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Abstract

It is shown numerically, both'for the two-dimensional Navier-Stokes
(guiding-center plasma) equations and for two-dimensional magnetohydrodynamics,
that the long-time asymptotic state in a forced inverse-cascade situation is
one in which the spectrum is completely dominated by its own fundamental.

The growth continues until the fundamental is dissipatively limited by its

own dissipation rate.
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It is by now well known that there exist circumstances under which
the equations of some nonlinear continuous media exhibit turbulent solutions
which transfer a global quantity to long wavelengths at a rate comparable to
that at which the quantity is supplied. This is a reversal, for that quantity,
of the older Kolmogoroff.Richardson picture of spectral transfer to short wave-
lengths and dissipation there. The first historically important case was the
case of two-dimensional Navier-Stokes (2D NS) turbulence as initiated by
Onsager (1949), Fjidrtoft (1952), Kraichnan (1967), Batchelor (1969), Leith (1968),
and Lilly (1969). The relevance of these calculations for plasma physics
follows from the fact that the mathematics of the 2D NS case is identical ‘to
that of the electrostatic guiding-center plasme (e.g., Montgomery 1975).

The demonstration of similar long-wavelength transfer in three-~
dimensional, incompressible magnetohydrodynamics (3D MHD) was due to Frisch
and collaborators (Frisch et al 1975 Pouguet et al 1976, Meneguzzi et al
1981). It was soon demonstraﬁgd that still a third quantity could be inversely
transferred to long wavelengths in two-dimensional, incompressible magnetohydro-~
dynamics (2D MHD) by Fyfe et al (1976, 1977a,b) and Pouquet (197&). A review
of the literature up to 1980 appears in Kraichnan and Montgomery (1980).

Because of the difficulty of doing two-dimensional experiments, the
cited work has all been theoretical and/or computational. The emphasis has
been on power-law behavior for wavenumber spectra, following the influential
conjecture of Kraichnan (1967) concerning two possible inertial subranges
transferring energy and enstrophy in opposite directions. Some investigations
of diésipation scale behavior have also been reported for the 2D MHD case
(Orszag and Tang 1979, Matthaeus and Montgomery, 1980, 1981, Matthaeus 1982,

Frisch et al, 1983).
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Power laws are only obtained persuasively from dimensional analysis. In order
for them to be seen clearly, they are thought to require very large Reynolds
numbers (mechanical and/or magnetic) in order that the inertial subranges be
cleanly separated from each other and from the dissipation range. High spatial
resolution is required at these large Reynolds numbers, and it is accurate to
say that no reported numerical solution has contained a wide enough range of
wavenumbers to satisfy the chain of inequalities required for a satisfactory
test of the power-law behavior in any putatively inverse-cascading situation.
There is no question, however, that the qualitative effect of large back-~trans-
fer, at least not inconsistent with the proposed power laws, has been seen in
numerical solutions of the relevant dynamical equations in all three cases
(Lilly 1969, Fyfe e% al 1977b, Meneguzzi et al 1981).

Theoretical predictions typicelly have been for unbounded systems,
s0 that there were arbitrarily many additional octaves in wavelength for the
spectrum of the injected and inversely-cascaded quantity to expand into at
the lower end. Numerical solutions, however, always take place on periodic
or finite grids, and thereby have associated with them a maximum wavelength
(minimum wavenumber) beyond which the inversely-cascaded spectrum cannot go.
Because of the slow time scales involved in the long-wavelength eddy turnover
times and because of limited computer budgets, computations have not been report-
ed for times long compared to the time required for the longest allowed wave-
length to fill up. Both theory and computation have remained vague on the
question of what happens in an inversely-cascading situation.

Here, we address this question numerically for both the 2D NS and
2D MHD cases. In both cases, the fields are driven by a prescribed random

function, band-limited in wavenumber space, which serves as the source of the



ORIGINAL PAGE IS 4
OF POOR QUALITY

exeltations that are transferred elsevhere in the k space. The resolution of
the computation is not high and the Reynolds nunbers are not large. There is
no protense that the fuertianl subranges are well separated or that powver-law
predictions are verifiable, It Is not necessary, however, to be in this high
Reynolds number regime in order to see large amounts of bLack transfer, or to
address the questlon of what happens to the back-transferred oxeitatlions when
they have no lower place in wavenumber space to which to migrate. It ip toward
this latler, qualitative question that the following material is directed.

There wvould geem to Le at leagt three possible scenarios for what
might aceur after the k spectrum t1lla in betwveen the foreing band and the funda-

mental lowest wavenumber km (1) The Inverse spectral transfer might cease.

in’
(2) The relevant parts of the k spectrum might all rise togetheyr, possidly main-
taining & power law behavior, with perhaps a "healing reglon" Just below the

foreing band.,  (A3) The fundamental k

nin might continue o absord the supplied

exeltations, rundng off and leaving the rest of the spectrum, until it is
limited by 1its own dlassipation roate, These three may not exhauwst the possibili-
ties, but what we wish to demonstrate In the following pages is that alternative
(3) 1s in fact what ogours, both for the 2D NS and 2D MID cages. We are ungware
of any previous predictions or tests of this effect.

In geetion 2, we outline the computational procedure by which the
tests are carried out. In sections 3 and b, respectively, results are reported
for the 2D N8 and 2D MID cases. Section § describes some semi-gquantitative
attempts at modelling algebraically the kminudominated Linad, gtate, sad Lriefly
swmarises our results, Questions of accuragy of the numerdcal methiod are

addressed in the Appendix.
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2, Numerical Procedure

The 2D MID equations can be written in a standard dimensionless
form which, by the omigssion of several terms, reduces to the 2D N3 case.

Speclfically,

%% = oy Vo + RV + 950+ B (1)
-g-% = —X‘VEL+}JV2&+G (2)

(see, e.g., Fyle et al, 1976, 19T77a,b). ALl ficlds are functions of x,y and

the time t, and are independent of the z-coordinate. The vortilelty is

W = —Vaw, vhere Y 1ls the stream function and the velocity y = waéz. The moag-
netic vector potential Is a@z and the megnetic field is B = Vax§z. The electrie
current density has only a 2 component and is J = ~V2a. The vector flelds have

B, 0), though a constant

only x and y components, y = <Vx’ vy, 0) and B = (Bx’ v

L4

de magnetic field QQ =B can be added to B without altering equations (1)

o %
and (2). Deleting equation (2) and setting B = 0 leaves the 2D NS asystem.

F and G are random forcing functions of x, y and t whose statistics
will be described below.

Rectangular periodic bowndayy conditions are assumed, for all fields,
over a sguare box of edge 2. All fields are expressed as Fourier series with
wavenumbers k = (kx, ky) with integer components., Tor example, for the vorti-
city, @ = ka(g,t)exp(ig‘§). FMinite computational resourses meke it necessary

= Ik = 106,

to truncate the Fourier serles at the relatively low value of lS‘m&x =Ko

though some runs with kmax = 32 have also bheen carried out. The mechanieal

and magnetic Reynolds numbers, v‘l and u—l, must be chosen small enough to

suppress wvavenumbers significantly above L for the reswlis to be physical.

ax
The v, | cheogen for the runs reported were never smaller than 0.002.
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Solution of equations (1) and (2) is by the by-now standard Orszag-
Patterson spectral method (Orszag 1971, Patterson and Orszag 19TL, Gottlieb

and Orszag 1977), shich has proved extrsordinarily useful in turbulence compu-

tations. As a time-stepping scheme, we use

FH205) = k) + B(Q%(k))Ab/2, (3)
k) = (k) + PR 2(k))at. (%)

Here dQ(k,t)/dt = P(Q(k,t)) stands symbolically for the Fourier-transformed
version of either equation (1) or (2), and Q(k,t) represents all the Fourier
coefficients of all the fields. The index n indexes the nth time step of
duration At.

The forcing functions F and G have Fourier transforms F(g,t),
G(k,t) which are chosen at each lattice point of the k space, according to the
following recipe. Let Hn(g) be the real or imaginary part of either F(k) or

G(k) at time step n. Then (Fyfe et al, 1977b),
E (k) = £u (k) + /ISTR 3(k). (5)

Jn(g) is a random number taken from & Gaussian random number generator. The
"memory fraction" f is chosen between O and 1, and for the runs reported, we
used £ = 0.95 for both the 2D NS and 2D MHD runs. F(k,t) and G(k,t) are set

. . . , . 2 2 2
identically zero outside a "forcing band" in wavenumber space, k Fhins k s;kaax.

In the runs reported, k% . =55 and k% = T0.
min max
In both the 2D NS and 2D MHD runs, we started with an empty spectrum
and followed the evolution over a considerably longer intervel than previously

(Fyfe 1977b). TFor the 2D MHD run, the F and G functions were uncorrelated, but

acted in the same band between k= = 55 and T0, with statistically equal
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magnitudes. The "filling up” of the spectrum at the longest wavelengths is
a slow process, and consumes much computer time; it is an inherent feature of
such computations, and i. apparently the reason these computations have not

been carried out previocusly.

3_. 2D NS Case; Inverse Energy Cascade

Results for the Navier-Stokes run are shown in figures 1-6.

Figure 1 shows the total energy E(t) = %I:E(I;,) = -Ja'-zk |v(k.t)|? as a
function of time. The two most significant featu;es of the curve are: (i) the
total energy increases systematically with time, as is expected for an inverse-
ley cascading quantity; (ii) the total energy appears to be approaching asymp-
totically to a constant value, whereas for an unbounded system in the limit of
infinite Reynolds numbers, a linear increase of E(t) with t might be expected.
As will be discussed in section 5, the curve in figure 1 is rather well fit
by the expression E = Emax[l-exp(—t/T)] with B = 3.9 and T = 124,

Also in figure 1, we show, as squares, the energy contained in the

2

fundamental k° = k2. = 1. It will be apparent that by t

~

30, it already
accounts for a significant fraction of the total.

Figure 2 shows the total enstrophy Q = ZQ (k) = %@H{Im(g,t)lz versus

z
k
time. The enstrophy shollld be the directly cascading quantity, and reaches a
value about which it fluctuates while the energy continues to grow.
Figures 3a and 3b show time averaged modal energy spectra |y(5)|2
versus k2. These are averaged over all the values of k corresponding to a
given ka. Figure 3a shows averages over 1000 time steps ending at t = 29.3,

and figure 3b shows averages over 1000 time steps ending at t = 273.4k,

(Every fourth point is plotted for k22‘70, to avoid cluttering the graphs.)
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The crucial result of this paper is thought to be illustrated by the fact that
ﬁhe fundamental has come to contain about ninety per cent of the total energy.

Though the separation of the gspatlal scales is far too scant to
identify inertial subranges, we show in figures 3a,b least-squares, straight-
line fits to the spectra obove and below the foreing bands. In figure 3b, the
exponents above and below are -1.16 and -1.62, corresponding to -1.32 and -2.2k
for omnidirectional spectra, whereas the Kolmogoroff-style dimensional-analysis
predictions are -1.67 and -3.0, omni-directional. We attach no particular im-
portance to these numbers; the power-law predictions are inapplicable.

Figure 4 displays large-scale stream function contours of constant Y
at t = 273.44, showing the results of domination of the spectrum by the funda-
mental.

Figure 5 illustrates the behavior of a typical intermediate (k2 = 50)
modal energy, fluctuating about a nearly constant value. This should be con-
trasted with the continued growth of the fundamental displayed in figure 1,

Figure 6 exhibits the Carnevale (1981) entropy, S = ﬁ 2n]y(5,t)‘2, as
a function of time. The function quickly maximizes, and then ;radually decays.
The interpretation of the decay might loosely be that as the system becomes
dominated by the fundamental, the effective degree of randomness decreases.
(The action of viscosity is typically to decrease entropy.) This entropy has

its origins in information theory, and descends from the Burg entropy (Burg,

1975) .

4. The MHD Case

The results of the 2D MHD run are shown in figures T-11. The spec-
trum is forced both mechanically and magnetically, with the ratio between F
and G chosen to supply kinetic and magnetic energies at statistically equal

rates.
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The foreing band (SSS1§2370) was chosen to be the same as in the
Navier~Stokes case, and for the run we exhibit, p =v = 0,01, with a time
step t = 1/256. MID runs are typically noisier than NS ones, and the com-
puted Kolmogoreff digsipation wave numbers tend to be higher. The (32)2
runs we have performed with the above parameters tend to lead to Kolmogoroff
dissipation wave numbers significantly greater than kmax' Even though the

behavior exhibited for the 2D MHD case closely parailels the 2D NS behavior,

for (32)2, we have wought to enhance our confidence in the reality of the

effect by also performing some (Gh)2 runs. Because (61&)2 runs for times as
long as those reported in section 3 are prohibitively expensive and time
consuming, we have resorted to the following trick. We computed a (32)2 run,
starting with an empty speetrum, up to time 97,66. At this time, we used the
computed Fourier coefficients as initial data for : 5000 time step run (up
to t = 117.19) with a (610)2 resolution. (Both the (32)2 and (614)2 runs were
performed on a Cyber 203: a Gli-bit machine that is essentislly without round-
off error.) Even though the Kolmogoroff dissipation wave number was unresolved
max Fpin = 16 during the first interval (typically, the dissipation wave
number was 33), it was reasonably well resolved during the second interval
(typically, the dissipation wave number was also about 33) when kmax/kmin was
3¢. No significant chanjes were observed from one piece of the run to the
other; the second piece, regarded as accurate, continued the behavior ob-
served in the first piece, regarded as possibly inaccurate.

Figure T shows the mean square vector potential vs. time, with

2

squares illustrating the contribution of the fundamental kmin = 1 (again,

, . . 2
values shown are averages over all values of k corresponding to a given k7).
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The transition from a (32)° computation to a (Sh)2 computation occurs at

t = 97.66. Figure 8 shows, for the same run, the total energy vs. time; the
points labeled "B" are the magnetic contriuations, and the points labeled "V"
are the mechanical (kinetie) energy. The higher values of magnetic energy
are typical of forced MiID runs. Figures 7 and 8 should be compared with
figures 1 and 2 for the Navier-Stokes case.

The vector potential spectrum (|A(k)|? = Ig(lg)la/k2 vs. k%) is shown
in figure 9, averaged over 50 values, spaced 100 time steps apart, ending at
t = 97.66. Figure 10 shows the vector potential spectrum, averaged over 25
values, spaced 100 time steps apart, ending at 117.19. The dominance of the
spectrum by the fundamentel should be compared with that of figure 3b for
the 2D NS case. Figure 11 shows the instantaneous contour plots ('"magnetic
islands") for vector potential at t = 117.19.

In summary, the same qualitative behavior, with the role of the
energy replaced by mean square vector potential, is seen for the 2D MID

case as was observed in the 2D NS case.

5. Algebraic Model

The indications are, for the runs reported in sections 3 and L, that
é steady state is being approached in which the fundamental dominates the spec~
trum, and the transfer to it is balanced by its own dissipation. This has led
us to try a crude algebraic model of the dynamics of this process, which we
illustrate for the 2D NS case.

Once the fundamental has begun 1 ; dominate, most of the new energy goes
into the fundamental, so that E= Blkyjp),dB/at =de(k , )/dt. We assume that the
total enstrophy has become constant, dR/dt =0, and a significant fraction of the
enstrophy may be lodged in the values of k>kmin (as the Reynolds numbers increase,

), where Qb= 3 Q(k).
k>k .,
mi

this conclusion should become more accurate). Let Q= ot + Q(kmin
n
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The evolution of the energy and enstrophy are now modelled by

dB _

T ~2V0 + i'E (6)
@, 2 2

% =0 = -avﬁk (k) + kg I (7

~

where fE is the rate of supply of energy by T and kF is a wavenumber at the

center of the foreing band.

fp may be eliminated from equations (6) and (7) to give

as 2 2
= 200 + E}%z}s K70 (k)
D
or (noting that koin = 1),
dE . , 1y oo 1,2y .2
dt+a(1~—k—g)n--.2vsz +—1;g>§ksz(1~c) (8)
F F k>kpin

*

The right hand side of equation (8) can be evaluated in terms of the spectrum
2 -1y ; -n . \

l¥(5)]|© = C;k+ for k below the forcing band and Cijk 2 above it, with n,, n,,

and CJ:L taken from the computed values in figure 3b. The result is that equa-

tion (8) becomes of the form

dE 1 . _ ‘max
@ TTE (9)

e

with E = 3.58 and T = 254 from the calculation. The solution, E=E _[1
max max

-exp(-t/t)] fits the shape of figure 1 rather well, but the numbers are not

accurate, for Emax = 3.9 from figure 1, and T = 124. It might be, in the high

Reynolds number limit, that this simple model in which the energy dissipation

ocecurs mainly in the fundamental and balances the input, could be sharpened
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considerably, but at such e low spatial regolution it has not seemed worth-
while to do so.

A similar development can be carried out for the 2D MHD case, with
the resulting equation for A predicting dA/dt = -A/tT + Amax/T’ and a (com-
parably inaccurate) fit to the computed behavior can be obtained.

In summary, we believe that we have identified the correct quali-
tative behavior for the long-time state of the randomly forced 2D NS and 2D
MHD equations in the presence of periodic boundary conditions. Namely, the
fundamental continues to absorb the back-transferred quantity until it domi-

nates the spectrum and may be limited only by its own dissipation.

Acknowledgments. This work was supported in part by the U.S. Department of

Energy and in part by National Aeronautics and Space Administration Grant

NSG-Th16.
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Appendix: Questions of Long-Term Accuracy

An obvious question which has no simple answer is whether there is
8 sense in which the code can be called accurate after the many eddy turnover
times represented in these runs. Accuracy checks for such problems are fow,
and mostly consist of inferences drawn from conservation laws of the ideal
invariants ("rugged" invariants) which survive the limitation to finite numbers
of Fourier coefficients. The fact is that the code will not conserve these
invariants out to the times we are reporting. These long times are dictated
by the physics of the situation (it takes that long for the fundamental to come
to dominate) and there are no totally conclusive statements ahout the accuracy
that we can make.

We can, however, derive considevable reassurance from the following
observatinn:i. Except for the very beginning (t<$ 5, say) there are no periods
of 4imt ip which large qualitative changes occur in the behavior of the computeé
quantities. The code is accurate (in the above sense) over this initial time
interval, and after that, there is only a slow, systematic evolution, always
in the same direction. The code can be re-started and run accurately over any
slice of time during the evolution after randomizing the phases of the Fourier
coefficients: e.g., w(k)+w(k)exp(i¢) at some instant, where ¢ is a random
number between -7 and 1.

Figure 12 shows the results of such a typical restart at t = 58.6
for the 2D NS run, in a plot of E(t) vs t, The two sets of random numbers F
and G are the same sets of random numbers. There is no noticeable departure
of the two solutions from each other, even after 10,000 time steps. Plotted
in figure 13 are time averaged modal energy spectra for the two runs, over

1000 time steps ending at t = 97.66. Again, no noticeable differences appear.
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The accumulation of :ound-off errors may appear as effectively only
a slightly different set of random numbers provided by F and G.

If the problem is linearized and the amplification factor is calcu-
lated for the numericsl scheme, an e~folding time turns out to be about
t = 2090, whereas we have integrated only cut about t = 275.

These three considerations lead us to believe that what we have
observed are properties of the randomly-forced 2D NS and 2D MHD equations, and
not properties cof the numerical scheme.

We believe the most serious limitation on the accuracy to be connected
with the spatial resolution. Our computed Kolmogoroff dissipation wave number
gets as large as 27 for the 2D NS case (kmax = 16) and as large as 33 for the
2D MHD case (kmax = 16). For this reason, we have run the additional segment
of the 2D NS run as described in section 3. As noted there, no reversal of
any f the observed properties was observed when the dissipation wavenumber

was S k = 32,
max
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Figure Captions

Total energy vs. time for forced 2D NS run. Squares are the con-

tributions of the fundamental, k2 = kgin =

Total enstrophy vs. time for same 2D NS run shown in figure 1.

l-

2D NS modal energy spectrum, averaged over all k for given k2,

vs. k2. Averages are teken over 1000 time steps ending at ¢ = 29.30.
Forcing band is 55¢< k2 < 70,

Same as figure 3a, except time averages are over 1000 time steps
ending at t = 273.44. Note dominance of the fundamental, k° = 1.
Contours (streamlines) ) = const. for 2D NS run at t = 273.Lk,
Temporal history of a typical (k) modal energy for 2D NS run.

Value shown has |k|® = 50.

Carnevale entropy vs. time for 2D NS run.

Total mean square vector potential vs. time for forced 2D MHD run,

Squares are ccontributions of fundamental k2 = 1. Run goes from

(32)2 o (64)2 at t = 97.66.

Totel energy vs. time for 2D MHD forced run shown in figure T.

"B" = magnetic energy; "V" = kinetic energy.

Spectrum ]A(g)l2 = ]B(g)le/k for mean square vector pofential for
2D MHD run shown in figures T and 8.  Average is over all k's
corresponding to same k2 and over 50 values 100 time steps apart
ending at t = 97.66.

Spectrum ]A(lj)l2 = Ilj(lg)le/k2 for forced 2D MHD run at (6&)2,
averaged over 25 values 100 time steps apart, ending at t = 117.19.

Note the dominance of the fundamental k= = 1.



Figure 1l.

Figure 12.

Figure 13.

oRiGINAL PACE K g
oF POOR QU
Contours of constant a (field lines) at t = 117.19 for forced

2D MiD run.

The result of randomization of phases of a 2D NS run. Two runs

are identical up to t = 58.6 (arrow). Then the phases are random-
ized for one run and the two become distinct beyond that time. The
departures of the circles {rom the crosses indicate the divergence
of the two runs thereafter.

Modal energy spectra for the two runs shown in figure 12. Note

that the fundamental (k2 = 1) values are essentially identical.
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