00µ 750 ^1
I rMn 75 #

I cm 7.5 t
I m .075 t

C[^ t.. .
OF P= .

FRAUNHOFER DIFFRACTION

Intensity = i (e, a, o)
2	 2I

	

_ (vF • ,rc2 ) •	
L2 

J^
J1,

(x)1

J
2:o 9

	

Intercepted	 x e ^
Power

P

,tf -.

First
K4w

x-3.83

Figure 2. Concerning the - diffraction pattern of small circular apertures.
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ST 88ffle

^ 2

e	
1

^	 r
10

Iler

100,103	 a
r	 ( MiCMM)

104

	

^AA	 10

	

l	 s
—ST ApertumLIZI I 7

10

10	 10 2 103 104 10a
0 (arc sec)

rf .

Figure 3. The base plane shows contours of the Airy function argument x^8

for X-5000A and a and 8 spanning the range relevent for dust scattering on ST.
The vertical dimension shows a slice of the Airy function for 9 numerically
equal to a.
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Continuous Size Distributions

10 :.

10-3-

f(a)	
10-4,

(fractional
coverage

per micron)

10 -s -
_.	 I

"a+3/2

Original (8/20/82)
(11)

4wa i
♦ //\\Exterided

^_	 (lt)

10-11

10"'

♦
Updated

LMSC

8/26/82

MIL-STD-1246A
Class 300 contaminants

(Class 100,000 clean room)\

	

(.03!)	 i
\a _ 2

lv	 lou	 100u	 103U

a, Particle radius

Figure 4. Various particle size distributions discussed in text.
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T_nVerse first power law (analytic solution)
5

f(a)da a k a Ida
amin a lu
amax = 103 V
1% area covered

ORIC	
=f	 .:^

ST Primary	 OF PO ,")R Q JALITY

Airy Profile

1 __\

	\ 	 Wavelength independent

\
\ -9-2

2000A

5000A

30—\
Diffuse ( lz

3

40

1"	 10'	 100'	 103'	 10060	 105r

ST Baffle

Figure 5. Fraunhofer diffraction surface brightness vs. distance from a
zeroth magnitude star for the ST primary 1: covered by dust with an inverse
first power law size distribution lu=si10 U. The solution is analytic. The
average ST primary Airy profile and the brightness due to scattering from
Lambertian upper particle surfaces are shown for comparison.

10

TT s1.,

-2.5log --- 20
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(p mag aresec-
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10

15

IF^

-2.5log	
irF

120

a mag aresec°2)

25

30

35

Diffuse (1.%)

URjci„riAL. 1, ” A 7: 1 	 Power law distributions (numerical solutions)

OF POOR QUALITY	
l% area coverage

A • 5000 A
a_ -lu

S
.i

10 	 100 	 103"	 104"	 105"

e
ST Baffle

Figure 6. Fraunhofer diffraction surface brightness distributions due
to 1% coverage by 3dust with a variety of power-law size distributions in
the range lu<a<10 u. These are numerical integrations of Eq. S.s s

k
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Figure 7. Fraunhofer diffraction surface brightness distributions due
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and graphed in the upper right corner. These are numerical summations
equivalent to the integral in Eq.5.
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