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Abstract

It is shown numerically, both for the two-dimensional Navier-Stokes

(guiding-center plasma) equations and for two-dimensional magnetohydrodynamics,

that the long-time asymptotic state in a forced inverse-cascade situation is

one in which the spectrum is completely dominated by its own fundamental.

The growth continues until the fundamental is dissipatively limited by its

own dissipation rate.
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It is by now well known that there exist circumstances under which

the equations of some nonlinear continuous media exhibit turbulent solutions

which transfer a global quantity to long wavelengths at a rate comparable to

that at which the quantity is supplied. This is a reversal, for that quantity,

of the older Kolmogoroff-Richardson picture of spectral transfer to short wave-

lengths and dissipation there. The first historically important case was the

case of two-dimensional Navier-Stokes (2D NS) turbulence as initiated by

Onsager ( 19+9), Fjortoft (1952), Kraichnan (1967), Batchelor (1969), Leith (1968),

and Lilly (1969). The relevance of these calculations for plasma physics

follows from the fact that the mathematics of the 2D NS case is identical to

that of the electrostatic guiding-center plasma (e.g.; Montgomery 1975).
a

The demonstration of similar long-wavelength transfer in three-

dimensional, incompressible magnetohydrodynamics (3D MHD) was due to Frisch

and collaborators (Frisch et a1 1975 Pouquet et al 1976, Meneguzzi et al	 i

1981). It was soon demonstrated that still a third quantity could be inversely

transferred to long wavelengths in two-dimensional, incompressible magnetohydro-

dynamics (2D MHD) by Pyfe et al (1976, 1977a,b) and Pouquet (1970. A review

of the literature up to 1980 appears in Kraichnan and Montgomery (1980).

Because of the difficulty of doing two-dimensional experiments, the

cited work has all been theoretical and/or computational. The emphasis has

been on power-law behavior for wavenumber spectra, following the influential

conjecture of Kraichnan (1967) concerning two possible inertial subranges

transferring energy and enstrophy in opposite directions. Some investigations

of dissipation scale behavior have also been reported for the 2D MHD case

(Orszag and Tang 1979, Matthaeus and Montgomery, 1980, 1981, Matthaeus 1982,

Frisch et al, 1983).
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Power laws are only obtained persuasively from dimensional analysis. In order

for them to be seen clearly, they are thought to require very large Reynolds

numbers (mechanical and/or magnetic) in order that the inertial subranges be

clee.nly separated from each other and from the dissipation range. High spatial

resolution is required at these large Reynolds numbers, and it is accurate to

say that no reported numerical solution has contained a wide enough range of

wavenumbers to satisfy the chain of inequalities required for a satisfactory

test of the power-law behavior in any putatively inverse-cascading situation.

There is no question, however, that the qualitative effect of large back-trans-

fer, at least not inconsistent with the proposed power laws, has been seen in

numerical solutions of the relevant dynamical equations in all three cases

(Lilly 1969, Pyfe eto al 1977b, Meneguzzi et al 198L).

Theoretical predictions typically have been for unbounded systems,

so that there were arbitrarily many additional octaves in wavelength for the

spectrum of the injected and inversely-cascaded quantity to expand into at

the lower end. Numerical solutions, however, always take place on periodic

or finite grids, and thereby have associated with them a maximum wavelength

(minimum wavenumber) beyond which the inversely-cascaded spectrum cannot go.

Because of the slow time scales involved in the long-wavelength eddy turnover

times and because of limited computer budgets, computations have not been report-

ed for times long compared to the time required for the longest allowed wave-

length to fill up. Both theory and computation have remained vague on the

question of what happens in an inversely-cascading situation.
x

Here, we address this question numerically for both the 2D NS and

2D MHD cases. In both cases, the fields are driven by a prescribed random

function, band-limited in wavenumber space, which serves as the source of the
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excitations that are transferred elsewhere in the Z space. The resolution of

the computation is not high and the Reynolds numbers are not large. There is

no pretense that the Nortial subrangeo, are well separated or that powor-laW,

predielionn are verifiable. It Is not necessary, however t to be in this high

Reynolds utimbor roe"fi ►le :Ill order to set large amount g of back tranakr, or to

address the queotion or what happens to the bak-traunferrod excitations when

they have no lower place In wavenumbor space to whlQh to migrate. It in toward

this latter, qualitative question that the following material in directed.

There would soom to be at least three possible scenarios for what

might oQour after the I opeotrum, fillo in between the foroing baud and the funda-

mental lowest wavenlimbor It mill, (1) The Inverse spootral transfer might Qeaae-

(2) The relevant parts of the I spectrum might all rifle together, pounibl'y main-

taining as jvwev law bobavlor, with perhapo, a "healing region" just below the

forcing baud. (3) The Vunda ►e=l In Mill might continue to absorb the supplied

excitations, running oft" 	 leaving the rest or the spootrulti, until it is

limited by Its own dissipation rate. These three may not exhaust the possibili-

ties, but what we wish to demonstrate in the following pages is that alternative

(3) in in fact what occurs , both for the V NO and 211) MID cases, - We tire unawaro,
or 

any previous pred0tionn or tests of` 	 effect.

In section 2, we outline the computational procedure by which the

tests are carried out. In sections 3 and 4, wpoctivoly, results are reported

for the 2D NO and 21) MID cases. Action 5 describes some semi-quantitative

attempts at modelling algebraically the kMia-dominated final state, and briefly

summarizes our results. Questions of accura.Qy of 
the nlimarioal method are

addressed In the Appendix,

4
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0. Nwiierioml Procedure

Tile 12D N111) equations can be written 
in 

a standard dimensionless

form which, by -tile Omission of several terms, reduces to the 2D NO, ease.

Specifically,

am = _v. Vw + Ll • Vi + VV'-W + rTt -

a a 
= -v-Va+pv 

12 
a + G	 12J)

  -

(see, e.g. , 1^yro of a, 1t)(6, 1977a ,b) . All f 1 olds are ftinctiona or x 	
and

the time t, tuid are indopendent of the ---coordinate. The vorticity Is

"I
Co = -V

I
qi, where q) is the stratui fLuiction turd -tile velocity v = V^x'e'

z
 . The mag-

netic vector potential 
Is 

aAe z and tile wagnetia field is B 
W VaAe' z . The electric

current density has only a z component and lo, j = _V
2
 a. The wetor rieldo, have

only x and y components, v = (Vxj N, y , 0) and B = (Bx I By ,  0) , though a const4ult

do magnetic riuld Fl o 
 
= B 

o 
c
z ota^ be added -to B without altering 0, quations (1)

and (2). Dole-Ling equation (2) and setting ^ = 0 leaves 'tile 21) NG system.

F and C; are ruidom forcing ftuictioa rs of x, y turd t vhose statistics

will be described below.

Rectangular pc iodic botuidary conditions are assmied, for all fields,

over a s fjuare box of edge 2 ,if. All fields are exprossed as Fourier series with

wavantuitbero k = (ly ley ) 
	

e with integer couilvnnts. For example, for the vorti-

city, w = Ejo(Lt,t)exp(ik-,%:).	 Finite coiiiputational rosour,es 111alte 
it 

necessary

to truncate the Fourier series at the relatively low value of jItj lllax = k1nn. = 16,

though some runs with It
1110.x= 

32 have also been carried out. Tile mechanical

and magnetic Reynolds niimbers, \)_
1 

and P-1, must be chosen suiall enough -to

suppress vavonumbors significtultly above It,, Vor does 	 to be physictil.
ma

The v, is chosen for tbo runs roported were never simaler than 0.002.
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Solution of equations (1) and (2) is by the by-now standard Orszag-

Patterson spectral. method (Orszag 1971, Patterson and 0rszag 1971, Gottlieb

and Orszag 1977), Which has proved extraordinarily useful in turbulence compu-

tations. As a time-stepping scheme, we use

Qn+112(k) = Q
n(k) + P(e(k))At/2,	 (3)

e+l(k) = 
e(k) + P(e+1/2(k))At.	 (4)

Here dQ(k,t)/dt = P(Q(k,t)) stands symbolically for the Fourier-transformed

version of either equation (1) or (2), and Q(k,t) represents all the Fourier

coefficients of all the fields. The index n indexes the nth time step of

duration At.

The forcing functions F and G have Fourier transforms F(k,t),

G(k,t) which are chosen at each lattice point of the k space, according to the

following recipe. Let Hn(k) be the real or imaginary part of either F(k) or

G(k) at time step n. Then (Fyfe et al, 1977b),

Hn+l(k) = f Hn (k) 
+/1-- 

Jn(k)
	

(5)

Jn(k) is a random number taken from a Gaussian random number generator. The

"memory fraction" f is chosen between 0 and 1, and for the runs reported, we

used f = 0.95 for both the 2D NS and 2D MHD runs. F(k,t) and G(k,t) are set

identically zero outside a "forcing band" in wavenumber space, k `"F n<- k2 5 k2 .

In the runs reported, k2	= 55 and k2	= 70.
min	 max

In both the 2D NS and 2D MHD runs, we started with an empty spectrum

and followed the evolution over a considerably longer interval than previously

(Fyfe 1977b). For the 2D MHD run, the F and G functions were uncorrelated, but

acted in the same band between k2 = 55 and 70, with statistically equal



^EEr I; . PAGE IS	 7

OF POOR QUALITY

magnitudes. The "filling up" of the spectrum at the longest wavelengths is

a slow process, and consumes much computer time; it is an inherent feature of

such computations, and i, apparently the reason these computations have not

been carried out previously.

3. 2D NS Case; Inverse Energy Cascade

Results for the Navier-Stokes run are shown in figures 1-6.

Figure 1 shows the total energy E(t) = EE(k) = 2E k jv(lc,t) I 2 as a
k

function of time. The two most significant features of the curve are: (i) the

total energy increases systematically with time, as is expected for an inverse-

ley cascading quantity; (ii) the total energy appears to be approaching asymp-

totically to a constant value, whereas for an unbounded system in the limit of

infinite Reynolds nwabers, a linear increase of E(t) with t might be expected.

As will be discussed in section 5, the curve in figure 1 is rather well fit

by the expression E = Emax[1-exp(-t /T)] with Ems = 3.9 and T = 124.

Also in figure 1, we show, as squares, the energy contained in the

1

fundamental k2 = kmin = 1. It will be apparent that by t 30, it already

accounts for a significant fraction of the total.

Figure 2 shows the total enstrophy Q = kSZ(k) = 2 Ek	 jw(k,t)1 2 versus

time. The enstrophy should be the directly cascading quantity, and reaches a

value about which it fluctuates while the energy continues to grow.

Figures 3a and 3b show time averaged modal energy spectra jy(k)I2

versus k2 . These are averaged over all the values of k corresponding to a

given k2 . Figure 3a shows averages over 1000 time steps ending at t = 29.3,

and figure 3b shows averages over 1000 time steps ending at t = 273.44.

(Every fourth point is plotted for k 2 >:70, to avoid cluttering the graphs.)
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The crucial result of this paper is thought to be illustrated by the fact that

the fundamental has come to contain about ninety per cent of the total energy.

Though the separation of the spatial scales is far too scant to

identify inertial subraanges, we show in figures 3,,s,b Least-squares, straight-

line fits to the spectra above and below the forcing bands. In figure 3b, i he

exponents above and below are -1.16 and -1.62, corresponding to -1.32 and -2.24

for omnidirectional spectra, whereas the Kolmogoroff-style dimensional.-analysis

predictions are -1. 67 and -3.0, oIlini-directional.. We attach no particular im-

portance to these numbers; the power-law predictions are inapplicable.

Figure 4 displays large-scale stream function contours of constant ^
at t = 273.44, showing the results of domination of the spectrum by the funda-

mental:

Figure 5 illustrates the behavior of a typical intermediate (k 2 = 50)

modal energy, fluctuating about a nearly constant value. This should be con-

trasted with the continued growth of the fundamental displayed in figure 1.

Figure 6 exhibits the Carnevale (1981) entropy, S ^ k AnIv(k,t)1 2 , as

a function of tune. The function quickly maximizes, and then gradually decays.

The interpretation of the decay might loosely be that as the system becomes

dominated by the fundamental., the effective degree of randomness decreases.

(The action of viscosity is typically to decrease entropy.) This entropy has

its origins in information theory, and descends from the Burg entropy (Bur;,

1975)

4. The MHD Case

The results of the 2D MHD run are shown in figures 7-11. The spec-

tru in is forced both mechanically and magnetically, with the ratio between F

and U chosen 'to :,apply kinetic and. magnetic energies at statistically equal

rates. i
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The forcing; band.. (55 :^ 0S 70) was chosen to be the same as in the

Navier-Stokes case, and for the run we exhibit, µ = v = 0.01, with a time

step t = 1/250. KfD runs are typically noisier than Na ones, and the corn

puted Kolmogoroff dissipation wave numbers tend to be higher. The (32)2

runs we have performed with the above parameters tend to lead to Kolmogoroff

dissipation wave numbers significantly greater than 
kmax' 

Even though the

behavior exhibited for the SD MHD case closely parallels the 2D NS behavior,

for (32) 2 , we have wought to enhance our confidence in the reality of the

effect by also performing some (64) 2 runs. Because (64) 2 runs for times as

long as those reported in section 3 are prohibitively expen6ive and time

consuming, we have resorted to the following trick. ;e computed a (32)2 run,

starting with an empty spectrum, up to time 97,66. At this time, we used the

computed Fourier coefficients as initial data for ;. 5000 time step run (up

to t = 117.19) with a (64) 2 resolution. (Both the (32) 2 and (64) 2 runs were

performed on a Cyber 203: a 64-bit machine that is essentially without round-

off error.) Even though the Kolmogoroff dissipation wave number was unresolved

by k /k	 = 16 during the first interval (typically, the dissipation wavemax min

number was 33), it was reasonably well resolved during the second interval

(typically, the dissipation wave number was also about 33) when k /k	 wasmax min

32. No significant chan;es were observed from one piece of the run to the

other; the second piece, regarded as accurate, continued the behavior ob-

served in the first piece, regarded as possibly inaccurate.

Figure 7 shows the mean square vector potential vs. time, with

squares illustrating the contribution of the fundamental kmin = 1 (again,

values shown are averages over all values of k corresponding to a given k2).
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The transition from a (32)` computation to a (610 2  computation occurs at

t = 97.66. Figure 8 shows, for the same run, the total energy vs. time; the

points labeled "n" are the magnetic contr Yations, and the points labeled "'V'I

are the mechanical (kinetic) energy. The higher values of magnetic energy

are typical of forced MID runs. Figures 7 and 8 should be compared with

figures 1 and 2 for the Navier-Stokes case.

The vector potential spectrum (JA(k)1 2 = JB(k)1 2/k2 vs. k2 ) is shown

in figure 9, averaged over 50 values, spaced 100 time steps apart, ending at

t = 97.66. Figure 10 shows the vector potential spectrum, averaged over 25

va:Lues, spaced 100 time steps apart, ending at 117.19. The dominance of the

spectrum by the fundamental should be compared with that of figure 3b for

the 2D NS case. Figure 11 shows the instantaneous contour plots ("magnetic

islands") for vector potential at t = 117.19.

In summary, the same qualitative behavior, with the role of the

energy replaced by mean square vector potential, is seen for the 2D MP

case as was observed in the 2D NS case.

5. Algebraic Model

The indications are, for the runs reported i1 sections 3 and 4, that

a steady state is being approached in which the fundamental dominates the spec-

trum, and the transfer to it is balanced by its own dissipation. This has led

us to try a crude algebraic model of the dynamics of this process, which we

illustrate for the 2D NS case.

Once the fundamental has begun 1; dominate, most of the new energy- goes

into the fundamental, so that E = E(kmin), dE/dt dE(k min )/dt. We assume that the

total enstrophy has become constant, (M/dt = 0, and a significant fraction of the

enstrophy may be lodged in the values of k> kmin (as the Reynolds numbers increase,

this conclusion should become more accurate) . Let Q= Q 1 + Q(kmin), where St^ = E Q(k).
k>k ^.min
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The evolution of the energy and enstrophy are now modelled by

E= -2 v St + fE	 (6)

T = 0 = -2v k k"-Q(^) + kF fE( 	 7)

where f  is the rate of supply of energy by F and k  is a wavenumber at the

center of the forcing band.

f  may be eliminated from equations (6) and (7) to give

d = -2vSt + 2 Ek k2n(It)
F

or (noting that k 
.7
min = 1) ,

T + 2 (1 - ^) E _ -2v 2 +	 E k2Q(k)	 (8)
kF	 kF k>kmin

The right hand side of equation (8) can be evaluated in terms of the spectrum

Iv(k)^ ` = Clk 
nl 

for k below the forcing band and Clk n2 above it, with n1 , n2,

and Cl taken from the computed values in figure 3b. The result is that equa-

tion (8) becomes of the form

dE+lE= Emax
dt T	 T

with Emax = 3.58 and T = 254 from the calculation. The solution, E = E max [1

-exp(-t/T)l fits the shape of figure 1 rather well, but the numbers are not

accurate, for Emax 3.9 from figure 1, and T = 124. It might be, in the high

Reynolds number limit, that this simple model in which the energy dissipation

occurs mainly in the fundamental and balances the input, could be sharpened

(9)
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considerably, but at ouch a low spatial resolution it has not seemed worth-

while to do so.

A similar development can be carried out for the 2D WD case, with

the resulting equation for A predicting dA/dt = -A/T + Amax/T, and a (com-

parabl.y inaccurate) fit to the computed behavior can be obtained.

In summary, we believe that we have identified the correct quali-

tative behavior for the long-time state of the randomly forced 2D NS and 2D

MHD equations in the presence of periodic boundary conditions. Namely, the

fundamental continues to absorb the back-transferred quantity until it domi-

nates the spectrum and may be limited only by its own dissipation.

Acknowledgments. This work was supported in part by the U:S. Department of

Energy and in r)art by National Aeronautics and Space Administration Grant

NSG-7416.	 ,



4

ORIGINAL PAGE 19	
13

OF POOR QUALITY

Appendix: Questions of bong-'term Accuracy

An obvious question which has no simple answer is whether there is

a sense in which the code can be called accurate after the many eddy turnover

times represented in these runs. Accuracy checks for such problems are fraw,

4

and mostly consist of inferences drawn from conservation laws of the ideal

invariants ("rugged" invariants) which survive the limitation to finite numbers

of Fourier coefficients. The fact is that the code will not conserve these

invariants out to the times we are reporting. These long times are dictated

by the physics of the situation (it takes that long for the fundamental to come

to dominate) and there are no totally conclusive statements about the accuracy

that we can make.

We can, however, derive conside rable reassurance from the following

observatinn:<. Except for the very beginning (t S 5, say) there are no periods

of	 -'A which large qualitative changes occur in the behavior of the computed

quantities. The code is accurate (in the above sense) over this initial time

interval, and after that, there is only a slow, systematic evolution, always

in the same direction. The code can be re-started and run accurately over any

slice of time during the evolution after randomizing the phases of the Fourier

coefficients: e.g., w(k)+ w(k)exp(#) at some instant, where ^ is a random

number between -Tt and fr.

Figure 12 shows the results of such a typical restart at t = 58.6

for the 2D NS run, in a plot of E(t) vs t. The two sets of random numbers F

and G are the same sets of random numbers. There is no noticeable departure

of the two solutions from each other, even after 10,000 time steps. Plotted
4

in figure 13 are time averaged modal energy spectra for the two runs, over

1000 time steps ending at t = 97.66. Again, no noticeable differences appear.
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The accumulation of p ound-off errors may appear as effectively only

a slightly different bet of random numbers provided by F and G.

If the problem is linearized and the amplification factor is calcu-

lated for the numerical scheme, an e-folding time turns out to be about

t = 2000, whereas we have integrated only cut about t = 275.

These three considerations lead us to believe that what we have

observed are properties of the randomly-forced 2D NS and 2D IMD equations, and

not properties cf the numerical scheme.

We believe the most serious limitation on the accuracy to be connected

with the spatial resolution. Our computed Kolmogoroff dissipation wave number

gets as large as 27 for the 2D NS case (k max = 16) and as large as 33 for the

2D MiD case (k max_ = 16). For this reason, we have run the additional segment

of the 2D NS run as described in section 3. As noted there, no reversal of

any (,if the observed properties was observed when the dissipation wavenumber

was ^ 
kmax 32.
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Figure Captions

Figure 1. Total enemy vs. time for forced 2D NS run. Squares are the con-

tributions of the fundamental, k 2 = kin = 1.

Figure 2. Total enstrophy vs. time for same 2D NS run shown in figure I.

Figure 3a. 2D NS modal energy spectrum, averaged over all k for given k2,

vs. k2 . Averages are taken over 1000 time steps ending at t 29.30.

Forcing band is 55:5k 2 <_ 70.

Figure 3b. Same as figure 3a, except time averages are over 1000 time steps

ending at t = 273.44. Note dominance of the fundamental, k2 = 1.

Figure 4. Contours (streamlines) ip = const. for 2D NS run at t = 273.44.

Figure 5. Temporal history of a typical (k) modal energy for 2D NS run.

Value shown has ,k, 2 = 50.

Figure 6. Carnevale entropy vs. time for 2D NS run.

Figure 7. Total mean square vector potential vs. time for forced 2D MHD run.

Squares are ccntributions of fundamental k 2 = 1. Run goes from

(32) 2 to (64) 2 at t = 97.66.

Figure 8. Total enemy vs. time for 2D MHD forced run shown in figure 7.

"B" = magnetic energy; "V" = kinetic energy.

Figure 9. Spectrum JA(k)I 2 = IB(k)I 2/k for mean square vector potential for

2D MHD run shown in figures 7 and 8. Average is over all k's

corresponding to same k2 and over 50 values 100 time steps apart

ending at t = 97.66.

Figure 10. Spectrum IA(k)I 2 = ! B(k)I 2
/k2 for forced 2D NO run at (64)2,

averaged over 25 values 100 time steps apart, ending at t = 117.19.

Note the dominance of the fundamental k 2 = 1.
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Figure 11. Contours of constant a ( field lines) at t = 1 17 . 19 for forced

2D NO run.

Figure 12. The result of randomization of phases of a 2D N5 run. Two runs

are identical up to t = 5$.6 (arrow). Then the phases are random-

ized for one run and the two become distinct beyond that time. The

departures of 'the circles from the crosses indicate the divergence

of the two runs thereafter.

Figure 13. Nbdal energy spectra for the two runs shown in figure 12. Note

that the fundamental (k2 = l) values are essentially identical.
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