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SUMMARY

Functions, derived in a companion report (NASA TP-1929), for the repre-
sentation of the thermodynamic properties of nonideal solutions have been
applied to the experimental data for several highly nonideal solutions. The
test solutions were selected to cover both electrolyte and nonelectrolyte
behavior. The results imply that the functions are fully capable of repre-
senting the experimental data within their accuracy over the whole composi-
tion range and demonstrate that many nonideal solutions can be regarded as
members of the defined class of nonideal solutions.

INTRODUCTION

A class of nonideal solutions was defined (ref. 1) by constructing a
function to represent the composition dependence of thermodynamic properties
for members of the class. The construction was carried out by working with
the thermodynamic potential whose only extensive arguments are the composi-
tion variables. For fluids this corresponds to the Gibbs free energy treated
as a function of temperature and pressure. The constructed function pos-
sesses features which are theoretically and computationally useful: (1) It
reflects the known experimental behavior of dilute solutions. (2) It pos-
sesses a logarithmic singularity in the dilute solution region and contains
ideal solutions and regular solutions as special cases. (3) It is directly
applicable to N-ary systems and reduces to M-ary systems (M < N) in a form-
invariant manner. (4) Its parameters, which are functions of the intensive
variables, occur linearly. In this report we shall test the ability of the
function to reproduce experimental thermodynamic data for real systems. That
is, we shall attempt to determine to what extent real solutions can be regar-
ded as members of the defined class of nonideal solutions. Since ideal solu-
tions are already members of the class, it must be true that a large number
of nearly ideal solutions must also be members, and thus the problem is one
of determining the degree of nonideality that can be accommodated by the
class. For that reason we shall confine our efforts only to highly nonideal
systems, but we shall consider both nonelectrolyte and electrolyte solutions
in this category.

Before we begin a discussion of the calculations, we must consider a num-
ber of questions that are relevant to the philosophy of our test and that
always arise when one tries to represent experimental data by some function.
Fitting a function to experimental data, based on some prescribed criteria,
tests only for a consistency between function and data. We cannot separately
assess the quality of the function or the data from such a test alone. Only
if one or the other of these two components, the function or the data, is
known to be perfect does this consistency test become a valid criterion for
the evaluation of the other. Logically then, since our objective is to test
the function, we should use perfect experimental data. But perfect experi-
mental data are an unattainable ideal available only from gedanken experi-
ments and are nonexistent in practice. Lacking perfect data we would like
to have some estimate of how the real data differ from the perfect data
(which we do not have). That is, we would like some estimate of the exper-
imental error. An accurate knowledge of the experimental error could then
be used to decide whether or not the function and the data are consistent
within the experimental accuracy. It is illogical to require greater consis-
tency because one is then also attempting to fit the errors in the data. To
make a perfectly valid error estimate, one again needs the “true" value; but,



in practice, this is established by consensus rather than fiat and is not
known when the experiments are being carried out. Consequently error esti-
mates are just that, estimates. Unfortunately good error estimates are
almost as rare as perfect experimental data, and Bridgman (ref. 2) called
attention to the inherently subjective nature of such estimates with his
anecdotal accounts of the measurement of the charge on the electron and
Planck's constant. He pointed out that "...there seems no completely 'ob-
jective' method of estimating even the limits of error..." and that it may
be "...more common for the individual investigator to overestimate the accu-
racy of his own measurements, but on the other hand, there are individuals
who, recognizing this tendency, react by underestimating their own accuracy."
This viewpoint on the subjective nature of error estimates is reinforced by
Youden's account (ref. 3) of the determination of the astronomical unit, the
velocity of light, and the gravitational acceleration.

Despite the clearly subjective nature of many published estimates of ex~
perimental error, it is possible to make at least a portion of the error es-
timate not only objective, but also experimental as was pointed out by Youden
(ref. 3). Experimental error is usually assumed to have two components:
random error and systematic error. The former refers to the lack of repro-
ducibility in the experimental results which occurs without any apparent
changes in the apparatus or procedure. Its contribution to the total experi-
mental error can be estimated by adequate replication. Systematic errors are
produced by some deficiency in the apparatus or the observer or may be attri-
butable to deficiencies in the theory of the measurement. Bridgman gives a
good example of how theory can drastically influence the interpretation of a
measurement with his description of the effect of theoretical understanding
on the experimental determination of atomic weights. Basically the design
and interpretation of an experiment are often dependent on our understanding
of the underlying theory which happens to be in vogue at the time the exper-
iment is performed and a revision of our understanding could lead to a dras-
tic reinterpretation of the experimental results. Nothing can be done to
estimate systematic errors coming from this source because it represents a
deficiency in our knowledge. On the other hand, Youden points out that sys-
tematic error associated with the apparatus can be estimated experimentally
by constructing one or more copies of the experimental apparatus, or compo-
nents of the apparatus, and comparing results from the various copies.

The examples discussed by Bridgman and Youden all concern the measurement
of physical constants. The waters become substantially murkier when the ex-
periments are measurements of functions, as they are in thermodynamics. Many
more measurements must be made to define a function than a constant. Conse-
quently replication to estimate random errors in the independent variables
is the exception rather than the rule. The construction and implementation
of copies of the experimental apparatus with systematic variations in compo-
nents is rarer still., The clear implication is that most estimates of exper-
imental error in thermodynamics are of the subjective variety and thus sus-
pect and, perhaps, unreliiable. Haar and Gallagher (ref. 4), in a critical
evaluation of the thermodynamic properties of ammonia, conclude (p. 639)
"...that estimates of quality by experimentalists are often ambiguous (and
sometimes even omitted) even in work of otherwise high quality." This situa-
tion forces critical compilers of thermodynamic data to resort to procedures
which, strictly speaking, can be faulted on logical grounds but which are
probably unavoidable evils under current circumstances. We are referring
specifically to the common practice of judging the reliability of an experi-
mental datum point, at least in part, by its deviation from a function ob-
tained by a preliminary fit of an equation to a set of data. This deviation




is then used to assign a weight to the point, inversely proportional to the
deviation, in a subsequent fit of the data by the same or similar equation.
The difficulty is that one has absolutely no assurances that the equation
being used is the "correct" one. When this practice is pushed to its two
logical extremes, it would allow us to conclude, at our option, that any
finite set of experimental data for a function of one independent variable
either (1) is well represented by a straight line or (2) is free from exper-
imental error. The first conclusion follows if we fit the data to a straight
line and assign low weights to points which deviate from the 1ine. The sec-
ond conclusion follows if we use a linear combination of linearly independent
functions as the fitting function with one adjustabie parameter for each
datum point. This is an extreme example of what Haar and Gallagher (ref. 4,
p. 437) term "overfitting," the representation of not only the general trends
in the data but also the experimental error. Common sense would certainly
prevent the occurrence of the two extremes but might not be adequate for in-
termediate situations. Practioners of the technique are in some danger of
discarding the better data and retaining the inferior. This danger clearly
increases as the proportion of poor data (inaccurate but reproducible and
precise) increases in a collection of data.

Often in thermodynamics there are several kinds of measurements that have
a bearing on a given thermodynamic property. Each type of experiment re-
flects some characteristic of the dependent variable and will sample some
particular region of the space of independent variables; there could be any-
thing from complete overlap to no overlap among the regions. In such a situ-
ation one would like not only to evaluate the quality of data from a given
type of experiment, but also to make some value judgment about the relative
merits of data from the different types of experiments. We have already dis-
cussed just how difficult and subjective the former can be. The need for
the latter only exacerbates the situation. Obviously we have no mechanism
for directly comparing, and thus checking for the consistency of, data from
disjoint regions of the space of independent variables; just as we cannot
directly compare data from two different points. But sometimes we cannot
make a direct comparison even at the same point because the experiments often
measure different combinations of the dependent variable and its derivatives.
The only possible comparison is an indirect one - a comparison of the data
to a value calculated from a fitted equation. We have already pointed out
the inherent difficulties associated with this method of evaluating the qual-
ity of data.

The importance of data consistency and its effect on the fitting of that
data has been strongly emphasized by Haar and Gallagher (ref. 4, pp. 636,
637, 651, 655, and 662), who observed that data inconsistencies can drasti-
cally affect the results of the fitting even outside the region where the
inconsistency occurs. They even found it desirable to use weighting func-
tions to reduce the effect of such inconsistencies by smoothing the transi-
tion between inconsistent data sets. There are two approaches to resolving
the problem of potential inconsistencies in data from different types of ex-
periments. Both have been used in practice although neither can offer any
assurances that the resulting fitted equation is a good representation of the
correct function. One approach is to use all of the experimental data in the
curve fitting and let the fitting compromise among the inconsistencies in the
data. It represents the maximum utilization of experimental information
about the dependent variable but requires a somewhat more involved fitting
procedure. The alternative method uses only a portion of the data for fit-
ting, effectively assigns zero weight to the balance, and relegates it to a
consistency test between it and the fitted equation. This approach does not
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make maximum use of the information contained in the experimental data, but
the fitting procedure is simpler if only one type of experimental data is
used. We favor the first technique and feel it to be the more conservative
in the absence of reliable information about experimental error. If valid
estimates of experimental error are known, then they can always be factored
into the fitting process.

Our view of the experimental situation is that it is extremely difficult,
if not impossible, to make a fully reliable judgment on the quality of exper-
imental thermodynamic data from the published information. For this reason
we shall try to use as much data as are relatively easily available for the
systems we select and we shall assign equal weight to each point. In this
sense we make no claim to either an exhaustive compilation or a critical
evaluation of the data for the chosen systems; nor do we claim a definitive
representation of the chosen data. Our primary objective is to assure our-
selves of an adequate quantity of experimental data to test the ability of
the functions to reproduce the thermodynamic behavior of highly nonideal sys-
tems over their entire composition range. For our purposes it seemed prefer-
able to take a somewhat cursory look at several different systems rather than
an intensive and critical look at one. Nonideality and data availability
motivated our selection of the systems to be studied. A1l of our calcula-
tions were carried out with double precision arithmetic (approximately 18
significant figures), but we shall give the values of the fitted parameters
to only 14 significant figures. This numerical precision may seem surprising
to those unfamiliar with the numerics of fitting calculations who realize
that experimental data may often be no better than three or four significant
figures. Double precision arithmetic is required in linear least squares
calculations because the matrices encountered in determining the parameters
are often nearly singular. Furthermore once the parameters have been deter-
mined, both the truncation of parameter values and the calculation sequence
used to evaluate the fitted functions from the parameters can sometimes pro-
duce detectable (but generally not serious) changes in the calculated num-
bers. For the calculations to be discussed in this report we have observed
that six significant figures for the parameters are often, but not always,
adequate. Accordingly we have chosen to tabulate the parameters to enough
figures to ensure that someone could reproduce any of the numbers we quote.
The least squares parameters were calculated with a multiple linear regres-
sion computer program written by Sidik (ref. 5).

Three general precepts will guide our fitting of experimental data for
individual systems: (1) Use experimentally derived quantities that are re-
lated as directly as possible to the actual experimental measurements. (2)
Avoid any unnecessary assumptions about the behavior of the data. (3) Do not
use smoothed values, for then one is attempting to fit the smoothing function
rather than the experimental data. Typically we shall indicate the quality
of the overall fit with a pair of numbers. For this purpose we shall use two
combinations of the residuals, ay = y(obs) - y(calc), of a property y:
the standard deviation o and the mean of the residuals <ay>.

. -1 f:
<ay> = K Ay
k=1
" (1)
2 -
=<l = kT 3 (ay)?



We could equally well have used the standard error of the estimate_in place
of o. Its definition is identical to that of o except that K-1 is re-
placed by the reciprocal of the difference between K and the number of fit-
ting parameters.

We shall not attempt to minimize the number of parameters on the basis of
testing the standard error of estimate for a minimum because the number of
parameters is of little significance when the function is used on a computer.
Basically we shall only vary the number of parameters through the degree of
expansion L, and L will be either 1 or 2. That is, we shall not find it
necessary to go beyond two terms in the symmetric function expansion to es-
tablish the flexibility of the function we are testing. If we were concerned
with minimizing the number of parameters, then we would begin with the case
L = N and start eliminating insignificant parameters. In any fitting cal-
culation it is generally true that there will exist a non-null subset of cal-
culated parameters which contributes 1little to the representation of the
data. These parameters could be set to zero and eliminated from the least
squares calculation without materially affecting the quality of fit. The
least squares computer program that we used (ref. 5) incorporates a rejec-
tion algorithm which sequentially eliminates parameters. We simply feel
that minimizing the number of parameters is of minimal importance for our
purposes. The fact that we used and tabulated a particular number of param-
eters does not mean that all of them are essential for an adequate represen-
tation of the data or that they are an optimum choice from all of those
available for L = N.

In all computations we shall use 8.31434 J-mo]’l—K‘1 for the universal
gas constant and 4.184 J for the calorie.

NONELECTROLYTE SYSTEMS

We shall confine our interest to heat of mixing data in our examination
of nonideal, nonelectrolyte systems. There are three reasons for this
choice. First, heats of mixing tend to exhibit greater deviations from
ideality than, for example, volume changes on mixing and hence are a more
severe test of fitting functions. Second, heats of mixing are directly mea-
surable in contrast to, say, free energies, which require the establishment
of a phase equilibrium and knowledge of the free energy of one of the phases.
Systematic errors in the free energy of the known phase will contribute to
the systematic errors associated with the system being measured. Third,
recent years have witnessed the development of the isothermal dilution cal-
orimeter for the rapid and routine measurement of heats of mixing. In addi-
tion to ease of operation and rapidity of measurement, the apparatus seems
to be capable of higher precision and greater reproducibility than other ex-
perimental methods. Consequently it is supplanting other methods of measure-
ment and it seems to be well on the way to becoming a standard method for the
measurement of the heats of mixing of Tiquids. A171 of the experimental heats
of mixing which we shall process have been generated with the isothermal di-
lution calorimeter.

We would Tike to concentrate our attentions on ternary systems because
they will most 1ikely provide a more severe test of our ability to reproduce
experimental behavior than do binary systems. This drastically limits our
choice of systems because the adequate characterization of a ternary system
requires a considerably greater number of datum points than does a binary
system. It is only the advent of the isothermal dilution calorimeter which
has made the acquisition of the necessary data a realistic goal. When we
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speak of a ternary system we mean a system of three components (independent
species) and we include all compositions for which the mole fractions xj,
i=1,2, 3, satisfy x7 * xp *+ x3=1. This includes compositions for which
one or two of the mole fractions may be zero. We shall occasionally single
out particular subsets of points from a ternary system, and we shall find it
convenient to give them special names. The set of compositions for which two
given mole fractions are zero obviously represents a pure species, while a
set of compositions for which one particular mole fraction is always zero
will be called a binary subsystem of the ternary system. The set of composi-
tions for which no mole fraction is zero will be called the set of interior
points of a ternary system.

Our reliance on data generated by the isothermal dilution calorimeter
suggests that we attempt to make some approximate assessment of its overall
accuracy. A crude estimate of its typical accuracy can be made by comparing
results from different calorimeters for several systems, an approximation to
the suggestion made by Youden.

Isothermal Dilution Calorimetry

The initial development of the calorimeter was by Van Ness and coworkers
(refs. 6 to 8), but other calorimeters of the Van Ness type were subsequently
constructed in rapid succession (refs. 9 to 16). We know of no experiments,
of the type suggested by Youden (ref. 3), to estimate the systematic error of
the calorimeter quantitatively, and we must rely on the experimenters' sub-
jective estimates. Winterhalter and Van Ness (ref. 8, p. 191) acknowledge
that it is "...difficult to arrive at an objective estimate of the accu-
racy..." of the calorimeter, and Murakami and Benson (ref. 11, p. 563) concur
because the determination of heats of mixing "... involves a delicate balance
of energies from a number of sources..." The typical experimental run with
the isothermal dilution calorimeter is the successive dilution of an initial
solution with a second solution. Both Murakami and Benson (ref. 11, p. 563)
and Ramalho and Ruel (ref. 12, p. 457) point out that errors for successive
dilutions tend to be cumulative. Murakami and Benson cite a typical "blank"
experiment in which ethanol was diluted with ethanol 10 successive times.
This dilution process should have had a zero heat effect, but the error in
the energy for each dilution varied from zero to 0.08 J and accumulated to
0.4 J during the course of the run. Presumably this error can be either pos-
itive or negative, and thus the spread in measured values from this source
alone can amount to almost a joule in a case where the experimenter knows the
exact answer expected of him. Similar, and perhaps more severe, errors
should be expected in an actual experiment to determine nonzero heats of
mixing because heat effects are larger and the experimentalist is less likely
to know the expected answer in advance.

Winterhalter and Van Ness (ref. 8, p. 191), Pflug et al. (ref. 10,

p. 408), and Murakami and Benson (ref. 11, p. 571) all feel that their re-
sults are within %1 percent of the true values. Murakami and Benson com-
pare an equation fitted to their data with a similar equation fitted to data
from other sources for a number of binary systems. Such a comparison, while
far from ideal, possibly can serve as a qualitative indicator of disparity
in experimental results because of the similarity of equations in each case.
They express the comparison as the root mean square percentage deviation of
a given equation from their equation for the same binary system. They find,
for the weakly endothermic binary system of benzene-carbon tetrachloride at
25° C, that both the function of Savini et al. (ref. 7) and the function of
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Winterhalter and Van Ness (ref. 8) are uniformly lower than their function.
The former has a standard deviation of 1.45 percent and the latter a standard
deviation of 1.33 percent. For the strongly exothermic binary system of
dichloromethane and p-dioxane at 30° C, the function of Winterhalter and Van
Ness (ref. 8) is uniformly higher, with a standard deviation of about 1.35
percent and a maximum difference of about 15 J-mo1-1 (= 1.6 percent) when the
mole fraction of dichloromethane is 0.75. On the other hand, Touhara et al.
(ref. 15) make a similar comparison of their results with those of Murakami
and Benson for the same dichloromethane and p-dioxane binary system and the
identical form for the fitting functions. They calculate a standard devia-
tion of 0.36 percent between the two functions. We have recalculated the
differences between these two functions by working directly with the differ-
ence function. Our calculations differ somewhat from their figure 3, and
this may indicate a loss of significance in their calculations. For example,
we find that when the mole fraction of dichloromethane is 0.75, the two func-
tions are virtually identical, differing only by 0.06 J-mo1-1." Their figure
shows a difference of about 2 J-moi-1l. “For mole fractions less than 0.75 the
function of Touhara et al. is higher than Ehe Murakami and Benson function,
with a maximum deviation of about 8 J-mol1-! (= 1.9 percent) occurring at a
mole fraction of about 0.15. At this mole fraction the agreement between the
Winterhalter and Van Ness function and the Murakami and Benson function is
excellent. These comparisons and their one-sided nature, imply that experi-
mental differeqces in the heat of mixing for binary solutions can easily ex-
ceed 10 J-mol1~* and a percentage error of *1.5 percent. This assessment is
consistent with that given by Ramalho and Ruel (ref. 12). For highly non-
ideal binary systems they cite an average maximum error of #(1 to 2 per-
cent) and for nearly ideal binary systems, (5 to 6 percent).

A contributing factor to errors in heats of mixing is the experimental
error in composition. Pflug et al. (ref. 10) estimate that they know mole
fractions to #0.0005, while Ramalho and Ruel expect an accuracy of #0.0008.
If these values are typical, then we should expect a spread in mole fractions
from about 0.0010 to 0.0016. This error can become a significant contributor
to error in the dilute solution region, where the heat of mixing changes rap-
idly with mole fraction. For example, if we use the Winterhalter and Van
Ness representation of their data for the binary system dichloromethane -
p-dioxane, then the mole fraction error could contribute about 3 to 5 J-mol-
when the mole fraction of dichloromethane is near 0.03. This represents an
uncertainty in the value of the heat of mixing at this point of about #(1.5
to 2.5 percent).

Our discussion of errors in isothermal dilution calorimetry for binary
systems leads us to conclude that, while %1 percent accuracy may occur, a
more realistic estimate is probably (1 to 2 percent). Furthermore the
errors for very dilute solutions will generally be larger than the errors for
concentrated solutions because of composition uncertainties. The benzene-
cyclohexane binary system seems to be one for which the accuracy exceeds our
estimate. Functions fitted to the data from nine different sources agree to
nearly 0.5 percent (refs. 11 and 16).

The accuracy situation for the interior points of a ternary system is a
1ittle more involved. The reason is that the measured quantity is most
directly related to a heat of mixing but the quantity of greatest interest
is the excess enthalpy of the solution. The two are, of course, related.

Let n represent moles per unit mass and M represent mass. Now suppose

that nM moles of a solution with composition ;i is added to nM moles



‘of a solution with composition ?} to form (nf + nM) moles of a solution

with composition xj. If H 1is the molar enthalpy and aAH 1is the excess
molar enthalpy, then the heat of mixing per mole Q for these two solutions
is defined to be

Q = H(x) = QH(X) - (1 - q)H(X) = aH(x) - q aH(X) - (1 - q)aH(X) (2)
where q = nM/(nM + nM). Essentially, isothermal dilution calorimetry meas-

ures differences in this heat of mixing. If Q(k) is the heat of mixing for
the solution formed by the k h dilution, then

RN Ce YIS B (s VNN (O

Aq(k) [AH(Y) - AH(;ﬂ

where Q(0) = 0, q(0) = 1, and q(k*1) _ (k) = aq(K). Thus

q(k)] AH(x)

k = 1,2,... (3)

k=1 .
Z AQ(J) = Q(k) = AH(X(k)) _ q(k) AH(;) - [1
j=0

From this formula we see that the experimental heat of mixing differences
2Q(J) can be easily combined to obtain the heat of mixing Q(k) without addi-
tional assumption. But to obtain the excess enthalpy from the experimental

measurements requires aH(x) and AH(;), the excess enthalpies of the two
original solutions. If these two solutions are pure species, then aH(X)

= 0 = AH(x) and the heat of mixing is identical to the excess enthalpy. How-
ever, this is not always the case. Ramalho and Ruel (ref. 13), Morris et al.
(ref. 17), and Shatas et al. (ref. 18) made measurements on the interior
points of a ternary system by adding a pure species to a binary subsystem.
The excess enthalpy for the starting binary aH(X) was not measured experi-
mentally but was estimated by interpolating preexisting data for the binary.
The incorporation of these values unnecessarily compromises experimental data
with nonexperimental numbers. A related problem occurs for dilute binary
solutions. Savini et al. (ref. 7) described a technique for making measure-
ments on very dilute binary solutions by adding a dilute solution to a pure

species. In this type of experiment one must know the excess enthalpy aH(x)
of the binary solution being added to the pure species.

Ternary systems present a more severe experimental challenge than binary
systems. There is a sharp increase in the number of experimental measure-
ments to be performed with a concomitant increase in the possibility for
experimental error. This increase is accompanied by a relative diminution
of the opportunity for experimental testing for data consistency (error).

To see this, we need only realize that a fundamental difference exists be-
tween one- and two-dimensional composition spaces and that the isothermal
dilution calorimeter is basically a one-dimensional instrument which is char-
acterized by the experimental parameter q in equations (2) and (3). A given
composition in a one-dimensional system can be approached from only two



directions. For any pair of starting solutions one can carry out a sequence
of dilutions and then repeat the experiment with the same two solutions but
with their roles reversed. Differences in results in the overlap region of
composition can be taken as a measure of data inconsistency. Both Savini et
al. (ref. 7, p. 43) and Pope et al. (ref. 9, p. 2666) mention experimental
checks of this kind for binary systems. These internal consistency tests

can also be carried out in experiments on ternary systems. In contrast to
binary systems, a given composition in a ternary system can be approached
from an infinite number of directions corresponding to the different one-
dimensional systems passing through that point. On each one-dimensional
subspace one can carry out an experimental test of the kind just mentioned,
but in general this does not test for consistency among the various one-
dimensional subspaces. The only effective experimental test for ternary and
higher order systems is the determination of the heats of mixing around some
closed path. Differences in results on any overlap portion of the path would
be a measure of consistency for the closed path. This is not a convenient
kind of experiment to carry out. Consequently data for interior points of
ternary systems probably will tend to exhibit somewhat lower accuracy than
binary system data simply because of the difficulty in performing experimen-
tal internal consistency tests. This view is consistent with the Ramalho and
Ruel (ref. 13) assessment of error in ternary systems. They claim an average
maximum error of #(2 to 3 percent), but generally they expect their results
to be in the range #(1 to 2 percent). In the absence of direct experimen-
tal information and in view of the foregoing discussion we have concluded
that ternary systems will probably exhibit errors in excess of %(1 to 2
percent).

Selection of Ternary Systems

In spite of the availability of the isothermal dilution calorimeter there
are only two ternary systems with anything approaching adequate experimental
coverage. These are the two highly nonideal systems acetone-chloroform-
methanol and chloroform - ethanol - n-heptane whose heats of mixing were
measured by Van Ness and coworkers (refs. 17 and 18). These data will be
supplemented by measurements on the ethanol - n-heptane binary subsystem made
by Ramalho and Ruel (ref. 12) and Van Ness, Soczek, and Kochar (ref. 19).
Both Morris et al. (ref. 17) and Shatas et al. (ref. 18) combined interpola-
ted values of binary excess enthalpies with measured heats of mixing in their
tabulated excess enthalpies for the interior points without explicitly giving
the values they used. Fortunately there is enough information for us to es-
timate their numbers and convert their tabulations back to heats of mixing.
Neither Morris et al. (ref. 17) nor Shatas et al. (ref. 18) mention using a
dilute binary solution as a feed solution for measuring the heats of mixing
of dilute binary solutions. However, because some of their data extend to
quite dilute solutions, it is possible that this was done. Lacking adequate
information, we could only assume that this was not the case, and we will use
the binary subsystem data as tabulated.

Our fitting of the experimental heat of mixing data will be based on

equation (2) with aH(x) = 0. For the molar excess enthalpy we shall use the
function derived in a companion report {(ref. 1, eq. (50)).
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In this function, the degree of expansion L satisfies the inequalities
1< L <N, and the quantities a§£) and bgi) are the fitting parameters.

They are related to the parameters A;§§) and A2§i) of reference 1 in a
simple way.

(o a<AE§.§)/RT>

jk 2 In T
(5)
RT a(Ae( )/RT>
pée) -
jk 3 InT

Since aH is the excess enthalpy, it is clear that agi) =0, i=1,2,...,N

(ref. 1, eq. (69) and the discussion of eq. (50)). The experimental data
are expressed in joules per mole and will be used in that form.

Binary Subsystems of Chloroform - Ethanol - n-Heptane

In preparation for the fitting of the complete ternary system data to
equation (4), we shall first look at the representation of the data for its
three binary subsystems ethanol - n-heptane, chloroform - n-heptane, and
chloroform-ethanol. We shall treat these subsystems as though they were
binary systems and not subsystems of the ternary; that is, we shall use
equation (4) with N = 2. The first of these binary systems, ethanol -
n-heptane, is interesting for three reasons. First, it is a very nonideal
system whose excess enthalpy is very asymmetric in composition and has an
extremely steep gradient in the dilute ethanol region. Second, as with
other alcohol-hydrocarbon systems, it is difficult to find a function which
will represent the data accurately (refs. 12 and 18). Third, not only are
there three sets of data measured for this system with the isothermal dilu-
tion calorimeter at 30° C, but two of these sets were generated in the same
laboratory with the same apparatus.

Chronologically the first of these three sets of data was reported by Van
Ness, Soczek, and Kochar (ref. 19) (VNSK), who observed that because of the
steep gradient in the heat of mixing for mole fractions of ethanol less than
0.05, their experimental values "...for this composition range may well be
less accurate than the 1 percent figure generally claimed for the calor-
imeter..." (p. 348). The most recent data set is that of Shatas et al.

(ref. 18) (SAVN) who say (p. 407) that their data for "...ethanol - n-heptane
are in exact agreement with earlier values..." from their laboratory, namely
the VNSK data. Since neither mentions any alterations to the apparatus, any
systematic differences in results should be ascribable to differences in
starting materials or experimental technique. The third set of measurements
is from Ramalho and Ruel (ref. 12) (RR), who say that their experimental data
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for this system are in good agreement with the VNSK data. The three data
sets represent a total of 63 points, of which 19 are VNSK, 18 are RR, and 26
are SAVN. The ethanol mole fraction intervals for the data are [0.0035,
0.9540] for VNSK, [0.0379, 0.9389] for RR, and [0.0025, 0.9968] for SAVN,
and clearly the VNSK and SAVN data extend considerably farther into the
dilute solution regions than the RR data. The value of the RR datum point
at an ethanol mole fraction of 0.0885 is open to question. They tabulate
both the excess enthalpy aH and the excess enthalpy divided by the product
of ethanol and n-heptane mole fractions. At this composition the two values
are inconsistent, and in a private communication M. J. Ruel was unable to
resolve the question. Therefore we chose the value tabulated as aH divided
by the product of mole fractions because this was in better agreement with
the VNSK data in this region of composition.

We used equation (3) with N =2 and L =1 or L = 2 in our least squares

fitting of the 63 experimental points. As mentioned before agi) =0 = agé)
is always true. Furthermore for the L = 2 case we also tried to represent
the data by arbitrarily imposing the condition agi) =0 = agg). Thus we

actually tried fitting the data with three functions having 5, 10, and 12
adjustable, independent parameters, respectively. For each of the three
functions we calculated the mean of the residuals and the standard deviation
for each data set separately as well as for the set of all points. These are
shown in table I and the least squares parameters are given in table II.

From a comparison of the standard deviations shown in table I we see that
the five-parameter representation is clearly inferior to the other two. Fur-
thermore a plot of its residuals shows them to exceed the apparent scatter in

TABLE I. ~ MEAN RESIDUALS AND STANDARD DEVIATIONS
FOR REPRESENTATION OF ETHANOL - n-HEPTANE
BINARY SYSTEM AT 30° C

VNSKk3 | RRP SAVNC | Total

—
n

1 (5 parameters)

Mean residual 5.706 | 0.117 | -2.982 0.524
Standard deviation |12.239 | 8.649 9.049 | 10.057

L

2 (10 parameters)

Mean residual 1.637 | 1.125 | -1.879 0.040
Standard deviation 3.377 | 2.516 4,685 3.764

L

2 (12 parameters)

Mean residual 1.778 | 0.885 |[-2.280 | -0.152
Standard deviation 3.782 | 2.274 4,237 3.623

3yan Ness et al. data (ref. 19).
bRamalho and Ruel data (ref. 12).
CShatas et al. data (ref. 18).
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TABLE II. - LEAST SQUARES PARAMETERS FOR ETHANOL(1) -

BINARY SYSTEM AT 30° C

n-HEPTANE(2)

L=1 L=2 L=2
2V 2 a1 Lo.90193012761305%10% | 0.48157130162474x10” 5
1o =3 | -0 x . 0162474x10" | -0.60673359952925x10
L () 016 5 7 7
0 -0.16948019835450x10° | 0.95751994267578x10° | 0.28210678812513x10
pé1) 0.56900169335190x10" 7 6
52 -0. x10° | 0.96089324965820x10" | -0.15228158573627x10
bt} 0.6017 4 N ¥
12 -0.60172454161004x10" | -0.11642011308670x10" | -0.47031657510670x10
L1 o1 4 4 4
o -0.11433140283961x10" | 0.87848755946159x10" | -0.15501858683573x10
2
agl) ..................... 0 | 0.29367262721863x10”
2
agz) ..................... 0 | -0.31106627693176x10°
2 2
agz) - aé]) -------------------- -0.77950377552490x10" | 0.36613717642403x10°
p{2) 0.12962 8 7
e -0.12962942709717x10° | -0.35077330352573x10
(2) 8 5
S -0.12876246405762x10° | -0.98073070770264x10
p{2) 0.895117 7 7
R -0. 01585693x10° | -0.25797821737080x10
p{2) 0.89026085162354x10” >
S R — -0. x 0.68571112137794x10

the experimental values.

On this basis we judged the five-parameter results

to be an inadequate representation of the data even though the function does
reproduce the general trends of the compositionally asymmetric data quite
well, as is shown in figure 1. A comparison of the mean residuals given in
table I implies that systematic differences exist among the three sets of
measurements, and this is borne out by plots of the residuals.

The residuals for the 10-parameter function are shown in figure 2, and
those for the 12-parameter function are shown in figure 3. From these fig-
ures it is clear that there is little to choose between these two represen-
tations. Essentially, all of the residuals fall within the £1 percent
envelope and more or less uniformly fill it for both functions. Only in the

12



828

488

AH (obs - calc), JIg-mole

@ 3
g b
& g Data of-
- - van Ness etal. (ref. 19)
3 o  Ramalhoand Ruel (ref. 12)
ul Shatas et al. (ref. 18)
e Values calculated from L = 1
representation of the data
-889 1 1 1 i 1 1 1 1 1 J
2.8 g.2 Bt 8.6 B.B 1.8
X
Figure 1. - Excess enthalpy of ethanol{l) - n-heptane(2)
binary system at 30° C.
Data of-
a Van Ness etal. {ref. 19
Data of- ° Ramalho and Ruel (ref. 12)
ul
L s  Van Ness etal. (ref. 19) 18| Shatas et al. (ref. 18)
12:5 o Ramalho and Ruel (ref. 12) o o +1 Percent of calculated
i ®  Shatas etal, {ref.18) p values
+ 1 Percent of calculated
7.5 values

X

Figure 2. - Difference between observed excess
enthalpy and that calculated from L= 2 representa-
tion of data with a{§ = 0= %3 for ethanol(1) -
n-heptane(2) binary system at 309 C.

13

AH (obs - calc), J/g-mole

X

Figure 3. - Difference between observed excess enthalpy
and that calculated from L = 2 representation of data
for ethanol(l) - n-heptane(2) binary system at 30° C.



dilute solution regions do the points tend to fall outside the envelope, but
this is consistent with our expectations, which were based on our discussion
of experimental errors as well as on the evaluation of experimental diffi-
culties in the dilute alcohol region by Morris et al. (ref. 17). There are
some slight differences in the residuals in the dilute solution regions. The
10-parameter function tends to make the spread of_ residuals in these two re-
gions comparable, with a value of about 15 J-mol1~%. The 12-parameter
function reduces the spread in the ethanol-rich region to about 5 J-mo1-L but
compensates for_this by increasing the spread in the heptane-rich region to
about 20 J-mo1-l. These figures do confirm the conjecture that systematic
differences in the data sets do occur.

~=-"This is shown with greater clarity in fiqure 4, where the residuals for
the three data sets are shown separately. The RR data generally lie between
the VNSK data and the SAVN data. But the VNSK and SAVN data sets were pre-
sumably generated with the same apparatus and, if that is true, their dis-
parity represents systematic error due to starting material and experimental
technique alone. Naturally we must expect that the apparatus itself will
also contribute its share to the systematic experimental error. Figure 4
also emphasizes the apparent systematic behavior of the VNSK and SAVN resid-
uals over a large portion of the composition range, and this does not seem

to be the case with the RR residuals. Systematic behavior of this nature is
to be expected when one has only one nonreplicated source of data to fit but
not when data come from several sources or are replicated. Indeed the sys-
tematic behavior of the two data sets is effectively masked in figure 3,
where the residuals for all three data sets are depicted simultaneously. The
systematicity of these residuals is therefore all the more surprising because
all three sets of data were used to generate the representation and it seems
to attest to cumuiative errors accompanying successive dilutions in the ex-
periment and which we discussed previously.

From figures 2, 3, and 4 it seems reasonable to conclude that equation
(4) can be used to represent the data within the scatter in the experimental
data and that #1 percent should probably be regarded as an optimistic esti-
mate of experimental accuracy. In this connection it is interesting to note
that the data of Ramalho and Ruel, who were least sanguine in their error
estimates, should fall between the two data extremes.

The graphical presentation of the 10- and 12-parameter results leaves
little room to doubt the ability of these functions to do justice to the ex-
perimental data. But it also seems possible to accomplish this with even
fewer than 10 parameters. For example, if we use the five g2 =1 parameters

together with a{f) and b{f), then these seven parameters yield a function

with a standard deviation of 4.6. As we have mentioned, not all parameters
are equally effective at reducing the sum of squares, and by a suitable ex-
ploration in choice of parameters it seems possible to reduce the number of
parameters to fewer than seven without seriously compromising the quality of
the representation. An examination of the contribution of various parameters
to a reduction in the sum of squares leads us to conjecture that the five

parameters aii), b&i), bﬁf), b&é), and bié) might be adequate for the task
although we have not actually tested this combination. Regardless of what
the minimum number of parameters might be or which parameters they are, it
is nevertheless true that there remains a considerable amount of unused
flexibility in the function (3) when representing the difficult ethanol -
n-heptane binary at 30° C.
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Thermodynamicists are interested not only in the properties but also in
their composition derivatives, the partial molal properties. These can be
calculated readily from the function (4) by using the formulas given in ref-
erence 1. The formula we need is obtained by combining equations (38), (35),
and (41) of reference 1, suitably modified for the notation of equation (4)
in this report. The expression for the partial molal excess enthalpy aH; is

L N
aH; = El E < [Za( L) 4 bSJ)(l *Inx;) + b§1)]" Xj]

N
+ kz=:1 Xy {l}gl) - (2t l)cp(l)] l:ag.i) + bgi) In xj] - w(g‘)bgi)}) (6)

where ah is the excess enthalpy per unit mass and n; 1is the moles of
species 1 per unit mass. The partial molal excess enthalpies for the
ethanol - n-heptane binary system, as calculated from the 12-parameter func-
tion, are shown in figures 5 and 6 for the composition interval [0.01, 0.99].
The 10-parameter results are generally quite similar except that noticeable
differences appear in the heptane partial molal excess enthalpy aH, for
n-heptane mole fractions less than 0.1.

The ethanol - n-heptane binary subsystem at 30° C possessed two important
characteristics: a rather complete experimental coverage of the composition
range down to very dilute solutions, and three experimental data sets from
the isothermal dilution calorimeter which could be used to validate our
assessment of the potential systemat1c error magnitudes in such experiments.
Neither of these two exist at 50° C, where we have only the data of Shatas
et al., (ref. 18). Still it would be instructive to confirm that equation (4)
can still be used to represent the SAVN data for th1s binary at 50° C because
the data for the full ternary system are also at 50° C and we will be Tooking
at that shortly. The parameters for the 5-parameter (L = 1) case and the

dlah/RTany

X1
Figure 5. - Partial molal enthalpy ot ethanol in ethanol(l) - Figure 6. - Partial molal enthalpy of n-heptane in ethanol(l} -

n-heptane(zl binary system at 36° C as calculated from (= 2 n-heptanel2) binary system at 30° C as calculated from L= 2
representation of data. representation of data.
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TABLE ITI. - LEAST SQUARES REPRESENTATION OF ETHANOL(1) -
n-HEPTANE(2) BINARY SYSTEM AT 50° C

L=2 L=1
Mean residual -0.065 -0.479
Standard deviation 2.393 7.186
s;) = é:) ~0.15254302571297x10° | -0.82071100278925x10"
(1) 7 5
bl 0.41778688955956x10° | -0.17880841809335x10
o1 6 4
by, -0.23282490779495x10° | -0.29959458007584x10
(1) 4 4
bl, 0.26655399837606x10" | -0.75528423722732x10
(1) 4 3
by, -0.10109307768098x10" | -0.64248759968319x10
gi) 0.44809143229799x10 | ~memmcemccmccccmaeee
éz) 0.11778468153000x10% | commeommmcmmmccemeee
(2) (2) 6
aly = a 0.98607397231675x10° | ==cmmmcmmmccccmmee
gf) -0.47171017033310x107 | =mmmcmmmmmmcmmemee
bgi) 0.77740322227478¢10° | ~-nnmmmmmmmmmmmame-
bgz) ~0.36164501156101x107 | =mmmemmmmmemmmemmmcen
éi) 0.16659600957394x10° | commcccmceoemee

12-parameter (L = 2) case are given in table III together with the mean resi-
dual and the standard deviation. A plot of the 5-parameter representation

is shown in figure 7, and the corresponding residuals for the 33 experimental
points are displayed in figure 8. Since we feel that the experimental accu-
racy is generally about (1 to 2 percent) for 1sotherma1 dilution calorimetry
and since the ethanol - n- heptane results at 30° C seem to be a particular
corroboration of this impression, it seems reasonable to conclude that the
SAVN data for ethanol - n-heptane at 50°  =re represented well within their
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experimental accuracy by the 5-parameter representation. Although the
12-parameter function does give a smaller standard deviation, its use is
probably not warranted because of the limited number of experimental points
and their presumed accuracy. The only data overlap seems to occur at an
ethanol mole fraction of about 0.71. The difference in the residuals at this
composition implies that the internal consistency of the data is probably no
better than about 4 J-mol-l.

Like the ethanol - n-heptane binary, the chloroform - n-heptane binary at
50° C can also be represented quite well at the L =1 TJevel. This is dem-
onstrated, for the 27 SAVN points, in figures 9 and 10. The five parameters,
the mean residual, and the standard deviation are tabulated in table IV.

TABLE IV. - LEAST SQUARES REPRESENTATION
OF CHLOROFORM(1) - n-HEPTANE(2)
BINARY SYSTEM AT 50° C

L=1
Mean residual 0.022
Standard deviation 0.860
a)) = o)) 0.21347163404118x10*
b{}) 0.48017545322844x10°
bé;) 0.16088696954520x104
bgé) -0.25947468989983x102
bé:) 0.97057392573595x102

The ethanol - n-heptane and chloroform - n-heptane binaries are similar
to each other because both are highly endothermic and both can be adequately
represented with L =1 at 50° C. The third binary pair, chloroform-
ethanol, differs from the other two because it is exothermic over a portion
of the composition range and endothermic over the complement of this range.
Thus its excess enthalpy has an s-shaped, or sigmoid, appearance. The param-
eters, the mean residual, and the standard deviation for L =1 and L =2
obtained by fitting the 34 SAVN experimental points for the chloroform-
ethanol binary are given in table V. The residuals for the 12-parameter
representation are shown in figure 11, which makes it clear that they gener-
ally 1ie well within the %1 percent envelope. While the five parameters,

L = 1, give a poorer representation of the data, the function does reproduce
the general trends in the data quite well as is shown in figure 12. These
chloroform-ethanol binary results are similar to the ethanol - n-heptane
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TABLE V. ~ LEAST SQUARES REPRESENTATION OF CHLOROFORM(1) -
ETHANOL(2) BINARY SYSTEM AT 50° C

L=2 L=
Mean residual -0.004 ~0.710
Standard deviation 2.733 10.277
asé) - aé}) ~0.89720102187395x10° | ~0.32246815722660x10°
(n 4 4
b3 ~0.85956675533652x10" | -0.92931478046374x10
(1) 6 3
by, -0.13527505103207x10° | 0.90004329561311x10
(M) 4 3
3 -0.46758294077720x10" | -0.51865869723518x10
(1) 2 4
by ] 0.97235376666300x10° | -0.19166967241281x10
agi) 0.18085730467272x10°% | = cmemmeemeee
aég) 0.16404075567484x10° | wmecmmmemmmmmecoceme
al2) . ,(2) ~0.47898719527722%10° | ~=mmmmmmm e
12 T % .
bgf) -0.31065326703584x10° | <meemmem
bég) 0.16151375563145x10° | <mmmmmcmmmmmmecocmeee
bgg) -0.11320056806999x10° | <cemmmmmmeeoee.
béf) 0.10606491850400x10° | =cnmcomccommemomeeo oo
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fFigure 12. - Excess enthalpy of chloroform(l) - n-heptane(2)
binary system at 50° C.

results at 30° C in the sense that the addition of the parameters agi) and
bgi) to the five = 1 parameters improves the representation signifi-

cantly. The seven parameters give a standard deviation of 3.4, not much dif-
ferent from the 12-parameter results. As with ethanol - n- heptane at 30° C,
it seems likely that one could achieve a +1 percent representation of the
data with five appropriately selected parameters.

Our results for the three binary subsystems suggest a reasonable conclu-
sion: The excess enthalpies of these three very nonideal binary solutions
can be represented with a precision that exceeds our estimate of experimental
accuracy and even exceeds the accuracy estimates of the more optimistic ex-
perimenters. This was achieved without using the full capabilities of the
functional form (3) and implies that a significant fraction of binary solu-
tions can be regarded as members of the class of solutions defined in refer-
ence 1. We can now proceed to look at the full ternary system at 50° C.

Chloroform - Ethanol - n-Heptane Ternary System

The ternary system presents a much more difficult case for a number of
reasons. We have already mentioned that a ternary system demands many more
experimental measurements and that this is accompanied by an increase in the
potential for internal data inconsistencies because of the two-dimensional
composition space. For the particular ternary system we are now considering
we have only the 284 SAVN experimental points with no corroborating experi-
mental results from other sources which might help to judge the accuracy of
the measurements. Furthermore these data offer essentially no information
which might be used to establish their internal consistency. The importance
of data consistency and its potential effect on the fitting of these data
have been discussed earlier. Within the context of a ternary system it is
possible to mitigate partially the effect of data inconsistencies by select-
ing a form for the fitting function which effectively produces a decoupling
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among the three binary subsystems and the interior. This confines the effect
of inconsistencies to each of the four subsets and prevents the interaction
of inconsistencies among the four. This was the procedure used by Shatas
et al. (ref. 18) and Morris et al. (ref. 17) in generating a representation
of their own data. This is not an option which we permit ourselves because
(1) we want a self-consistent representation of the experimental results,
(2) dilute solution consistency requirements are built into the function we
are testing, (3) it would be unwise to attempt to subvert these consistency
requirements, which were dictated by experimental considerations, and (4) a
deterioration in the representation of the binary subsystems might serve as
a qualitative indicator of data inconsistencies.

As we have already mentioned, Shatas et al. (ref. 18) give their results
as excess enthalpies and, for the interior points, this necessitates the use
of an excess enthalpy for the initial binary solution. Table VI gives our
estimates of the compositions of the initial binary mixtures as well as our
estimates of the excess enthalpy values they assigned to these mixtures. We
estimated the binary compositions from their tabulated compositions with an
uncertainty of about 0.0001 in the mole fractions. The excess enthalpy val-
ues were calculated from these compositions and the functions they give for
the least squares representation of the binary subsystems. There is some
uncertainty in this calculation for the ethanol - n-heptane binary starting
solutions. The reason is that when using their parameters we were ungble to
reproduce the standard deviation and the maximum deviation for the 50 C data
in their table IV. We calculate 2.5 and 10.9, while they list 2.9 and 7.6,

TABLE VI. - ESTIMATED INITIAL BINARY
PROPERTIES FOR INTERIOR POINTS OF
CHLOROFORM(1) - ETHANOL(2) -
n-HEPTANE (3) TERNARY
SYSTEM AT 50° C

I] 12 23 AH(;i)
0 0.2507 | 0.7493 955.4
0 0.4986 | 0.5014 938.0
0 0.7502 | 0.2498 647.7
0.0989 | © 0.9011 248.0
0.2493 | © 0.7507 536.7
0.4931 | o 0.5069 765.6
0.7480 | 0 0.2520 632.9
0.899 | 0 0.1004 323.8
0.0998 | 0.9002 | © -312.5
0.2500 | 0.7500 | 0 -317.5
0.4966 | 0.5034 | 0 263.7
0.7494 | 0.2506 | O 732.3
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for the standard deviation and the maximum deviation, respectively. This
disagreement could have a number of causal factors. It might reflect a
typographical error in their table. It might arise, perhaps, because they
used more significant figures for their parameters than they tabulated. It
might also represent numerical difficulties in their evaluation of the fitted
function. Incidentally there are some minor typographical errors in the
supplementary table II for the Shatas et al. (ref. 18) paper. It appears
that column headings on pages 2 and 3 are interchanged and on page 3 the mole
fraction 0.3814 should actually be 0.8814.

For each interior point of the SAVN data set we calculated a heat of
mixing from equation (3) by using the tabulated excess enthalpies, the
estimated values in table VII, and the formula

(;] _X'i)
q=-——""""7_ (7)
(x; = x)

i i

> 1

where, of course, this formula can only be used for an index i such that
§1 —'Yi # 0. These heats of mixing, together with the heats of mixing for

the three binary subsystems, were then fitted in a least squares sense to
equation (4) with N=3 and L=1 or L = 2. The parameters which were
obtained are presented in table VII, and the standard deviation for each of
the three binary subsystems, the interior points, and the complete data set
are shown in table VIII. A comparison of the standard deviations for the
binary subsystems with the corresponding values in tables III to V shows a
considerable deterioration in the representation of the binary data. The
heats of mixing for interior points are two-point functions (of X5 and X;

or of i} and Ii) and cannot be presented graphically in a convenient way.

Consequently we only show the behavior of the representation for the binary
subsystems in figures 13 to 15. The degradation of the representation is
obvious and may or may not be a reflection of inconsistencies in the data.
The L = 2 representation gives a considerably smaller standard deviation
than L =1, and undoubtedly L = 3 would show a substantial improvement
over L =2. We felt that it was unnecessary to carry out the L = 3 com-
putation because even at L = 2 more than 70 percent of the heat of mixing
residuals were smaller than 2 percent of the excess enthalpy. We have al-
ready expressed the opinion that the accuracy for binary solutions is about
+(1 to 2 percent), and the accuracy for a ternary system is certainly no
better and is probably somewhat worse. Furthermore, when we compared the
L =2 function obtained by fitting the heats of mixing with the L = 2
function obtained by fitting directly the excess enthalpies tabulated by
Shatas et al., we observed differences as large as 25 J-mo1-1 at about 23
percent of the 284 points. These differences range to more than 5 percent
and often exceed 2 percent relative to the calculated excess enthalpy where
they occur. These two reasons cause us to believe that the expansion of
degree L = 2 1is an adequate representation of the data. Furthermore that
such a seemingly innocuous alteration of the data as the incorporation of
interpolated excess enthalpies for the initial binary solutions should affect
the results so strongly is a compelling argument against unnecessary pre-
processing of data.

We found here, as for the binary systems, that several coefficients seem
to contribute 1ittle to the reduction of the sum of squares and probably
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TABLE VII. - LEAST SQUARES REPRESENTATION OF CHLOROFORM(1) - ETHANOL(2) -
n-HEPTANE(3) TERNARY SYSTEM AT 50° ¢

L=1 L=2
L =1 L =2
(2) 5
e 0 0 | 0.35911304249798x10
a(!z) 5
22 0 0 [ 0.51138115027874x10
a(2) 5
33 0 0 | 0.42340571347251x10
a(9.) = (2) 4 5 5
12 =3 | -0.25842463839843x10 | -0.21899839955554x10 0.38850418420850x10
a8 (2) 4 5 5
13 3 0.19550510361104x10 | -0.19542013566994x10 0.27530508594734x10
a(2) _ () 3 5 5
23 = 33, 0.72242937269845x10~ | -0.17950786315615x10 0.47176991452899x10
b (2) 4 5 5
" -0.34895056023451x10 " | -0.13131897613996x10° | -0.10457265118875x10
p (%) 4 5 10%
22 -0.33354277459552x10 0.12447396929767x10° | -0.26441515894566x
p () 4 4 105
33 0.47020593315850x10 0.65230401766393x10 " | -0.13409749299734x
b(9.) 4 3 ax10’
12 0.13699990004981x10 0.21057270183435x10 0.10612166233204x
p{%) 4 4 0997225x10"
by -0.35040426714391x10 | -0.14458961316111x10° | -0.1314069 X
p(#) 4 4 3362948670x10"
1 -0.11533465570908x10 | -0.14923401543861x10" | -0.1538 X
(2) 4 4 3
b3 0.11223275447691x10 0.16540374720901x10 0.16589370133125x10
(2) 4 4 4
b, -0.46049917871071x10" | -0.45682717303616x10 0.53451399970742x10
(%) 1 3 4
by -0.71903120038646x10 | -0.40309672995307x10° | -0.32589737694593x10
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TABLE VIII. - STANDARD DEVIATIONS FOR CHLOROFORM(1) -
ETHANOL(2) - n-HEPTANE(3) TERNARY SYSTEM AT 50° C

AH (obs - calc), Jig-mole

Number of Standard deviation
points
L=2 L=1
1-2 Binary subsystem 34 11.985 | 29.131
1-3 Binary subsystem 27 12.236 | 21.257
2-3 Binary subsystem 33 13.899 | 24.662
Interior 190 10.978 | 20.948
Ternary system 284 11.597 | 21.635
A Data of Shatas et al. (ref. 18)
49 Pran + 1 Percent of calculated value
A A Data of Shatas et al. (ref, 18) A @
r +1 Percent of cajculated value L & R
A
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Figure 14. - Difference between observed excess enthalpy
for chloroform(l) - n-heptane(3) binary subsystem at
50° C and that calculated from L = 2 representation of
chloroform(l) - ethanol(2) - n-heptane(3) ternary
system,

Figure 13. - Difference between observed excess enthalpy for
ethanol(2) - n-heptane(3) binary subsystem at 50° C and
that calculated from L = 2 representation of chloroform(l) -
ethanol(2) - n-heptane(3) ternary system.

25



25 A Data of Shatas et al. (ref, 18)
+ 1 Percent of calculated values

AH (obs - calc), Jlg-mole

X

Figure 15. - Difference between observed excess enthalpy
for chloroform(l)-ethanol(2} binary subsystem at 50° C
and that calculated from L = 2 representation of chloro-
form(l) - ethanol(2) - n-heptane(3) ternary system.

could have been set to zero without seriously affecting the representation.
It appears that five to seven of the coefficients for L =2 make insignifi-
cant contributions to the reduction of the sum of squares.

Acetone-Chloroform-Methanol Ternary System

The situation with this ternary is much the same as what we encountered
with the previous ternary system. Here we have available only the 196 points
measured by Morris et al. (ref. 17) (MAVN) at 50° C and no experimental in-
formation on accuracy. However, there are overlap regions in the acetone-
methanol and chloroform-methanol binary subsystems which supply a small
indication of internal data consistency. Like Shatas et al., Morris et al.
also tabulated the excess enthalpies for the interior points rather than the
heats of mixing so that we again estimated the compositions of the initial
binaries and their excess enthalpies. The estimations were made in exactly
the same way as was done for the SAVN data. The results of the computation
are shown in table IX, and again the compositions are uncertain to about
0.0001 in the mole fractions.

There is nothing to be learned by fitting separately the binary sub-
systems of the MAVN data which has not already been seen with the SAVN data.
Therefore we shall proceed directly to the full ternary system. The 196
values for the heats of mixing in the MAVN data set were fitted in a least
squares sense to equation (4) with N=3 and L =1 or L =2. The param-
eters which were obtained are presented in table X, and the standard devia-
tion for each of the three binary subsystems, the interior points, and the
compliete data set are shown in table XI. The resulting representation of
the excess enthalpies and the residuals for each of the three binary sub-
systems are shown in figures 16 to 21. The residuals for each of the three
binary systems are close to being within the 1 percent envelope. The over-
lap region for the acetone-methanol binary implies an internal consistency
for this binary of about 1.5 J—mo]"l, while the chloroform-methanol internal
consistency seems to be about 5 to 15 J-mol1=i. It is interesting that the
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TABLE IX. - ESTIMATED INITIAL BINARY PROPERTIES FOR
INTERIOR POINTS OF ACETONE(1)-CHLOROFORM(2)-

METHANOL (3) TERNARY SYSTEM AT 50° C

X7 X2 X3 AH(;i)
0 0.0491 0.9509 -175.0
0 0.2459 0.7541 -400.8
0 0.4979 0.5021 37.5
0 0.7515 0.2485 540.9
0 0.9564 0.0436 340.5
0.0501 0 0.9499 133.5
0.2465 0 0.7535 538.3
0.4894 0 0.5106 763.8
0.7586 4] 0.2414 612.2
0.9435 0 0.0565 191.2
0.0404 0.9596 0 -294.9
0.2488 0.7512 0 ~-1438.4
0.5757 0.4243 0 -1637.9
0.7315 0.2685 0 -1187.7
0.9538 0.0462 0 -223.8
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TABLE X. - LEAST SQUARES REPRESENTATION OF ACETONE(1)-CHLOROFORM(2)-METHANOL(3)
TERNARY SYSTEM AT 50° C

L = ] L = 2
g =1 g =2
afﬁ) 0 0 | 0.59244015075209x10"
aéz) 0 0 | 0.19706059936392x10°
agg) 0 0 | 0.19444224410725x10°
agz) - aéﬁ) -0.10087021560856x10° | -0.10747434960212x10° | 0.26648927645491x10"
(2) ®) 3 4 4
ayy’ = ag’ | 0.35203015761209¢10° | -0.29158154779834x10" | (0.86749604096030x10
aég) - agz) -0.45266054941606x10° | -0.33912068545739x10° | 0.23567818881918x10°
(®) 4 5 5
by -0.47337086341441x107 | -0.12471544846811x10° | -0.11801088277716x10
@) 5 4 4
by -0.10549192885229x10° | 0.68480349754155x10" | -0.66835571294546x10
@) 4 5 4
b3 0.11819878402954x10" | 0.14778415962434x10° | 0.35538453417803x10
(%) 2 3 4
by 0.58963234380687x10° | -0.14633710945783x10° | 0.33839588721777x10
®) 4 3 4
by -0.36001524527680x10" | 0.44653664366542x10° | -0.23308223574449x10
(*) 3 3 4
b -0.86189553663543x10° | -0.976246324111349x10° | -0.12122336723957x10
®) 3 4 4
by 7.78908744027748x10° | 0.22322652022304x10" | 0.52424906391466x10
(=) 4 3 2
by -0.17587414570078x10" | 0.40611160397392x10° | 0.46890799753506x10
@) 4 4 4
b3 -0.20660888667431x10" | -0.14418328483159x10" | 0.52288330542341x10
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AH, Jig-mole

TABLE XI. - STANDARD DEVIATIONS FOR ACETONE(1) -
CHLOROFORM{2)-METHANOL (3) TERNARY SYSTEM AT 50° C

1209
B A Data of Morris etal. (ref. 17)
Values calculated from L= 2
p representation of acetonel(l}-

chloroform(2)-methanot(3)
ternary system

-18928

T

_2098 1 I 1 Il ! ! I 1 ! |
8.8 Be2 g4 B.b 2.8 1.8

X

Figure 16. - Excess enthalpy for acetone{l)-chloroform(2)
binary subsystem at 50° .

29

Number of Standard deviation
points
L=2 L=1
1-2 Binary subsystem 17 9.850 56.189
1-3 Binary subsystem 20 9.029 22.039
2-3 Binary subsystem 36 6.501 18.783
Interior 123 9.817 30.271
Ternary system 284 9.218 30.706
28 -

@
[2]
£
&
s £
3 Data of Morris et al, (ref. 17}
.- +1 Percent of calculated values
G
5 18
-2 1 ] 1 1 1 1 1 1 1 J
2.8 7.2 .4 8.6 8.8 1.9

X
1
Figure 17. - Difference between observed excess enthalpy
for acetone(l)-chloroform(2) binary subsystem at 50° C
and that calculated from L = 2 representation of acetone(l) -
chloroform(2)-methanol(3) ternary system.



AH, Jlg-mole

AH, Jig-mole
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Figure 18. - Excess enthalpy for acetone(l)-methanol(3) binary Figure 19. - Difference between observed excess enthalpy for
subsystem at 50° C, acetone(l})-methanol(3} binary subsystem at 50° C and that
calculated from L = 2 representation of acetoneil)-chloro-
form(2)-methanol(3) ternary system,
8gg ~ & Data of Morris et al. (ref, 17) 15 -
Values calculated from L= 2
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Flg?nr:rzoéu;sa:t?nsl :?;Bgliy for chloroform(2y-methanol 3 Figure 21. - Difference between observed excess enthalpy for
y y : chloroform(2)-methanol(3) binary subsystem at 50° C and

that calculated from L = 2 representation of acetone(l)-
chloroform(2)-methanol(3) ternary system.
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residuals for the exothermic acetone-chloroform binary are all positive and
the residuals for the endothermic acetone-methanol binary are, with one ex-
ception, negative. This correlation also seems to apply, with less exacti-~
tude, to the exothermic and endothermic regions of the chloroform-methanol
binary. As with the SAVN data, 70 percent of the heat of mixing residuals
were smaller than 2 percent of the excess enthalpy. When we compared the

L = 2 function obtained by fitting the heats of mixing with the L = 2
function obtained by fitting the excess enthalpies tabulfted by Morris

et al., we again found differences as large as 25 J-mol and percentage
differences greater than 5 percent. However, in contrast to the results
with the SAVN data, only 10 percent of the 196 points exhibited a difference
of 10 J-mol1-1 or larger. Consequently we again felt that it was unnecessary
to carry out the L = 3 computation and that the expansion of degree L =2
was an adequate representation of the system.

ELECTROLYTE SYSTEMS

We have chosen two categories of aqueous solutions of strong electro-
lytes to serve as test cases for the representation of experimental data by
the subspace functions of reference 1 One is the two-dimensional subspace
Ho0-NaCl of the ternary system Ho0-Na *_C1-, and the other is the three—
dimensional subspace Ho0-NaC1-CaCl, of the quaternary system H0-Na*-
ca*2-C1-. These solutions were selected because (1) both are highly non-
ideal and data exist over the entire concentration range from very dilute
solutions to saturated solutions, (2) there are large quantities of readily
available experimental data from several kinds of experiments, and (3) both
are of considerable scientific and technological interest. Experimental
data for these solutions have accumulated over a long time span and there
seems to be a large variability in accuracy. Because the data represent
such a diversity of experimental techniques, we cannot make any overall es-
timate of accuracy. Furthermore it would be virtually impossible to make an
independent assessment of each type of measurement with any degree of assur-
ance. As a result, we shall use the experimenters' claimed accuracy, which
generally is more an estimate of reproducibility and precision than accuracy,
but it should serve as a coarse indication of data quality.

We shall use 18.0154 as the formula weight for water, 58.4428 for sodium
chloride, and 98.074 for calcium chloride. The energy unit will be the
4.184-J calorie because that is the unit for much of the experimental data.

Hp0-NaCl Solutions

We shall focus our attention on the heats of dilution, heats of solu-
tion, and heat capacities of aqueous NaCl solutions over the temperature
range 0° to 200° C and from very dilute solutions to the saturated solution.
We shall use this combination of data to obtain a representatjon of the ex-
cess enthalpy for these solutions over the entire temperature and composition
range. The stoichiometric coefficients vj, for this system are given in
table XII, which also gives our labeling of species. The form of the expres-
sion for the excess enthalpy is obtained from equation (65) of reference 1
and, of course, is used with N =3 and M= 2.
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TABLE XII. - STOICHIOMETRIC
COEFFICIENTS wvjp FOR
AQUEOUS SODIUM CHLORIDE

SOLUTIONS
p H,0(1) | NaC1(2)
i
H,0(1) 1 0
Na*(2) 0 1
C17(3) 0 1
Vo ] 2

-l
nn Tz ), vX

>
t
>
S

I

—
M=

<
>

»

The heats of dilution aHg;7 and the integral (or total) heats of solution
AH;nt  in the combination x, AHyi1, X5 aHipts o = 2, are just special cases
of the heats of mixing, and 1t is these combinations which are most directly
related to the measurements. They are expressible in terms of the excess en-
thalpies as shown in equation (3) with q calculable from the expression (7)
with i replaced by o = 2.

AH(xp) - (xolic) AH(Xp) = X, AHdi]

AH(xp) = X AHint

Here xp is the final composition and, for heats of dilution, ?; is the

initial composition. The excess heat capacity is the temperature derivative
of the excess enthalpy.
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3 AH
ACp(Xp) ST (10)

Our sources for heats of dilution were five papers (refs. 20 to 24)
covering a time span of more than 50 years. The most recent data are from
Messikomer and Wood (ref. 20), who reported 78 measurements at temperatures
of 25°, 50°, 75°, and 100° C and initial compositions from a molality m of
5 down to 0.07. They feel that their calorimeter has an accuracy of 0.2
percent although the reproducibility of their measurements is considerably
worse than that for small heats of dilution. The 166 points from Ensor and
Anderson (ref. 21) are distributed over the temperature interval 40° to
80° C in 10 degree increments and at initial molalities from 0.07 to 6.1.
Ensor and Anderson make no estimate of the accuracy of their measurements.
Gulbransen and Robinson (ref 22) made their measurements on solutions whose
initial molalities were in the interval 0.006 to 0.8 and at 5 degree incre-
ments from 10° to 25° C. Their tabulated uncertainties vary with composition
and temperature but typically imply that the reproducibility is about #(1 to
2 percent) although some points are less reproducible. They list 58 values.
Robinson (ref. 23) provides only eight values, and these are for dilute solu-
tions with initial molalities from 0.01 to 0.1 and at a temperature of 25° C.
Again the reproducibility is generally about #(1 to 2 percent). The oldest
data are the 64 points obtained by Randall and Bisson (ref. 24). We have ob-
served what, to us, seem to be inconsistencies both in their table VII and
their table IX. 1In table VII some of their final concentrations appear to
be inconsistent with the initial concentrations based on the given initial
weight of solution and the weight of the added water. Since, in many instan-
ces, the resulting solution was used as the initial solution for another
dilution, these errors tend to propagate through the table. Accordingly we
recalculated their compositions from the tabulated weights and accepted their
value of molality for the initial solution in any given sequence of dilu-
tions. We then calculated a heat of dilution from the composition and their
value for the heat absorbed after first converting it from a 4.182 J calorie
to a 4.184 J calorie. The changes in molality were usually less than 0.05
except for the first three experiments, for which the change was about 0.1.

A similar inconsistency was found in their table IX; but since the composi-
tions were determined by analysis, we accepted them and recalculated the heat
of dilution from the compositions and the measured heat absorption, again
converting to the 4.184 J calorie. The changes in the heat of dilution were
generally less than 0.25 calorie.

The heat of solution measurements we used also cover a time interval of
nearly 50 years. The more recent data are from Gardner, Mitchell, and
Cobble (ref. 25) and Criss and Cobble (ref. 26). The solutions which were
formed generally had molalities from about 0.002 to 0.04. The Criss and
Cobble data nominally range from 0° to 95° C with 5 degree increments be-
tween 0° and 25° C and 10 degree increments between 25 and 95° C for a total
of 58 points. Gardner, Mitchell, and Cobble give the results for a total of
17 measurements at 115°, 150°, and 200° C. Gardner et al. feel that their
average errors (reproduc1b111ty ) are approximately 25 to 50 calories. The
reproducibility error of the Criss and Cobble measurements is as large as
+73 cal/mol and as much as 10 percent of the heat of solution, but more
typically it seems to be #(1 to 2 percent). The older heat of solution
measurements are from Lipsett, Johnson, and Maass (refs. 27 and 28), who mea-
sured the heats of solution at 25° and 20° C. There were 20 measurements at
25° and 15 measurements at 20° C with a reproducibility of about 0.1 percent
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or better for molalities greater than 0.5. For the more dilute solutions the
reproducibility was somewhat worse. The solutions ranged in molality from
about 0.04 to a saturated solution. Since Lipsett et al. used a 4.1825 J
calorie, we converted their values to a 4.184 J calorie.

The excess heat capacity of a solution is not measured directly, but for
aqueous electrolyte solutions the experiment determines the heat capacity of
the solution relative to the heat capacity of the solvent, water, and this is

then reported as an apparent heat capacity for the solute Cg. The excess

heat capacity can be calculated from the apparent heat capacity by using the
expression

_ o _ ¢cF -
ACp = X (Cp Co) o =2 (11)

*
where Co is the constant pressure heat capacity of the pure species. Picker,

Leduc, Philip, and Desnoyers (ref. 29) give 13 values of the apparent heat
capacity at a nominal 24 C and molalities from 0.01 to_2. _They estimated
their values to be precise (reprodgcible?) to +3 J-mo1-1-K-1 at molal-

ities below Q.1 and to 0.5 J-mo17*-K~+ above 0.1 molal. At m = 0.1 the

3 J-mo17*-K~! represents about 4 percent of the apparent heat capacity.
After we had completed our calculations for this report, we learned that
Desnoyers et al. (ref. 30) had discovered a systematic error in the calorime-
ter used by Picker et al. and had given a method to correct for the error.
The effect of the corIection is to lower the apparent molal heat capaiitifs
by about 3 J-mo]‘l—K‘ at the lower concentrations and about 2 J-mol1™+-K~
above m = 1.0. The corrections are about a 4 percent effect below m = 0.4,
increasing to 13.5 percent at m = 2. We felt that it was not necessary to
redo the calculations with the corrected data because they are only a small
fraction of the total collection of data and because we are not attempting a
critical evaluation of data. Randall and Rossini (ref. 313 report 19 values
for the apparent heat capacity at 25 C with molalities ranging from 0.04 to
2.3. Their estimate of the error in their measurements translates into 0.6
percent near a molality of unity and increases for more dilute and more con-
centrated solutions. This becomes about *3 percent at a molality near 0.1.
The Randall and Rossini data were converted to 4.184 J calories from 4.182 J
calories. Likke and Bromley (ref. 32) reported 35 values of the specific
heat at 20 degree increments between 80° and 200° C. Their claimed accuracy
is *0.3 percent, and the molalities run from about 0.35 to 2.25. We conver-
ted these heat capacities to excess heat capacities by subtracting the mole
fraction averages of the pure species heat capacities.

The implementation of equations (11) and (12) requires the heat capaci-
ties of the pure species. For NaCl we used the experimental data of
Leadbetter and Settatree (ref. 33) and Morrison and Patterson (ref. 34) as
reported in appendix B of the paper by Baron, Leadbetter, and Morrison
(ref. 35). We interpolated in the data by fitting a cubic polynomial to the
data in the interval 200° to 500° C and then calculating the necessary val-
ues. For water we used the constant pressure heat capacities at saturated
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TABLE XIII. - CONSTANT PRESSURE
HEAT CAPACITIES OF SODIUM
CHLORIDE AND WATER AT
SELECTED TEMPERATURES

Temperature, NaCl Hzo(z)
°C
Heat capacity,
cal-k 1-mo1”!
24.15 12.021 | ------
25 12,024 | -—-e-a-
80 12.266 18.071
100 12.359 18.153
120 12.458 18.278
140 12.558 18.450
160 12.654 18.683
180 12.738 18.980
200 12.798 19.363

conditions which are tabulated in table 5b (p. 161) of the compilation by
Schmidt (ref. 36). The specific numerical values that were used are given
in table XIII.

To accommodate the temperature dependence of the data, we must make an
explicit choice for the temperature dependence of the parameters in equa-
tion (8). We have no information that might guide us in making an optimum
choice, and so we shall simply use cubic polynomials in temperature.

(2) [ L(n) L) L) (2) )
a__ (T) = aT < (aT)|(aT) a (TO) + a (T + a (TO) +a (T

ot = o1 ot O{J o1 ot 0)

i > (13)
(2) [ () L) () (2)
by (T) = oT {(AT) (aT) by (Tg) + by (To)d tby (TO)} by (TO))

where Tp = 298.15K and AT =T - Tg. It was pointed out in reference 1,
in the discussion following equation 964), that not all parameters are neces-
sarily independent for some choices of the stoichiometric coefficients. This

35



9¢

TABLE XIV. - LEAST SQUARES REPRESENTATION (L = 1) OF EXCESS ENTHALPY

OF SODIUM CHLORIDE - WATER SOLUTIONS FROM 0° TO 200° C

(aT)0 (aT)} (aT)? (am)3
agg) -0.14361059302150x10° 0.25569086623065x103 | -0.35538881796126x102 | 0.16426017382786x10!
aég) 0.16398786673008x105 | -0.15929895031918x103 | -0.65456734604777x100 | 0.40788575976468x100
bsl) -0.72386442457581x10° 0.13796570654814x103 | -0.17745389320478x102 0.82106274725982x100
bsg) -0.55192946050053x10% | -0.76953434443742x102 | -0.14641210112243x102 | 0.99861129910465x100
bél) + bg:) 0.20095222818880x102 0.16355875054598x101 | -0.24879763454152x10~1 | 0.18275207316087x10"3
b(1) + (1) -0.21791629597011x10% 0.12548934074504x102 | -0.19875623276575x101 0.15895884520750x10"!
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applies to aqueous solutions of sodium chloride, where it is possible to de-
termine only the combinations bgi) + bg%Z) and (bgg) + bgg) rather than the

four parameters separately. Of course additional conditions could always be

imposed to separate them, but we shall not do so. The parameter agi) must
be set to zero for the excess enthalpy, but aéé) may be retained as a fit-
ting parameter because pure NaCl is inaccessible from its solutions, which
become saturated at a molality somewhat greater than 6.

The parameters for the L = 1 representation of the excess enthalpy are
given in table XIV. The mean and the standard deviation of the residuals
for each of the three subsets of data and for the whole data set used in the
fitting are given in table XV. This table also contains the corresponding

TABLE XV. - MEAN AND STANDARD DEVIATION OF RESIDUALS FOR
L = 1 REPRESENTATION OF SODIUM CHLORIDE - WATER SOLUTIONS

Number of Mean Standard

points deviation
X2 AHgq 374 0.388x10~2 0.339x10-!
X2 AHint 1o -.996x10-3 .333x10"}
ACp 67 .720x10-2 .276x10"]
A1l data 551 .331x10-2 .331x10-
AHgi1 374 -.879x10] .253x102
AHint 110 .368x10! .583x102

values for the heats of solution and dilution although they were not fitted
directly. Since the heats of dilution are two-point functions, we shall

display graphically only the heats of solution and the excess heat capabili-
ties. Figure 22 shows the representation of the 20" and 25 C data of Lip-
sett et al. over the entire concentration range. The results for the Criss
and Cobble measurements are shown in figure 23 and those for the Gardner

et al. measurements in figure 24. The curves in the latter two figures were
calculated for the exact temperatures corresponding to the data, and nominal
temperatures are used only as labels. It is surprising that these low con-
centration values of aHjpt are represented so well because the factor x4,
o = 2, considerably reduces their importance in the fitting process. The
portrayal of the excess heat capacity is presented as figure 25; here the
points labeled at 25 C are a composite of the 25 C data of Randall and
Rossini and the uncorrected 24.15° C data of Picker et al. In addition to
these results for the cubic temperature dependence we also performed the
fitting with quadratic, linear, and constant temperature dependencies. The
standard deviations for the complete data set increased in the sequence 1,
1.8, 4.3, 47 as the degree of the polynominal in temperature decreased.
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Figure 22. - Integral heat of solution of sodium chloride Figure 23. - Integral heat of solution of sodium chloride
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Figure 24, - Integral heat of solution of sodium chloride Figure 25. - Excess heat capacity of aqueous sodium
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Judging from figures 22 to 25 and the relative inaccuracy of the data as
expressed by the experimenters' own estimations of random error, it seems to
us that L =1 gives an adequate representation of the experimental measure-
ments. Naturally, expansions of degree L =2 and L = 3 would reduce the
standard deviation, but we feel it to be an unnecessary refinement in the
present circumstances.

Statistical analysis of the reliability of least squares parameters
posits that (1) random errors are independent, are normally distributed about
the mean, and have an identical variance for each value of the independent
variable, and (2) the variance of the normal distribution can be estimated
by the square of the standard error of the estimate. It is generally con-
ceded that the residuals are not distributed so conveniently, that is, norm-
ally with mean zero. This is easily illustrated by constructing a histogram
to depict the distribution of residuals by dividing the interval (-, «) into
subintervals so that the area under the normal distribution is the same for
each subinterval. If the residuals are distributed in the postulated manner,
then the histogram will be rectangular. The greater the deviation from rect-
angularity, the greater is the deviation from the postulated distribution.
The least squares program we used automatically constructs such a histogram
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Figure 26. - Distribution of residuals from fitting of aqueous solutions of
sodium chloride relative to a normal distribution of mean zero and vari-
ance equal to standard error of estimate,

with 20 subintervals, and this is shown as figure 26. The distribution of

residuals diverges considerably from normal, being much more sharply peaked
than the normal distribution.

Hp0-NaC1-CaCl, Solutions

Heretofore, we have rigorously confined ourselves in our tests to using
only experimental data which were directly measurable and could be obtained
without the establishment of a phase equilibrium. But now we make a complete
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aqueous NaCl-CaClp solutions. The value of the chemical potential is as-
certained by establishing a phase equilibrium between the water vapor and the
solution and by invoking the equality of chemical potentials as the condition
of equilibrium. The caliber of the data is now affected not only by the
quality of the measurements, but also by the extent of our knowledge of water
vapor properties. Because the vapor is pure, the demands on our knowledge
are not as severe as when dealing with a vapor mixture. Yet errors in vapor
properties will contribute to the total error.

Our sources of information about the excess chemical potential of water
in solutions at 25° C will be measurements of vapor pressure, isopiestic
ratio, freezing point depression, electromotive force, and diffusion. All
of these data will be combined to extract a representation of the excess
chemical potential au, for these solutions over their complete composi-
tion range. The stoichiometric coefficients and our labeling of species are
given in table XVI. The expression for the excess chemical potentials is
obtained by combining the first members of equations (62) to (64) of refer-
ence 1 and grouping terms. The conversion to relative quantities is done as
in equation (65) of reference 1.

TABLE XVI. - STOICHIOMETRIC COEFFICIENTS
vip FOR AQUEOUS SODIUM CHLORIDE -
CALCIUM CHLORIDE SOLUTIONS

) H0(1) [ NaC1(2) | CaCln(3)
i
Hy0(1) ] 0 0
Nat(2) 0 1 0
ca**(3) 0 0 1
C17(4) 0 1 2
vp 1 2 3

40



This form of the function will be applied to data for the excess chemi-
cal potential of water at 25° C with o =1, M= 3, and N = 4. Much of the
data will be at 25° C. However, some 1nformation for aqueous solutions of
NaCl is at temperatures d1fferent from 25° C. These data will be converted
to 25° C by using the expression (8) for the excess enthalpy and the least
squares parameters determined for NaCl solutions tabulated in table XV. We
used the formula

s 298.15 , .
- ﬁ_o - - —% dT (15)
T=298.15 RT

T

A
Yo

R

where aH 1is the partial molal excess enthalpy for species o. The expres-

sion for “aH has a form identical to equation (14) and, of course, we shall

only use the’ L = 1 part. Even though only water, and not NaCl or CaCly,

is accessible from aqueous solutions, we shall impose the conditions

)
aag

permissible, we let o take the fixed value w = 1. Then Vy = 1 and, by

=0 for all o. To see that the imposition of these conditions is

equations (77) and (83) of reference 1, u: = u:(w) = uii) and consequently

(1)

we must set pu o= 0 because we are dealing with the excess chemical

potential of water. For o # w we will rely on the discussion following
equation (41) of reference 1. There it was shown that one could introduce

a transformation of parameters such that W ='H + s where the n; are
independent of composition. Thus My ='H + Ny where Ny 2: LA and

the situation here is identical to the one discussed there. That is, the
values of Ngs © + w, cannot be determined from information on M, alone

and, in this context, are arbitrary. This arbitrariness permits us to use
au(D)
o (1),
cess chemical potential of water, it is permissible to set Bu 0 for
all o.

We have the option of working with the experimental data either as the
excess chemical potential or as the osmotic coefficient. The relationship
between the two is given in equation (92) of reference 1. When working with
aqueous electrolyte solutions, the more common choice by far is the osmotic
coefficient. Yet we feel this to be a poor choice for several reasons:

(1) The chemical potential, and not the osmotic coefficient, is the funda-
mental thermodynamic quantity and for this reason alone it should be given
precedence. (2) The definition of the osmotic coefficient can be viewed as

a weighting of the excess chemical potential of the solvent which emphasizes
the dilute solution values at the expense of the concentrated solution
values. Yet, generally speaking, dilute solution measurements are the most
difficult, the least reliable, and technologically the least important for
there the chemical potential is essentially that of pure water. (3) The
limiting value of the excess chemical potential is known exactly for it is
identically zero. By contrast, the limiting value of the osmotic coefficient
can never be known experimentally for, in the limit, it has the indeterminate

=0, o # w, and hence when we apply equation (14) to data for the ex-
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form 0/0 and can be evaluated only if one knows how the excess chemical po-
tential approaches zero. But this demands the performance of the experimen-
tally impossible task of passing to the limit. (4) Finally, as demonstrated
in reference 1, we cannot even be sure that a unique 1imiting value exists.
For all of these reasons we will shun the osmotic coefficient and favor the
excess chemical potential of the solvent in our computations. Of course, we
cannot avoid it entirely because the experimental results are tabulated as
osmotic coefficients and must be converted to excess chemical potential val-
ues before being used.

Experimental measurements are available for sodium chloride solutions.
We have decided to restrict ourselves to data obtained from vapor pressure
and freezing point depression experiments. Gibbard, Scatchard, Rousseau, and
Creek (ref. 37) made vapor pressure measurements for NaCl solutions whose
molalities ranged from 1.0 to 6.1 and covered the temperature range 25° to
100° C. From their measurements they calculated 56 osmotic coefficients,
taking vapor nonideality into account with the second virial coefficient.
They did not estimate the accuracy of their osmotic coefficients, but they
did give uncertainties for their pressures and temperatures. At 25° C these
combine to given an uncertainty in the osmotic coefficient of almost 4 per-
cent at a molality of 1, while at a molality of 6 the uncertainty is about
0.5 percent. At 100° C the corresponding numbers are 0.9 and 0.2 percent.
Pepela and Dunlop (ref. 38) also made vapor pressure measurements for NaCl
solutions but only at 25° C. The molalities extended from 0.5 to nearly 6.
We corrected their 13 osmotic coeffigients_for vapor phase nonideality of
water by using the value of -1194 cm —mo1-1 for the second virial coefficient
calculated from a formula given by McCullough et al. (ref. 39). The values
Pepela and Dunlop claim for their uncertainties in temperature and pressure
are half the values cited by Gibbard et al. The 38 vapor pressure measure-
ments of Liu and Lindsay (ref. 40) were made at 25° C intervals from 125° to
300° C and at nominal molalities of 0.1, 0.25, 0.5, and 1.0 for NaCl. They
claim that at m = 1 their measurements have a reproducibility which varies
from about 0.2 to 0.5 percent. The reproducibility was worse at lower con-
centrations. Gardner (ref. 41) and Gardner, Jones, and De Nordwall (ref. 42)
all made high-temperature measurements, up to 270° C, at molalities from 0.5
to 3.0. We discarded the Gardner et al. values at a molality of 1, because
Gardner observed that their earlier measurements are probably low, and used
the remaining 25 measurements. The final set of vapor pressure measurements
are the 36 values of Olynyk and Gordon (ref. 43) at 20°, 25°, and 30° C and
molalities from 2.2 to 6.1. The reproducibility of the osmotic coefficients,
calculated from their tabulated values of water activity and their cited
reproducibility for these activities, is better than 0.2 percent. Scatchard
and Prentiss (ref. 44) give 28 values for the freezing point depression of
NaCl solutions. The molalities run from very dilute solutions, m = 0.0008,
to almost m = 1.3. The excess chemical potential of water at 0° C can be
calculated from these data by the formula

273.15 (AHf + aH )
= - ____?_“’__ dT (16)
T=273.15 RT

T

Au
w

RT

where aH, is the partial molal excess enthalpy of water in solution and
AHe s the heat of fusion of pure water. We approximated the temperature
dependence of the heat of Iusion by a linear ffnctfon of temperature, using
the values 1436.3 cal-mol~! and 8.911 cal-mol~+-C~! for the heat of fusion
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and the heat capacity of fusion at 0° C given in_National Bureau of Standards
Circular 500 (ref. 45, p. 539). The values at 0° C can be converted to val-
ues at 25° C with equat1on (15). In actuality, we separately evaluated the
integral involving the heat of fusion in equation (16) and combined the con-
tribution of the partial molal excess enthalpy in equation (16) with the
contribution arising from equation (15) in a second calculation.

The data we have discussed for aqueous NaCl solutions comprise a total
of 196 experimental values for the excess chemical potential of water. We
must point out that, in order to convert some of the h1gh temperature data
to values at 25° C, we had to extrapolate our express1on for the excess en-
tha]py of aqueous NaCl solutions. This express1on was generated with data
covering the temperature range 0° to 200° C.

We were fortunate to have available two recent critical evaluations of
the osmotic.coefficients of CaCly solutions at 25° C (refs. 46 and 47)
covering isopiestic, vapor pressure, freezing point depress1on, electromotive
force, and diffusion measurements. Although both reviews called on the same
sources of data, their interpretations and uses of that data differed as did
some of their designations of experimental points as unreliable. The result-
ing two tabulations of "experimental" osmotic coefficients displayed differ-
ences as large as 0.005. These diffences are a commentary on the difficulty
and subjectivity of critical evaluations of data. Quite arbitrarily we
chose to rely on the tabulations compiled by Rard, Habenschuss, and Spedding
(ref. 46) for the osmotic coefficients at 25° C. We used directly all of
their collected values with one exception. That exception was the values
they give for osmotic coefficients deduced from electromotive force and dif-
fusion measurements from 11 sources. These are relative measurements and,
by quadrature of the Gibbs-Duhem equation, can give only differences is osmo-
tic coefficients. If is the osmotic coefficient at a molality m, ¢,

its value at m, y the 8aC12 activity coefficient at m, and + its valte

at m, then

m e
(¢, - Um = (5, - )T =f dm" d—(]jﬂg%ﬁ (17)

m

is the integrated Gibbs-Duhem equation. If m = O, then this can be recog-
nized as the usual relationship connecting_solute activity coefficients and
osmotic coefficients. However, choosing m = 0 1is both an unnecessary and a
nontrivial assumption for it requires the integrand to be sufficiently well
behaved near zero to be integrable and necessitates an extrapolation of ex-
perimental data to zero concentration. We preferred not to set m to zero
and to determine the 11 reference values ¢, self-consistently during the
fitting. We chose our reference composition for each set of measurements as
the lowest concentration in that set and evaluated the integral in equa-

tion (17) by using the representation of the integrand given by Rard et al.
They compiled a total of 343 points, excluding the 11 reference values, of
which 71 are from electromotive force and diffusion measurements, 20 are from
vapor pressure measurements, 10 are from freezing point depression measure-
ments, and the remaining 242 are from isopiestic experiments.

There is only limited information on aqueous solutions containing both
sodium and calcium chlorides. Robinson and Bower (ref 48) performed isopi-
estic experiments on mixed NaC1-CaClp solutions at 25° C. They carried out
equilibrations among 87 solutions, 18 containing only NaCl, 16 containing
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TABLE XVII. - LEAST SQUARES REPRESENTATION OF WATER(1) - SODIUM CHLORIDE(2) -

CALCIUM CHLORIDE(3) TERNARY SYSTEM AT 25° C

L= .
2 =1 L =2

Ausﬁ) 0 0 | -0.23848944882812x10
A"éﬁ) 0 o | 0.10953599062500x10°
A"§§) 0 0 0.15480181218750x10°
Aufg) . Aué?) -0.24979956572461x10° | 0.92332410937500x10° |  0.54690553750000x10
Aufg) = Auéﬁ) -0.37146733690357x10° 0.21183353281250x10’ 0.81983803750000x 107
Auég) - Augg) -0.13983277311325x10% | 0.15007752539063x107 | 0.11720156875000x10°
A€§%) -0.28042189677858x10° | -0.80329321093750x10° | -0.13999224062500x10
A€§2) -0.33988841427279x10° 0.17670283437500x108 | -0.93636997929687x10’
A8§§) -0.56327247629261x10° | 0.23195255140625x10° | -0.15101290476562x10°
Aeg%) 0.12083913710937x10" | -0.47059946679687x10° | -0.16022821250000x10”
Aség) 0.24106779765625x10° | 0.24942743593750x107 | -0.11204868750000x10°
Aség) 0.36229537421875x10” 0.34798746875000x10° | -0.52610814375000x10’
Aeg%) 0.24173627617187x10" | -0.94181774414062x10° |  0.14040843251953x10’
Asgz) 0.48382214687500x107 | -0.48258090273837x10 0.36572587656250%10
Aegg) 0.72596443281250x10° | -0.80189890078125x107 | -0.42407887500000x10°
Aeg?) -0.12072782207031x10’ 0.47181740332031x10° |  0.86417641875000x10”
AEig) -0.24097731601562x10’ | -0.16553731250000x10° 0.17057722562500x10°
Aszg) -0.35884153671875x107 | -0.24020932875000x10° |  0.29762270000000x10°
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TABLE XVIII. - MEAN AND STANDARD DEVIATION OF RESIDUALS IN AHBIRT
FOR WATER - SODIUM CHLORIDE - CALCIUM SYSTEM AT 25° C

Number L=2 L=1
of
points Mean Standard Mean Standard
deviation deviation
Sodium chloride | 196 |0.116x10-5 |0.387x10-3 | 0.754x10-% | 0.512x10-3
Calcium chloride | 343 |-.184x10-5 | .138x10-2 | .402x10-3 | .495x10~2
Mixture 7 .359x10-4 | .377x10-2 | -.698x10-3 | .154x10-2
A1l data 610 .352x10-5 | .106x10-2 | .169x10-3 | .376x10-2

only CaC]g, and 53 containing mixed solutes. There were 10 sets of experi-
ments, and the results were expressed as isopiestic ratios relative to NaCl.

They made no estimation of the accuracy of their results. HWe elected to re-
express their isopiestic results relative to CaClp and to determine the osmo-
tic coefficients of the 16 CaCl, solutions self-consistently during the fit-
ting. Thus there are effectively 71 points.

The parameters in equation (14) were obtained in the following manner:
First, we made an initial estimate of the excess chemical potential of water
for the 27 reference solutions, and with these we calculated the values for
those solutions which were dependent on them. The values for all 610 solu-
tions were then fitted to equation (14) in a least squares sense, the result-
ing parameters were used to calculate improved estimates for the 27 reference
values and the process was repeated until the calculation converged. To
check on the convergence we examined the difference between the estimated and
calculated values for each of the 16 reference values used with the mixture
data. At convergence this difference, expressed as a difference in excess
chemical potential divided by RT, was less than 7.5x107° for each of the
16 values. Th? corresponding difference in the 16 osmotic coefficients was
less than 5x107/. Instead of using this iterative process we could have
calculated the parameters directly in much the same way that we manipulated
the heats of dilution for NaCl solutions. Though less efficient, we found
the iterative process to be more convenient for us in the present case.

The least squares parameters, for degrees of expansion L =1 and
L = 2, are presented in table XVII. The mean residuals and the standard de-
viations in the excess chemical potential of water divided by RT are shown
in tabie XVIII for the NaCl data, the CaCl, data, the mixture data, and for
the entire data set. A comparison of the standard deviations leads us to
infer that, in going from L =1 to L = 2, the major improvement is in the
representation of the CaCl, and mixture data. Plots of the excess chemical
potential of water in aqueous NaCl and CaCl, solutions are shown in figures
27 and 28 for the L =1 representation. Although the L =1 representa-
tion is inferior to the L = 2 representation, it can be seen from these
figures that it does represent the general trends of the data quite well.

The differences between the observed and calculated values for the L =2
representation are shown as figures 29 and 30. From the last two figures it
is clear that the experimental data are represented within their scatter with
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L = 2 and that there is no reason to pursue the L =3 or L =4 cases.
There 1s a marked contrast in the behavior of the NaCl and CaCl, residuals,
The CaCl, residuals exhibit marked periodicities, whereas the NaCl residuals
are quite random in appearance. This raises questions as to what might be
the causative factors. The chief difference between the data for NaCl and
CaCl, solutions is that for the former none of the data came from isopiestic
measurements, whereas for the latter fully 2/3 of the points were isopiestic.
The L =2 CaCly residuals have extrema at the approximate molalities 0.7,
1.6, 2.6, 4.6, 6.2, and 7.9, and in this molality range the dominant contrib-
utors of isopiestic data are Spedding et al. (ref. 49) (versus KC1 reference
solutions) and Rard and Spedding (ref. 50) (versus HpSO4 reference solu-
tions). The residuals for these data, in the representation of the osmotic
coefficient generated by Rard et al. (ref. 46), can be seen in their figure 1
and seem to have extrema at molalities near 1.0, 1.8, 2.6, 4.2, 5.6, 6.8, and
7.9. In the Staples and Nuttall representation these same data have extrema
at about 0.9, 1.7, 2.2, 4.2, 5.9, and 7.4 as shown in their figure 4. The
near concurrence of these extrema can hardly be regarded as coincidental es-
pecially in view of the fact that (1) three different functions were used for
the representation of the data, (2) there were three different treatments of
the experimental data during the fitting process, and (3) Rard et al. and
Staples and Nuttall used different values for the osmotic coefficients of the
reference H2$0$ and KC1 solutions. Staples and Nuttall (p. 391) say that
their Hy,S50, reference values agree to within 0.25 percent with the values

used by Rard et al., and this is less than the uncertainty in the values
themselves, which seems to be between *0.3 percent and #0.5 (ref. 51,
p. 379). For KC1 the difference was a correction for vapor nonideality ap-
plied by Rard et al. but not by Staples and Nuttall. This correction should
lower the osmotic coefficient of KC1 by about 0.0014 and, indeed, CaCl?
osmotic coefficients obtained relative to KC1 are about 0.001 higher in the
Staples and Nuttall tabulation than in the Rard et al. tabulation. The use
of different reference values seems to implicate the isopiestic experiments
as the sources of the extrema in the residuals rather than the reference
values themselves although this is merely conjecture and far from a cer-
tainty. Composition uncertainties alone imply potential errors in the CaClp
jsopiestic ratios of about #0.3 percent versus KC1 (ref. 49) and #0.25 per-
cent versus HoSO4 (ref. 50) values comparable to the scatter in figure 30.
The L = 5 representation seems to reproduce the data to within experi-
mental uncertainties. As we have already mentioned in previous examples, if
one were interested in economy of representation, one could find a number of
parameters for both L =1 and L = 2 which contribute 1ittle to the reduc-
tion of the sum of squares and could be set to zero without seriously affect-
ing the representation.

CONCLUDING REMARKS

We have attempted to fit the thermodynamic functions of a class of non-
ideal solutions, defined in a companion report (NASA TP-1929), to several
different kinds of experimental data for electrolyte and nonelectrolyte
solutions. ATl of the cases we have examined show that the functions are
suitable for the representation of highly nonideal, real solutions within
experimental error over their entire concentration range. Even for the
highly nonideal solutions with which we have dealt, there always seemed to
be unused fliexibility in the function used for the fitting. This situation
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happily portends the inclusion of many other nonideal solutions as members
of the defined class. Only time and many more tests can show just how preva-
lent are the real members of this defined class.

Our tests of the composition-dependent functions have relied on the
availability of copious quantities of experimental data, but that is not a
prerequisite for the use of these functions. They can also be used to inter-
polate and extrapolate limited collections of data. As a case in point we
can consider an N-ary nonelectrolyte solution. If we had only information
on the properties of the (2) binary subsystems, then we could still approx-
imate the properties of the complete N-ary system to a degree of expansion
L = 2. In the absence of any data whatsoever one could even rely on esti-
mated properties generated by some approximation such as "corresponding
states." Of course, the quality of the approximation will ultimately be

determined by the quality and quantity of the data used to generate the
approximation.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, December 15, 1981
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