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,%bstract

It is possible, though technically difficult, to produce beams of free

electrons that exhibit beats of a quantum-?Techanical nature. One may readily

think of the following two applics.tions;

1) The generation of electromagnetic radiation, e.g. Tight, based on the

fact that the beats give rise to alternating charge and current

densities.

2) A frequency shi:[ver, based on the fact that a beam with beats constitutes

a moving grating. When such a grating is exposed to external radiation

of suitable frequency and direction, the reflected radiation will be

shifted in frequency, since the grating is moving. k twofold increase

of the frequency is readily attainable.

In this report we show that

1). It is impossible to generate radiation, because the alternating electro-

,agnetic fields that accompany the beats cannot reform themselves into

freely propagating waves.

2) The fre;;aency shifter is useless as a practical device, because its

reflectance is extremely low for realizable beams.

Of course, when the work on this grant was started, one could not foresee

that, at a later daze, somebody (like this writer) would arrive at such

disappointing conclusions. It simply takes a lot of time to go through the

analysis.
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The ►:ain Iravt (idtit pap i w^,btrs 1,11, f-f2, et;c. ^ of this report tend it,

Appendix (with pago nutabers Al, A2L etc • ) Coatain a Coltiplote record ole how

this vwiter arrival at his conclusions. The report is addressed to someone

whoa has some application for electron beats in mind, and who wishes to find
w

out whetho - or not his idea has any chance of success.
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Preface and Guide to the Reader.

This report concerns the use that one might make of free electrons

with 'quantum mechanical beats. The Main Part explains what the beats and

what the contemplated applications are. Two applications are investigated

in detail, the generation of light and a selective moving mirror. The con-

clusions are;

1. It is impossible to generate light.

2. The mirror device is useless, because its reflectance is

essentially zero.

The negative results in these two instances induce the writer to believe that
9

there are no other possible applications and that further work should be

suspended, until somebody else comes up with a fruitful idea.

The reader should read the Main Part first. Then he may consult the

Appendix, where the physical theories and mathematical, methods are explained.

Thiswriter-is well aware of the fact that this report is not easy to

read. He apoligizes to the reader for making his task so difficult. But it

seems to be inherent in the subject that so many strands of argument have co

be employed. Perhaps after two or more revisions, a more readable report

might be produced. But in view of the negs,tive results, such revisions are

G_

not worth the effort,	 h	
I
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A few years ago, H. Schwarz ,in Phys. Rev. Letters 42, 1141 (1979)

and 43, 238(E) (1979) suggested that quantum-mechanical beats of electrons

could be exploited in a novel form of a free-electron laser. In this intro-

duction we explain the meaning of the word "beats". Throughout this report,

we shall describe electrons with the formalism of non-relativistic quantum

mechanics, in the style of Schr6dinger. A relativistic theory, in the style

of Dirac, is not needed, because the speeds of the electrons are much smaller

than the speed of light, c, in the device proposed by Schwarz.

A single electron is described by a complex Schrodinger wave function

W ,ct), where,; is the position vector, and t is the time. We find it more

convenient to express the time by means of the product ct, instead of by t

itself, because ct s,d the position r co.:, in 5.ne same unit, e. g. the meter.

This usage facilitates dimension checks. For the same reason, we use the

product cp, whenever we deal with the electric charge density p,'because ep

and the electric current density J come in the same unit, e.g. the amp m-2.

The wave function * determines the associated charge and current densities,

which are given by

ep(r,ct) _ (- ee )*^V^^	 (l)

J(r,ct) = (-ec )me 	 + i* ^	
(2)

Here, i ^, (-e) is the electronic charge (e = + 1.6 x 10 -19 coul), m is

the mass of an electron, X is Planck's constant divided by 21T, me

3.86 x 10-1 1 cm is the Compton wavelength divided by 2n (which implies that

F
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me
is the Compton wave number); the star denotes the complex conjugate, and

the symbol V denotes the gradient.	 (Later on, the Fymbols 0 • and Ox denote

the divergence and the curl.) 	 The wave function	 is normalized by the

normalization condition

l	 f ATr^Y	 -=	 ►
	

(3)
g

where the integration is over the entire position space, and where ATr_is

the volume element in this ;-space.
aI

An electron. is called "free" when no electromagnetic forces act on it.

In that case, the wave function	 satisfies the simvlestform of the

Schr8dinaer equation

i_ — 1-2'^ • SV^	 (4)a	 me

A particular solution of (4) is the plane wave

- -
= coast. exp (i K^^r - ^ 4K 2et)	 ,	 (5)plane

where K is the vectorial wave number, and K2 = K ' K,	 The general solution of

(4) is the wave packet

*(r,ct) =	
2n	

jAT KF ( K)exp(i K • r - mC kK 2ct)	 f	 (6) 77
3

where F(K) is a complex amplitude factor that depends on the wave dumber ►c. f

The integration is over the wave number space.- AT K 	AKxAKYAKZ is the

volume element in this K-space. 	 The structure and development of a wave

packet is completely specifi ed by the function F(ic) in the ;-space.

Let us introduce the spatial Fourier transform ^(K,ct) (pronounced

psi hat) and the temporal Fourier transform ^y(r, 	 (pronounced psi tilde)
c

)

of the wave function *(r,ct). 	 (Whenever we deal with a frequency w, we use

the ratio 1 because 
w 

and K come in the same unit, e.g. m 1 ).	 These transforms<
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fOTe-iK+rW	 ^► 1z',et)	 . (7)r
('The integration is over the position space, AT 	 n AxAyAz is the volume

elemeny in this r-space.) and
_1 w, at

►̂ (r,	 = f+=det e	 c	 V (r,ct) •C ) (8)
h	 ct=-OWr	

The theory of Fourier transforms yields the inversion formulas

•	 A -
*(r ct) =	 2n	 f ATKei,K r *(K,et)	 , (9)

an i z
iwet

*(r,ct) _ h (10)

w -mc
A consequence of the Fourier transform theorems are the Parseval relations

and

f+*0 dct***_ f	 d	 +jr* i2-11T (12)
at=- ** 	 w

c
When we compare (6) and (9) we see that

R

*(K,ct) = F( ? )ex 	
i m 2 

K'-ct) . (13)

Then the Parseval relation (11) combined with (3) gives us the following

•	 normalization condition for the amplitude factor F(K).

fAT' KF%Z )F(K) = (27r) 3	(14)
t

(Whereas a, wave packet can be normalized,, the plane wave (5) cannot be

normalized, because the latter extends with constant absolute value

throughout the infinite r-space;)

Now let us write the charge density co(r,ct) in terms of the temporal

^t
Fourier transforms and	 For the * in (1) we use (10). For the

in (1) we use a similar formula, but with a renamed integration variable, c

}

f

f
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Thus
-i Sct

V►* (r,ct) _ 27t1+^ d c e	 a* (r,^ )	 {15)
Cr

c

The reason for this renaming is that we wish to write the product of two

integrals a3 the double integral, over the product of the two int.egrands.

Here confusion would result, had we not renamed. Then (1), (10) and (15)

yield
i(w- O)ct

cp (r,ct) _ (2nc) f! a	 d	 e c	 c	 ^(r,C)^ (r, c )	 (16)

We introduce two new integration variables c and B defined by

a w a
c
s -	 o	 (17)

c	 c

and vice versa,

= a + S
c	 a	 c

Q	 s	 (18)
c =	 c

The Jacobian of this transformation is unity. Furthermore, as and a

range over the entire(=̂  , 2)-plane, 2. and S range over the entire (a c	 c	 c	 c c
plane. Thus,

	

-ec) +m a	
S i,c at	

a	
S

eP(r'et)	 2n	 fJ d	 d ^ e	 V'tx, a + a)V'r^ a)
_m

or, after a change of notation for the integration or dummy variables, (back

to
w
 and ^)

C	
c(-ec)	 +mw i c ct 1	 +m Q	 w 	 oc p (x,ct) - 2n	 f d c e	 2n	 f	 d o 'V(r, c + c)^ (r , c)	 (19)

	

w	 a

	

c	 c
If we compare (19) with (10), the latter equation being applied to cp instead

i
of	 we see that the temporal Fourier transform p(r,) of the charge
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density cp(r,ct) is given by

cp(r, w) - (_ ec) t °' d(r ► *	 ) i	 (r, )	 , (20)
c 2ff a !	 c	 c c

a-oo
C

where, of course,

cp(r,Ct)9a
i	 ct

1+	 d	 e	 c p(r,	 ) (21)2 cW— __.
c

It is helpful to express the function ^y(r,	 , which occursc ) in (20),

in terms of the amplitude factor F( ►c).	 We start with (6).and use spherical

polar coordinates K ;	 IK 1, 9, ^ in the ^c.-space. Then

A-C K = dKk'd(ks in9d^ = dcK2dn

where

d(. = d8 sine 4
is the solid angle element. Then (6) becomes

*('let)2n	 J	 dK K e^cp(-	 j 1 is 2ct) * dnKF(Z)ej.K r^	 (22)
K=0	 K

where'll denotes the surface integral over the sphere of radius k. We
K

express K°in terms of the frequency , i.e. by way of the equation

= — m 4K2 	 (23)

Then (22) becomes
_	 l	 fo w 

i 
c 

ctm e Z
*(r,ct) 	 ?,n	 1 d c e	 me 21	 d1l KF(K)e	 (24)

c =-CO	 for
me w

K = -2- c
We compare (23) with (10) and conclude that

	

^(r. W) _ me nl'f^ dnkF(K)eik r for	 0
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As an example for an application of equation (25), we consider an

approximately mono-energetic wave packet, for which F(Z) = O unless Z lies

on a very thin spherical shell (with center at K * 5) in the K-space. Then

(25) tells us that y(i ^) = 0 unless lies in a very narrow interval I

that straddles the frequency which is related to the radius of the shell by

(23). As a consequence, the integral in (20) is zero, unless ^ lies in a

very narrow interval that straddles the frequency zero. The reason is that

one of the factors in the integrand is Aefinitely zero when the other is non-

zero, unless c = 0, so that the whole integral is zero. (^ + ^ and ^ cannot

both lie in the narrow interval I that we mentioned above, unless a 0.)

Thus, for an approximately moni-energetic wave packet, the temporal Fourier

transform p(r, ^) of the charge density p (r,ct') vanishes unless 
c 

lies in a

very narrow interval that straddles the frequency zero. We express this state

of affairs briefly, by saying that cp (r,ct) is apprximately d.c. ("d.e." for

"direct current").

On the other hand, for a wave packet that is not mono-energetic, equation

	

(25) permits ^(r, 1) to be non-zero over an extended range of	 And then

(20) permitscp(r, ^) to be non-zero over an extended domain of the frequency

beyond a very narrow interval around
c
 = 0. We express this state of

briefly by saying that cp(r,ct) has alternating components or beats. Specifi-

cally,, the beat at a given frequency ! is the product of the temporal Fourier

transform cp(r, ^), regarded as a function of the position r, and the time

factor e i c ct . The first factor is the (complex) amplitude function (it

depends on r) of the beat. The second factor produces the alternating or
i

	

a. c. behavior ("a. c." for "alternating current"). According to equation (21) 	 p



r

^^1G1NAL pAC^ 1

Poop Q11AQrj

the charge density cp(r,ct) is a superposition of beats.

Everything that we have said about the charge density cp(r,ct) and its

beats cp (r. , )ei c ct can be extended - mutatis mutandis - to the curvo,'At
a	 i W

density J (r,ct) and its beats J(r., ^)e c ct. The analogs of equations (20)

and (21) are

s(r, w) : -e )— f+.. d, °–)D ►̂ (r, 
w

c

 ' 
+ °–) +

c	 27r me a	
c 2	 c	 c

c 
X-M

+ i (r,	 + ^)Is* (r, !)) •	 ( 26)

where, of course,
1 1 ct

	J(r,ct) : 1 ^' d e 
c
	 (27)

27r w 	c
=_oo

c
To summarize; Both the charge density cp(F,ct) and the current density

-	 w..

7f;,ct) are linear superpositions of the beats c^ (r, C)ei c ct ;and

y.

wi, w ct
(r,	 c	 , as shown by equations (21) and (27). The complex beet ampli-

c

tudes 4(;,
c 
 and (z^,^) are given by (20) and (26). The amplitude ^(r, c)

which occurs in the latter two equations can be calculated according to (25).

For an approximately mono-energetic wave packet, there are only beats of very	 3

low frequency. In the limit of a strictly mono-energetic wave packet (It 	
f

x	 ,

cannot be normalized, but is a useful construct.), the charge density and 	 a

current density do not depend on the time ct; they are strictly d.c.. For a

wave packet that is not mono-energetic, the charge density and the current

density may contain beats, of appreciable frequency. The word "beat" refers

to the fact that, as shown by(20) and (26) the beat amplitudes cp(r,^) and

are of second order in the temporal Fourier transforms of the wave
c 

functions and that the beat frequency c is the difference (^ + 7)- ^ of the
r	 ,

3
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two frequencies that occur in the integrands of (2,0) and (26).

In the device Vi-tt was proposed by H. Schwarz a swarm of electrons

is employed, each exhibiting beats in the optical frequency range. Since

the charge and current densities cp(r,ct) and d(r,ct) are the sources of

the electromagnetic field, and since both densities contain beats in the

optical frequency range, one might expect that light is produced in Schwarz's

device.

However, this expectation is illusory. Two authors, A. Peres (Phys.

Rev. A, 2627 (1979) and M. Peshkin (ibid. page 2629), attempted to prove
P

that free electrons, even though they were made to exhibit beats, cannot

produce electromagnetic radiation. But these proofs are not very convincing

to.this writer, because they employ only verbal arguments. (One of these

i
arguments, namely the use of the superposition principle, is wrong, because

beats involve products of wave functions, whereas the invoked principle

applies only to linear expressions.) We, therefore, supplement the work of
I

Peres and Peshkin with a more detailed mathematical treatment, which - though

a bit tedioYjs - can demonstrate exactly where the attempt to generate light 1

fails. This analysis, which is based on the principles derived in the

Appendix, will bepp	 ,	 presented in Section 3. But there we shall have to make

use of the decomposition of a vector field into its longitudinal and trans-

verse part. This matter will be explained in Section 2.
e

We conclude the present section with some remarks about the physical

meaning of cp(r,ct) and J(r,ct) as given by equations (1) and (2). These

quantities are really the quantum-mechanical expectation values of the charge
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and current density. But one can show, as it is, done in the Appendix,

that theee expectation values sire the sources of the electromagnetic field

if this field is treated classically, while the electrons are described

quantum-mechanically. The use of quantum mechanics for the electrons and

of classical physics for the electromagnetic field is called the semi-

classical method. It is described in the Appendix. We use it throughout

this report, because we deem it accurate enough for our purposFs, and

because it is more easily handled than a fully quantized theory, in which

also the electromagnetic field would be described quantum-mechanically.

II. The Decomposition of a Vector Field Into Its Longitudinal and

Transverse Part .

We start with a vector field, e.g. the current density J(r,ct) and

take its spatial Fourier transform J(K,ct) (pronounced "Jay hat") defined

by

—

	

J(K,ct) = jATre-iK•r J(x,ct)	 (1,1

This definition is the vectorial analog of (1,7). By the Fourier integral

theorem, we have the inversion formula

•r J= -	 (2)
J(r,ct) = 2n	 feTKeiK(_,ct)

the analog of (1,9). Now we define the longitudinal part JL(r,ct)-af

7(7,ct) by way of its spatial Fourier transform JL (K,ct). The definition of

aL(K,et) is
A	 A

JL(K,ct) 	 KK•J(K,et), for K	 0'.	 (3)
A	 A

This equation states that 7L(K,ct) is the projection of 7(;,ct) onto an axis

parallel to the wave number vector K. For is 0, the definition '(3) becomes

indeterminate, so that we must use a separate definition for this case. We
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Equation (4) results from (3) if we .first take the averaged of (3) as is

ranges over the el y tface of a small sphere in rc-apace (with its center at
the origin a); and then we let the radius of thin sphere go to zero. The

factor3e ►rise s :from the fact that the average -ec > of the tensor KK is
,j

equal to 3 K2 1, where	 IT + 3j + RE is the unit tensor or idemfnctor.

`l'tte definition of Jb(K,ct) permits us to obtain Jb (r,ct) by taking the inverse

Fourier 'transform, in euaaloV to the general formula (2) . We have
s

Jb (r,Ct ) 
5` 2-;	

f QTK e	 L(K ,ct)	 f ^ TK a	 KK l a(K ,Ct) .	 ( )

Ile assume that the convergence of the integrals in the K-space is good

enough so that we may take spatial derivatives of b(x,ct), such as the

divergence 1-, 
L 

and the curl I x J^, by taking the derivatives of the irate-

grand. Then (Ir denotes the gradient with respect-to z)
r	 ^	 1

	

S • h	 2yr 	 tc ; (Vre^^`' •r )	 K KZ •J(Z'ct)

and

	

C x
T,	 ^. n

/ATK 
( arc' ► ") x	 ti • ,?(rc at )

And since

we obtain

a•s	 n	 f° Tei"'^' Ji T(r:,ct)	 (,)

and

x Jb = o

Equation (9) states that the longitudinal part of a erector field is irrota

tional. j

z	 '_
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On comparing (7) and (9), we see that
1

V•JL = V •T	 (10)

Inspection of equation (7) and (9) shows that the Fourier transforms

(V•JL)(K,ct) and (V•J)(K,ct) are given by

(0•JL)(K,ct)¢(4•J) (K,ct) = i►c•J(K,ct)	 (111

Then equation (5) may be written in the form 	 R

J (r ct) _ -^'	 JA T e.x•r iK	 1 (p )(K,ct)'	 K£L	 2n	 is
F

r	 or
k
E	 JL(r,ct) _ _ p^	 (12a)

with

V+(r,ct) =	 2n	
rATAe^.K r , 	 ( a• )( K • ct)	 (12b)

(There is no connection between the * of equations (12a, b) and the Schr8dinger

wave functions of Section 1.)

Now, the inverse Fourier transform of - ^ is	 as one ran easily show by
K

direct calculation.	 Thus, by (12b), the Fourier transform of *(r,et) is the

product of two Fourier transforms, that of 	 and that of a •J.	 Hence, by the
Wr

convolution theorem of Fourier transforms, 10(r,t) is the convolution of	 and

Q • ,T,	 Thus, (12) may be written in the form

with

^ fATS	 l	 0-• 7Xs,ct)	 (13b)

Equations (13) may be found in many textbooks, e.g. Morse and Feshbach, Methods

of Theoretical Physics, McGraw-Hill 1953, pages 53, 54 or Panofsky, and

1

j

E t,
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Phillips, Classical Electricity and Magnetism, Addison-Wesley 1962, page 2.

However, we find it more convenient to define ^L(;r,ct) by way of its Fourier

transform (3).

We are finished with the discussion of the longitudinal part JL(r,ct).

The transverse part JT(r,ct) is 4efined by the requirement that both parts

add up to J(F,ct), i . e. that

J(F,ct)	 JT,(r,ct) + J
T
(F l at)	 (14)

Then, a similar equation, namely

A	 A	 A

VK,ct) = aL (EC,ct) + JT (; ' ct)	 (15)

must hold for the Fourier transforms, so that

s
A

-	 k x. (K X J (F,,ct), for K 0 ,	 (16)

and

J^(o,ct) = 3 J(o,ct)	 (17)

	

A	 A

Equation ( 16) shows that JT (K ,ct) is the projection of J(K,ct) onto a plane

that is normal to k..

The remainder of the discussion is pretty much a repeti"0ion of what was 	 f<

done for JL. So we can be brief. The analogs of equations ( 5), (7), (8) are	 ?'

7 (r,ct)	 ?n	 l AT K
ei^c.•r JT(1a,et)

r	 r-
2n	 1 QTK El	r -K-7 (-I x (K. x	 (18)

^ K JT	 2n	 f OtK,eiic r 11Z X, J( ►c:,ct) , (19)

1 • 7  0	 (20)

Equation ( 20) states that `fT(r,ct) is solenoidal. The analogs of equation
x

(10) and ( 1l) are

t
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J,
A

x JT )R9ct) _ (I x 7)(R,ct) = iK x i(RC,ct)

Instead of (12), we have

JT(r,ct) _ 0 x (: ,

M14

(21)

(22)

(23a)

with

C(r,ct)	
2n	

/AT 
KeiK r
	 (0 x J)( K ,ct)	 (23b)

When we take the divergence of (23b) by differentiating the integrand and

when we also use (22), we see that

! . 0 = 0 ,	 (24)

which implies that C(r,ct) is purely transverse.. (Because of (13), 0 •6 = 0

yields a  = 0.)

Finally, the analog of (13) is

JT(r,ct) = 0 x C ,	 (25a)

with

c(r,ct) = 47r JA T$ _1_ (o x J) (S,ct)	 (25b)

This is a well-known relation. (See the references quoted after (13).]

Let us consider two real vector- fields P(r,,cti) and G(r,ct). We take the

longitudinal part of the first and the transverse part of the second field.

Then we consider the scalar product FL • 4T . Now, by (13), FL is the

negative gradient of some scalar field 0, and, by (25), GT is the curl of

some vector field G. Then

FL • ,r = -(oV^) • ( -v x c) _ - 1-N! x fl + 0-P x c)

or, since the divergence of a curl is zero,

,F
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We integrate this equation over the interior of some large sphere of radius R.

and convert the integral of the right-hand side into a surface integral, by

virtue of the theorem of Gauss. Thus

f ATrFL frm -f • ^V x C

sphere

where Af is the vectorial surface element. We assume that 0 F and v x. G

vanish outside a finite region of space, as it usually happens in practice.

(Somewhat less stringent requirements will suffice for the argument that

follows. For instance, V•F and 3 X ^ should tend to zero for IFI -*.- at a

sufficiently fast rate.) Then, by (13) and (25), * and G are of order R-1

for R -r -. Then V x C is of order R-2 0  and the surface integral in (26) is

of order R' 1 . Thus, when we go to the limit R 	 equation (26) becomes

/AT rFL •GT = 0 ,	 (27)

which is an important orthogonality relation.

Another demonstration of (27) is by way of the Parseval relation

fATJL(F,ct)•GT(r,ct) = 2	 fATJL (-x.,ct)•GTOKoct)	 (28)

But the definitions (3) and (16) show that the integrand of the right-hand

side of (28) is zero (except at the single point K: = O; this exception does

not affect the integral.).

A consequence of (27) is: When a vector field F is zero everywhere, then

its longitudinal and transverse part must be zero individually. For, with

F = FL + FT , we have (if F = 0)

fAT rFL • FL + 16T rFT • FT + 2f AT rFL • FT = 0

The third integral is zero, by (27). The remaining two integrals (their

integrands are never negative) can add up to zero only if individually

FL = 0 and FT _ 0. In the same way one shows that a longitudinal field FL

r
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and a transverse field CT can never add up to zero. 	 For we have

f ATr(FL+GT ) • (FL+GT )	 f ATrFL • FL + f bTr5T•GT + *TrFL-GT
By (27), the third integral on the right is zero. The other two are

definitely positive, unless FL = 0 and GT = 0 everywhere.	 Therefore, if

and only if these two equations are satisfied, can FL + GT be zero everywhere.
r

We also remark that the longitudinal part of the curl of a vector field

vanishes.	 For NV x F)	 0 9 and hence 0 x F) L A 0, as seen from (13).	 Also

from (13) we see that a solenoidal vector field (i.e. a field whose divergence

vanishes) is purely transverse because its longitudinal part vanishes. 	 And

(25) shows that an irrotational vector field (i.e. a field whose curl vanishes)
j

is purely longitudinal because its transverse gait vanishes. 	 Vice versa: A u

purely longitudinal vector field is irrotational, since - by (13) - it is*the r

negative gradient of a scalar 	 and V x (V*) = 0.	 And a purely transverse

vector field is solenoidal, since - by (25) - it is the curl of a vector C

and V • (V x	 0.	 Thus, the properties "purely longitudinal" and "irrota-

tional" are equivalent, as are the properties "purely transverse" and

"solenoidal".	 A non-vanishing vector field F cannot be both purely longi-

dinal (meaning FT = 0) and purely transverse (meaning FL	 0) at the same

time, since F = FL + FT yields F = 0 under these conditions. 	 -(Of course,

M
r

the assumption is always that F tends to zero for	 rapidly enough so

that the Fourier transform theory, on which everything was based, is appli-

cable.)	 Therefore, because of the equivalences of properties spelled out

above, we conclude that a field that is both irrotational and purely trans-

verse is zero everywhere.	 The same conclusion holds for a field that is both

solenoidal and purely longitudinal.

ri

;k

>
a

r<	 3
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We apply the results of this section to the Maxwell equa

electromagnetic field.

(29a)

(29b)

(29c)

(29d)

3 X 2+ act - 0,
I X CA - a- a E` = noJ

E = nocp

3c$'=0,

E = Electric field strength,

B = Magnetic induction,

Here

no = Impedance of free space = 377 ohm.

The quantity no is related to

uo = Permeability of free space 4n 10' 7 Vol- p

c = Speed of light Y 3 x 106 sec

	

e = Permittivity of free space =	 ,o	 uoc

through

TLCOOouo^ o	 i

Of course, the electric charge density p and the electric current density J

"must be coupled by the continuity equation

	

V•J 
+act 

ep = 0	 (30)'

We apply (29) in the following manner: cp(r,t) and J(r,ct) are given;

E(r,ct) and ct(r,ct) are to be found. Equation (29a) tells us that CA is

solenoidal, hence purely transverse. Thus

	

at = CAT	 (31)

Then, by (24) and (25), there exists a purely transverse vector field CAT

s

such that,	 {;

k

N	 '^
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CB s V x CAT . (32)

The vector cAT is called the "vector potential in the Coulomb gauge". We

decompose 2 and also J into their longitudinal and transverse parts, so that

_ EL + FT ,	 (33)

J = j  + iT 	(34)
Then the equations (29) become (Note that 0 x EL = 0 and V • ET = 0)

C x 
(ET + act CA

T ) = 0	 (35a)

ax (I 
x cAT) act PL	 ctT s no L + no T	 (35b)

ML = nocp	 (35c)

a• (a x cAT ) = 0	 (35d)

Equation (35d) is redundant. Equation (35a) tells us that ET + act cAT'

which is obviously purely transverse, is also solenoidal, hence purely

longitudinal. Therefore ET + act cAT , being both purely transverse and

purely longitudinal, must be zero everywhere, so that

a
(36)ET = - act CAT .

We no longer need equations (35a) and (35d). Equation (35b) must hold

separately for its transverse and longitudinal part. Thus, with (36)9

this equation yields	 '

0 n (0 x cAT + act 2 cA
T = no T 	

(37a)

and
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Now, by (13), there exists a scalar field ¢, such that

L a _ ^^	 (?)

The quantity is called the "scalar potential in the Coulomb gauge". Then

(37b) and (37c) become

a	
(39a)3 8^: noJL

and

1.10 = nocp 	 (39b)

Equation (39b) states that at any instant ct, the scalar potential 0 is equal

to tbo electrostatic potential associated with the chtzge density at that

instant. But one should keep in mind that 0 depends on the time, because cp

depends on the time.

The procedure for obtaining the electromagnetic field from a given

charge density cp('r-,ct) and current density J(r,ct) is then as follows.

First one determines the potentials +(r,ct) and cAT(r,ct) from (See (37a)

and (39b)].

v•v^ _ - 1100 ,	 (4oa)

and

_	 2	 _	 w
V x (V x CAT )	

-act c A
T _ 

no T	 (4ob )

Here, no T may be obtained either by way of 0, namely by (See (39a)).nojT = no - a, a.. t ;	 ( 4oc )

or one may bypass the determination of ^ and obtain JT from J itself through

(16) or (25). After ¢ and cAT have been determined, one obtains the fields

t(r,ct) and cB(r,ct) from

E
E EL + ET	 (41a)

EL 	 ,	
(41b)

r:

M19
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LIT 	 act	 (41c)

a	 k

	

cB _ V k CXT 	 (41d)

Equations (40) and (41) are, of course, well-known. We showed how

they are derived, not only for the sake of completeness, but also because

we wanted to exhibit why the source function for cXT9 i.e. the right-hand

side of (40b) is noL, not not.

One of the favorite ways of dealing with equations (40) and (41) is by	 A

way of their spatial Fourier transforms. What corresponds to the operation

Vin the ;-space is the multiplication by iK in the ;-space. Thus the trans-

forms of 1-10 and V x ($ x cAT ) are

iic iK^ _ - K2^

and

ix x (ik x Cy = x 2CAT - ;;-cAT
A	

'^

= 0, we have iK •aAT = 0, so thatBut since o•cAT 

iKx(icx CAT ) =K2cAT•

P	 Thus, equations (40) and ( 4l) become

K2^(K Ct) = n ecp(K P ct) ,	 (42a)

A	 a2	
—	 A	 -

K2Ce1,,,(K,ct) 	 act	 CAT(K,'Ct)	 no^ T (K,ct)	 (42b)

n0 7T(K,ct) ' n 	 (K7 (K,ct) - iK aCt 
^,ct) ,	 (42c)

and
A	 A	 A

P(rc,ct) = ErjROct) + 2 (; O ct)	 (43a)

2L(K,ct) _ - iKT(K,et) ,	 (43b) 9

i	
FiT(K,ct)	

act CA
T (K,Ct) ,	 (43c)

cB(ic,ct )= K x CA,r (K,ct)	 (43d)
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A	 ^i

Equation (42b) states that the Fourier transform cA(rc ,ct) behaves like the

excursion of a driven harmonic *scillator, whose resonance frequency n(E) is

given by

(^)2(K:) s K2 .	 (44)
A

The "driving force" for such an oscillator is no T(k,ct). We shall return

to this remark in the next section.

The energy density Penergy 
of th- electromagnetic field is givtAn by

	

p energy = 2= (M + cB • cB)	 (45)
0

or, sinceE _^ + PT

	

Penergy = 2n1c (EL • 2L + 2KL • BT + ET • PT + CE-J)	 (46)
0

When we integrate this expression over the entire r=space we obtain the stored

electromagnetic energy U. According to the orthogonality relation (2T), the

integral of 2L • 2T vanishes. Thus

U = Ustat + Urad '	
(4'Ta)

with

U	 _	 l	 AT	 =	 1 jeT (v)^ ( -v^) ,	 (47b)	stat 2n
0
c	 r L L 2noc	 r

U
rad 2n1c /AT

r aT • tT + cB • cB) _	 (4Tc)
o

= 2n1c fAT r [( act 
cAT )

a^t 
cAT) + (o x wAT ) • (I. '

x 1AT)];
0

The energy U is therefore the sum of two parts, the electrostatic energy Ustat

associated with the longitudinal. field P and -the energy Urad of what may be
the

cal.l4rad.iation field, i.e., the field specified by cB and the transverse

part ET of L The decomposition (47a) is a natural one. We shall be inter-

ested . mainly in 
Urad' 

since we can regard 
Ustat 

as a purely configurational

energy. For it depends, by way of ^, only on the instantaneous charge dis
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r

We can convert the integrals over r-space in (47) into integrals .over

K-space by means of the Parseval relation for Fourier transforms. This

relation states that for two complex vector fields P(r,t) and IG(r,t) we have

fdTrMr,Ct) * • G(r,Ct) - 27r1 fQT K(fi(K,ct)* -3("K,et)	 (48)

We use

x cAT )	 (9 x CAT ) _ ( -iK X (CAT ) )'(iic CAT}

= K2 (CAT) ' cAT -K'. • (cAT) K•CAT - K2 (CAT) • cA - 0 .

(Note that K-C AT = 0, since V • cAT = 0). Then (4T) becomes

^	 k

	

U 
_ 

Ustat + Urad'	 t
49a)

with

Ustat = 2nl
c f4TKK2((K,et)^(^c,et)	 (49b)

0
U	 _	 l fAT ^(	 CA ( ,at)] • k O C (K,Ct)rad 2noc	K act ^'	 det

	

+ K2 (cAr (K,ct )*• CA", K tCt)]	 ( 49c)

,Equation (49c) states that 
Urad 

is the sum (actually an integral)'of the

energies of the individual field oscillators, whose excursions are given by
A

cAT ('K, ct). seemingly, each oscillator has three degrees of freedom, since

cAT(K,ct) is a vector. But since `this vector is constrained by the condition

that it be normal to the wave number vector c, each field oscillator has

only two degrees of freedom.

We are now ready to show (in the next section) that free electrons,

even though they may have beats, cannot radiate.

III. Proof of the Statement that "Quantum-mechanical beats cannot enable

We start with the expression ( 2, 49c) for the energy Urad of the

radiation field. We repeat it here for the sake of convenience.

U	 (ct)	 1 IA,[( a 
cA (K,ct)	

a C- (Kct)
red	 2noc	

K 
act T	 act

+ K2 (CXT ( K ,ct) *• (CAT(K,ct)]	 (1,)

hL
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We assume that in the distant past, ct + - -, there was no electromagnetic

field present as yet. Then what we wish to show is that in the distant

future, ct + + -, the radiation energy is zero, i.e., we wish to prove that

lim Urad(ct) = 0	 (2)
ct ++-•

In the meantime, there may be a build-up of radiation energy. But this

energy will be reabsorbed again (not radiated away) in the end.
A

We determine cAT(K ,ct) by means of equation ( 2-42b), which we repeat

here for the sake of convenience,

	

8ct	
cAT (K,ct) + K 2cAT(gct) = no3T ( K ,ct )	 (3)

As we said before, this is the equation for a driven harmonic oscillator.

We determine the driving "force" n0JT(K,ct) by taking the spatial Fourier

transform of (see (1-42))

J(r,ctj = ( -ec) 
m (-1**!* + iV!** )	 (4)

(Afterwards, we extract the transverse part.)

In order to do this, we start with (1,6), but use a different dummy variable,,

namely L Thus

2

	

► (r,ct)	 2n faT FMexp(iZ•r i me ^
2 ct) .

Similarly, this time with the dummy variable n,

(r,ct)	 2	 fATnF*(n)exp(-in•r + i me 
n2 et)	 (6)	 i

	

On taking the gradient of (5) and ( 6), we obtain	 s
r	 2

( *)(	 )	 2^	 1	 ( ^) ( 7,) xp ( ,	 _	 me 2 ,	 )	 (7)

	

0 r. et	 DT i :^' F e iF • r - i m ^ ct
./

( V*)(r,ot) = 27r	 1cTn (-in)F (n)exp (-in • r + i me 2 ct ) '	 (8)

We insert the expressions ( 5) - (8) into (4). But we write the product of

two integrals as the double integral of the products of the integrands. We

obtain
)

.	
h

(5)
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(
ljj	

,

J(r,ct) _ ( -ec)
me27r  ffAT ATn 2 F(t)F*(n)

exp(i(Z-n) •r - i 4e 4(g2- n 2 )ct) .

Instead of Z and n, we use two new dummy variables K and I defined by

+ ^n .

Vice versa:
1

The'Jacobian of the transformation (11) is equal to unity, as one can see

when one examines the three Jacobians for each of the three Cartesian
,a

components; all three are equal to unity, and 13 - I.. Thus AT AT = ATKeta,

and equation ( 9) becomes	 {

J(r,ct)	 (-ec) 1 	 ffAT eT eik*rT^l:(T -9aK)F*(1

	

nmc 2 7rt	 K a

exp (-i me ;4ct)	 (12)

From this equation one can read out t .e spatial Fourier trEms .form J(ic,ct).
)

See ( 2,2),) It is given by

J(K'ct) = (ec) me 2n f eT^IF(T1 + ^K)F*(3 ='k)exp(-i -^K • 71ct)	 (13)

However, in the equation of motion ( 3), we needJT ( K,ct), the Fourier trans

form of the transverse part JT of J. The definitions ( 2,16) and (2,17) relate

€	 JT to J. Thus

	

JT (K,Ct) - (-ec) C 2n	
jeT^(T1 -	 KK•31)F'( + K)F ( - 2K)

	

exp (-i 1 7-1 et), for K # 6 ,	 (14)
me

and

JT(o,ct) _ -ec) m 2lrt 
feT XTF(T)F* (a)	 (15)

	assumption that the energy	
2

We now make the assum

	

p	 gy ^K) associated with each	
g

Fourier component *(K,ct) of the wave function *(r,ct) is limited to a value
...d
x

J

Li	 ..

M24
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through 4i; and ki in two points, whose distances from the origin are % + J¢K

and KM - hK- The two critical vectors I that we need lie at the inter-

section points that are closest to the origin. And thzt gives us the two

points + Wi' + m K)^. Therefore, for a given wave vector IC, the fre-
A

quencies _ - m %^n that occur in the excitation function nQ:^T(ic,ct) of (3)

are limited to the band

- 
me ( 

KM —If K ) < c <+	
me (

i^ - s K)	 (18)
A

The excitation function npa(l*,ct) is thus band-limited to the low-pass band (18)

We could substantiate this conclusion by a detailed calculation of the

temporal Fourier transform n o? (K,^) (pronounced ,lay-tee-hat-tilde) of the
A

excitation function aT (K,ct) This transform is defined by
-i U ct A

TP ) 	 dct e c 	 T(k,ct)	 (19)
ct=-

The inversion formula of (19) is

iwct
J^,( vat) _ 2n	 f+ 	 G e c	 JT(K	 (20)

W
cr

However we do ,not need to perform this straight-forward calculation (which is

clone most convincingly with (20) as the starting point). The reason is that,

as we shall see later, we need J,,044) only for one particular value of the

frequency 
c
	 And this value corresponds to the resonance frequency K of the

harmonic oscillator{ type equation of motion (3) NOV, K lies well outside

the low-pass band (18). (For our numerical exsmple m = 34. mc , the resonance

a)	 tfrequency K lies outside the low-pass bend (1 	 by a margin hat is better

than 2 to 1.) Thus we arrive at the ianportant equations.

fix (k, ►: = Q	 ( 21a)

	

for Iit)	 0

^e
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Now we take up the r::dson that we are interested mainly in the temporal

Fourier transform noJT(K,K) at the single frequency value 76 K, rather than
A

in the complete time function aT(;,ct). We assume that the electromagnetic

field was in its quiescent state in the distant past, so that

lim exT(r,ct) - 0 9	 lim a—ca-t- cY'r,et)	 0 9	 lim TJrad(ct) _ 0 . t (22)
ct-+--	 ct•+--	 ct•0,

The first two equations of (22) imply that similar equations hold also for

the spatial Fourier transforms, so that

lim CAT (K,ct) = 0,	 lim	
apt 

cFT (ic,ct) = o	 (23)
ct-oft	 ct-+-^

We wish to evaluate how much radiation energy will have been produced in the

	

distant future, i.e., we wish to calculate 	 m lim UAad(ct). We ste with thect 

expression (1) for Urad (ct). We then need lim J (K,ct) and lim act.cAT(K,ct).
ct-++-	 ct++-

We could determine cAT(K,ct) directly from the equation of motion (3). However,

we find it more convenient to determine the two auxiliary functions F(n,ct)

and d(.K,ct) which are defined by

F(K,Ct) _ ( 
act
a 

CA 
T (K,Ct)	 iKC A

AT (K,ct))eiKct	

(24)
A -	 _	 ,

(!.r-,, ct)	 ( act cAT('K'ct) + 'K2XT (K,ct) ) e
_
- 

t^ct

where, as always, 'K = I*K(.*Note that both auxiliary functions vanish in the

distant past because of (23). For the complex conjugates, we have

F* et) _ ( a c A* (k Ct) + ik C A (K ct )^-i"t
^^'	 act	 '	 (25 )

-act cAr( K' ct ;)) • actcAT( K' ct)+K2cAT( K,ct)'CY;,ct)	 (26)

A

one should not confuse the (vectorial and time-dependent) F in (24) with the
the (scalar and time-independent) F in (5).

•What; makes it possible to stipulate these initial conditions is that, in the
distant past, the beats have not yet developed and that the wave packet is of
infinite size.	 f

G (K,ct)	 (act C^,(K,ct) - i KcAT(_K,ct))ei` ct .

From (24) and (25) we obtain

(k^ (^c,ct)•F(K,ct) + G (^c,ct)•G(ic.,ct))=
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The right-hand side of (26) is the integrand of equation (1). Thus, (1)

may be written in the form

tJrad(et) = 1 A k [F (K,ct)•F(k,ct) + ^ (K,et)•'c.(k,et)]	 ('27)

A	 A

Now we calculate the two auxiliary functions F(K,ct) and G(K,ct). We

take the time derivative of (24) and use the equation of motion (3). Then

(there are two terms that cancel)

act F -
 ( (act) 'AT + K2cA_)eiKet = no TeiKCt^

^^r	
(28)

a G = ( a2 	 CA + 
,2c= )e-i'KCt	

neJTe-iKCtact	 act	 T	 AT
A	 A

The functions F and G can then be determined by simple quadratures. Because

these functions vanish for ct 	 we have

	

F(K,ct) =	 jct des_eiKes no3T (Kgcs) ,
es=-^	 (29)

	

G(K,et) =	 fct des a iKes a T (ic,cs) .
Cs1=-00

Now we take the limit ct -- +-. In view of the definition (19) for the

temporal Fourier transform, we have

lim Mot) = no T(K, -K)

A	 A

lim G( qct)	 n07T CK_,K).
ct++-

We use these expressions in equation (2T). Then the radiation energy in

the distant future becomes

	

lim Urad(ct)	 f ATK [ (JT^ ^c,-x)) -a (K,-K) +
ct++^

(1* (-	 * I f—JT K,K) • 	 K))	 (31)

But according to (21), all the Fourier transforms in (31) are zero. Thus

we have the final result

lim 
Urad(ct)
	 0	 (32)

ct-++-
L

v

1
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In words; A single free electron in free space, even though it may have

quantum-mechanical beats, cannot produce any radiation energy in the end.

Of course, there may be some temporary production of radiation energy. But,

in the end, this energy is reabsorbed by the electron. What _made it impos-

sible to generate radiation is that, for a beat of wave number K, the

frequency w/c is well below the required value K	 And the reason for

that was the band width limitation (18).

So far, we have considered dust one electron. Now let us consider a

swarm of electrons. We enumerate the electrons with some digit p = 1 9 2 9 3, ...

Let P3(r,ct) be the current density, that belongs to electron #p. When we

wish to adapt our previous calculation to the swarm of electrons, then we

merely have to replace ^ by the suin 3. r'a equation (30) and (31) there

p p
appear the sums 17(K,-K) and J(i,K). Since each term in the sums is zero,

p p	 p p
the sivas themselves are zero. Thus, equation (32) holds also fora swarm of

free electrons in,free space. Note that we did not make any assumption about

the instants at which the electrons are emitted. The conclusion (32) holds

not only when the electrons are emitted at random instants, but also when the

electrons are bunched by some gating device.

This finishes the proof for the absence of radiation. We conclude this

section with some miscellaneous comments.
r
i

Several times we have mentioned the spatial and temporal Fourier trans-

form J	
w	 _

^(^c, 	 of the transverse current density JT (r,et) We never .needed to

calculate it, because only the special valuesJT(K,.K) and JT(K,-K) were

required in our proof. And these values were seen to be zero. nevertheless,

for the sake of completeness, we exhibit an expression for the general„ value

We start with equation (14) for the spatial Fourier transform
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aT(k,ct), we repeat this equation for the sake of convenience.

A

aT ( ,ct) _ (—ec) 
me 2tt	

fATA(X -	 K"K+1)F(1 	 + t9r )Fe (T

r21
exp(- ime ^• -t)	 (14, repeated)

	

In the T-space, over which the integration in (14) is performed, we introduce	 r

cartesian coorditnates to n o r, referred to the three mutually orthogonal unit

vectors K. , n, b. The first of these depends on th e given weave number vector

K, which appears on the left-hand side of (14). Then we can always choose the

remaining unit vectors a and b in such a way that, a, b are mutually ortho-
I

gonal. Thus we can write

!;a + nb	 k	
t3

and

AT 	 d^dndr,.
{

Equation ( 14) then becomes

r
A

T(K*ct)	 ( -eC) me 2n	 1ff+^f	 dCdnd4(Fa + nb)F(Ca + nb + ( + 2) t)

F* (4a + nb + k- )K) erp(-i me 
SKCt)	 (33)

Here we replace the integration variable C by the integration variable G

such that

c	 mcK'
Then n

me 1dd, = -

	

	 ,7ti c
and runs from +- to --. We can remove the minus sign that results from

the equation for dC by making c 
run from -Q to +- again. Then equation (33)

becomes
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1 1	 t +^ w	 me 1 w K ^c
JT ( K'ct) _ (-ec) is 2n

	

	 ! f f	 d ! d^dj E;a+nb )F(^i+nS + ( ,i	 c + 2. ) K)
&,n,w/C =_M

F* (^a+nS+(Mc c - 2)K) exp(i 
c 

ct)	 (34)
A

Next we note that the spatial Fourier transform J1,(K,ct) is related to the

	

x	
..

spatial and temporal Fourier transform JT(O	 by

^T( ►c,ct) 
2tr 

f 	 d ^ JT ( K, 1)exp (i ^ ct).	 (35)
W
c

On comparing (34) and (35) we obtain the final result

JT(K, ^) 	 (-ec) K 2n	 ff 	 dCdn(Ca+nb)F(Ca+nb + ( K + 2)K)

`	 F*(Ca+nb + ( 
c c	 2)K)	

(36)

k

Here as always in our calculations the quantity1

	

	 ,	 ,	 q	 +y K stands for L K J . On the

other hand,. takes on both positive and negative values.

According to our assumption about the energies encountered in the wave

packet, the functions F and F in (36) vanish unless their vectorial arguments

are smaller in magnitude than some maximum value m, for which we suggested,

y	 example,	 quantity 2	 'thus the effective domain of theb way of an exam le the	
1 me .

r
integration is constrained by the two inequalities

me 1
2+n2+ ( me K C+ 

2)2 
Km

^ 2+n2+( mc
	 c	 2) 2 Km	 (37)

3

	

	 Therefore, the effective domain of the integral in (36) is finite, in spite

of the +m marked on the integration signs. Hence, there are no convergences

problems._

mc
	Again, let us take the example km 2

	
Let us now calculateJT ( ►c., 

c
) for

w = + K. Then, it cannot ever happen that both inequalities (37) are satisfied.i	 c

t
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(For ^ = +K, the first is definitely violated, and for ^ _ -K, the second is

definitely violated). Thus the effective domain for the integration in (36)

has shrunk to zero, so that
•
f

3 ( K,K) = 0,

	

for	 o	 (38)

JTlx,-K)	 0

This result agrees with the equations (21a,b), which were established without

a detailed calculation of the spatial and temporal Fourier transform.

We may establish the validity of equations (38), on which the impossibility

of radiation was based, also directly from equation (9). We modify this

equation so that it yields the transverse part JT. The modified equation is

	

_	 _

(_JT(r,ct = -ec) 
!h 1	 +n - (_n -n	 +n

	

me7-2;7 IIAT &^ Tn^ 2	
(^-n)•(^-n)	 2 ,

F(C)F*(n)

	

exTVii( -t1) •r - i 
me 

(^ 2-n 2 )ct]	 (39)

We generalize this equation to a form which is valid also in the relativistic

region of velocities. But we still adhere to the description in terms of

scalar Schr8dinger waves, i.e., we refrain from using the Dirac spinors. The

relativistic formulation allows us to dispense with the introduction of some

maximum wave number km, as we did in connection with equations (16) and (17)._

In order to obtain the relativistic generalization we have to replace the2 ^..

quantities me 21 2 and ^ n2 in the exponent of (14) by ( - + 2`and

(K) 2 + n 2 ._ These replacements follow from the relativistic relation

	

E2 = (mc 2 )2 + (cp) 2	 (40)

between the energy E and the momentum p, as well as from the de Broglie relations
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The relativistic generalization of (39) is then

T (r,et) _ (-ec) a	 2n	 !lnt^^zn[ 2	
2(^-n)•(—'n)

exp(i(E4) • r - i( ( ^)2+ &2-	 (^) 2 + n 2 )ct] (42)

This equation shows that each doublet (!,r) of wave number vectors contributes

a sinusoidal wave to aT .	 The wave number vector K and the frequency	 of such

an elementary wave are given by

(43)_

c =
	 ( ,) 2+ 2 	 (7)2+n 2

(M Oferens doublets ( , ) can produce a common K and	 But this lack of

a one-to-one correspondence need not concern us.) 	 Now let us examine the-

1W/clratio of an elementary wave.	 We haveI KI	 l

w e	 A

) 2+ 2_ A 2+n 2
p	 1Z — n)

But since

Y

we obtain

()?+ 2	 (M) 2+n2
w/c	 x

(K^`

Now

+2- ()2+n2	 ()2+n2 + ^ )2+n 2^Z.n2

g+

so that
a

`fl
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q

The expression on the right-hand side is clearly less than unity. 	 Thus we
i

arrive at the result

c	 < 1 .	 (44)M

The inequality (44) tells us that every elementary wave in (42) has a fre-

quency-to-wave number ratio that is less than unity. 	 HutJT ('K,K) and JT ^c(	 K)
b
a

kt
are the amplitude factors of elementary waves whose frequency-to-wave number r

ratio is equal to unity. 	 Since we have seen that elementary waves with a

ratio equal to unity do not occur in (42) 0 we conclude that

JT(K,x) = 0	 ^^^	 {

A	 for 	 K	 Q .
3T (K,--K) _ p	 (45)

And these equations are identical with (38).
i

We conclude this section with a remark about the spirit of the calcula-

t ions we have performed. 	 We started with a given free wave packet of

SchrBdinger waves.	 The word "free" indicates that the wave packet is not

influenced by electromagnetic forces.	 Then we calculated the electromagnetic

field that is generated by the electric current density associated with the

wave packet.	 Now in principle, this field would influence the behavior of

the Schr8dinger waves. 	 However, we neglected to take into account this back-

reaction that proceeds from the electro-magnetic field to the Schr8dinger

waves.	 We only considered the forward action that proceeds from the

,j'j Schr8dinger waves to the electromagnetic field. 	 What we have done then is

j in accordance with the perturbation calculus, whose principles are explained

in Section 10 of the Appendix. We had to resort to the perturbation calculus
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because an exact calculation is impracticable. It is believed that the

accuracy of the perturbation calculus is good enough for our purposes. One

could, in principle, adduce some evidence for this belief by carrying out

the perturbation calculus to the next higher order of approximation. But

this would entail a lot of effort, more than we can afford to devote to

this task. As far as this writer knows, there are no general principles

that could obviate the necessity of those cumbersome calculations. Even if

the next order of approximation were to predict some radiation, it would be

too weak to be of practical. use.

We have seen that no radiation can be expected from free electrons, even

if they exhibit beats. Naturally, there comes up the following questions

Can one use the beats in some other way? For instance, one may ask whether

electrons with beats interact -with externally produced radiation in some

peculiar, and perhaps useful, way. We explore this question in the next

section.

IV. A selective Moving Mirror .

H. Schwarz suggested a device that produces an electron beam which is

a superposition of two plane waves of different wavelength. In mathematical

language: The SchrUdinger wave that describes the electron beam is of the form

V(z,ct) C{exp(i'K lz - i m 
K2 

ct) + exp(iK2z i m - et)}	 (1)

Here C is an amplitude factor. The beam travels in the z-direction of some

cartesian coordinate system. Each of the two partial waves is a plane wave.
2

The first partial wave has the wave number K1 and the kinetic energy 
2m 

K12.
K-,2	 3

The frequency w l is therefore given by 	 _ — 1 . Similarly, K2 and	 K22c me 2	 2m
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are the wave number and kinetic energy of t1ho second partial wave. Both

kinetic energies are of the order of 30 x 103 electrovolt. And their

difference is in the optical range, i.e. we have 2m (K22 - k 1 2 ) a 3 electron-

volt. The constants'K. m. c have their usual meaning, namely 2n	 Planck's

constant, electronic mass, and speed or light in vaeuo.

We give a brief description of Schwarz"s design. An electron beam is

sent through a beam splitter that splits it into two divergent beams. #1 and

N2. Several inches down their paths, they are made to converge again into

the working region of the apparatus (near z - 0), where they form a single

beam again. This writer is not competent in the field of electron optics.

Therefore, we will refrain from describing how this may be accomplished.

Perhaps one may imagine that the beam splitter and, further down the line;

the beam ,joiner consist of diffraction,gratings, presumably in the form of

single crystals. What is important to keep in mind is that the beam splitter

does not sort out different individual electrons. Instead, it splits the

Schr8dinger wave of each electron into two divergent portions. Similar re-

marks may be made about the beam joiner. So far then, the lay-out of the

beams is as follows. First there is a straight and narrow beam along the

z-axis. The beam enters the beam splitter and becomes two beams, diverging

off to the north and the south respectively. After a few inches down the

line, these two beams are bent back to the z -axis. Where they meet, they are

joined by the beam ,joiner and form again a straight beam along the z-axis.

(The beam joiner will waste some of the beam by sending off additional beams

to the sides.) Eventually this beam enters the working region of the
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z=o

In the region between the two curving beams, a device is installed that

contains a magnetic field in the vertical direction. This field is made

to change with time. According to Faraday's induction law, an electric

vortex field arises that speeds up the northern partial beam and slows down

the southern partial beam. The beam that emgrgies beyond the beam ,joiner

is then a superposition of two beams with different energies, the energy

difference being chosen to be in the optical range. Because the beam splitter

and the beam ,joiner act on the Schr6dinger wave of each electron, the super-

position is linear as described by equation (l). 	 '

If, in a more realistic manner, we consider that the Schr8dinger wave of

an individual electron would be a localized wave packet instead of a c.w.

wave (c.w.	 continuous wave) of infinite extent, then we conclude that an
I

addit'ione.1 device is neeeed. After all, since the northern beam was sped up

whereas the southern beam was slowed down, the southern wave packet would lag

behind the northern wave packet beyond the beem joiner, so that the superposi-

tion described by equation (1) could not take place. Therefore, we have to

install a delay section in the northern partial beam to remove the lag.

From now on, we shall assume that a pe-fect design of the electron beam

in the working region has been achieved. By this we mean that the Schrgdinger

wave ^(z,ct) is the linear superpostion of two partial waves ^1(z,ct) and

^2(z,ct),,

*(Z,t)	 W z t) + *2(z,.t)	 (2)
{

s
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and that at the center of the working region ( i.e. at z = 0) the quantities

*2(0,ct) and * I (o,ct) are related by

*Z( o,ct ) = ^1(o,ct)e iFct 	 (3)

where. F is a' constant. In terms of K,2 and K•1 we have

F= m !-2 ( K-2 _ K 1 2 )	 (^+)

Of course,4cF is the energy difference for the two partial beams. We

assume that (3) holds, no matter how ^ 1 (o,ct) depends on the time t. As

we implied by the notation 	 we ignore any dependence on x and ,y. That

is, we assume that the Schr8dinger waves are plane waves. Certainly the c.w.

wave (1) conforms to the specification (2) - (4). The specification (3)

permits the investigation not only of c.w. waves but also of wave packets-. 	 w

To begin with,^ve examine c.w. waves. We will discuss wave packets later

on. We start with the example of equation (1). The density of electrons is

given by ip. In our case, we obtain
/	 f

	

2C*0 {1 t COS [ ( K: 2—K. 1) (z — K..22 1 C Ct)	 1 5)	 j
i

The first term in the curled bracket describes a constant background, whereas

the second term exhibits the beats. The beats persist with constant strength
3

for all values of z. The beats have the wave number t:2 K 1, and their

velocity v is given by 

K. +K.!7	 (6)
c me 2

Now we come to the matter of wave packets.. Let us first consider the

partial wave N1. Instead of the c.w. wave

	

*1(z,ct) = r ^.; exp[iK l z - 1 ill2me ct] s	 (7)

we consider a superposition of plane waves, each with a different wave num-

ber K. However the K-values should be closely clustered around the nominal
k

M38
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value Kl . Accordingly we write

t*J(z,ct) = N1 1 +00 dK f(K) exp(iKZ	 i, 4K 2 111
r 

ct] ,	 ( )
k=_m	 me

where lf(K)1 2 is sharply peaked near K = kj . The quantity N1 is a (complex)

normalization factor, which we determine later. The conclusions that wu wish

to draw do not depend on the choice of the weighting function f(K), as long

as it is sharply peaked. We choose f(K) to be equal. to unity when K lies in

a narrow range centered at K l , and we set t(K) equal to zero when K lies

outside this narrow range. We therefore write

fi(z,t) = N1 JK'1
+a1 dK exp[iKZ - i 4K2	 ct)	 (9)

K=K 1 •-at l

We demand that

	

al << K2 - K1 ,	 (ld)

where K1 and K 2 (K'2 > +1) are the nominal wave numbers of the first and

seend partial beam respectively. We replace the integration variable K by

is-K1. Then (9) becomes

^1(z,ct) = N1	
r+al 

d^ exp[i(K1+^)z - i (K142K1^+^2)mc ctj	 (10a)
=1-a1

So that we may evaluate the integral in a convenient closed form, we decide

to keep track of the wave packet only for those times that satisfy the

condition

	

Ct1,2 me Ict' << 1.	 (11)

Then we may delete the term E 2 in (10a) and obtain

^ 1 (z , ct) = NJ exp[ iK l z - Vj K12 me ct ]	 f a l d& exp[ i (z-K 1 m^ ct) E ]

or

u
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x.	 2sin[al(z- Ki	 ct)]
Mc

fi(z,ct) = N I exp[iKlz - i 4.K12	 ct']	 (12)
me	 eYiz- K I	 ct

me
We might express the approximation we made wY,:n we deleted the t 2-term in a

different way: We replace the exact parabolic relation

W = AK 2 —'	 (13)
c	 '.a

between frequency	 and wave number K by its tangent line at KI, i.e. by

W = AK12 rh } iCI 	 (K-KI)	 •	 (14)
c	 me	 me

After having made this replacement we can afford to abandon the inequality (11).

Thus the substitution of the new "dispersion relation" (14) for the old re-

t	 lation (13) makes the wave packet formula (12) an exact one.

The exponential in (12) describes the ripples of the wave packet.	 The

last factor in (12) describes the envelope. 	 The envelope consists of a

central peak with its center at zc = KI me ct.
	 The height of the peak is 2a1

and its width is 
21r

0n boat sides of the central peak, the envelope factor
1

decays, with ups and downs, to zero. 	 The envelope pattern moves rigidly with

the velocity v l given by

, = K	 (15)1
c	 me

The rigidity of the envelope pattern is a consequence of our approximation

!	 [1(14) instead of (13)].	 An exact calculation would show that the peak becomes
t

wider and lower for times that do not satisify the inequality (11'. 	 But this

is of no concern to us.

The expression (12) describes a wave packet whose center passes the

origin z = 0 at the time zero. 	 if the center passes z = 0 at some other

i
J	 time s, then we merely need to replace ct by et - cs. 	 We are allowed to

multiply by the constant phase factor exp[-i '^K12 me es], or - expressed
(

r

s
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differently - to absorb exp[+ i 4K12 me cs] into the normalization factor N1.

Thus, for a wave packet whose center passes z - 0 at time s, we have

'{
	 2s n( aa l(z-K1 Ime ( ct-cs) ) ]

*1(z,ct) = N 1 exp(iKlz-i 1JK1	 ct]	
_	

(16)
me	 z-K1 mh(ct-cs)

The concomitant wave packet in the partial beam. N2 is described by an

analogous expression, namely

t^	
2sin(a2(Z-K2 me (at-c))]

*2(z,ct) = N 2 exp(JK^2Z-i IJK2, 2 r ct]	 c	 (17)
tt

me	
Z
—K2 mGl 

(ct—cs)

a

We relate the constants a 2 , N2 in (17) to the constants a l , N1 in (16) with

the aid of the desi gn conditions (3), (4). To this end, we examine the ratio

x s n(a2^2 h (ct-cs)]

+^lla,et)	 exp[-i':^(K 2-K 2 ) ^ ct]	 ^^	 n'c	 (1 )
1	 -	 .^^ sin[a1K1 

ma 
(ct-cs)]

The factor that follows the exponential should come out to be unity because

of the design condition (3). This requirement ,yields

1 g2K2 - a1K1	 (19)

_? or with (19), N2a2 Nlal.	 (20)

The heights of the central peaks of the two wave packets are respectively

)Nlal) and IN2a 2 ^. They are equal to each other, t)y virtue of (20).

Next, we letermine the normalization factors N 1 and N 2. As we are
i

dealing with a single electron, we have the condition

x t 	 dz4o 4)	 1	 (21)

And, since V ► = ` 4)1+^ 2 , we obta in

e^

	

kj	 +uo	 M	 oo	 *	 m

	

E E	 j	 dz* l *1 + j
}oo 

d02
N 
*2 + f

+ 
dZ0 l 

,
J^2 + j

+ 
dz*,

^ 
^,	 ( 22)

	

Z=-00	 z=-°°	 Z=-00	 Z=-ao

	

L	 Y

Yi
}
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These four integrals are evaluated most easily by way of the Fourier trans -

forms *I(K,ct) and * 2 (K,ct). For, according to the Parseval relation, we

have

f+to dz*j%2 = 1  f+m 
dK^j%
	

(23)
z=_W	 K;:_m

and similarly for the other three integrals. We can read out the Fourier
F

transform *(K,ct) from the definition (9). But we must remember that we

linearized the dispersion relation, i.e., we replaced	 by2 •+ 'K1(K-K1).
A9

Also we replaced ct by ct - es, and we multiplied by the constant phase

factor eXP[-iK t.K1 2 Z cs]. Thus, instead of (9), we now have

! ;	 K j+a 1
^yl(z,ct) _ N1	 f	 dK exp[Ykz-i rh(I^K 1 2+K1(K- K 1)(ct-cs)	 i ;jK 1 2 h cs)	 (24)

me	 me-	
kSK1_a1

,G	 We compare (24) with the inverse Fourier transform formula

^1(z,ct) = 21r f 00 
dK eikz*l(Klct)

►:=-w
and read out

Ti 1 (k,ct) = 201exp(-imc,K12 + K 1(K_K 1 )Xct-cs) - i 4K12 m CS]

.for I K -K 1l < al

iy 1 (K,at) = 0 for IK-K1) > a1

A similar formula holds for h(K,ct). We merely have to replace the subscript

1 by 2. Because of the inequality (10) and the related inequality az << K2_Kj,

the intervals in which ^ 1 (K,ct) and ^ 2 (k:,ct) are non-zero do not overlap. Con-

sequently, the integrald on the right-hand side of (23) is always zero. Thus

we obtain
	

]

	

! +Wdz*l **2 = 0, and similarly f+adz*2**1 = 0	 (27)

(25)
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Therefore, the functions * 1 (z,ct) and * 2 ( z,ct) are orthogonal to each other.

Since

*1 *( K$Ct )$1( K,Ct) _ (27r) 2N 1 *N1 for (ic-KII jai

= 0 for 1K-K11 < a 1	 (29)

we obtain (from an equation similar to (23)]

1+dz * 1**1 = 2nN1*N12a1.	 (29)

Similarly,

f 
-400 

dz 1*2**2 = 27rN 2*N 22a2	 (30)
Z=-00

The normalization condition (22) then gives us

4n(a1N1 *N1 + a2N2*N2) = 1	 (31)

When we combine this result with (20), we obtain

	

1	
a9N 1 N1	 n 

ai+a2 a1'

	

N2 N2 =n a1+	 a	
(32)

^1 a 2^ 2

Let us divide (30) by (29). With the aid of (32) and (19) we obtain

f + dz*2
** 2

 - i =	 = v2r+^ 	 *	 a2	 Kl
	 vi

(33)
1 ^ dz^r 1 V^ 1

(See (15) and the related equation for v2). This equation shows that the
K K

electron has a slightly higher probability (K, 2 > K1, "2-K I	 << 1) to be in beam

#2 than in beam #1, if the design conditions (3), (4) are fulfilled.

*
Now we shall investigate the probability density. We calculate

* 1 + *2 from (16) and (17). In order to simplify the notation, we introduce

the abbreviation

a l ik1 m (cs-ct) = 012K2 m (cs-ct)	 (34)

Li _	 a.
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where we have used a1K1 s 02K2 [see (19)].. We also use a 1N1 : 02N2 [see (20)].

Then

sin(4+a1z)I
	^ a 2a1N1{:	 4+alz	 exp[iRlz - i 4R12 me 

et]

	

,+ sin(n+a z) exp[iK 2 z	 i V22 -ect]) ,	 (35)

	

C+a 2 z	 me

so that

4(al)2N1*N1
sin(4+a z) 2 + (sin( +a z)) 2 +

	

4+a 1 z	 ^^ G+a2z /

+ 2 sin(c+aciz) sin +aqz1 cos[(K2` K 1)z - 4i( K 2 2- f2 ) 9ct]C+01z	 4+a2z	 me

(36)

The factors containing C are envelope factors. The cosine term describes

the pattern of beats. We see that apart from the envelope factors the

beat factor is universal. This means that the peaks and valleys of the beat

pattern of any particular electron coincides with those of its sister electrons.

The Schr8dinger 'wave packets of different electrons are incoherent, because the

normalization factors Nj for each electron contain uncontrollable phase factors.

Nevertheless, as we have seen, the beat patterns are coherent, because they

depend only on the product N1 N1 in which the uncontrollable phase factors

cancel. This coherence of the beat patterns is important in the application

that we wish to examine later on.

i

So far we have considered a single electron. Now we are going to evalu -

ate the electron density for an electron beam, which consists of a great many
{

electrons. We will ignore fluctuations (the shot effect). Thus we consider

the electrons as evenly spaced, which means that the time interval ds between

the instants when two consecutive electrons pass the origin z 0 is given by

ds R`, where R is the rate at which electrons pass the origin. Let us

ft

n

`j

i	 :.
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express this statement in a different way.	 We are going to assign integer
i

order numbers n to the electrons, in the order of their zero-passage time s.

Thus, as the order number advances from n to n + dn, the zero-passage time

advances from s to B + do, and we have

do = Rds (37)
1

1

When we combine this with (34), we obtain (keeping z and ct fixed)
r

i RI 	,,,^, d
do - (3A)

c MIKI	 •°h

^	 me
f	 The (Linear,) electron density p(z,ct) (number of electrons per unit length

along the beam) is given by

p ( z , ct ) =	 f 	 *dn , (39)

n=-m

or with (38),

'+°°	
dtV **p(Z,ct) = c (40)

a 1	 1 me

The integz: and	 is given by (36).
a

We then have to evaluate integrals of the type

f+^ d
	
sin( +a z	 sin(r+a z (	 l)I1

-
^+mIz	 ^+a2z

'	 We use the parseval theorem.	 It states that for two function f(t) and g( C)

we have

f+' dC f(	 )) t3(	 )	 j+^ dk(f(k)] g(k) (42)21T

where f(k) and g(k) are the Fourier transforms of f(d and S In our1
F	 case we have

sin(r.+a,z)sin(C+a2z)
y

f(c)	 =	 E3(	 ) = (43)#
+aI z	 ;+a2z

Since

sin( +a^z) __	 l	 I+l dk eikC 
eika C (44)

C+a l z	
21r k=-1
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we see that

f(k) . weikal z for Jkl < l

	

= 0 for Jkf > 1 .	 (45)
A

Similarly for g(k), Thus

+wdk( ( lc) ]^R( k) _	 1+1 dk eik(a2-a1)z = w sin(a -a z
2tr k=-m 	2 ks-1
	 (02-01)z

so that

	

11,2 _ n sin(a -a z	
(46)(02-01)Z

The other two integrals we need are I 1t1 and I2.2• Their values follow from

(46) when we make 02 al and al + a2, Thus

1191 = W, I 2 9 2 	 It .	 (47)

We insert (46) and (47) into (40), where the integrand was given by ( 36).

We obtain

P(z,ct)_	 a le--	 4(a1)2Nj N 1 2n •

mc
• {1 + sin(a -a z

cosC(^,2-K 1)z - (K22-K 1 2) :fct]}.
a2-al z	 me

Finally we use the expression (32) for N1 N1 and also the relation (19).

f

The end result is

P(Z,ct) = c (^h 
K. '2K

j)-1{l+ si ( aa a z
 (0 2

-K1')t - h( K Z 2.K 1 2 ) ' ct])•
2 1 

Z	
(48)

We see that there is a constant background ' attributable to the 1 in the

curled bracket, and a beat pattern, attributable to the cosine term. This

beat pattern fades with increasing distance from the origin, as described

b the sin(a,-a )z term4
y	 a2-a 1 z

We shall now discuss this fading term. According to equation (9), the

quantity a l is of the order of the quantum-mechanical wave number uncertainty

It
i

61
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of the *1-packet. Thus ,hal is of the order of the momentum uncertainty.

Similarly, d. a2 -A	 al ol 4al is of they order of the quantum-mechanical

momentum uncertainty of the *2 -packet. Nothing is known about these uncer

tainties. In the absence of any hard information about this matter, we use

the simplest assumption, namely that we can make al and 0 2 in (48) go to zero.

n(a -a )z
Then the fading factor si_ n(a2 ) tends to unity, and (48) simplifies to

	

?(zct) c (mac 2--2)- 1 {l.+cas'C( K2-K 1 )z- ^(022-K 1 2 )me ct]}	 (49)

According to (49), the beats persist for all values of z. There is no fading.

We feel fairly confident that we are permitted to replace (48) by (49),

because it is very likely that any fading of the quantum-mechanical nature

is overridden by a fading of thermal origin, which we shall describe now.

The electrons are emitted by a themionic cathode. So they come off with an

energy uncertainty 8E, which is of the order of kT, where k is the Boltzmann

constant and T is the cathode temperature. Since the cathode is hot, dE is

of the order of 
5 
electronvolt. The same energy uncertainty dE obtains after

acceleration and hence in the working region (near z=0) of the apparatus.

Now let us examine the *,-packet in the partial beam N1. Since

El 2 2K12,

we have

SEL =
E1

so that the thermal wave number

6K 1 =

Now there is no uncertainty in

condition (4), namely

aK2 K^ ,

uncertainty bKi is given by

KI
 l

(50;
1

the difference K 22- K 1 2 because of the design
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F - 01^14(K2 2-K1 2 ) •	 (4, repeated)me

where F'is a precise constant. If we take the variation of (k) and use

aF : 0, we obtain

F26k2 - K: 1 8K ,J _ 0

so that

*2 _ Ll 6K1 ,	 {51)

Then we get [from (50) and (51)]

(K2_Kl) g _ K1 2 FK 1 = - k2 (K2-K1) SE ' - 4(K2-kl) E	 •(52)
Therefore the quantity '^K2 K 1 ) in the cosine-term of (49) has an uncertainty

which is given by (52), whereas the quantity K2 
2_ K1 2 is still exact. We take

care of this uncertainty by taking a suitable average of the formula (49).

The easiest average to take is the Gaussian average, as then the resulting

integrals can be evaluated in closed form. We can afford to treat the quantity

K--LK2 in the prefactor of (49) as exact, the resulting error is not important.2

Thus, if we denote averages by carets < >, we have

<p(z,ct)> = c(m K- 2K2)-1{1 + < cos[( K2-K 1)z - 2(K2 2-K1 2 ) ^ ctl >).	 (53)

Now

<Cos[...]> _ P2<eXp i[...]> + c.c. ,	 (54)

where c.c. stands for "complex conjugate". And, since we decided to take a

Gaussian average,

<exp i[...]> _ <exp[i( K 2-'K 1)z - 20 2 2- K 1 2 ) m^ ct]>

= exp[- 2(x'22
_
K.1 

2)  mc'ct] <exp(i(K2-K1)z)>

f+' do exp (i(K2- le t+n) z - (a2/2)n2)

exp[- 2 K22-K12) mArct] n=-^	 _,	 (55)
f+00 

do exp (-(a2/2)r1,2)

i

1
j
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where the quantity a is of the order of the reciprocal of 8(k2-k1) 9 as given

by (52) Thus we may write

^ 2 ,. . ^a . .. , (56)K2- K1 6E'1
The integrals N and V in the numerator and denominator of (55) have the values

2

N = L2:"
 
exP(i(K2-K1)z) exp(- z)

and

V
a

Thus, ( 55) yields

<eXp^( k 2 K1)z - i k(K22-K12) me 
et

= exp(- 2) exP^i(K2-K•1)z - iF(K22-K12) me etl	 (57)

Then (54) becomes

<CO5 1(K-2-K.0z	 1'2( K 2 2-K l Z ) m ct]> a

exp(- 2--' 
2 
)Cos[(K2-K1)z k(x 22-K1 2) m Ct]	 (58)

When we insert this into (53), we obtain the final answer

<P(zsCt)> c	
)-1(l+exp(- 2- )cos^(K:2-KOZ - (K 2 2_ . 1 2 )	 ]},	 (59)

or, When written in a slightly different form,

<P(z,Ct )> _ c'(mc 
K

)-1(l+exp(- 2--a ) cos[(K,2-K.1)(z K-
, 	m^ct)]}.	 ( 60)

2
So now we again have a fading factor, namely exp(- 2-). Let us calcu-

late the fading length a. From (56) we have

a = 4 K—LZ	 1	 E,	 (61)
2	 K.2 4 - K 1 7 6F-1

Since the energy difference AF - E2 - E 1 of the two partial beams is given by

2
6E _ n (K 2 2-K 12)

we may write (61) ez

m
1
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2 2m AE 6E1

2
or, with E l = '2 K1 Z

	

a a 4 
1 22 e a	 (62)

1
Since K2-K1 << ,K1 and E2-F 1 << E 1 , we need no longer distinguish between rc1

and K2 or between E1 and E2. Thus we can drop the subscripts l and 2 in (62)
and write this formula simply as

_ 4 E E
a K AE 6E •

zzFinally we use E _ ^K 2 or K = m, and obtain

	

a = 4 
'1^ e 2 :F, F	 (63)me 4 2E AE 6E

To repeat; AE is the energy difference between the two partial beams, it is

typically of the order of 3 electronvolt. And SE is the thermal energy un-

certainty, which is of the order of 5 electronvolt. With E about 30 kilo-

electronvolt, we have AE ti 10
4 and 6E l► (1.5) x 10 5M Also mc 2 = 500 kilo:

2
electronvolt, so that m2E _]YO 

ti 3. Thus a v 4 x 3 x 1.5 'X 109 me
2 X 1010 m . Now Z is 2n timesthe Compton wavelength, or Z= (3.86) X

mc

10- 11 cm. Thus finally,

	a ti 1 cm .	 (64)

{{

	

	 So the best we can hope for is that the beats persist over a length of about

1 am. (Actually 2 cm, as there is 1 cm on either side of the origin. But

we are only making rough estimates.) Of course we could stretch this length

by installing a narrow-band energy filter in front of the beam split'ter, thus

reducing 6E. But then we would reduce the beam intensity. How the electron

beam with beats will perform in its comtemplated use, which we shall discuss

presently, will depend not only on the fading le ngth but also on the beam.^	 p	 Y ^	 p	 g	 Pt

f ki
r	

Y
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intensity. So, most probably, we would be no better off in the end, had we

installed the energy filter.

We shall now describe the contemplated use of an electron beam with

beats. The (linear) electron density in this beam is Riven by equation (60).

Apart from a constant background (attributable to the l in the curled brakket)

there exists a sinusoidal, density pattern, the beats, (attributable to the

remaining term in the curled bracket). This beat pattern moves in the positive

z-direction with a speed v given by

Y s KI+K2 ej^	 (65)
c	 2 me

The wave number of this beat pattern is K2- K1. Let us send a plane e1.'ectro

magnetic wave in the direction of the negative z-axis, i.e. against the electron

beam. We assume that this wave is polarized with the electric field parallel

to the x-axis, i.e. normal to the z-axis. This electric field acts on the

electrons in the team and makes them oscillate in the x-direction. This

oscillatory motion is, of course, superimposed on the steady motion, which is

in the z-direction. The oscillating electrons give rise to a new wave, the

reflected wave which propagates in the positive z-direction, i.e. against the

incident electromagnetic wave. (The oscillating electrons produce also a wave

in the negative z-direction, i .e. in the direction of the incident wave. But

this wave is of no interest to us.) Since the electrons in the beam exhibit
	

f

a best pattern, the process of reflection is similar to the reflection from a

grating, as In x-ray crystallography. !the, reflected wave will be strongest

when the Bragg condition is fulfilled, i.e, when the wave number ^ n of the

incident wave is related to the wave number K2-K1 of the beats by
i

Ki
 in - 

1j(K2-K1) (l-v/c)	 (66)

r
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The factor ( 1-v/c) comes in because the beat pattern is moving. We shall

derive (66) after the discussion of the Doppler-shift formula (67'). Since

the beats move with a speed given by (65), we are dealing with a moving

grating. Because of this, the wave number K 
r 

of the reflected beam will be

Doppler-shifted upward, according to

	

K = K+V/C =
(K2-K1)(1+v/c) 	 (67)r	 in 1-v c

Now we are ready to derive equation (66). The Bragg condition is

K  - ( -Kin) _ Kbeat	 KZ K1 '	 ( 67a)

(Later on, when we develop the detailed theory of the reflection, we shall

meet an independent proof of the Bragg condition for a movi.ig grating.) And

indeed, with (66) and (67), the Bragg condition (67a) is satisfied. We thus

have the possibility of constructing a hit3hly selective frequency shifter.

The selectivity comes from the fact that, for good reflection, the Bragg

condition (66) must be satisfied. Expressed differently: One may , construct a

selective moving mirror. The speed of the mirror is a good fraction of the

speed of light. For electrons with an energy of 30 kilo electronvolt, equa-

tion (6.5) gives a v/c-ratio of the order of 1/3. The frequency shift is

appreciable. For v/c = 1/3, equation (67) shows that the wave number, and

hence also the frequency, of the reflected wave is twice that of the incident

wave.

All of this sounds rather attractive. Nevertheless, the device is useless,

because the reflection coefficient, i.e. the ratio of the reflected power

density to the incident power density is exceedingly small. The reason is that

there dust are not enough electrons available for a strong reflection to occur.

Let us make a rough estimate to show that this is the case. A realistic

f

i
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estimate for the electric current, density J in the electron beam is. ,T =

1 milliamp per raillimpter squared = 10-3 amp + 10-2 cm2 = 10-1 amp/cm2,

about what may be found in a television tube. The electron current density

is then 
a 

J. where a is the electronic charge = 1.6 x 10 19 coul. Thus 
e 

J

is of the order of 10 18 electrons/sec cm2. The spatial, electron density is

then e J 1, where v is the speed of the electrons. With v = 10 10 cm/sec

(for v/c = 1/3), we get 
e 

J v 10 8 electrons /em 3 . But only a length of

the order of the fading length a,= 1 cn contributes to the reflection by the

beam. The ar!&& density a (number of electrons per unit crrss sectional area

of the incident electromagnetic wave) is than o'= ^ J v = 10 8 electrons/cm2.

This is much less (by a factor of 10 -8 to 10-7 ) than the areal density of

-optically active electrons in a monomolecular layer of a solid. Now we

certainly do not get much reflection from a monomolecular layer, let alone

a layer that is sparser by a factor of 10 -8 to 10-7.

The reader whom the preceding estimate convinces that the moving-mirror

device is useless can stop reading right-here. We continue a formal demon-

stration to satisfy the more skeptical reader. Another reason is that the

derivations that follow are instructive. They,may be helpful for the feasi-

bility analysis of other devices that one may wish to consider.

We start with the equations (256) - (262) of the Appendix. These equations

are the result of the perturbation calculus. We repeat these equations for

the sake of easier reference.

Ml— ^o + MX 0 )p = 0	 (68)

'Yn i2 - X o )p

s
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( 10 1 + mXl )p = - ( 00)p o (-e)cAo

+ i2 p- .xl) 	 z(Xa)	 (-e)cAo
at	 P	 P

32

act	 CAp + V r (V x cAp) a p,

	

9 2	 1
(act )Z 	 + V x (V x el l ) = e c 1P	 (-e)'J ( io**0 + X0'0* )p •

o T,low electrons
MP

D2

	

act	
-X2 + V x (V x cA2)

_ 1	 * _
,P	 ( -e) (x0	

*
^l+xl V^o+XO V'l *+X1V,o)	 (74)

eoc T,low electrons	 P

#P

Here m and ( -e) are the electronic mass and charge. The index p refers to

electron #p. The quantities with the subscript 0 are the zero-order approxima-

tions. Those with subscripts l and 2 are the first-order and second-order

I'

M54

(70)

(71)

(72)

(73)

i
i

corrections.

We are not interested in equation (73), which tells us how to calculate

r

	

	 the first-order correction of the electromagnetic field. To be sure, this 	 3

correction does not vanish in general. However, as we showed in Section 3

there is no radiation that is attributable to these fields. It is for this 	 r
A

reason that we are not interested in el l . Furthermore, in our example in

which the zero-order Schr8dinger waves of the electrons are plane waves in

z-direction, the sum in (73) is purely longitudinal in character. -Thus, when	
r

the projection operator ,P acts on this sum, the result is zero, since T
T low	 T,low

, retains only the transverse part, which is zero. Therefore, the right-hand

side of (73) is zero in our example, so that (73) is satisfied by el l = 0.

As a consequence, the first-order correction cB l = V cA l to the magnetic

i

s

r
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field vanishes, and the first-order correction f _ Dc - -1 
	 is 

simply

E 1 = - V^, where Q, in the electrostatic potential associated with the zero-

order approximation to the charge density. A straightforward calculation of

electrostatics, which we will not reproduce here, shows that the alternating

part of P1, which is attributable to the beats, is only of the order of 10-4

volt/cm, much too small to be of any interest. (This magnitude of an electric

field occurs in a Laser beam with a power density of le gs than 10 10 watt/cm2.)

Having disposed of the first-order correction cAl as something that is of

no interest, we concentrate our attention on the second-order correction cAx,

which we can calculate from equation (74). Even though cAZ will turn out to

be a genuine radiation field, it will be too weak to be of any use. Let us

substantiate this prediction by means of an explicit calculation. First we

have to evaluate the quantities (*,)p and 
(X.l)p 

on the right-hand side of (74).

The remaining quantities (^ 0 )p and (^ 0 )p are given by the properties of the

electron beam. First we note that equations (70) and (71) are satisfied. by

(*1)p = 0 ,,	 (75)' 
m(XI)p = '40)p c ( -e)J o ..	 (76)

The reason is first that X0 -	 1*0 (from (68))has only a non-vanishing

z-component, since q) 0 does not depend on x and y. Furthermore, by assumption,

cap has only a non-vanishing x-component, so that the dot product on the right-

hand side of (71) vanishes. In the second place, on taking the divergence of

(70) , we -obtain

rti -V* 1)p 	^!0)p+ m(a• X1)P 
= - c(-e)t(0•cA0 + (^0)p o•cA0}

But the right-hand side of this equation vanishes, since 7 • cA 0 0 (because of

the Coulomb gauge) and the dot product vanishes (1*0 has only a non-vanishing' 5

{

^i
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z-component and do has only a. non-vanishing x-component). This equation

then becomes

i (`v•V, 1 )p + m(M i )p = 0	 (77)

When we combine ( 77) with ( 71) and use the fact that the right-hand side of

(71) vanishes, we obtain

(o ^ +	 o •OV^T)D = 0	 (78)

This equation is satisfied by (* i ) p = 0, so that (75) holds. Equation (76)

then follows from ( 70) and (75).

Equation (74) then simplifies to

	

2	 _	

C O
8	cA2 + V x (V x cA2) 	 (oe

	

act	 (*O *o) cAO.	 (79)
MC electrons	 p

#p

But the expression in the square bracket is the spatial electron density.

It is related to the linear electron density <p ( z,ct)> of equation (60).

We merely have to divide by the cross section Q of the electron beam. Thus,

with the abbreviation (65),

G	 (*o**o ) p = c 1 (I) - 1 {1+ eXp(- 2 2) COS {(t2-)^1)(z -	 ctA}	 (80)

electrons
#p

We note that is the electron current density of the beam. The electrical

	

current density is then (-e) 	 .

Now we combine equation ( 79) and ( 80). In order to simplify the writing,

we introduce the classical electron radius

ro	 rte	
= (2.82) • 10- 13 cm	 (81)

-u se =	 (82)

for.the,,electron current density of the beam. Thus

We can delete the projection operator PT low' 
because the right-hand side

of (79) is purely transverse and has only low-modes components.

LA

a
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a2

act	 cA2 + S X (3 X C12)

	

_ C O-1 oJe{1+exp(- 2 2)cos[(K2-K 1 )(z— ^ et)]}cAo.	 (83)

Finally., we use the fact that, by assumption, the incident electromagnetic

field is polarized in the x-direction. Then the desired field cA2 will also be

polarized in the x-direction. Then, with the Cartesian unit vectors

we can write

cAo(z ,ct) =cAo(z,t),	
(84)

CX2(z,ct) _ IcA2 (z,c't) ,

where we are stipulating that both fields do not depend on x and y. We also

have

x cA2	 az cA2 j az CA.2

and

a 2
0 x (V X cA2) = k X3 a122' cA2 =- i a 

a2 cA2

Then, when we delete the unit vector i, which is common to all terms, equation

(83) becomes

a 2 	a2	 1

act cA
2 - r cA2	 y

s
r J {1+exp(- z)cos[(x2—K1)(z- 

v_ 
ct)]}cAo	 (85)	 i

c c	 o e	 2a	 c	 ;

We then have to find the solution *(z,,ct) of a partial differential	 j

equation of the type 	 i

a 2 	a2
^---" - 4 - f(z,ct) (86)
act	 az

Here both z and ct run from 	 to +-, and f.(z,ct) vanishes in the distant

past, i.e. for ct + -m. The explicit solut , ,on of this differential equation is

z+(ct-CK)
*(z,Ct) _	 jct dc^s	 f	 dC f(4,cT )	 (87)

CT=-00	4=z-(Ct-CT)
r

7

,3
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There is no connection between the dummy variable K of this equation and

the 4 of equation (34).

This writer could find the explicit formula (87) in only one book,

namely "Mathematical Physics" by Eugene Butkov, Addison-Wesley, 1968, pg. 607.

As this book is not readily available, we establish the validity of (87)

here. We will not go through the process of creating this equation. This

process is based, on physical intuition, which comes from the examination of

vibrating strings; officially it goes by the name of Green function techniques.

Instead, we will check that the differential equation (86) is satisfied by

the solution (87), We calculate the required partial derivatives. We start

with aact ^'• In ;(87), the et _occurs in 3 places. On taking the derivative

with respect to each place in turn we obtain

a

rc=Z-(Ct-CT)

+(Ct-c't)

act 	 f	 d4
	 at CT=Ct

2 f Ct dcT-f(z+(ct-o'[),cT) +
ct1=-00

+ 12	 fct dc 'rf(z- (Ct-CT),c-'t) •
c'r=

The first term vanishes, because the domain of integration has shrunk to

zero. In each of the other terms, the ct occurs in two places. If we denote

the first partial derivative of f(z,ct) with respect to the first argument

by g(z,ct ), we obtain

or

2
act	 '	 {f(z,ct) + fct dcT g(z+(ct-c.TacT) +

c T=

+ f(z,ct) - fct dCT E,(Z-(Ct-CT),CT)) ,
C T=-°°
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32

8ct	 ^' 
s f(z,ct) + 4 fat dcT [ g( z+(Ct-CT),CT ) -g(z- (et-CT),CT)] .

CT=-W

Now we come to the z-derivatives. In (87), the , z occurs in 2 places.

Proceeding, as we did before, we obtain

_ 4 fct dcT [f(z+(ct-cT)-f(z-(ct-cT),cT)]

and

8'z
2

' _ 	 fet dcT Cg(Z+(ct-CT) - g ( z- ( Ct-CT ),CT )l	 ( 89)
CT=-W

When we subtract ( 80) from (88), we see that (86) is satisfied indeed.

We should require not only that the differential equation (86) is

satisfied by the solution (87), but also that the solution contains only

outgoing waves. Let us check that the second requirement is fulfilled as

wall. We assume that the excitation f(z,ct) is confined to a finite domain

of the z-axis, say to the domain jz) < b, where b is some constant length.

We therefore assume that

f(z,ct) = 0 for jzj > b .

Now let us examine the time derivative a , rather than itself. We already

calculated this derivative and found

â31ii = ,2 fct 
dCT f.( z+(Ct-CT),CT) +ct

cT=-^

+	 fct dcT f(z-(Ct-CT),CT) .
CT=-CO

Let us pick a point z to the right of the excitation domain; thus z > b. Since

ct-CT > 0, we have z + (,ct-cT) > b, so that the integrand in the first term

vanishes. Therefore only the second term survives. But in this term, z and ct

occur only in the combination z-ct, which signifies waves that travel in the

positive z-direction, i.e. outgoing waves ._ Similar statements apply to a

r

_	 SF
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point z which is to the left of the excitation domain. Thus, (87) contains

only outgoing waves.

Let us now apply the solution (87) to the problem of equation (85).

We obtain

cA2(z,ct) 	
4c (C) - 1 

role .

JrCt dCT 
Z+(rt-CT)	

d4{l+exp(- C)COS[K2-K.j)(C- I CT) J)cA (C:CT)	 (90)J
cr=-m 	C-z-(ct-CT)	

2a2 	c	 O

We observe that this result is a linear functional of the incident electro-

magnetic vector potential cA 0 . Let us assume that cA0 is a monochromatic

wave, whose wave number is matched to the wave number K 2-K1 of the beats, so

that we can obtain the strongest possible response. Accordingly, we write

(with (66) )

CA0(C,cti)	 cA0'cos((l- Z) 
K	

(C+CT)l ,	 (91)

where cA 0 is a constant amplitude factor. The plus sign in the (4+CT)-term

indicates that the incident wave travels in the negative z-direction.

A precise interpretation of the formula (87) would require that we make

the right-hand side of (85) tend to zero in the distant past. We can achieve

this by first decomposing (91) into two exponential terms, i.e, by writing

cAO (4,c ) _ ''zcAo l exp[ (l- —'Xi K2 -L) ( ^+cr )

+ kcA 0' exp [ (1 ^) ( i 
11,,K

2
,

(^+eT ))
	 (92)

it K

And then we should replace the wave numbers i 
K-Z1 

and -i ==-L by i 2-1 +

and i K	 + S respectively, where S is a positive real quantity. We then

would replace (92) by
(	 v ( K.2--K I I	 N 	 i l

cA 0 ( ,CT) - -2cA 0 exp[ 1- c ) i	 2	 + S 6+cT .

+ kcAo exp [(1— 1) ( -1 K..22 - + s)( C+cT )]	 (93)
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The presence of the quantity 8 in (93) would ensure that cAO(C ,cc) tends to zero

for cT	 with sufficient rapidity. We would then calculate the respence

cA2 separately for each exponential term in ( 93) and add the results, which we 	 +

are permitted to do because of the linearity of the functiona l (90). In the

end we would make 0 approach zero. But this concession to logical precision
u

is not worth the effort, Therefore, we shall evaluate ( 90) on the basis of
_F

expression (91).
i

Furthermore, we shall ignore the constant background of the electron beam,
1

when we calculate the response cA 29 as being of no great interest. Accordingly	 k

f	 we delete the term 11 1" in the curled bracket of (90). Thus, with (91), we
E

obtain

cA2(z,ct)	
4,ff (c)-1 roe cAO1 •

beats
Z+(Ct-CT)	 2

fCt 
dca f	 d4 exp(- -,-r'1,)COS[( K2- K1 )( 4- 	 CT)]

CT---C° 4=Z- (Ct-C T)	
i

• COs[(1 C) K,	 (ctct)], • j

For the sake of greater convenience, we calculate, not cA 2 itself, but its

time derivative act cA2 We repeat the differentiation process that we used

when we checked the validity of (87) and obtain

1

8act2 (z,ct) _ - i
a
 O roJecA0 1 .

beats
ct	 (z+(Ct-CT )2 	 v

f	 dcT{exp(	 2	 ) )cos[(K2-K1)(z+et-(1+ X)CTJ
CT.=-ao

,
cos[(, C) K

,,
2-K, (Z+ct)] +

+ exp(- (z-̂ ct̂ c, .̂1L)cos[(K2-1S1)(z-ct+(1- 1)cT)]

COs( (1- C) 5"KI (Z-Ct+CT)]}	 (95)
i

^	 g
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We assume that the field point z is far beyond the region of beats in the

direction of the positive z-axis. Then z > 0 9 and z >> a. Since also ct-cT

is positive, we see that the exponential fading factor in the first term of

(95) is essentially zero. We can therefore delete the first term. In the

second term we rewrite the product of cosines according to the formula

coaccoon	 k cos (C+n)+'1-2cos(9-q)

Then

acA,(z,ct)	 47r

	

"	 o(1)	 r J ecA01act	 c c 
beats

• fct dcT exp(-(z-(ct-cv)f2a!
CT=-00

• {co;[ 
K2.;.Kl (2+(1- vC	 c)(z-ct) + 2(K2i--Kl)(1- Z)CTJ +
2 

	

+ Cos (52:^-L (1+ 1) (z-ct)	 (96)
2	 c

Now we perform the integration over CT. Let us look at the first cosine

term in (96). This is a rapidly varying function of CT with average value 0.

The rapid variation is attributable to the term 2 ( K2-K1)(1- X)CT in the argu-
c

ment of the cosine. On the other hand the exponential fading factor 
is 

a com-

paratively smooth function of CT. It is comparatively smooth s because

( K 2-K 1)(1	 is much larger than the inverse fading length a	 As a result,
c 

the contribution of the first cosine term to the integral is essentially zero.

There remains the second cosine term, which does not depend on the dummy

variable cT and can therefore be factored out. The only thing tlt ,4,,.t needs to

be done is the intergral over the exponential fading factor. With the substi-

tution 9 = ar + cz -ct, we obtain

E2fct 
dal exp	

(z-(ct-cT-') 
2	 z

(-	 f) =	 d& exp(-2a4
CT
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Since z » a, we may replace the upper limit by + •, without making an

appreciable error. Thus

fct do t exp( z-tat -
c t 2 ) a 0

127	 (97)
C =-G

on combining (96) and (97) we.obtain

44z 1

	

,ct) - -a ^ C (C) ruJecA01 COS[K r(z-ct)] t	 (96)

beats .

where we have used the expression (67) for the wave number K_  of the reflected

wave. This wave propagates in the positive z-direction, as indicated by the

minus sign in the cosine term, i.e. in the direction opposite to that of

the incident wave.

The transverse electric field E21 of the reflected wave is given by
E2 = - ect cA2 .	 (99)

(There is no contribution- "2beats from the scalar potential 02beats' In

the first place, the domain of non-zero values of 02beats is confined to the

region of the beats, since 02beats 
is a solution of the electrostatic Poisson

k

equation

0 
V02beats	 epc -'beats

j

which does not yield any propagating waves. On the other hand, the region

for which we calculated the reflected wave is beyond the region of the beats.

In the second place, where the scalar potent^.,7, does not vanish, its gradient t

is in the z-direction, thus purely longitudina:). We compare the x-components

of the reflected and the incident waves. Foie-the incident wave, we have,

from (91) and (66),

Eo (z,ct)	 act cAo - K in cAo' sin [K is (z+et) ] ,	 (100)

h
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{
whereas, for the reflected wave, we have, from ( 98) and (99),

E2beats(z,ct) = a47 c (!)-1 	roJ^cAO 'cos[Kr (z'ct))	 (101)

The ratio	 of the reflected to incident power density is the square of the

ratio of the amplitude factors in (101) and (100), so that

R	 (k=- /2—w(^)' 1 ro.1e )
2
	(102)

in

If we introduce the wavelength Aof the incident radiation, equationK
in

(102) becomes

R= (a A n^
/2 1 

(v) -1 r J ) 2 	 (103)i
3

c	 c	 o e

Let us insert numbers.	 For the fading length a we, take the optimistic value

of 1 cm.	 Suppose we adjust the device to an optical wavelength A in , 5 x 10- 5 cm.

We also have	 ti 3
	

Then for Je ti 10 18 cm- 2 sec, corresponding to an elec-

trical current density of the order of 10- 1 amp/cm2 , we obtain, with (81),

R ti 10' 18 .	 (1o4)

This exceedingly small value of the reflection coefficient R shows that the

device is useless. 	 This verdict stands, even if we boost the electron bee,,4
r

current by many orders of magnitude. 	 Our detailed calculation substantiates

our previous estimate, which.. was b,,ased on the sparseness of scattering electrons.

i

I

3

r
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Appendix: The Semiclassical Method.

The problem that we wish to address in this appendix is that of the inter-

action between an atom (or molecule) and electromagnetic radiation. We confine

ourselves to the semiclassical method in which the atom is treated quantum-mechani-

cally, i.e, by way of the Schr8dinger equation, whereas the radiation is treated

classically, i.e. by way of the Maxvell equations. Of course, quantum mechanics

could be used also for the electromagnetic field. But for the kind of applica-

tionswe have in mind this is not necessary.

Most textbooks of quantum mechanics discuss how a given electromagnetic

field influences an atom. But what is hardly ever explained 13 how, in :return,

the atom reacts back on the field. This aspect is, of course, important in

laser physics. Only a rule is sometimes used, but hardly ever e^,plicitly stated

nor derived. According to this rule, the atomic sources of the electron-magnetic

field are the quantum-mechanical averages of the electric charge densities and

the electric current densities. Here we wish to derive this rule.

The derivation is based on the following consideration. We are dealing

with a two-way process: Forward from field to atom and, in reverse, from atom

to field. We know the equations of motion for the forward process, and we wish

to Infer the equations of motion for the reverse process. In order to make this

inference one employs the action principle of analytical dynamics. One finds,

C

	

	 as we shall see, that with the application of this principle the equations of

motica for the, forward process will determine those of the reverse process.

In order to instill confidence in this procedure we shall employ it first in the

case where both the atom and the radiation are treated classically. In this ca-e

the outcome is, of course, known: The Maxwell equations will be the result. This

Ll
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case, then, provides a good confirmation of the procedure. Later on we shall

apply the procedure to the case where the atom is treated quantum-mechanically.

In order to state and use the actionprinciplz one has to define a number of

terms. Gee will give these definitions, not in abstract generality, but for the

concrete example at hand, an atom interacting with electromagnetic radiation. The

terms that we wish to define are, in this order, the instantaneous configuration,

the history, the instantaneous'dynamical state, and the driver fields.

1. Tile Instantaneous Configuration.

As far as the atom is concerned, its configuration is specified by the

locations of each of the atomic" particles, if we neglect the spins of the par-

ticles. These locations may be specified by a set of n cartesian coordinates,

three for each,particle. Thus n, the number of degrees of freedom of the atom,

is three times the number of particles. In order to avoid cumbersome language

and notation, we will say that the configuration is specified by a point q in the

n-dimensional "configuration space" of the atom. If we so desire, we may specify

the point q by the set {q l , q2,	 qn}, abbreviated by {qi 1, of n "configura-

tional coordinates" chosen in any convenient way. ({...} means "set of". Latin

indices run from 1 to n.)

Each point of the configuration space determines an electric charge pattern
4

in the three-dimensional space in which all of us live, our "home-space".

Because of the p( ,Int-like nattre of the atomic particles,this pattern is,

technically speaking, a distribution. The electric charge is concentrated in a

number of discrete points (one for each particle); everywhere else the charge
h
!F	 density is zero. So as to avoid the technicalities of the distribution theory
I;

j	 we wil?-. envision the atomic particles as being of finite, though small, extent.
I.
I,

r

{
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We also imagine that the charge density of each particle gradually decreases

from a high value at the center to zero at the surface of the particle. We

can then regard the charge density p of the atom at; ,* whole as being a smooth

function of the home-space position vector r and of the n configurational coor-

dinates qi . When we wish to indicate what variables the charge density p depends

on we denote it by p(gi ,F) or sometimes by p(q,r). - As the text of this para-

graph shows, two spaces are involved in the theory, the home-sapee-and the atomic

configuration space. Vectors in the home-space will be denoted by an upper bar,

as we have already done it for the position vector F.

We have completed the discussion of the atomic configuration. We can now

go ahead and define what is meant by the instantaneous configuration of the elec-

tromagnetic field. Here we shall use the familiar notation and terminology of

engineering electromagnetics, although there exists a more felicitous notation,

namely that of the exterior calculus, which conforms more closely to the geometric

imagination. As most readers may not be familiar with the latter notation, we use

the former, thus trading ease of visualization for familiarity. All quantities

and formulas will be expressed in the SI system of units (Systbme International).

Ones first inclination might be to describe the instantaneous configuration.

of the electromagnetic field by means of the following two fields: the electric 	 a

field strength E and the magnetic induction B. But then one does not account

for the fact that E and B are subject to the constraint expressed by the first

pair of the Maxwell equations, namely

I x 2+ 8a ct 0 and V ct 0	 (1)

7

a
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(We have inserted the factor c (c = speed of light in vacuo) in various places.

The advantage is that E and cB are expressed in the same unit, namely volt M_1'

and that the differential operators V and act bring in the same unit, namely m71),

In order to enforce this constraint, one adopts theusual procedure of expressing E

and cB in terms of the vector potential A and the scalar potential f, as shown

by

E	 (8ct cA + VO and cB V x cA	
(2)

(Both cA and 0 come in the same unit, namely volt.) The fields of cA and ¢ are
free of constraints.. 	 We use'them to specify the instan -

taneous configuration of the electromagnetic field.

At this point we must say something about the boundary conditions for the

electromagnetic field. We imagine that the atom is located inside a large room

(singly connected and bounded by a single surface, 'like a room in a house) with

perfectly reflecting walls. The boundary conditions for E and cB are then that

E is normal to the wall and that cB is tangential to the wall, i.e. that

pf x E = 0, and Af cB = 0 , 	 (3)

where if is the vectorial surface element, directed outward. We can enforce (3)

by stipulating the following boundary conditions for cA and ¢.

Af x cA = 0, and = 0 at the wall. 	 (4)

The instantaneous configuration of the entire system comprising the atom and

the electromagnetic field is given by the point q (or the n configurational 	 3

coordinates gi ) of the atomic configuration space and the two field functions ^(r)

and J(r) in the three-dimensional home-space.

2 • The History.

The history of a system is determined, when we specify the instantaneous

configuration as a function of the time t of its occurrence. In our case then

^. -	 1
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we specify the history by the functions q i (t), ¢(r,t), and cA(r,t). In general

the history may be made to conform to any prearranged plan. But then the system

will have to be drivenby means of suitably chosen driving agencies, which will be

discussed in section 4.

3. The Instantaneous Dynamical State.

The instantaneous dynamical state of a system is determined, when we specify

the time t of its occurrence, the configuration {gi 3 O(r), J(r))at that time, and

also the time derivatives of the configurational parameters at that time, i.e.

the set {vi,8t ' 8t J), where we have used the customary abbreviation vi

fordt qi . The partial derivatives	 indicate that the time derivatives are to

be taken while the position r in the home-space is held fixed. Altogether then,

the instantaneous dynamical state is given by the set f, qi , vi , ^, cA, at ^, at c

As far as the fields ^, cA, etc. in this set are concerned, they have to be speci-

Pied throughout the -room in which the fields exist. The utility of the concept

"instantaneous dynamical state" arises from the fact that the specification of

this state at one single time, e.g. at t = 0, is enough to determine the entire'

history, provided that the system is "free-running", i.e. not driven.

We have seen that the instantaneous configuration of the atom, i.e. the

set {q''), determines a charge density fleld p(g i ,r). Similarly the instantaneous

dynamical state of the atom, i.e. the set {t, q 	 determines not only a
r

charge density field p(gl ,r) at the time t, but also a current density field

J(gi,vi ,P) at that time. The current density field will be linearin the vi

so that we can write

J(gi,vi,r) = VJ5 ( gi ,r) 9	 :5)

A5
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where we have used the summation convention: We will always sum over any repeated

index, here J. which appears both as a superscript and a subscript. Latin indices,

range from 1 to n, where n is the number of degrees of freedom of the atom.

One should keep in mind that the functions P(g i r) and J ( qi ,i) do not expli-

citly depend on the time t. The time-dependence of the charge density field and

of the current density field is implicit; it arises from the fact that, when the

history is examined, the q  and vi are seen to be functions of the time.

The continuity equation

as P + V J = 0	 (6)

entails a relation between the functions P(gi ,r) and J^ ( gi ,r). Since P depends

[	 en t by way of the qi , we have

at p = ( dt qj) 
a^ 

P	
vJ a^, 

P •
aq	 aq

Also, from (5),

'v• s =vJ 3•Jj,
since the vj do not depend on F. Thus the continuity equation yields

i

aa^P+vJ^]o.
q

This equation must hold for any arbitrary choice of the velocity components v^.

Thus we get
a

a^ P + V J^ = 0	 (7)
aq	 e

One should note that the derivative 
a, 

attacks one of the q^ in the functional
ag	 _

form p(gi ,r) whereas the divergence D-attacks the r in Ji(gi,r).

Equation (7) is not the only relation connecting the functions (ql ,r) and

J^(gi ,r). There is another important relation, which we derive in Note #1.

It is
j

a
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BaiJj -=Ji =O x(pJi xJj )	 (8)

q	 q	 d
The origin of equation (8) is more subtle than that of the continuity equation (6)9

on which equation (7) was based. Equation (8) is derived from the principle of
s

"gene-identity". This word, meaning identifiability, was coined in Germany, per-

baps around the turn of the century, probably because it is easier to pronounce

than its synonym. We say that the atomic system obeys the principle of gene-

identity, if each element of 'charge can be regarded as an identifiable object,

i.e. if it can be tagged. This is certainly the case if each atomic particle

is a point-like object. We shall make the assumption that the n + 1 functions

p(gi,r), Jj (gi ,r) are structured in such a way that gene-identity is fulfilled

even for smeared-out, i.e. continuous, charge and current densities. Equation (8)

is the necessary and sufficient condition for gene-identity.

Equation (8) is an important link between the history of a system and the

driver fields. These fields will be discussed in the next section.
r

k. The Driver Fields

In Section 2 we introduced the notion of driving agencies. These agencies

are fields in the home-space, namely a force field with force density Fd(r,t),

an electric charge field with charge density p d(r,t) and an electric current

-d(-	 bfield wiah current density J r,U . These three driver fields have to e

impressed from the outside, i.e. from sources that are external to the system.

Figuratively speaking,the driver fields are impressed "by hand".

We have affixed the superscript d ("d" for driver), mainly in order to

distinguish the driver fields pa and Jd from the atomic fields p and J (without

a superscript), which were discussed in the previous sections. The driver fields

d and Jdp	 have to be superimposed on the atomic fields p and J, so that the total
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fields pt and 
at 

VT' for total) are given by pt = P + P d and Jt ' J + ad. In

actual practice the driver fields P d and Jd are spatially well separated from

the atomic fields-p and J. 'so that the superposition, when viewed as a technical

task, is easily accompliished.

We have to .make a comment about the forces whose density we denoted by Fd.

Here only those forces are included which are impressed directly on the atomic
Y4

constitutents by the "man" who steers the system to make its history conform to
^a

	

	 -.x

a prearranged plan. Of course, this "man'would also have to impress forces on

d	
-dthe electrical drivers, whose densities we denoted by p and J in order to over

t^

come inertia effects and to counteract the electromagnetic forces on the drivers.

f

	

	 (The density of these electrcmagnetic forces is given by the usual expression

pdE + J x B). Perhaps the word "inter-'ace" used by computer engineers may help

to explain why the density 
Fd 

should pertain only to those forces that are im-

pressed directly on the atomic constituents. The interface between the system

under study (namely the atom and the radiation field) and the external world

(namely the "man" who steers the system and-his actions) consists of nothing but

the three driver fields Fd,_pd , and Jd. Thus the forces that the "man" impresses

on the two electrical drivers (whose densities are 
Pd 

and Jd) are entirely within

the external world; they do not penetrate the interface.

When the history of the system is made to conform to some prearranged plan,

then the system has to be "steered" by means of the three driver fields F d , pd,

and Jd. The .required driver fields can be calculated by way of the action

principle, which is the subject of the next section. The case that is usually

treated in the literature is that of a "free-running" system, i.e. a system

whose history unfolds according to spontaneous evolution. A free-running system

4
µ
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then need not be driven, so that the condition that a system be free-running

is that all three driver fields be zero. This condition yields the well-known

Lagrangian equations of motion.

5. The Action Principle.

With each history {qi (t), ^(r,t), cA(i,t)}-and a set of two times t a_,

t = b > a there is associated a quantity Aa b, the action accumulated between•

these two times. The units in which Aa,b is expressed are those of an action,

for instance joule sec or joule hertz-1 . It is given by

aa,b	 1t=a dt L,
	 (9)

where L. the Lagrangian, is a function, of the instantaneous dynamical state.

The units in which L is expressed are those of an energy, for instance joule.

The nature of the function L is obtained essentially through revelation, of

course not divine revelation, but revelation stemming from the long tradition

of science. But one ought to check the revealed result against other things

we know. And that we shall do to some extent later on. For the system con-

sisting of an atom and an electromagnetic field, the Lagrangian L is the sum

of three terms, the atomic Lagrangian 
Latom, 

the electromagnetic Lagrangian

L
e.m. , 

and the interaction Lagrangian L
int',

L L
atom + Le.m. +L	

(10)
int

We now proceed to write down these three terms. In the non-relativistic

approximation, to which we shall adhere, the atomic Lagrangian is given by

_ 1 i	 I ,	 _qi
Latom - 2 v M 

^
ijv.7	

,
+ Uiv i _ e v^ 

ddt	
(1l)

where the quantities M'U1 9 V' depend on the atomic configuration {qk}, but11 9

not explicitly on the time t. (In general these quantities could be permitted
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to depend explicitly on t, but such a t-dependence is not needed for our

system.) We have affixed primes to Mi,, Ui ; V, because we wish to reserve

the unprimed symbols for related quantities that are of more immediate practical.

importance. They will appear later on in our development. The first term in

(11) is the kinetic energy , the last term is the potential energy. And the Ui

are the components of a vector potential in the configuration space. For par-

ticles without spin all the U1 are zero. We shall restrict our treatment to

spin-less particles.

The electromRgiietic Lagrangian L

e.m.	

is the volume integral of the
e.m.

Lagrange density L	 of the electromagnetic field.

L
e.m.	 e_.m.fjf ATL	 f	 (12)

where Ax is the volume element. The integral is taken over the whale room in

which the atom is situated. The Lagrange density L	 is given bye.mo

	

e	 e

Le.m. 2 E-E - 2 cB
• cB ,	 (13)

where o is the permittivity of vacuum. The two terms in (13) are, respectively,

the electric energy density, and the magnetic energy density. Equations (2)

enable us to express L
e.m, 

more directly in terms of the configurational para-

meters cA and of the electromagnetic field:

Le.m.	 e'2 ^ t cA + DO)'(8et c1!. + 10)	
e2 (

7 x cA) • (V x cA)	 (14)

The interaction Lagrangian Lint is a similar volume integral, this time

of the interaction Lagrange density Lint'

	

Lint	 1 
t j

1
r
 Ar,L int	 C15?

The integrand L int is given by

Lint c (cA
•J - ¢cp )	 (16)

.

3

0
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Note that and cp are expressed in the same units, for instance amp to 2. Accord-

ing to (5), equation (16) may be written in the more directly useful form

Lint	
(cA	 ivi - 000	 (1?)

Perhaps it is advisable to repeat (17), this time with all the independent

variables indicated:

Lint (gi,vi,;,t) = ^[cA(r,t) = 3 ( gj ,r)Vi 	^(r,t)cp(4`^,r)1	 (18)

The action principle is concerned with the variation 6A 
b 

of the action,

when the actual history {qi (t), ¢(i•,t), J(r,t)),is replaced. by a slightly varied

history {qi (t) + dgi (t), ¢(x,t) + 6¢(-r,t), cA(r,t) + 6cA(r;t)}. Here the varia-

tions 6q , 6^ 9 8J of the configurational parameters are very small in some sense

(i.e. almost infinitesimals), but otherwise arbitrary. One then evaluates the

variation of the action 6Aa b Aa b (varied history
 - Aa b (actual history) to•	 •

first order in the dqi , 6^, 6cA with the aid of the rules of the calculus of

variations, Although this is a very common calculation, we will repeat it here,

because it uses and generates some interesting ideas.

But before we start with this calculation, we should adopt a policy of pru-

dence and eliminate the somewhat vague concepts of "very small in some sense" and

"almost infinitesimal". The procedure that we shall follow is also common. In-

stead of examining just two histories, namely the actual one and the varied one,

we examine a whole family of histories, ordered and labeled by some"variational

parameter" n. The case of n = 0 corresponds to the actual history; and the more

deviates from zero, the more does the history labeled by n deviate from the history

labeled by 0. Accordingly, the configurational parameters q 	 and cA will

depend on the label n, Thus the history labeled by n is given by the set

{gi(n,t), ^(n,r,t % cA(n,F,t)k Since qi depends not only on the

When we vary the action Aa b , we keep the end points a and'b of the surveillance-
}	 time interval fixed. Howeber, in some investigations, one finds it useful to

vary also the end points by the amounts 6a and 6b. But we can get along without
the introduction of these more general variations, 	 n

..	 r;	 .
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time t, but on the variational parameter n as well, the configurational velocity
i

component v is given by the partial derivative ^°. Then we simply define_

dqi , a^, acA, and aAa 'b by

 aA

8q  = j an, of _ 21 an, hex =' as an, aaa ^b = an 
an

n
	avi an _ a

	 all
(19)

an	 n

And the an that appears in these equations could be of any magnitude , it need
f

t

not be "small" of "infinitesimal". In fact, all we need to calculate is the 	 4,

partial derivative as 
Aa b' 

In a way, the an is mere decoration. In the end,
n

if we wish to do so, we may multiply the resulting equations by an and use (19)

to recover the 6q3, a#, acA, aAa,b • During the calculation we will make free use

of the fact that second partial derivatives do not depend on the order in which
i	 i

	they are taken. Thus we may replace 1.st by 8t a^an , an 0 by $	
, etc. In

order to make it easier to read what is being done, we perform the calculation

for each of the three portions of the action separately. These three portions are

i

b_ jb	 (20)

A9
ft=a	

dt Latom' Aa,b	 t=e dt Le.m.
atom

 '

e.m.
b

a	
ltaa dt 1-int

t

a. The Portion SA b

atom .i

We have {

a	 fb	 a
T) -

A 
a,b : 1 t=a dt an Latom	

r

atom

In order to write the integrand in a useful 
form, we use the fact that

L	 (t, qi , vi ) depends on n by war .of-the qi and vl . Thus
atom ii

a L	 ^( a 
L	

) av +( 8 
L	 )^

an atom	 avi atom: an	 aqi atom an

z,
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Latour pi

	

2v	
i

The pi are the configurational momentum components. In our case, we have

Pi t _ M' v') + Us •
i^

where we have used the syetry condition M' = M, i ,which does not entail anymm 
i^

loss of generality. This expression for pi, involving the primed quantities

M' and U'i
, shows why we have affixed a prime to p i . We use

a
a^ = an d aft - a a an ,

Thus ii	 a

	

a a (=	 s.

	

an L'atom pi ^	 +	 i i'atom ) an
at

	

'	 i
	a 	 a

(p ' S-) - 
8a 

a + ( i Latour ) 	'at i an	 n	 aq

to over the time t. Afterwards we multiply by do (Note that
Next we integra

an does not depend on t.), thus obtaining the final result

ap'

	

= ( p' ag3) b „ !t=a dt(a -	 i'atom) a4i	
(21)

6A
a,b	 i	 I	 aq

atom	 t=a

b. The Portion dela,b'
e .m.

We have

a

	

an 
Aa,b	 1t=a dt an Le.m.

e.m.

and
a 
L = 111 Az as Le.m.an e.m.

Equations (14) yields

i
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= L 	(
a acA) .eE_(111) .e 	

0xacx ) 0 C c$,
an e.m,	 act an	 o	 an	 o	 an	 o

where we have used equations (2) to shorten the notation. We rewrite each of

the three terms in a way that is preliminary to an integration by parts.

a.. A	 a A a
an `e,,,m.	 act { an	 off} + an	 act cod`

_	 (t eon} + 2 p . Eon _

a (a x eocm _ acx . 0 x Eocs) .

We integrate this equation over the volume of the room that contains the atoms

and the radiation field. As for the first term on the right -hand side, we may

interchange the space-integration and the time-differentiation, obtaining

a= ffff AT aA - Cod.

By virtue of the theorem of Gauss, the contributions made by the third and the

fifth term gets transformed into the surface integrals.

-	 Af • ea'` 1 ,

and

-	 Af - { aan x eod) _ -	 (Af x aan )	 coc$ 	 .

Now, the derivatives 
acA,and 2

^ fulfill the same kind of boundary conditions
an	 an

that were given by equations ( 4), namely

	

A? x a=-= 0 and ao = 0 at the wall.	 (22)
an	 -	 an

(Simply differentiate (4) with respect to n.) As a consequence, the two surface

integrals vanish Thus we get

-

-r e.m . = act	 AT 
aan Cog ) + If1 AT	 a Ent

If1 AT aan [v x eocB act eo21

Next we integrate over the time t. Afterwards we multiply by do (Note that do

does not depend on r and t), and obtain the final result
E,

e	 ^
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b
aAa ^b 	 {^ fff nT(i^l) Eo }I	 +

I tzae.m.

+ ft., dt(fff e T(6^)V - EoE) -

ft=a 
dt(fff 6T(dcA) • [a x eocB - act eo

E ll 
•

c. The Portion 6Aa,b'

int

Here our development will become a bit more perspicuous, if we vary

the atomic configurational parameters 
q  

and the electromagnetic configurational

6	 parameters 0 and cA separately. We are not forced to do it that way, but it

eases the task of writing and reading the equations. Accordingly we examine

a family of histories that depend on two variational parameters n and	 The

history labeled by the pair (n,C) is given by the set ' (gi (n,t), o(4,r9t),

Then we define SAa b by

int

dAa^b 
(ain 

Aa ^b )dn + (a Aa^b )SC .

int	 int	 int

First we calculate 8n AA,b. We have
int

'	
an Aa,b f t=a dt .an Lint

int

and

8n Lint -
 f f f Ot an Lint

We obtain-2 L	 from equation (lb). But there only J and p depend on the
an int

variational parameter n. So we have

as ^int c (cA an Oc an '	
(24)

A15

(23)

}

A

___.: I
..
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i
The next task is to express 

an 
and !P-in terms of the ^ . Equation (5) yields

aJ = J avi + _ v _ J 
a 22: + aJi vi

an	 8t an an

We rewrite the first term in a way that is preliminary to an integration by

parts. And in the second term we replace the dummy index i,by J. Thus

.9._ .9.. aJ + ate.a^^ 8 (J 
a )_ a 	 i	

v^
an at i an	 an at 	 an

Since the J i and J, depend on t and n by way of the qk, we get (Note: ^ _ vj )
i	 i	 as	 aJ

an	 at	 i 
a an) + 

a an VJ(agi	
aqj) •

Now we use equation (8), which followed from the principle of gene-identity.
i

At the same time we can bring the 22:- and vJ behind the curl ax, since neither

of these quantities depends on r. Thus we obtain

i	 i
an - a t (J i	 )+ V x [ (p 47 i W) x J^ v j 7	

i

We use (5) to replace J^ vj by a. Also, since the combination 
P 

Ji â  will

occur frequently later on, we rewrIAe the first term in such a way that this

combination will appear. Thus

a

{

ih	 ^_ ^ p . 
Ji •

i
The a may be brought behind the divergence V • , since this quantity does not

E depend on r. Thus
i

j
an 	 p i an

ii

a
x	 ll-;

a	 a [a(1 1 ^-)] + o x [ (1 J `s-) x J]	 (25)
T at	 p i an	 p i ` an

Next we calculate p in a similar manner. We have

_^an	 aq	 n

or, with (7),
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i

Equations ( 25) and (26) may be written in a shorter way. We multiply

these equations by an. The left-hand sides then become

6J = aJ an and Sp = 2P- do 	 (27)
an	 an

On the right-hand sides we may bring the do behind the differentiation operators

8t , 
V x, V • ,-since an does not depend on r and t. Then there will appear the

combination
i

P 
Ji 8^ an. __ P Jiagi

for which the customary abbreviation is dr. The physical significance of ar

will be explained presently. Then, with

dr = 
P Ji dgi
	(28)

equations (25) and (26) beccme'

dJ = as ( par) + V X (Si X J) ,	 (29)

ap = - V • ( pdr)	 (30)

Another derivation of equations (29) and ( 30), which are used in our

subsequent discussions, may be found in Note #2. There the derivation is.

based on the vector calctitlus.

We interrupt the process of calculating 6.Aa,b in order to discuss the

meaning of 6, called the field of virtual displacements. According to the

principle of gene-identity, each element of charge may be tagged, i.e. it may

be considered as an identifiable object. Let us consider one such element,

and let a be its position in the home-space. Now a depends explicitly only on

the atomic configurational parameters ql . When the qi depend on the time t,

the velocity d of this charge element is given by
i

da = as dq __ aa_ i 	 9
dt aqi dt aqi

g
^s

^	 t,	 J



ORIGINAL FACE 15	 A18
OF pock QUALITY

But the velocity ought to be related to the local charge density p and the local

current density J by p d = J. With the aid of (5), this equation yields
	d.a 1 -	 i

dt =p

We compare the two expressions for
d 

and use the fact that the set (vi ) of the

configurational velocity components may be chosen arbitrarily. Then we find

aa_1-	
{31)

aqi p 
Ji

Now let the q  also depend on the variational parameters n, as before. Then

we have
i

6; = as 6n	 8i 
assn 6n	 a 

6qi .
3q	 aq

With the aid of (31), this equation becomes

8; = P Ji d.qi 	(32)
An equation of this type holds not only for this particular charge element, but

for every charge element. Of course, the p and the J  in (32) have , to be evalua-

ted at the position at which the charge element is situated. We may therefore

regard (32) as a generic relation. The customary symbol for a generic Si is

dr, although Si would be preferable on strictly logical grounds. With this

change of notation, (32) becomes

	

6r = P Ji6gi 	(28)9

	

i _ 2,2160
.	 repeated.

	

According to (28), each set of {dq _ 	 engenders a field ofan

virtual displacements 6. Additional material,'especially as it concerns

equation (31), may be found in Note #1.

We may resume the calculation of an Aa b' At this point we have become so
s

accustomed to the use of quantities which are prefixed by a d that we can skip

a few steps and calculate ( 8 A )6n directly. To repeat: No infinitesimals
an a,b

int

.a
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are involved.	 A quantity, say Q, that is prefixed by a d simply stands for

the n-derivative -11 	 by dn.	 And dry is of finite magnitude. 	 Further-
an

more, an does not depend on r and t	 it is a constant.	 We have

{ d
n 6 a,b)dn = ftdLint=s

int

f	
and

dLj fffar SLi	 intat

Equation (24) yields
v

* dJ - 06P) d Lint	 cc A

With the aid of (29) and (30), this equation becomes

{cA'8t (par) + cA	 [S x (dr x J)] + ov	 (pdr)}dLint o

We rewrite each term in a way that is preliminary to an integration by parts,

and obtain

(cA • pdr) - 8ct	
p-dr	 +

dLint act
y

_

+ c 0	 [(dr xJ) xcA)_+^ V xcA )	 (dr x J) +
7

h

+	 ai) - 10	 cpdr9	 lopc
or, with the aid of equation (2),

i

(cA	 pdr) + 16 V	 [(dr x J) x cA + ^cpdr]dint Bet
3

.a

+c' (cpE + J x CE) ± dr
1

We integrate this equation over the volume of the room that contains the atom

and the radiation field. 	 As for the first term, we may interchange space-

integration and time-differentiation.	 The second term gets transformed into

a surface integral by virtue of the theorem of Gauss. 	 But this surface integral

vanishes because of the boundary conditions (4) 	 it is treated in a way that

y

•
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its very similar to what was done in the preceding section, We then obtain

;r

	

	 aLint at {!!1nTa • Par) + Iffal( apE + J x cs)	 ar

Finally we integrate over the time t and obtain

a A
	 )na = {III^TA p ar) b. + jb dt { f f fAT( E + s x B) • ar)	 (33)

an a,b	 Lt=a t=a
int

Next we calculate (-2 A )64. Again we work with quantities that havea4 a,b

t
a a as a prefix. Here, of Agse^the a indicates .the C-derivative multiplied

by 84. Equation (16) yields
E

SL	 = 1(J • acA — cPa^)int c

The only thing we have to do here is to integrate this equation over space and

E	 time. We obtain

	

( a. Aa ^b ) a ^ = ft=a dt{fffA,T a J acA - cpa^)1	 (314)

int

Finally we add equations ( 33) and (34). Then, according to the first

equation of this subsection, we obtain the desired quantity aAa,b' We arrive

s	
int

aaa,b = { 1ff4T; • Par) b

I	

+

int	 t=a

+ !b dtTfffAT[(PE + J x B) • 6 + c J, • 8cA - cPa^)3) 	 (35)
t=a

which is the last equation of this subsection.

'	 Now that we have finished expressing each of the three portions of SA ,b

in a form that is useful for our purposes, we obtain SA b itself by adding
F .x

	

^

equations (21), (23), and (35). We change the order of the various terms so

that ,related terms appear together. Since in the final expression the varia-

tional parameters n and 4 no longer occur, we can replace the partial
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Bpi	 dpi
derivative 

8t in (21) by the total time-derivative dt	 (The partial derive-apl
tive- appeared at an earlier stage of our discussion, because then the pi

were considered to depend not only on the time t but also on the variational

parameter n. From now on we can ignore the 
n-

dependence, since in essence it

was only a procedural artifact in our derivations.) We obtain

SAa b {pidgi + fffcTpA • Sr - fffeTE E - SA} b -o I tza
dpi

- fb dt{( dt - ai Latom ) Sgi fffkT ( pi + J x "s) . Sr +
t=a	 8q

+ fffe'T[ ('v x 
u1 s - at E

oE - s)	 SA - (o	 Eon - P)8011	 (36)
O

1	 4where we have introduced the permeability Vo of the vacuum, given by uo = e c2
0

Later on, when we will state the action principle, it will be helpful if

we replace those terms in (36) that contain the Sqi by terms in Sr. To this

end we introduce n vector fields si in the home-space. (Note that n was the

number of atomic degrees of freedom) which are "reciprocal" to the vector 	 rt

fields Ji , i.e. which fulfil the relation

fffATsi J^ S3 (37)

Here d; is the Kronecker -delta: 81 l for i _ J, d; O for i # J. The si are
not uniquely determined by (37). B ut our further considerations do not depend

on the feature of uniqueness. At any rate, later on the ;' will occur only in

the products ps i ; and these are determined uniquely', because the atomic configure.- t

tions are not subject to the kind of constraints that we find in engineering

mechanics, in the form of mechanical linkages.

We can express the Sqi in terms of the Sr-field if we multiply equation (28)

by p;J and then integrate over the volume. Then, by virtue of (37), we obtain 	 r

 LJ

A21
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8q	 Ill
We use this result to rewrite equation (36). Here the pi and the expression

(dpi8 L	 ) may be moved behind the integration signs fff, since these
dt aqi atom

quantities do not depend on r. We obtain

daa b _ {Iff6TP WPi + A) • dr - fffATeoE aA}I

r	
dpi	 _ t=;a

	

1t=a dt{fff^T[( dt	 aai Latom )p;i - (PE + J x B)]	 dr
aq

+ fff6T [( 0 x l B 8t 
EoE - J) 6A - (o eoE - P)8011	 (39)u

0

At this point we are ready to state the action principle. But before

we do so, we briefly review what we have done so far. We started with an

expression for the action 
a
s b as a functional of the history. This step was

a part of Physics. Then there followed a rather lengthy derivation resulting

in the expression (39) for the variation of the action, This derivation was

mostly of a purely formal nature, except for the use of the principle of

gene-identity [as in equation (8)], which is a part of Physics.

The action principle, a part of Physics, states that the driver fields

rd, pd , and ad are related to the variation of the action by the equation

b

dab ° { f f f & Pmom 8r - jjf 6T A dA} 
lt=a

ft=a{dt {1jf6T Fd • dr + jjf6T
[Jd ' dA - P d6$]}	 (40)

wherePmom is the momentum density of the atomic constituents, and where D is

the electric displacement

LIZ-

When we subtract equation (39) from equation (40) we obtain

_	 - b

{ fffAT( F	 - P(sipi + A)] • dr - Iff6t[D - eo ]	
1t=amom

dp I 

1b 	 dt{flfe T [ Fd - ( 
i' _ a •	 ( E + J x B) ] r dr -

t=a	 dt aqi . atom

- fff6T((! x ul $ _ 
at e on 	 Jd ) • dA (0 eo - P - Pd )sfl)	 (41)	

y

o	 A_
j
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In order to extract useful . information from equation (41), we remember

that the atom . possesses enough degrees of freedom so that there are no

restrictions on the displacement variations dr. (Where there are no atomic

constituents the 6 is completely arbitrary by default.) Furthermore there

are no restrictions on 6A and 6^, except that, at the walls of the room, these

variations are subject to the boundary conditions

Af x 61 = 0, and 60 _ 0 at the wall.

These conditions are merely a-different version of (22). In addition, the end

points t = a and t = b of the time interval of surveillance are arbitrary. We

observe that the left-hand side of (41) is contributed only by the end points

of this time interval, whereas the right -hand side is contributed only by the

interior points. Each side is therefore a linear functional of a different

set of quantities. Thus they can be equal to each other only if they are zero.

Because of the arbitrarines 6 of dr, 61, and So each side can vanish only if the

factors of these quantities are zero. Thus we obtain

Pmom = P(sipi + A) ,	 (42)

D=e 
0 
E,	 (43)

1

rd _ (IL
L - ai Latom ) psi - (pt + J X t)	 ( 44)

aq
ad p x 

l t - at eoE S ,	 (45)
U0

Pa=V	 E 
o 
E P	 (46)

Equation (44) - (46) serve to determine the required driver fields i:d,

J _ and a d _ Addi tinna .l i nfnrmat i nn i s ftrni 4hed by enuati_ nns (42) a.nci (4,A).

`J	 9

L
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But we will not use them. Equation (44) is of great interest.	 It states that

in the absence of electromagnetic fields the required driving force density is
q

given by the first term, whereas in the presence of electromagnetic fields the
^

E

required force density is reduced by the amount pF + J K B. 	 This means that the

electromagnetic fieUca exert forces on the atomic constituents with a force

density equal to pE + J x B.	 Since this agrees with the predictions of electro-

magnetic theory, our choice of 
Lint 	

as given by equation (16), has been con- 1

firmed.	 (It was the interaction part of the total action that produced the

term pE + J x S, as shown by equation (35)•}	 It is hard to imagine - and probably

also impossible - that any other choice for Lint would have produced the same-
a

result.	 But then equations (45) and (46) follow automatically.	 In terms of

the total charge density p t = p + p d and the total current density i t = J + Jd,

these equations yield the second pair of the Maxwell equations

V x 
1 

B -	 e E = Jt and D	 e E _ pt ,	 (4T)
TO
	at 0	 0

which supplement the first pair (1).

The most familiar application of the action principle concerns the behavior :I

flof a free-running system.	 In this case the three driverfields, Jd , and pd a

•	 are zero.	 Before we set ^d equal to zero in (44), we multiply this equation k'

by 
P 

J 	 then integrate over the volume. 	 With the aid of (37), we obtain

d
a	 _

- jjjd_T
F

dt	 atom
P J,	

(P2 + J x 2).	 (48)aq

1
This equation tells us how the electromagnetic	 field influences the atom.

Equations (45) and (46) yield ,directly
9

I x 1 $--a a F= J ,	 (49)u	 at	 o
A

and
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D	 e0E = P.	 (50)

These two equations tell us how the atom influences the electromagnetic field.

Of course, in all three of these equations we have to express E and E by the

potentials c^ and f, as shown by (2). 	 At this point we can appreciate the great

utility of the action principle. 	 If the action functional is formulated in such c

a way that it yields the expected equation of motion (48) for the forward process
a,

!
u

'radiation + atom", then it will automatically produce the equations of motion

(49) 9 (50) for the reverse process "atom -► radiation".
4

We have written down the equations of motion ( 48) - (50) for the free-

running system in order to show that some"w,hing we are familiar with results from

the action principle:	 But it is more useful to work directly with the action

principle, even in the case of a free-running system, and to leave the equations

of motion as something that is implied by the principle. 	 In this case the action

principle may be stated in a rather concise form. 	 Equation (40_)- shows that,

when the three driver fields ^d , Jd , and Pa are zero, the termscontributed by

the interior of the time interval t = a to t = b vanish and that only the terms i

contributed by the end points t = a and t = b survive. 	 Thus the action principle
E

states simply that

6Aa b = E . T.O.	 (51)
r

r
where E.T.O. stands for "End Terms Only". 	 In order to apply the principle (51),

one first writes down the action functional A a,b .	 For the system consisting of

an atom and a radiation field both treated according to classical physics,this

functional is given by	 A
dqi 	dq^	 i

Aa,b	 ft=a dt{ 2	 dt 
M3,	

dt + U
i	 t	 V +

E
+ Ille=c^0 (act cA + ^^)	 (act cA 

+ v^) - 2 (0	 cA) • ( ^ x C1.)x

<I
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as we have seen. 'Then one works out the variation 8aa b `by purely mathesmetical
manipulations and obtains (39). The next step is to set the "'rinterter term"'

f=
a(dt . ) equal to zero. Here one uses the fact that the variations 8r, a.A

and 60 are arbitrary. The result is the equations of motion (48) - (50). The

end terms themselves are of no interest in the applications we have in mind.

We shall follow the same procedure later on when we treat the atom according

to the quantum mechanics. The only modification occurs,in the very first step,

namely in the formulation of the action functional. This step will be made

easier, if we rewrite the various terms of (52) in a different order, namely

A	 _ jt__ dt{2 d^ M, d - + ful + MATS • Aids• - tv' + IljeTpma +a,b	 a	 i j	 i	 i

+ jjj ATt £2 ( a= cA + v) ( a- cA + 10 - E (v x CA) (v x ca)]}	 (53)

We see that the vector potential component UI in the atomic configuration space

is augmented by jjjoTj	 A, and that the potential energy v! is augmented by

jfjotp^. We may regard jjjnTJi • A as the "pull-back" of the home-space vector
potential and'jjjeTp^ as the pull back of the scalar potential ^. In the pull-

back operation one starts with a quantity defined in the home-space and con-

structs a related quantity in the configuration space. A third example of a

pull-back is furnished by equation (48). In treatises an analytical dynamics

this equation is usually written as

MA.'

dp
8 L
	

_ pe.m.
lit 3 atom

q	 i
where Fe.M. is the component of the generalized force (here of electromagnetic

m.
origin 

j 
as indicated by the superscript e.m.). We see then that F e.is

J
given by
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F
^.m. . lffdr P '!	 ( E + J' x B)

	
^5^+)

Thus F" m' may be regarded as the pull-back of the electromagnetic force density

pE + J x B. A fourth example is furnished by equation (38), which describes the

pull-back of a displacement field dr. A related equation would be the pull.-back

of a velocity field w from the home-space into configurational velocity components

vj , namely	 F

v  - !lleTpV w •	 (55)

The inverse of the pull-back is the "push-out". In this operation we

start with a quantity defined in the atomic configuration space and construct a

related quantity in the home-space. Ve can always recover one of these two

operations from its inverse by means izf equation (3T)• For instance the push-

out that is related to the pull-back (55) is

w = p Div	 (56)

As we go from pull-back to push-out we use (3T) to check the result; whereas we

use (3T) directly when we gofrom push-out to pull-back. Equations (28) and (38)

constitute another pair of these two inverse operations.

The action principle (51) in conjunction with (52) or (53) seems to be all

that is required for the analysis of the free-running system. But when one

4

	

	 comes to the equations of motion (48) - (50), one meets a difficult situation.

For the sake of simplicity and physical reality one would like to treat the

atomic particles as point-like objects. But E and B tend to infinity as we

F.
	

approach the ob,1_ect. As a consequence, the meaning of the right-hand side of

(48) becomes obscure, as the following consideration will show. The factor 3

f	 in the integrand presents no difficulties. As equation (56) shows, this factor

r

1. J
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must be finite, so that w, which here is the velocity of the particle in
question, comes out to be finite for any arbitrary choice of the set (via.

Integrals of the type fff,& T(A J,)p and fffA T(pJ a)J present no difficulties,

even though. p and J become infinite at the location of the particle. The values

of these integrals are (p J )R and (p a ) Q, , where Q is the charge of the

particle. But unfortunately the integrald in (48) contains also F and $, which

tend to infini+,y as the particle is approached. And it is this feature that

Snakes the meaning of the integral obscure. As far as equations (49) and (50)

are concerned, the situation is manageable, as the theory of the Lifinard-Wiechert

potentials would show. But we will not pursue this matter, since the difficulty

about equation (48) still remains.

The discipline of quantum electrodynamics Was created for the purpose of

coping with this difficulty. But we shall, not use this discipline here, because

it is too complex. Furthermore it treats the particles relati,vistically, and

the electromagnetic field quantum-mechanically, whereas we decided at the outset

to treat the particles non-relativistically and to use the classical theory for

the fields. Instead of quantlam eJ-,ectrodyn=ies, we are going to employ a more

elementary method. This net)iod is 'based on two approximations, which will be

explained in section 7

But before we deal with these approximations we will describepp	 a some simplifi-

cations that result from the choice of a particular "gauge" for the electro-

magnetic potentials cA and 0. Choosing a gauge means to subject the divergence

of cA to any requirement that will assist further_ developments of the analysis.

Our ability to stipulate what V cA should be is based on the following argument.

According to equations (2) the electromagnetic fields E and cB remain unchanged

1

=i
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if we subject CA and 0 to a gauge transformation.A^.e it' we replace CA and

by CA + Vx and ¢ act X respectively where X is an arbitrary function of the

position r and the time t. There is then some redundancy in CA and 0, which we

c.ia exploit to impose conditions on V CA. The most common conditions are

I • CA +act 0 = 0	 (57)

which embodies the choice of the Lorentz gauge, and

V • CA = 0	 (58)

which embodies the choice of the Coulomb or radiation gauge. We choose the

latter. The consequences of this choice will be described in the next section.

Besides the constraint (58) we will also impose a similar constraint on the

variation 6d, namely

(6cA) = 0	 (59)

The statement that we are going to use the Coulomb gauge is not quite precise

enough. What we are really going to do is to expand the vector field cA in terms

of longitudinal and transverse cavity modes. And then we impose the constraint

that cA be a linear combination of only the transverse modes. In other words:
a

Those expansion coefficients that belong to the longitudinal modes are set equal
•	 ^4

to zero. The equations (58) and (59) sti3"1 hold. But CA and Sel when constrained

in this manner will have additional properties. For instance, the boundary conditions

A? x cA = 0 and A? n 6 cA	 (60)

will be fulfilled. [See (4) and (22)]. All of this will be explained in the

next section. Instead of saying that we will subject the vector potential CA

to the Coulomb gauge (58). we will say that we constrain cA to be "transverse".

iz
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Of V x = 0, if Af x E = 0 on F.	 (64)

In order to prove

	

	 we agPin extend the surface, so that it forms a ,part of

a closed surface.'t Equation (-64) is equivalent to the statement tAat

Af P X R)w = 0

for any arbitrary smooth scalar field w. And this statement results from the
t^

following calculation.

x E)w = cf4Af	 x (^w) - (Ow) x ^)

The first term vanishes by virtue of (61). The second term vanishes because of

the assum +ion AT' x E = 0P

We assume that	 0 on the extended surface.

tWe assume that Af x E = 0 on the extended surface.

r^

^F

4
0
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can always extend the surface, so that it forms a part of a closed surface. Equa-

tion (62) is equivalent to the statement that

;M(Af x VO) w = 0

for any arbitrary smooth vector field w. And this statement results from they

following calculation.

g(Af x 10) - w _ (j f A? • ( -vV► x	 x	 x w7

The integral of the first term is zero by virtue of (61). The integral of the

second term vanishes, because 0 = 0 on the s`,arface. Since Vey is not affected,

when we add a constant to ^, the statement (62) may be generalized to read

	

Af x VO = 0, if 0 = const on F. 	 (63)

The third theorem states ghat, for a vector field K, which is normal to a

smooth surface , i.e. for which Af x'E 0, the curl is tangential to the Sur-

face, so that
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We now consider the following two eigenvalue-eigenfunction problems:

D0 Fa ) + Raba = 0, with the boundary condition a • f = 0,	 (65)

and

V(V g) + m2ff = 0, with the boundary condition Af a= 0.	 (66)

Here the Z2 and m2 are the (positive) eigenvalues, and the	 and G are thea	 a	 a	 a
vectorial eigenfunctions. These eigenfunctions are irrotational (i.e. the curls

vanish), as one can see when one takes the curl of (65) and (66). (Note that

the curl of a gradient is zero.) The index "a" labels the eigenvalues and

eigenfunctionsthere is an infinite number of them. We assign the indices "a"

in such a way that the eigenvalues are ordered according to their magnitude, so

that

X12 < Z2 2 	
Z32 < ...

M1 2 < m2 2 < m32 < .,

In order to make sure that the problems (65) and (66) conform to the

classical paradigm of such problems, we have to prove that the operator !ibis

self-adjoint. The self-adjointness conditions are:

fffA :T 	 0 for two functions F and F'
„

that satisfy the boundation conditions V F = 0 and V F' = 0,	
(67)	

r

and

f f fAT[G V(0' G') - G' V(V G)] = 0 for two functions G and

that satisfy the boundary conditions Of G = 0 and Df G'	 0.	 (68)

To prove these relations we note that

Similarly
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On subtracting, we obtain

F	 V(^	 F,'')	 F'	 V(V • F) s V • [FV • F' - F'V ' F] •'	 i

We integrate this equation over the cavity and transform the right-hand side

into a surface integral with the aid of the theorem of Gauss. Thus

!!!er[F	 V(V	 F1 	 F'	 3(V * F)] 
='` f	 CFO	 F •	F^V	 F]

But the surface integral vanishes because of the boundary conditions that are

stated in (67). Hence (67) is established. We prove (68) in the same way. The

only change is that here the surface integral vanishes because of of G 0

and of G'	 0.

Next we prove the orthogonality relations

!!lerFs • Pb = 0, for 1 2 # Z2	 (69)

t'<	 and

r' !!!Ards ^b = 0, for m2	
^	

(70)

We take the scalar product of (65) with Pb and obtain

ar
j2p Fb = - Fb	 V(V	 Fs)

Similarly,

2-92-Fb -	
Pb)Fa - - Fa 	9 (V 	 F

We subtract and integrate over the cavity.	 Then, with the aid of the self-

adjointness relation (67), we obtain

( Z2 - k 2 )fffer Fs • Fb = 0 .
i

And, since we assumed 1 g - Z 2 # 0, equation (69) follows. Equation (70) is
F

proved in the same way.

So far we have proved (69) under the assumption that £a 0 Z 2 . But when an

eigenvalue is degenerate, i.e. when it admits several different eigenfunctions,

we may always redefine these functions (by taking suitable linear combinations)
I	 r

k

(
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in such a way that (69) still holds, even when 1 2 = Rb. Similar comments apply

to equation (7O). Finally we normalize the eigenfunctions so that

MATFa • Fa - 1 ,	 (71)

and

fffATGa - a  = 1	 (72)

On combining (69) and (71), we obtain the orthonormalty relation

f ff A,rpa . Pb - aab -( 73 ).

Similarly

fffaTGa Gb Gab	 M)

Here, Gab is the Kronecker delta: Gab = 0 for a # b, 6ab 1 for a = b. There

is no orthonormality relation between an 
Fa 

and a G b
-

Wi can get a better insight into the behavior of the vectorial eigenfunc-

tions Fa and Ga, if we relate them to scalar functions * a and X  
defined by

Ra*a = - v - Fa ,	 (75)

t	 ]

and

mx =-V - G	 (76)a a	 a

Here ka and ma are the ;positive square roots of the eigenvalues ka and mg.

By direct substitution of these relations into the first terms of (65) and (66)9	
E

we obtain the inverses of (75) and (76), namely
r

kFa = V*	 (77)

k	 maGa = OXa .	 (78)

¢_s

	

	
Inspection of (75) and (78) in conjunction with the

boundary conditions for the Fa and Ga stated in (65) and (66) yields the

following boundary conditions 
for^a 

and 
Xa'

i	 q
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a = 0 at the wall,	 (79)

and

AP • 1Xa = 0 at the wall	 (8o)

	

On combining (62), (77) and (79) we Gee that the Pa 
automatically satisfy also 	 A

the boundary condition

dfxFel =O, 	 (81)

i.e. the F are normal to the wall.
a

Then we take the divergence of (65) and (66), divide by - k  and - ma

respectively, use (75) and (76), and adjoin the boundary conditions (79) and

(80), we see that the *a and X  could have been determined also directly from
the following two eigenvalue -eigenfunction problems:

a V^, + R 2^ = 0, with the boundary condition 	 = 0,	 (82)
a	 as	 a

and

S • VX	 + 
maXa 

= 0, with the boundary c60 1.* iozz	 , °' VXa = 0 (83)
a

a
Here the self-adjoirtness relations for the operator P V are:

fff&T[^V	 v*' -0 1 1 • 0*1 = 0 for two functions and *0

that satisfy the boundary conditions _= 0 and 0	 , (84)
i

^F
and

fffAT[XV	 OX' - X' o	VX} = 0 for two functions X and X'

that satisfy the boundary conditions Of	 VX _ 0 and 4f	 VX' = 0	 (85)

`	 These relations are established by the same technique that was used in the
{

proof of (67) and ( 68). one starts with the formula

Consequences of the orthonormality by relations (73) and (74) are the

following orthonormality relations for 
the^a 

and Xa

x

t
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(86)

and

	

tttA Tx X = d	 (87)	
I

a b	 ab

In order to prove (86), we use (75) and arrive at

^aVatbV b = ( 9	 Fa)(0	 V	 [Fa (Q Pb )] - Fa 0(0 Pb)

k

or, with the aid of (65) 9

a b e b	 a 	 iF"b 	 b a	 b	 9
i?

We integrate this equation ever the cavity. By virtue of the theorem of Gauss,

the first term gets transformed into a surface integral, which vanishes because 	 y

of the boundary conditionD Fb = 0. Then (86) follows. Equation (87) is

proved in the same way.

According to established eigenvalue-eigenfunction theory the set {rya} is

complete, i.e, any function * that occurs in practice may be expanded in terms

of the 0 so that we may write	 a

C	 (88)	
a

a=1 a a
a

We can determine the expansion coefficients Ca in the following manner. We

multiply (88') by *b and integrate over the cavity. It is permissible to uoe
If

term-by-term integration on the right-hand side. * Then the orthonormal.ity _	 }
k

relation (86) yields

Cb ttto T#b	 (89)

Similarly the set {Xa } is complete,'if,we adjoin.the (constant)_ function

Xo	
1 , where Vol is the volume of the cavity. Here we have to supple-

ment (87) by the orthonormality relation

ttteTxoXb 	 aob-'	
(90)

Term-by-term integration is permissible when the expansion ( 88) converges in
the mean. See equations (107) 	 (111), which pertain to the analogous case„
of vector fields.	 ;t
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which is easily proved. For b s 0 9 (90) is obvious. For b 0, we have,

}	 with (83) ,

XoXb = -- xo1 IX
b

Then (Xo const), with the theorem of Gauss,

^.
E s	 jf f ATXoXb 	;o'' AE	 VXb .

Mb

But the !surface integral vanishes because of the boundary condition Af VX b = 0.

k	 The eigenvalue mot is, of course, zero.

The convergence of the expansion series is most ra pid, when the :function

that is to be expanded satisfies the same boundary conditions that the eigen-

functions satisfy. Thus we would prefer , to expand a function * with the boundary

conditions = 0 (alternatively Af • V* = 0) in terms of the *a (alternatively Xa).

Any irrotational vector field mwr be expanded in 'terms of the eigenfunctions

Fa , or in terms of the eigenfunctions Ga. But we are not going to pursue this

matter yet, because we are interested in the expansion of general vector fields,

not just of-irrotational ones. For general fields, the sets {Fa) or {GaI are

not complete. Therefore we must construct additional sets of vectorial eigen-

functions. There will the two sets {E a) and {hb" ) of solenoidal eigenfunctions.

('Solenoidal' means; the divergence is zero.) They arise from the eigenvalue-

eigenfunction problem

V x (V x 2a ) - k22 = 0, with the boundary condition pf x 2a = 0,	 (91)

and

o x (V x 9 ) - k2n = 0, with the boundary condition Af x (V x H) = 0.	 (9,")a	 a a	 a

The (positive) eigenvalues ka are the same in both problems, as we shall see

shortly. Again we assign the indices "a" in such a way that the eigenvalues are
r	 '.

ordered by magnitude, so that

f
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k1 2 < k22 < k3 2 < ...

That the Ea and Ha are solenoidal is seen easily when we take the divergence

of (91) and (92) and observe that the divergence of a curl is zero,, Here the

self-adjointness relations are

jjjeT[E • a x (V x E') - E' • I x (V x E)]	 0 for two functions E and E'

that satisfy the boundary conditions Af x E = 0 and Af x E' = 0 , 	 (93)

and

jjjAT[H • 0 x (V x H') - H' + V x (V x H)) = 0 for two functions H

and H O that satisfy the boundary conditions AF x (V x H) = 0 and

Af x (V x R') = 0.	 (94)

In order to prove (93), we note that

E . 0 x (V x E') = V - [ (o x E') x E] + (V x E')	 (V x E)

Similarly

E^	 V x (V x E)	 V	 [(V x E) x E'] + (V x)	 0 x E')
Subtraction, integration, and the theorem of Gauss yield

jl jds [	 V x (V x E') - F'	 D x (V x 2)

	=^f	 [(a x E') x E	 (D x E) x E'^

But the surface integral vanishes because of the boundary conditions. The

relation (94) is proved in the same way.

Now we show that the eigenvalues ka2 are the same in the two eigenvalue-

eigenfunction problems (91) and (92). Instead of determining the Ha by way of

A	 (92), we can obtain them also through the definition

a	 k H = v x E	 (95),E
a a	 a

from theEa. ,Here ka denotes the positive square root of a. If 	 we substitute

''	 (95) in the first term of (91) we obtain the inverse of (95), namely
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kA 	 x (96)a

Then, when we take the curl of (91) (and also divide by Xa )0 and use (95) and

(96), we see that (92) is a direct consequence of (91).

Equation (95), in conjunction with the theorem (64) 9 tells us that the Ra

automatically satisfy the boundary condition

A?	 Vita 	0 (97)

Just as we established theorthmormality by relations (73) for the Ea , we

obtain	 the orthonormality relations
i

fffGTR	 - Eb a aab ' (98)

All we need to do, is to substitute R. for E and Eb for E' in the self-adjoint-

ness relation (93) and to use equ to;;on (91).	 The use of the formula

kbHb	 (p x Ea)	 (Q x) _ 'p	
'Ea x	 ( p̀  x 

Eb
)] +g$

a

+Ea 	V x 0 x Eb ) _ 0	 [Ea x (V x 2b)] + kb 2ta •

integration, the theorem of Gauss, and the boundary condition df x E	 s 0,
. ,a

give us the orthonormality relations

fffet a '	 a aab (99)

as a direct consequence of (98). 	 There is no orthonormality relation between

anEa aiid an Hb
i
s

Finally we prove the orthogonality relations '#

f ff oTFe	 _ o , (00)

fffeTn. • Rh = 0 (101)
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a kb b a % . d x F  = V (Pb
 x Ga) + 1^ • 6 x da

and

a a	 .•	 a	 a

But V x a s 0 and x a = 0. Then, integration and the theorem of Gauss give

us

kb1flATPa •	 _ ffQf • xb x Pa
kbI11eT^a•^_14e?•Rb x ca

and

kb 111eTPa• Rb = TIAT • (Eb x 8;

But the surface integrals vanish, because Pa and Fb are parallel to d?.

Before we continue with our discussions, we summarize the most important

properties of the eigenfunctions in boxes, in order to facilitate the task

of referring to an equation.

Box Nl. Figenvalue-eigenfunction problems. (BC stands for boundary condition.)

VP Fa ) + 
Ra Pa = 0, BC: V Fa = C

1 . 10 + 
Ra .* 

= 0, BC; a = 0

^(C Via) + ma ' Ga = 0, BC: Q? • Ug = 0 .

V Vxa + ma xa = 0, BC: -A? • Vxa = 0

a x (V x Fa) - ka 
a 

0, BC A? X	 0 .

V 'x (V x Ha ) - ka 
a
0$ BC: _Af x (I x H ) = 0' .

a

r

Ao

(65)

(82)

(66)

(83)

(91)

(92)

{

t^

54

S'

3

rA	 We note that there is a duality in the BC's for each pair. One BC involves the

I-`	function itself, whereas the other BC involves a derivative.

Y
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Box N2. Relations between eigenfunctions.
	 9

V*a = Kara .	 (77)

6 • T  = - is*a
	

(75)

ha = mala	 (78)

0 - da = - maXa 	(76)

D x 2a = kaHa	 (95)

d x 
R  = k

a2,	 (96)

Box N3. Additional boundary conditions.

pf ,x Fa = '0	 (81)

Af ^x Odra	 0	 (77 + 81)

Af - a = 0	 (97)

Af • (6 x ta ) = o	 (105 + 97)

'r

Box A. Properties of derivatives $ as obtained from Box #2.
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Box N5. Orthonormality relations.

IIIATPa 	 rb =dab • (73)

dffAT*P%*b = dab . (86)

I1lAT5a • Gb =dab (74)
fffAT xaxb 	 dab (87)

WATEa - 2b = dab (9$)
fffATHa - % = dab (99)

fffAT% 
• P-b =

0 (lO(")

IIIAT(	 • Rb =
o (101)a

fffAT- a - 'b = o (102)

So far our treatment of the eigenfur_ctions was strict?.y formal. But they

allow a direct physical interpretation. For instance, s, possible free-running

(no charges, no currents, except in the walls) electromagnetic field in the

cavity is given by
x

E(r,t) = CaFa(r)sin kact ,
(103)

cg ( ''r,t) ' C aRa(r) cos kact	 f

where Ca	 l..is a constant. One easily checks that the ManTel equations (1),

(47), for p t = 0, J  = 0) and the boundary conditions (3) are fulfilled. In

this case the fields oscillate in the single (normal) mode #a. Therefore the

functions'Ea(r) and Ha(r) are called the electric and magnetic part of the

mode pattern #a. The other eigenfunctions, namely the pair V! g( -r), Via( -r) and

Li

a
3	m 	 ,
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the pair Xa(r), Ga(r), do not permit such an interpretation in terms of electro-

magnetic oscillations. But they are associated in a similar way with acoustic

vibrations in an airy-filled cavity. Thus, the pressure excursion p and the

velocity v in a cavity with "hard" walls, which impose the boundary condition

A? •v : 0, are given by

p=C aXa sin  a 
at ,

v	 Ca se	 s, cos,- enact, t	 (104)

for mode #a. Here, of course, c is the speed of sound, and s is the ambient

mass density of the air. One Easily checks that (104) is consistent with the

first-order (for vibrations of small amplitude) equations of motion and

continuity, namely

a_
svty-Vp,

as P - ` S
C21 v '
	 (105)

where we have used the relation B = sc 2 for the bulk modulus B = s ^ . We-	 ds

may also contemplate a cavity with "soft" walls, which impose the boundary

conditions p = 0, even though it is hard to envision how such walls might be

constructed. (A liquid drop may be one way in which such a soft-walled "cavity"

can be realized.) In this case, the motion for a single mode #a is given by

p 	 sin mat
a a_	 a

v =
a-
	 Fa cos mact.	 (106)

We have related the modes with the patterns(Fa, H a ) to electromagnetic

oscillations and the two classes of modes with the patterns (X a ,5a ) and

af
a) to acoustic oscillations. Since plane electromagnetic waves are trans -

verse, and since plane acoustic waves are longitudinal, one uses the term

"transverse modes" for the (Ea,Ra) - modes and the term "longitudinal modes"

t

7

I

a
k

_J
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for the {x^	 a ) - modes and for the (V+a ,Fa ) - modes.	 This terminology is

somewhat inaccurate, because the words "transverse" and "longitudinal" make

sense only for plane waves, which are characterized by a definite- direction.

No such direction can be assigned to the complex patterns of the cavity modes.
i

Nevertheless, these two words are commonly used, because they simplify the

language.

We accept, without giving; a proof here, that the two sets {Ea} and {Fa}

taken together are complete.	 This means that any vector field V in the cavity
f

that occurs in practice may be expanded in terms of theE a and Fa , so that we

can write
x

V.	 C'P	 +	 C E	 .	 (107)
f

a=1	 a s	
a=1	

a s

Here, the Ca and Ca are the expansion coefficients.	 The first series in (107)

is called the longitudinal part of V and is denoted by VL , the second series is

called the transverse part of V and is denoted by VT .	 The series in (107) are j
a

"convergent in the mean". 	 Thus, if we approximate V by the first N terms, i.e.

if we replace it by
N	 N

Vappr^N =
	 ctf	 +	 I	 C 	 ,	 (10$)

a=1	 a=1	
a

the error V - Vappr,N has the property that the integral of the square of its

magnitude tends to zero, as N tends to infinity, so that

lim	 fff AT (V - V	 )	 V(V -	 ) = 0	 (109)
N -I.appr,N	 appr,N

The expansion coefficients C	 and C	 may be determined from V in terms ofa	 a

t

integrals, as shown by the following argument.	 We start with the inequality

of Schwarz

[fffATu • w]2	 [flfc To • v][fffATW • w]	 (110)_
f

7

;f

F
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which holds for any pair U,R of vectorial functions.	 Let us make the choice
u

U = V - Vappr,N and ^' _ P.b .	 Then, with the normalization condition

f f fAT'Fb	 Fb = 1

we obtain

tfffeT ( v - 
Vappr ,11

	Fb)2 ` fffcT(V - Vappr,N^ . 
(V - 

vappr,N)

Now let us take the limit for N + m.	 According to (109), the right-hand side

tends to zero.	 Thus we get

•	 lim ffft, J	 F	 fffe	 Fb ^
N^	

appr,N	 b 3

But as soon as the index N exceeds the index b, the integral on the left assumes -a

the valueCb ', by the orthonormality relations. 	 Thus the limit is also equal to

Cb ', and we obtain

Cb^	 ffftTV	 Pb
1

Similarly,

C 
	 = f f 1 _ TV • Fb 	(hl)

The result (111) agrees with the following procedure: 	 Take the scalar product
$l

of (107) with Pb ( or Eh ), integrate term-by-term, and use the orthonormality

relations.	 Now that we have established the legitimacy of term-by-term inte-

gration, we can ,use it freely in our future work.

Let usassume that the vector field V is of sufficient smootrness so that

the derivatives o • V and V x V exist and that these derivatives can be expanded

in terms of eigenfunctions. 	 We choose the types of eigenfunctions in the expan-

sion for 0	 V and V x V in such a way that the new expansion coefficients can
s g

be easily expressed in terms of the coefficiet, , z Ca p and Ca, which occurred in

the expansion ( 107) for V.	 Accordingly we write
•
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• V '	 K10a (112)
^ a

and

a x V	 D'^a +	 DgRa (113) f
^° a	 a

Indeed, we have
i

rfl	
-	 • av►a^Ka	 = 

J J J bT *a^	 v = 1!!vT [s •, av).
L,

The surfs/.,e integral vanishes because of the boundary condition= 0.	 Then,a

I
with (111), we obtain

Ka' _ - t Ca '	 , (114)

so that

f p • 
V 

= i	 Ca
Itavla

(115)

a
We would have obtained the same result ( 115), if we had taken the divergence

of (107) term-by-term, since

1	 E_- t	 and V	 E: = 0
a	 a a	 a

Next we calculate the expansion coefficients D,' and 'D 	 in (113).	 We have
a	 a

'vD' = jjjnTC	 •	 x V = !lle [V • (V x. Ga ) + V	 V x Ga] w

1`1x' f	 V x Ga + f f f e T	 x Ga

_^AfVxG	 +0,a

since V xGa = 0.	 Similarly

Da = If1ATR	 V x V= ^fe?	 V x Ha + IffATV	 1 x Ha
_Af	 V x Ha + k C

a a

where we have used the relation p x 
Ha	

kaEa and the second formula (111)•	 On

inserting these results for Da	 and Da into (113) we obtain

D x V	 x	 a a + E[	 o	 V x Ra + kaCa ]Ha (116)
s.
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Had we taken the curl of (.113) term-by-term, we would have obtained a different

result. For we would have lost the surface integrals that appear in the expan-

sion coefficients of (116). However, if V happens to satisfy the boundary

condition

A? X V = 0 ,	 (117)

then these surface integrals vanish. In this case then, we are permitted to

evaluate the curl term-by-term.

Tf the series (107), (112), (113) for the fields V, V V, and 1 X V were

uniformly convergent, then we could deduce (by the usual continuity arguments)

that these fields satisfy the same boundary conditions that the eigenfunctions

satisfy.- Thus, for uniform convergence, we would have

Af x V = 0, V • V = 0, pf • (V x V) = 0, at the wall.	 (118)

Unfortunately, the proofs for uniform convergence, at any rate those that are

most easily carried out, start with conditions that are not satisfied in the

application we wish to make. (What foils these proofs is the point-like

nature of the atomic particles._) However, later on we are going to make an

approximation in the Lagrangian. As a result of this approximation, the

infinite series will be replaced by finite series, so that all the convergence

problems will disappear. And then the boundary conditions (118) are certainly

satisfied.

So far we have considered a general vector field V and its derivatives

V - V and V X V. Now we apply what we have seen to a specific case, the vector

nn+on+ia1 e0_ Tn analnav to (1-M) wP write
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where the Qa and 0,,a are the expansion coefficients. And in analogy to (118),

we have the boundary conditions

Af x cA = 0, V o cA = 0, A?* (I x cA) = 0, at the wall.	 (120)

The third of these conditions is a consequence of the first, as we have seen

in the proof for (64). Again we remind ourselves of the circumstance that,

in the end, the series (119) will have only a finite number of terms, so that

we will not be bothered by convergence problems. (See the remarks following

(118)).

Now we are ready to formulate the gauge condition for the vector poten-

tial cA. We require that all the primed expansion coefficients Qa be zero.

Then the longitudinal part of cA, i.e. the.first series in (119) vanishes, and

only the transverse part, i.e., the second series, remains. Our gauge condition

is then that the vector potential cA is purely transverse. As a consequence

(see (115)] the divergence of cA vanishes everywhere. Thus we have

V cA = 0	 (121)

ORIGINAL PAGE IS
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I

But, in addition, the boundary conditions (120) are satisfied. The second of

these is already implied by (121). Thus

Af cA = 0 9 Af V x cA 0, at the wall. 	 (122)

t
Similar remarks apply to the variation dcA: Merely insert the symbol d as a

prefix to cA, o f  , and Qa.

We summarize the discussion of this long section by the statement that we

choose the "transverse gauge" for the vector potential. This term is more
C
I . restrictive than the term "Coulomb gauge". The latter implies only (121). But

the former implies that cA can be expanded as a series in the eigenfunctions Ea

alone, theFa are not needed. A particular consequence is that the boundary

I s
I

e
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	k x 	(122) are satisfied.

	

k =	 In the next section we will introduce the approximaticnswe have already

alluded to. They will make it possible to replace infinite series by finite

ones.

7. Two Approximations

We start with the expression (53) for the action functional, which we

write down again for the sake of easier reference.

Aa,b _ 
1b 

dt {1 dq' M1 s- + [u + flfeTJ	 A]^ - CV' + fffoT pf]t=a	 2 dt ii dt	 i	 i	 dt

+ 1ffATfs2 act 	 + if) ( a—ca-t cA + 10 - e2 0 x cA) ( V x CXM

(53 repeated)

The functions that are to be obtained from the action principle are qi(t.),

and c^(r,t). Since we agreed to use the transverse gauge for the

vector potential cA, we can simplify ( 53). For, when we multiply out the

	

j	 scalar product that contains 	 the following sum of three integrals appears

in (53).

	

i	 j1 f AT E ^^ pm + !1I AT2	 Ef
t

2 (apt C
A) • „(a cA) 

+ f11 QT so	 act
 CA

The last of these vanishes because of our choice of the transverse gauge for A.

For we have

MAT ^c 'vO	
a ca _ e f f f AT (V • (0 a cA)—	 a a • CA]

o	 act	 o	 act	 act

where we have interchanged aL and V in the last term. But since V CA 0,

we obtain x

fffATeoa^ ' act Ca e o^of •	 act cA

when we convert the remaining volume integral into a surface integral with 	 I

the aid of the theorem of Gauss. But this surface integral vanishes because

f



Aso
ORIGINAL PAGE IS
OF POOR QUALITY

of the boundary condition	 0. As a result, the expression (53) is

simplified to

A	 _ fb at {l 
aai 

M' ddC + [tr' + fffAT3F • A]	 [v' + fffoTp#]a,b t=a	 2 t i,j	 t	 i	 i	 dt

+ fffei[2V^ • -v + 2 (ate. cA) (a cA) 	 - e2 (I X cA) • (I x J)]) . (123)

We see that the scalar potential and the vector potential cA have become

"decoupled", since terms that are mixed in m and cA no longer occur in (123).

One of the consequences of the action principle is equation (46), namely

Ada 9 EE

	

o  - p	 (46) repeated

(It results, when we examine 6Ag b under the assumption that only is varied.)

For a free-running system, to which we confine our attention here, the driver

field pd is zero. Thus ( 46) yields

I • EoE - p

And with

9	 cA, D cA = 0 ,

we obtain
{F

e 3 'v
o	

-
 

Pe	 (124) y
ij

This equation shows that ^ is equal to the electrostatic potential associated
nr

with the atomic charge density p. Since p depends explicitly only on the con-

figuration {qi} and the position r, the scalar potential will depend .explicitly

only on these variables. Then the two integrals
E

fffDTpO and2 fffATOO • Vo

which appear in (123), will depend only on {qi since the r-dependence of

and p was wiped out by the integration process. These two integrals are

h	 closely related.. Indeed with (124), we have k
k

n

k
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MAT-po - EoJffaT07 • 10 _ - CjfleT ( o - (m9O) - 10 • Do] .

The integral over the first term is converted into the surface integral

which vanishes because of the boundary condition = 0. Thus

	

fffATPO -e fffoTIO • 10 .	 (125)

We use this result to simplify (123). With the abbreviation

V(qi ) = V'(q,i ) + 
s 

2 fffATIO • 10	 (126)

equation (123) becomes

b	 i	 ^	 i.

	

Aa,b 
_ 
t!a dt{2 d..' 

Mid 
dq + [Ui ' + fffoT ^i A] d^	 +

+ IfIAT C—? (
act ^A) • (act A) — C2 (a x cA) • (6 x cA)]) . (127)

We note that the quantity V depends explicitly only on the atomic configuration

fgi
1, and that the scalar potential f has disappeared from the action functional.

The procedure that enabled us-to eliminate the scalar potential ¢ from the

action functional may be applied also to the vector potential cA. In order to

get ready for it, we use the eigenfunction expansion (119). Since we ate using

the transverse gauge, in which all the coefficients Q a I 
are zero, the expansion

simplifies to

cA=IQ2a .	 (128)
a

Similarly,
dQ

act cA c	 dt E
a ,	 (129)

a
and, because term-by-term differentiation is permissible

I x cA = EkaQa$a	 (130)
a

Next we express the three volume integrals in (127) that contain the vector

potential in terms of the expansion coefficients 0,,g. We have

3
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IffaT —° ( at CA) ' ^aCt CA) - -2-0 lffAT (I -- P ) • (£ 
aQ0 

Pb ) -2 ac	 c	 dt a	 d
E	 dQ dQb	 ae	 dQ	

b

2c^ b dt dt IIlAT a Eb • 2-T E(a ) 2 ,	 (hi)

where we have used the orthonormality relat ions (98). (See Box #5.) Similarly
C	 e

I!!A T 2 (I x CA) • ( I x cA) = 2 G (kaQa ) 2 .
a

In the remaining integral we expand the functions Ji in terms of the Fa 
and Ea,

i.e. we write

Ji = I i t 	Fa + I i	 Ea .	 (132)

The expansion coefficients i t a and 
`^i,a 

depend on the atomic configuration !-
' Y

{qj}.	 The first series in ( 132) is the longitudinal part Ji,L of Ji , the
P

Csecond series is the transverse partJi9T .	 Then, with the aid of the ortho-

normality relations ( 98), (100) ( See Box N5) we obtain

fffbTJi • A =	 Ji^aQa	 (133)
a

When we insert (131) - (133) into ( 127), we obtain

_	
a,-
	 i

A	
b	 i

a,b	 dtfld—M'	 +[U'+1^J	 A,1a-Q---V
dt	 i,at=a	 2	 dt	 i	 c	 a	 dt

j 	
a

C	 aQ 
+	 ( dt ) 2 - 2 J('kaQa ) 2 }	 (134)2'^Z'

a a

(We have used the same symbol "a" for two different purposes. 	 It indicates

not only the lower limit in the time-intiegration, but also the mode-numbers.

This double usage should not cause any confusion, since the place where the "a"

is written makes its'reaning unambiguous.) 	 The functions that are to be determined '$

from the action principle are the n functions g i'(t) and the infinite set {Q (t)}.4

E
f

In order to derive the equation of motionion.. for one of the Qa ( t), we examine

` the variation of the action under the assumption that only this particular Qa

is varied.	 With the aid of the calculation

Y
f

r

I-A•- •. ...s_ ..

r



a[2 (^at) 2 ] - a- a(dat) - d=aRa) ' as aQa] 	 akadV

we obtain
2

SAa,b c '[ at aQaa 
b+ jbdt[^ si ^ a r - - ddt2 - 

E'o(ka)2Qa^aQa
tuft

The action principle

	

sAa b = E.T.O.	 (51) repeated

for a free-running system causes the square bracket in the integral of (135)

to vanish. Thus

a

2

	

t2 + ( ck ) 2Ra = —c J	 ^ ,.	 (136)772 	 Co i,
a
_

This equation shows that the expansion coefficient Qa(t) behaves like the
i

excursion of a harmonic oscillator that is driven by the "force" s
c 31,a 2
0

dt

The resonance frequency 0e of this oscillator is given by

n  a cka	(137)

Equation (136) suggests the kind of approximation we are going , to make.

We will first go through the procedure of this approximation. Only later will

we discuss the motivation for it. At this point we merely mention that it

serves to eliminate infinities that arise when the atomic particles are treated

as mint-like entities. We divide the modes into two groups: the "low" modes

whose resonance frequencies lie below some critical frequency 0crit, 
which will

I

be selected later, and the "high" modes whose resonance frequencies lie above

Qcrit. For the low modes, we retain equation (136). But in the high modes,
d2Q

the "intertia term" ^ is small when it is compared to the "stiffness term"

(cka ) 2ga. We may therefore neglect the inertia term. Accordingly, we re -

place (136) by
A2n	 4

I
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A
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(ck
a )2Aa = ec J	

d
i t s,	 dt , for the high modes, (138b)

o
I

We decompose the sums over the modes in (134) into two sums, one over the low
11 k

modes, the other over the high modes, so that

l _ + (139)

I
a	 a,low a,high

The deletion of the inertia term in (138b) is accounted for by a change in i
dR

t the action functional (134), where we would have to omit the term 	 (d 
)2

a,high i

Accordingly, we approximate Aa,b by

i	 ^	 i
A	 fb dt(_ ^ M ^ ^ + U	 d.. + 1	

J	 02	 dt	 i^	 dt	 i	 dt	 i

i
'

a	 dt

l

a,br	
t=a +ac a,high

app	 i dQ

ddt+ ct:a low 
Ji,aQa	 V -

+ 7
	 ( dt)

2

a,lowt
C	 e

- --2	 I	 (kaRa)2 - 2 (kaQa)2} (140)

a,high a,low

We express the expansion coefficients Ra for the high modes by means of (138b).

We therefore write

1	 c T
	 q

Qa	 cka	 eo IT 	 dt
1	 c J	 d9.

cka	 eo	 .1,a	 dt

i

Here we must be prepared to use two different summat.s^n indices i and J, in
r

order to avoid confusionlater on. The two terms in (140) that contain the Qa

of the high modes are then

_ _ ..1.
c	 Ji,a^`a d

9
	1dt	 E	 dt (	

F	 ck	
Ji , aiJ , a ) adt

a,high	 o a,high	 8
and

e^^	 E	 (kegs )	 2e	 adt (	 E	 ek	 'T ,aiJ,a)ddt .
a,high	 o a,high	 ak

,z ORIGINAL" PAGE IS
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We see that they resemble each other. We combine these two terms and use

the abbreviation
_

,

	

+	

i

	

1 
E	

1	
(141)

Mi, Mia 
Eo a high cka Ji,aa,a '

Then (140) becomes
i	 ^	 i	 i

J
b 

d1([!   S- M ^ + U I S' _ V1 + 1	 J Q 1C +

	

,b 
t=a	

2 dt ij dt	 i	 3A
	 dt	 c a, low i,a a dt

appr

	

e	 dQ,	 e

+ 2c£	 ( dt
)2 - ?
	

(kaQ ) 2 )	 (142)	
1

a,low	 a,low

The functions that are to be determined from the action principle (51) are the

n functions gi(t) and the, now finite, set (Qa(t)) for the low modes.
F

When we reverse some of the procedures that led from (12T) to (134), we

can write (142) also in the form

b 1 d i	 d ,1	 d	 _

tza
f Q —a Mi, -e + U —g - v] + 11JeT3 • A1ow

e

+ JJJA T(`2 apt CA)	 C
A ' act CA
low ) - 2 (I x CA

low) 
0 x CAlowM

i

(143)
z	

where
x

#•	
CAlow	 QaEa	 (144)

^x
a,low

Because of the orthonormality relations, we may also replace the complete

`

	

	 current density 'J in (143) by 
JT,low' 

the low-mode part of the transverse

portion of J, which is given by
i

cc ^	 (145)	JT,low 
_ G	 dt Ji,aEaa,low

However, the best policy is to work with equation (142).

We are now in the position to discuss the motivation for the approximation

we have made. The expression (123) contains the integral

r
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which is equal to the electrostatic energy associated with the atomic particles.

(Remember that f was the electrostatic potential, as shown by (124). But for

point-like particles, this energy is infinitely large, because l oml increases

to infinity with decreasing distance from the particle so rapidly that the

energy integral diverges. The other terms represented by triple integrals in

(123) offer similar difficulties. For instance * the term ,a

2111e T ( l x en^(3 k CA)

which is the magnetic energy, is infinitely large for moving point-like particles,

because the immediate vicinity of a particle contributes a diverging amount to

the integral. Thus for point-like atomic particles, equation (127) is really

without meaning.

On the other hand, the approximation described by (142) appears to be

meaningful, as neither diverging triple integrals nor infinite series occur in

this equation. Of course, this appearance is deceptive, because the second
a	

i

-	 terms in the equations
E

V= V ,
2
 jrfarit it ,	 (125) repeated

and

M = M' + 1
	

1	 J J	 (14?) repeated
i j	 i^	 Co a,high 

aka	i,a J , a

are infinitely large for point-like particles. But it is conceivable that the
L'•

infinities of the second terms in (125) and (141) are compensated by infinities

of the opposite sign in the first terms, so that the left-hand sides V and Mi^

turn out to be finite. It is generally believed, although there are no

.t
rational foundations forthis belief, that this actually happens. It is

ja

z

1	
''
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believed furthermore that the square bracket in (142), which looks like an

atomic Lagrangian, is in fact equal to the conventional atomic Lagrangian,

if the critical frequency ncrit' which formed the dividing point between low and

high modes, is chosen low enough. This means that, for 
ncrit 

♦ 0, the
i	 i

expression 2 C Mid $- is equal to the conventional kinetic energy (in the
sense of elementary particles) of the atomic particles, that V is their conven-

tional potential energy (again in the sense of elementary particles) and that

the quantities U 
i 
I are zero.

We have introduced two approximations.

(1) The approximation that was made when we deleted the inertial

term for the high Modes, as in (138b).

(2) The approximation that was made when we replaced the square

bracket in (142) by the conventional Lagrangian of the atom.

The quality of the first approximation is improved, when we raise the critical

frequency 
ncrit• 

And the quality of the ,second approximation is impro°red when

we lower the critical frequency 
ncrit' 

Therefore, we have to make a compromise

when we choose 
ncrit' 

We believe that the quality of the overall approximation

is good enough for our purposes, when we choose ncr- t to be of the order of ten

times the dominant frequencies, e.g. ten times the frequency of visible light

for the example of the laser. T;nfortunately we have no evidence for this	 K

belief at the moment. But to adhere to this belief is the best we can do.
t

At any rate, the approximations we have made and the beliefs we have

adopted furnish us with the definite action functional (142). Since our future'
Y

work is based omit, we write it down again in a box. We use the statement

that all

u
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the U 
i 
I are zero, and we indicate the variables on which the various quantities

depend.

14	 = fb dt([[2[ dt 4i(t)]Mi,(gk)[dt

appr	

qj(t)] - V(q )]] +agb 
t=a

+	 Ji^a(gk)q 
(t)[dt 

qi (t)] +
aglow

+E= 
aglow 

[dt Qa(t)] 2 - 
et 

aglowow (k aQ a(t) 1 2) (146)

The expression in the double square bracket is the conventional Lagrangian c'

I
the atom, when the atom is isolated from. the radiation field.

This action functional is of the standard type that one always meets in classical
,

dynamics. It pertains to a system with (n + N) degrees of freedom. Here n is

the number of the degrees of freedom of the atom, and N is the number of trans-

verse modes whose resonance frequencies are less than the critical frequency ncrit'	 J

The configurational coordinates are the n quantities q i , and the N expansion

coefficients Qa . The action functional depends on the functions Q a(t) in a

particularly simple way, characteristic of harmonic oscillators. There is no

direct coupling among these oscillators, as'shova by the absence of mixed terms

of the type QaQb etc. However, the "radiation field" oscillators are coupled

to the atom by the term on the second line of (146). Hence they are coupled

to each other in an indirect way.

The other form, analogous to (143), of the action functional is

F

x
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a,b - 1b dt{[[2[ at^ gi (t)]Mij ( gk )[ dt qJ (t)] - v[gk)7] +
tZa

appr

+ fffA .T JT,low (r ' gk) . Alow(r't) +

+-2- fffnT[a' t cA(r,t) ^ act cA r,t)]lour	 low
e
2 fff 4rry x cx(r,t)]	 ['p x cq(r,t)])	 (147)

low	 low

We note that JT,low(r'gk) depends on the time t in an indirect way through

the functions qk(t).

There is another way of looking at (146). We retain the first and second

lines. as they are. But in the third line we delete the subscript "low".

Then equation (138a) holds for all transverse modes, not dust the low ones.

But the excitation term, i.e. the right-hand side of (138a) vanishes for the

k

J

a

high modes. Thus if we use the initial conditions

Ra 
0, dt Q  0 at t = 0 for the high modes, 	 (148)

we find that the high modes are.never excited, so that the R a,high are auto-

matically zero at all times. The preceding remarks may be interpreted in the

following way. Since, in the spirit of our approximation, the interaction term

(i.e. the second line of (146)) is a sum that extends only over the low modes,

the real atom has been converted by our approximation into an object that is

completely inert to radiation whose frequencies exceed the critical frequency

acrit' In this way, then our approximate treatment differs from reality. But

this deviation is not harmful in the a lications w have in mind In thesepp	 e

applications we are interested in radiation whose frequencies lie in or near
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those of visible light.

j	 We close this section with a qualitative argument which is designed to
2

show that the approximation in (13h), where we deleted the term 
dd7 Qa , is

goodonly in the non-relativistic domain, i.e. when the speeds of the atomic

particles satisfy the condition ( speed )2 << c 2 . Let us consi6er dust one
C

atomic particle of charge e. We assume that it travels with constant velocity 	 h

g	 yw along the x-axis ^f some car esian coordinates stem. Its position r is then

given by r wti^where i is the unit vectir in the x-direction. Here we need

only one configurational coordinate q1 , which we choose to be equal to x. From

the expansion (132) we determine Jl,a by integration. We have
_	 h	 '

J1,a = 111cTJl • Ea

Since J1 is a distribution that is concentrated in dust one point, the integra-

tion is easy to carry out. The result is

Jl 
a = e • 2 (wt!)

As the time t progresses, the value of J 	 will change appreciably when the
l,a

part icle has travelled a distance, which is of the order of k
l
 • The elapsed	 J

a.
time is then wk . The inverse W  = wk  is the dominant frequency of J l,a . Now

a_
we calculate Q  from (138b). It is proportional to J l,a . Thus the dominant

frequency of Qa is also wk a . Now we ask: Were we permitted to delete the term

d2	d2
d Qg in (138b) y Since d"	 Qa is of the order of (frequency? Q 

a
, our question

becomes: I,s(wka ) 2 }Qa I much smaller than ( cka) 2 1 Qsj? The answer is yes, if and	
g

only if (1) 2 << 1. And this is the condition for the non -relativistic velocity

range.

We have seen that the approximation in (138b) is of poor quality, if the

particle velocities lie in the relativistic range. The converse of this 	 j

s

ORIGINAL PAGE 1S
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statement is not necessarily true. Non-relativistic velocities do not neces-

sarily guarantee that the approximation is of good quality. After all, in the

foregoing estimate, we have considered only a particle that moves with constant

velocity. Nevertheless, we stick_ to our approximate treatment, because it is
presumably the best that can be done without the use of advanced quantum electro-

dynamics. Furthermore, it yields a definite action functional, which permits

further analysis.

In the next section, we are going to make the transition to quantum mechanics.

We shall apply quantum mechanics only to the atom, not to the radiation field.

However, the procedure that we are going to use can be easily adapted also to

the case in which quantum mechanics is used for the radiation field as well.

8. The Transition to Quantum Mechanics,

The usual method for making the transition to quantum mechanics (or "quan-

tizing") is to define the generalized momenta and the Hamiltonian function, and

then to proceed to the Schrddinger equation. But this means that additional

concepts must be used. Another drawback of this method is that it can tell us

only how the atom responds to the radiation. It will not tell us how, in reverse,

the atom influences the radiation field. However, both of these questions are

answered, when the action principle is used. Therefore, we stay with the action

principle. All we have to do, in order to make the transition to quantum mechanics,

is to modify the action functional (146) in the appropriate manner.

In order to simplify the presentation of this approach, we shorted the

notation in (1.46). We use the abbreviations

dt qi(t) vi (t ,	 (149)
}

(This one we have used before), and
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e,low Ji a ( gk)^g(t) _ vi( gk ,t )•	 (150)

(This Ui'is without a prime. The primed quantities Ui were all zero, as we had

mentioned in the paragraph that followed equations (125), (141) (repeated) of

the previous section.) We also.delete'the variables on which the quantities

of (146) depend, i.e. we delete the variables in the round parentheses. Then,

if we put the term U 
i 
v 
i 
inside the double square bracket, the shortened version

of (146) appears as

e,b = jb dt( C[ 2 V
IM	 kvk + U^

appr	

vJ -' V^ ^ +

t=a

	

+ 20	 jddaJ2 - s2	 [kaRa12}	 (151),

a,low	 a,low

In order to quantize the atomic subsystem, we introduce a time-dependent

complex scalar field *(q ,t) defined throughout the configuration space of the

-atom. And we also introduce a time-dependent complex vector field in this

space,with components X J (q ,t). These components are referred to axes that,

locally, conform to the coordinate lines of the configurational coordinates q^.

Then we replace the double square bracket in (151) by an integral over the

entire configuration space of the atom, i.e. we make the replacement

[ [2 vjM^kvk + U^vi - V]] -►

4. f ACY	 11 + X*j I	 Xi I	 +
ecs	 Aq	 8q

+ ((2 X*jM^kXk + 2(X* 1V 
+ X3**)U1	

**V))a)	 (152)

where the stars indicate the complex conjugate quantities. The symbol ,n denotes

Planck's constant divided by 2n. The "i" in front of,h'i stands for 4-1. The

	

symbol Au denotes the volume element in the configuration space. 	 In order to

	

_	 e

i;
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explain the meaning of Ac, we consider a volume element that is shaped like a

small parallelepiped whose edges conform to the coordinate lines of the configura-

tional coordinates q 1̀ . The extents of the edges are Aq 1 , Aq2 9 ... Aqn. The

volume element Au is proportional to the product of these extents, so that we

can write

Au = 1JAg1 Aq2 ....Aqn .	 (153)

The proportionality factor M is equal to the positive square root of the deter-

urinate of an n-by-n matrix whose matrix elements are the quantities M, k in (152).

Thus, in simplified notation,

M= (DetMjk)^ .	 (154)

The letters ecs under the integration sign stand for 'entire configuration space."

They will be omitted henceforth.

Some insight into the physical meaning of the field quantities ^ and x i is

gained, when they are related to probabilistic statements. In quantum mechanics,

the instantaneous configuration of the atom is no longer given by a definite

point {q J ) in the.configuration space. Instead, we deal with a probability dis-

tribution, whorie density s is given by

S =	 (155)

This means that the probability A(prob)' of finding the configuration to be in

{ some volume element Au is given by

A(prob) = sAa *^^a =*VNIIAg 1 Ag2	 Aqn.	 (156)

(The last member of this string pertains to the case in which the volume

element is shaped like a parallelepiped of the type we described earlier.)

i	 Since the probability of finding the configuration to lie somewhere in the

s	 configuration space is unity, the field quantity 0 should satisfy the
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f av^►* 	 1 (15T)

Associated with the probability density s is the probability current density

(in the configuration space) whose components K J are given by

K ì - 4(X*j * + Xj V^* )	 (158)

The probability density and the probability current density are linked by the

continuity equation

at s + ^' j' U ) o	 (159)
ay,

as we shall see later.

When we make the replacement ( 152) in (151) we obtain the quantum mechanical

action functional.

M lb dt{ j^g l eg2 ... 4qn fit[ [	 (^* a" _* 
a0 + X* '1 a" . Xj a ^ )

a,b	 t=a	
2	 at	 at	 aqj	 aqj

appr,quant

+ ((%X*i
M^kXk + (X*j* + X 	 )U^ - 0**V))]1

	

eo 	dQa 2 C 	 2
+ 2^
	 [ ate _ 2 ^ [kaQa^ }	 (160)

a,low	 a,low

The functions that are to be determined from the action principle are *(qi,t),

the n functions Xj (gi ,t), and the N function Qa(t). We repeat the definitions

of n and N. The number n is equal to the number of the atomic degrees of

f
freedom, and N is the number of transverse modes whose resonance frequencies

lie below the critical frequency ncrit' We might also say that N is the number
f

of electromagnetic degrees of freedom that we retained after the approximations
F

e

of the preceding section. When we apply the action principle (for a free-running 	 K
G	

Y

system),we may regard the variations 6*9 day* , d,XJ 6X*J as independent variations,

The U^ in (160) are given by (150).

1
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even though * is tied to V and X*
j
 is tied to Xi by the condition that the

starred quantities are the complex conjugates of the unstarred ones. What

enables us to do this is that we will have to steal with quantities of the type

F80 + F* day* , which have to be equated to zero. Choosing d* to be purely real

*
yields F + F = 0. And choosing 6* to be purely imaginary yields F F = 0.

These two equations imply that F = 0 and F = 0. These are just the results

that we would have obtained, had we regarded d* and 80 as independent varia-

tions.

Had we desired to quantize also the electromagnetic field, then we could

have extended the procedure that led from (151) to (160). In this case we would have

used, instead of an integral, over then-dimensional configuration space of the

atom, an integral over the (n + N)-dimensioned configuration space of the total

system. We need not elaborate any further upon this theme, since we decided

at the outset to quantize only the-atom and to treat the radiation field

classically.

Now let us apply the action principle

6A 
b = E.T.O.-
	 (51) repeated

for a free-running system. We use the action functional (160). If we.vary

only the X^ , we obtain

daa,b = jb dt{1t^g 1 Qg2 	Agn M 
aX*j ( 2 * + ^M

^^SXk + 2U^V+) }
t=a	 aq

*
E nation (51) tells us that the factor of dX j must vanish Thusq

M,kXk = -
 iii 90 - U^^	 (161)

aq

We introduce the matrix with elements M i, , which is the inverse to the matrix

with the elements MiJ . (Both are symmetric.) The condition that these two

l

}

I
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matrices are the inverses of each other is reflected by the following equations

for the metrix elements

MiaMak = di + MijM^k__ 6k (162)

(The summation convention remains in effect), where the d i are the Kronecker

deltas. Then, if we premultiply (161) by MXj , we obtain

	

X t
=Mtj (- iii 

8
0-U^r)	 (163)
q

Similarly,

X*t =
 M1-j(+ iii a-^ - U 	̂ (164)

*	 aqJ
Now let us vary only 	 In s 

a,b, there appear the terms - '^ at 8* and

X
j
 a, 

a^* , which require some manipulation. We have
aq

at	 at	 at
The first term, being a full time-derivative contributes only to the end terms

i
w

E.T.O. The last term vanishes, since we assumed that the matrix elements Mjk

do not depend on the time t. Thus Of _ (net-M
jk

)5 does not depend on t, so that 	 a

0. Similarly

*__	 *	 * a_I

aqu	 aq	 aq

.	 The first term is a full configurational derivative. When we integrate it over

C	
the entire configuration space, the result is zero, because MX

j
S* vanishes in

the far reaches of the configurations ace.	
*

p	 (We .:could. even require that day

vanishes except in a finite domain.)

Combined with the results of these manipulations, equation (160) yields

x

ILA__-.r
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8Aa ,b = - i { ^ng ing2 ... AgnMOO*) I	 +

t=a

	

+t fgd t{Jeg 1 e. Q2 .,.. d4 M( 6** )((Of	 + 12 + 
aa' 

(M.XJ-)

d'

+ 1 Uj X - V*11)

The action principle (51) tells us that the expression in the double square

bracket must '.vanish. Thus

	at — 
1 1;2 

tit 
a, 

(MXJ ) - 2 Ua X  + v^, _	 ( 165)
aq

Similarly
*

ih	 _ + i2 M
	

A*j ) - 
2 
U,X"a + V	 (166)

aq

On combining (163) with (165)-, we obtain

i.^	 _ — 
2 1 a 

(^Igjk 
8* ) + f< 1 a (t,M

jku V^)at	 2 M aqj	
aqk	 2 M aq^ 	 k

+ i2 U^Mjk N + 2 U,MikUk^r + V ,	 (167)
aq

or, in somewhat abbreviated notation,

at = 2pa { - iK a, - U  )MMjk(—	 ak - ttk ) + v^,.	 (168)
aq	 aq

Equation (168) is the well-known 'Schrddinger equation for time-independent

"kinetic coefficients" Mik , MjkI M. We will refer to the pair of equations

(161) and ( 165), from which ( 168) could be derived, as the "pair of Schrddinger

equations".- The influence of the radiation field is contained in the quantitieF

U,, which - according to equation ( 150) depend onthe electromagnetic vari-

ables Qa(t). Similarly, when weconsider the variations 6* of fir, we obtain

*

	

*	 *

	

i', .2x— = 1 (+ iK a - U )O4M" k(+ i i 
ak 

Uk)V^ + V^	 (169)
at	 2M	 aqj	 aq

This equation is, of course, the complex conjugate of (168).j

f
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At this point we are ready to check the continuity equation (159). We have

at s + it = (^^KJ ) = a`t (^►*V^) + ^' IM ^V*x + ► X*j ) )

aq	 *	 aq

a + 1 Xj a + V * 1	 (M,Xj) +
3t 2

aq	 aq

where c.co stands for conjugate complex. With (165) we obtain

at + ^ X,1 1
* * + ** 1 a 1 (MXI )

aq;	 aq`

= ih 	
(- 2 U,X^ + V*) + G Xj a" -

*	 aq

= 27 X, (- U	 + ^	 + i ►e'Vv =

= 27 X^M,kX*k + i-K *V

where, in the last step, we have used the complex conjugate of (161). But

this expression 3s purely imaginary, since the factors of 
i,W 

are purely real.

Thus, when we add the complex conjugate "c.c.", we get zero. And this com-

pletes the check.

So far we have exploited the action principle only in part, in that we

examined what happens when the quantum-mechanical quantities , *, X ` 9 X*j

are varied. Now we subject the electromagnetic quantities Q. to variations

8Qa. Here we must not forget that, according to equation (150), the Qa are

contained in the Ui . We therefore writedown the action functional (160)

again, but this time with the Q  exhibited wherever they occur. All the

other terms are indicated by a sequence of dots. Then, with the use of (150),

we obtain

Aa b 
= rb dt{ c Qa^^Ag 1 Ag2 	 aqn M 2 X* , 'P + Xj^,) JJ •

g(q ) ]
t1=a	 a,lowG

E	 dQ 2 E

a,low	 a,1ow

ORIGINAL' PAGE IS
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In the variation aA	 there appear the terms ,6CNAI , which require some mani-agb

pulation. We have
dQ 2	 dg	 do	 dg

at aa] -	 dt a( dt) = 2 a at 
(agar

d dRa	
d2g

= 2 dt dt aga r - 
2 dt4 

aga•

The first term, being a full time-derivative, contributes only to the end terms

E.T.O. We then obtain
eo	 dga	 b

	

SAa,b = ... ± -7 aglow C dt aQa)	 +
t=a

e d2g
+ 1b dt	 aRa{—°	 - so(ka)2ga+

t-a	 aglow

f Qg idg2 	Qq M^X*, 0 + X, * )7 `r .1 ^$(qk) } •

The action principl ,7 tells us that the expression in the curled brackets must

vanish. Thus

2

	

cd^ + eo (ka )2() = f4gi ng2 ... Ogn^f 2(X*1^ + Xl**)J^ a	
(171)

f

These N equations (one for each of the low transverse modes #a) describe how the

atom influences the electromagnetic field. Each of these equations is constructed

like the equation of motion for a driven harmonic oscillator. With the aid of

(153) and (158), we can write (171) in more compact form, namely as

d ga 2+ (k ) 2g = L Aa KJJ	 ,	 (172)
dct )	 a a eo 	J,a

after we have divided it by e o . This equation is the main result of this section.

It is the quantum-mechanical analog of the classical equation (138a).

In order to explain the meaning of (172), we write it down again in con-

junction with (138x), also divided by c o . Only this time we indicate the vari
i

ables on which the various quantities depend. In (138a) we replace-111 	its

LA
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d2 Q (t) + (k ) 2q (t) _ - I VJ (t)J	 ( qk (t))	 (173),
dct	 a	 a a	 soc	 j,a 

Ruant,,im-mechanically

2
2

dc^ 
a (t) + (ka)2Qa(L) B©c jaQIC'i ( gk ,t)Ja }a ( qk )	 (17)

Of course, the words "Massically" and "Quantum-mechanically" refer only to the

treatment of the atomic subsystem. The electromagnetic subsystem is always

treated classically in our presentation.

In order to make the transition from (173) to (174) more evident, we rewrite

the right-hand side (R.H.S.) of (173) in a cumbersome, but instructive, way. We

could regard the precisely defined configuration {q (t)} as the reflection of a

highly concentrated probability distribution in the atomic configuration space.

Let s(gR ,t) be the density of this distribution. It is sharply peaked near the

point (q 
k (t)) and zero elsewhere. When we integrate s over the entire configura -

tion space, the result must be unity. Of course only the immediate vicinity of

the point qk(t) contributes to the i.ntegral '. We can therefore write the R.H.S. 	 s:

of (173) in the form

R.H.S.	
Elc 

{ feu- s}vj(t)J^ }a(gk(.t))
0

Here s in the integral is evaluated at the generic or "running" configuration of

the integration process, whereas JJ,a is evaluated at the precisely defined

t+
configuration {qk(t)). But, because s is so sharply peaked near {q(t)} we

may pull JJ 'a into the integrand and evaluate it at the ,anning configuration,

without changing the value of the R.H.S. We may pull in the v^(t) as well,

because this quantity figures as a constant in the integration process. Thus

A70
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R.H.S.
Elc fcla 

svj(t)J^ ^^
0

But svi is the component N,) of the probability current density Kj in the atomic

configuration space. Like s, the Ki as well are sharply peaked near the point

{qi (t)). We then obtain

R.H.S. a e= fdaKJJ, ,a	(175)
0

And now the R.H.S. of (173) looks like the R .H.S. of ( 174). This shows the

intimate connection between the Qlassical and quantum-mechanical equations (173)

and (174).

We may recapitulate the considerations of the preceding paragraph in the

following way. The R.H.S. of the classical equation ( 173) is deterministic in

form and in substance, since it refers to a precisely defined configuration

{q (t)) and velocity with components {vj (t)). But we may contrive to write it

in a probabilistic form, as in ( 175). In substance, it is still deterministic,

because the probability current density components K J are such highly concentrated

distributions. When we go over to the quantum-mechanical equation ( 174), the

same probabilistic form is retained. Only now the R.H.S. is probabilistic not•

only in form but also in substance, because the quantum-mechanical K^ are no µ

'	 longer highly concentrated distributions. We may therefore . :,regard (174) as the

direct, probabilistic analog of (173).

r	 Now that we have elucidated the meaning of the quantum-mechanical equation

(174), we are permitted to make the transition from (173) to ( 174) in a rather

metchanical manner, i.e. by a purely typographical procedure. All we have to do

is to replace the symbol vi in (173) by the symbol faoKi and to pull in the

symbol J
J
 a under the integral. We do this, while the independent variables
s

F	
are deleted. Afterwards we restore the appropriate independent variables. Thus:

L
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vj (t)iJJ a(gk(t)) `'' v`) J,,a * fAaKJ J
j9a

 + fAaO ( gk tt)JJsa ( gk ) .	 (1.76)

We ought to make aura that the ultimate independent variable is the same

on both sides of (173) and also of (174). The .eft-hand sides depend only on

the time t. And in fact, the right -hand sides have only t as the ultimate inde-

pendent variable. xn (1.73) this is assured, because the q depend on t. And

in (1711) this is assured, because the q  get "integrated out"

The equations (173) and (17 11) tell us how the atom influences the electro-	 t`

magnetic field. In the form we have written them, they describe how the atom
s

affects the individual mode excursions Q (t). Tie may also write down equivalent

equation for the vector potential field cA(r,t).o this end, we multiply each
S

of the N equations (173) and (17 11) Cane for each move #a) by the corresponding

transverse mode pattern a(r). 'then we sum over the low modes #a. We use

equation (91)	 (See Box X1 of Section C), namely

	

(ka ) 7 1 a V x (p x Ea )	 (91) repented

and equation (144), namely

CA
1aw(r 't)	 2a(t)a(r)	

(144) repeated
a,low

r`	 Then we obtain

Classically;

A	 (x t) + a x P X CA	 (I't))- 1 VJ (t)	 J	 ( qk(3 (r),	 (177)
i3ct	 l.ov '	 low	 Coc	

a,low J'a
quantum mechanically;

(act) 2

 

cAlow(r ' t) * V x (o x CA^ow(r 't ))	 1c fAaO( gk ,t)^'^ ^ a (Qk )E (r)•	 (178)
0

Next we introduce the abbreviation

r^ i
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which is suggested by equation ( 145). Then equations ( 177) and (178) can be

written in more compact form:

Classically:

a2 ca
	 (r,t) + a x Es x cl	 (r,t)] Q ^ vj(t)3.	

(q(t)g;)
	 (180)

	

2ct	 low	 low	 eoc	 ^,T,low

Quantum mechanically:

	

2	 _8	
Ac	 (r,t) + 0 x	 = 1	 1 k	 k -

 

	

8ct	 low	
[(p x cAlow (r ' t))	 e c fQoIfi(q 't)JJ,T,low(q •r)	 0181)

0
We may also reverse the procedure that, led from (173) or (174) to (180) or

(181). All we have to do is multiply (180) or ( 181) by the transverse made

pattern Ea ( r), and then to integrate over the cavity. As far as the details

of the calculation are converned, one uses the series expansions ( 144) and

(179), and also the orthonormality relations (98). (Sae Box M5 of Section 6.)

One also uses term-by-term integration and differentiation of the expansion

series. This is certainly permissible, since all the series are finite.

We just went through a procedure that carried us from equations (173) and

(174), the equations of motion for the mode excursions, to equations (180) and

(181), the equations of motion for the vector potential field cA ( r,t) as a whole.

We could have gone through this procedure also in the action functional. In the 	 s

case of classical dynamics for the atom, we have done it already, as we went
a

from ( 146) to (147). When the atom is treated quantum-mechanically, the field-

analog of (160) would have been
C

A
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Aa^b	 jb dt(jAg 1Ag2 ... A2^'^1[t î  (^* n --_' * + X"j -o- - X,1 ^) +

appr,quant.
t=a	 aq_	 aq,.

+ ( (z X*J M^ kXk + l(x ^ ^ + 
xlo* )Uj	

V^ V►v)) ] ] +

+ Ez JJJAT(act cA1ow(r•t)]	 f act CAlow(r't),
C

- 2 fffAT ( I x cA1ow(r't)] • CI x cAlow(r,t))} 	 (182)

For Ui (q ,t) in this expression, we would prefer, instead of (150) 9 the equivalent

formula

Ui (q ,t ) _ c jlf ArJ
,T,low (gk 'r)	 CAlow(r,t)

	
(183)

X174

t

r

All the equations of motion for a free-running system follow from the action

principle

a Aa 
vb = R.T.O.	 (51) repeated

The transition from _(178) and (174) to (180) and (181) in the equations of

motion for the electromagnetic field does not produce any new results. It is

merely a change in the mathematical idiom. However, it affords us some insight

into the physical significance of the excitation terms, namely the right hand	 f
l

sides. In the classical, equation (180) the excitation term (except for the
>r

factor C1C ) is the low-modes portion of the transverse current density

o	 dT low
(x,t) _ 

vj(t)J	 (gk(t),r)
	 (l84)

In the quantlun-mechanical equation (181), this quantity JT ,1ow(r,t) is replaced

by its quantum-mechanical expectation value.

So far we have considered only one atom in the cavity. The next question

that arises naturally is: How does one proceed when several or many atoms are

present? We take up this question in the next section. We omit the classical
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treatment of the atoms and proceed right away to the more interesting case

in which the atoms are treated quantum-mechanically.

9. The Quantum-Mechanical Problem of Many Atoms.

In order to explain the principle of the method that we shall employ, we

first discuss the case of dust two atoms. We assume that the two atoms are

far enough apart so that they do not influence each other directly. But they

are permitted to interact with each other in an indirect way, namely through

the low-modes portion of the vector potential field cA(r,t).

The first atom has n' degrees of freedom. Its configuration is described
'	 j

by the n' coordinates qk , (k' = 1 9 2 9 .. n'). The second atom has n" degrees
n

of ,freedom. Its configuration is described by the n"coordinates q  , (k" 1,

2,, ... n"). The correct procedure would be to treat the two atoms as one super-

atom with n = n' + n" degrees of freedom. One would then start with tt:e action

functional, e.g; of the form (182). But this procedure is much too unwieldy,

especially so, when many more than two atoms are involved. Therefore, we shall

look for some assumptions that will simplify the treatment. In order to spell

out these assumptions, we have to devise a consistent scheme of notation.

Single-primed symbols and symbols with single-primed indices refer to the first 	 U

atom, while double-primed symbols and symbols with double-primed indices refer

to the second atoir.. Unprimed symbols and symbols with unprimed indices refer to
a

the super-atom. Single-primed, double-primed, and unprimed indices run respec-

tively from 1 to n', from 1 to n", and from l to n = n' + ri" We relabel the

index set 1,2, ... n', n' + 1, n' + 2, ... n' + n" as

n
, 2 1 9 ... n', 11, 2" ... n

u

,t
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One consequence of this relabeling is that the product of differentials AglAg2...

Aq that occurs in (182) can be rewritten as (Ag l' Ag2l 	Aq r )(Ag1tfAg2tt 0.0 
Aqn").

Next we examine the matrix of the kinetic coefficients with elements M jk . Because

of the relabeling, this matrix becomes partitioned into four boxes, namely

Matrix(M ) _
jk	 Mjttkt M nk"

n

Since the two atoms do not interact with each other in a direct way, we conclude

that the matrix elements M,,,ktt , Mjttkt in the off-diagonal boxes are zero. Thus

Matrix{ M) = M 
k t	

O	 (3,85)
O 

MJk	 j"k"

A consequence of (185) is that the appropriate determinants satisfy the relation

Det Mjk = (Det M
iIk'

)(Det Mit,k")	 (186)

Then the quantity M = (Det Mjk )12, which occurs in (182) can be written as

M = M I M"
	

(187)

in rather obvious notation. We note also that M' and the matrix elements Mj,kt	 µ

depend only on the qR ^, while M" and the matrix elementsM
i
„kte depend only on

the q	 The nature of these dependences is the same that we find in the single
f•	 r

atoms. Again, because of the appearance of the zeros in (185), we have

*j	 k	 *i f 	 k r * j tt	 kn	 j
X M,kX = X _ Mj 

tktX +X*MjIlk”

	

	 (188)

n
But the 

Xkt 
depend on both sets of coordinates q t , qR and the time t. And

n
kn	 F

so do the X

To continue with our examination of the terms that occur in (182), we note

that
*	 +^	 -	 *j ► 	 ,, *	 * j I?	 i„ *	 n

(X 4 + Xj*JU
G	

(X	 + X V+ ) Ujt + (X	 Vt + X ,y )U^	 (189)

The quantity * in (189) depends on both sets of coordinates q , q and the

time t. However, the Up depend only on the set q 	 the Ui , t depend only

Lk

I
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on the set of q . We see this when we examine equation (183), which defines

the UJ . In this equation, there occur the quantities JJ,T,low(q ,r), 
which are

of purely kinematical origin, in that the low-modes portion of the current

density in our home-space is given by
T

zf
T,low*,t) = v^ (t)^j,T.low(q (t)'r)

After the relabeling that we introduced earlier this equation becomes

JT,low(r't) : vi(t)J,^',T,low(q (t),gk^r(t),r)

+ VillWaJ",T,low(gk' (t),
k"

 (t),r)	 (190x)

Since the contribution to JT,low 
made by the first atom (the first term in

(190x) cannot depend on the configuration of the second atom, we conclude that

Jj',T,low can depend only on the set q . Similarly JjT,low can depend only

k"
on the set q . Equation (190a)thus becomes

JT,low(r ' t) = vjI(t)Jj,,T,low(gk,(t),r) + vjn(t)aj",T,1ow(gk1l(t),i) (190b)

The equations that define the UP and Ujjj (see (183)) then become

UJ A v ,t) _	 Ille=J''^ ^ CAl	 (r,t)	 ,T low(gk''r)
(191a)

and

UJn(q „ ^ t ) =	 IIIArJ „ T ,,(q	 r)	 CAlow(r,t) (191b')

They show that the*UV can depend only on the set qk 	and that the U^ can

depend only on the set q 
ku

, as we already indicated by the way we wrote the

left-hand sides.

Furthermore, since the two atomsdo not interact directly, the potential

of „k l +v, o+, nnnllra	 i"	 (1 A5)1 will "nab of the fnrm

E
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where the two functions V' and V" are the potentials for the single atoms.

Now we are ready to incorporate our previous considerations into the

action functional. We shorten the notation somewhat by the use of the volume

element in configuration space. On combining (153) and (187) 0 we have

Aa - Ag 1 Ag2 . , . AgnM . (Agl ' Aq2 v	 Agn 
'
M' ) (Agl"Ag2tl ... Aq nil l; ) = Aa' A(r"

Also we use two integration signs in front of Aa'Aa" in order to remind our-

selves that we have to integrate over both configuration spaces. With these

changes of notation equation (182) beco*:es

Aa b	 f  dt{ f f Aa'Aa"(( i2, ( V►*	 -	 a- 	 + X*,	 a;,, + X*Jll _
qo
	-at

t=a	 aq	 aappr,quant	 ^
i' 3*," 4	 1 * j'	 k'	 1 *J It 	 k"

-X	 aq,, • - X	 aa- rr) + ((2 X	 M, , k ,X	 + 2 X	 M, llk l'X	 +

+ 2 '( X*J, * + Xj, ** ) U 1 l + 2(X*^ ,^V^ + X^"V' *)U^^r

- w* V►v' - 01,M]] ] +

+ 2 H AT( 3c^G CAlcw] , Bet
 CA

low ] r
e
—2 fffAT(a x, CA low ] - [I x CAlow11 ,	 (193)

,:

where we have omitted the indication of the independent variables in order to

keep the notation as short as possible.

And now we come to the statement of the assumptions we are going to make.

We shall assume that the ( n' + n" + 1) functions Xi 
it 

(qk ,t), X ( gk ,t), Cq ,t)

are of a rather restricted form, namely that

Vt ( gk,t )	 V^'(gk,,t)*,,(gk ,t) *',	 (194x)

	

J' k	 j ► k t 	k"
X (4 ,t) = 'x (q 9t) (q ,t) ,	 (194b)

	

k	 " 	
k"	 k

X^ ( q st ) _ "X `̂  (q ,t )*I (q .t )	 (194c)

J^
	 r
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(Similarly for the complex conjugates, the starred quantities.) Furthermore,

the functions *' and *" shall fulfill the normalization conditions

Aa v v *' W 1, A61 1 10 ,y" 1	 (l95)
(Actually we need to postulate these normalization conditions only for one

particular time, say t 0. Then they will be satisfied at all times, since

the Schredinger equations for ^1 9 Xi and those for *", X, " turn out to be

satisfied. And this, in turn, guarantees the validity of the continuity

equations of the type ( 159), once for the single -primed quantities and then

again for the double-primed quantities. And when we integrate the continuity

equations over the appropriate configuration spaces, we see that the normaliza-

tion integrals of (195) do not depend on the time t.)

As we shall see, the assumptions (194a) - (195) will yield a workable

action functional, from which - by way of the action principle - equations of

motion can be derived that are well defined. Of course, because of the restricted

nature of the quantum-mechanical functions as embodied by (194a) - (195), only

a restricted class of system histories can be obtained from these equations of

motion. The histories that are rejected by our assumptions are, though possible

ones, not of technical importance at the moment.	 I

When we use the equations (194a) - (194c), but not yet the equations (195),

in the action functional (193), we obtain, after a reordering of the terms, the
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AQ b
	

jb dt{ !laQ I ACY" " ►' ^^[[ 2cv^"' a1 - ^ a at^ 
+ ,X„J,	

X	 , )8^ _ r 4—
t=a	 a	 aq.1

appr,quant	 q
A80

+ ((2 tX*1 ' MatkttXk + 2(rX*^'^,r + ^ X^ r ^*r )IJ r - 'VMtV► 'V'))l^ ♦

3h
2	 at	 a

^► a " 	 a Ott	 *n 
h ot	 it a q

+ llao ^ aatt,y ^,' [[--(V^ tt	 _ ,^^^ .. t + tt XJ	 ^tX	 )
t	

aq	 aq,
Ott

♦ ( 2 xi M j ttktt it Xltrr + 2 ( tt X*^ .*It + t1 X r' 
*11 )Va tt -	 tt^ V")) ] +	

GV

+ltlQT c	 CA I	 c	 CA I	 QR	 a2	 act low	 act low	
^F Q00

E
- 2 1HAT 

C 
3 x 

cAlow I ' [I X 
cAlow } •
	 (196)

In the first configuration-space integral of (196) we first integrate over the

double-primed space. Because of one of the normalization conditions (195), this

portion of the integration yieldsunity. Thus there is only the integral over the
a

single-primed space left. We proceed in a similar way in the second integral,

where we first integrate over the single -primed space. Thus the expression (196)

simplifies into

We see that the quantum-mechanical portion of the action functional has

been decomposed into two completely separated portions, one for each of the

two atoms A consequence of this observation is that the quantum-mechanical

functions ', t X^^ of the first, atom satisfy their own pair of Schr8dinger
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i'h 8 ^, + M,+k1 IX k, + U, 1 	0 ,	 (198)
aq

and

i,K W + 1 a (tjfXV ) + 2 U t ► X 	 V f * l = 0 ,	 (199)at	 2 M aqj 	J

in analogy to (161) and (165). Equations ( 198) and (199) ensue from the action

principle in the usual manner, when we vary 'X 	 and ^►*'. Similar statements
i

pertain to the second atom. The foregoing remarks do not imply however that 	 t	 i

the two atoms are completely independent from each other. For they interact

through the low-modes portion of the vector potential field cAlow, which is

contained in the U,, and U jIf according to (.191a) and (191b). The equation that

governs CA	 isis obtained from the action principle, when we vary 
CAlow, Of.

j	 course, when we perform this variation, we must not forget that 
cAlow is con-

tained in the UP and U,,,. Then, with the abbreviations

I KJ = 2( l X
*if

^ f + 'X, ^ *') 	 (200)

Ei	 and

n"	 1 ^,x*^ ^r ^r + nX^ n^*n)
?	 (201)

in analogy, to (158), we obtain

	

92
	 CA	 + V x (V x CA	 ) = 1 AG , t ic,' J'	 +!	 act	 low	 low	 eoc	 j f'T,low

^^ - n
+.-I-e c fAQ" 110 J j u T low -	 (202)

j	 o

This equation resembles (181). However, each atom contributes separately and

independently to the exciting term, the right-hand side.

We could have skipped the entire preceding discussion of this section.
,j

i
Instead we could have postulated (197) as a workable action functional. But
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then we wou14 not know what kind of assumptions lie behind this postulational

approach. But now that we have recognized the assumptions, namely the restricted

product form for the quantum-mechanical functions, we can use the postulational

approach for the case of more than two atoms. Let us tag the atoms with the

index p. Then, when we write down the analog of(19T) we can afford to omit the

index p for most of the symbols. Instead, we write it below the integration sign

of the configuration-space integral. In this way, we imply that the p should be

appended to each symbol behind the integration sign. This shortened notation

should not cause any confusion. Then the generalization of (19T) is:

Aa ,b 	 = f  dt{	 f Ary l l it (^ *	 - 8 + x*1 -	 - X, 	)

appr,quant t=a	 atoms#p p	 aq	 aq

+ ((2 X*JMJkXk + 2(X*^0 + X^0 )U,

Co fI IeT(act CAlow^	 f act cAlow^

e
2 fffAT ( O X CA low ^	 (a k CAlow1)	

(203)

where

pU^ _ fffAT p3^ , z,low
 C

A	
(2o4)(2ou)

With each atom #p there is associated its own pair of Schrddinger equations,

which are built like (198) and (199). And the generalization of (202) is

2

act	
cAlow + 0 x (V x calow )	etc	 f Av K'^J	 (205)

o atoms #p p	
,T,low

This equation shows that each atom contributes separately to the exciting

term. Each of these contributions is the quantum-mechanical expectation value

of the current density for the atom in question, except for the factor 
etc

0

L

IL
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The equations of motion for the whole system consist of the pairs of

SchrBdinger equations, one for each atom (An example of such a pair is given

by (198) 0 (199)),and equation (205) for the vector potential. These equations

are intertwined, because the Sehr8dinger equations contain the vector potential

(by way of the U ' ), and because equation (205) contains the quantum-mechanical

functions (by way of the KI). It is impossible in practice to solve such an

intertwined system exactly. Therefore, one has to use approximate methods for

the solution. The favorite method is the perturbation calculus, which we shall.

discuss in the next section.

10. The Perturbation Calculus .

We start with the action functional (203), in which we regard the term with

the U  as a perturbation. It is this term which causes the equations of motion

to become intertwined. As is the custom, we multiply this term by an "expansion

parameter" A, which in the end we set equal to unity. We al,sio expand the quantum-

mechanical functiors 0, X`1 for each atom Np and the vector potential CA lowas

power series in X. Accordingly we write

M 	 ( o + X*i + 
X 2, 2 + ...)p 	(206)

(Xj ) p 	(Xu + XXl + A 2X2 + ... )p ,	 ( 207)

and similarly for the starred quantities. In the expansion for CA low, we delete

the subscript "low" on the right-hand side, in order to keep the notation as

concise as possible. Thus

CA low= CA 0 + AcA1 + X 2cA2 +	 (208)

The terms with the index 0 constitute the zero-order approximation, those with

a index 1 constitute the first-order correction, and so on.
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Ve insert the expansions (206) - (208) into the action functional (203) and

multiply the terms with the U
t
 (which we write out according to (204) by A.

^

In doing so, we multiply the inserted series term-by -term, but break off after

the terms in AN ( for the 
Nth 

orderperturbation calculus). We indicate this

breaking-off by the prefix [B(aN1 1. In our applications, we will be satisfied

with the second-order perturbation calculus. Thus we 'break off after the terms

	

I	 in a 2 . The action functional ( 203) is then replaced by an approximation, which
H

we denote by Ils,b	
pert" for perturbation). We refrain from writing out the 	 P

inserted ser ege9d the results of the multiplications in detail, and simply write

2	 b	 iii * a^ii - a r* + *,j a^i _ i L
AaPb	 [$(^ )3 j dt{	 E	 j Aa[[ 2 (^' at	 ^' at	 X	 as	

x 
aqi)

pert
t=a	 atoms #p p

	

^	

ft
+ ((2 X

*jM,kXk — V0	 + 2 ( X*j ^ + X
`j V^

* )c jl1Aa	 i	 cAlow))))

J ,T,low

e
+ ° !11 AT [ 

a 
cA	 )	 [ 

a G
^p^

2	 act low	 act Alow
a

e	
a

- 2 f f f Ax D x cAlowI [ 0 x cA
low D
	 (209)

This is a workable action functional.

When we apply the action principle, we can vary all the functions

*2	 cA independently. We startby varying the X J for atom #p. Then, in

	

.	 rt

the usual manner, we conclude that we must have

[s(a2)'?t(ax*^ + ^aX*j + a 2 aX* .)[jl'( a '0 + a 4 + X2 a )

	

x	 o	 1
" aq	 aq

	

t :A	 ^	 ,j	 aq

k	 kk	
+	

1	
Dv J (cA + J1cA	 = 0

	

Ek	
+ M

ik
(XO + XX1 + 2X2 ) + a (*0 xw M	 0	 I M

J ,T,low

(210)

`r

Y

C
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Here we have written out the series in detail. In the last term we could

shorten the series, because of the factor X in front of it. Nov we remember

that 6X *j , 6X *j,	 6X 2j can be chosen independently. We also remember that we

break off after the terms in A 2 . Then, on equating to zero the factor of 6X2,

we obtain

X2(j' 	 + 
Mn

,1kXo ]p 	 0	 (211)

q

''he factor X2 may be cancelled, of course. Next, we equate the factor of 6X1

in (20) to zero. We obtain

A[ii a-- + M, kXo]p + X 2 [i^ *1 + M^ kXi + ^0 fffCT	 J	 cA0]p = 0
aq	 aq	 J,T,low

Now, the first term vanishes, because of (211). Then, after we canCL1 the

factor A 2 , we obtain

	

[i. a" + M Xi + ^, 0 1 fffA	 . ^,A o ^ K 0 .	 (212)
aqi	 jk	 c

	
J ,T,low	 p

Finally we equate the factor of SXa in (210) to zero. We obtain

go
Al[ 	 + 

M^kXO' 	
^ + a[j	 + Nt, kX1 + ^o	 ^ fffQ T	 J	 • cA ]p+

aq 	aq	 J,T,low

+ X2[i^ ^ + M^kX 2 + ^'o c f ^ A T	 J	 cA +

r
aq	 j,T,low

+ ^1 1 JffAT	 3	 cA01 = 0 .c	 J,T,low	 p

Now, the first and second terms vanish, because of (211) and (212). Then, after

we cancel the factor 1 2 , we obtain

[jeK+. M`ikX2 + 
00 c fffAT	 JT	 • CX + *1 1 fffA'T	 J	 cA0]p	 0

aq	 J,T,low	 J,T,low

In the next step, we vary the	 for atoms Np in (209). In the normal

manner, which involves some integrations by parts, we conclude that we must have

i
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IR(a 2 )]{( vo + ^a^1 +a 2a ?)[ ( a-	 +	 a.	 + X2 a9)

	

J + a J +A2 , 	2
ih 1 a 

(tf (X+ 2 M aqj	 p	 X1	 x 2)) v(*o + ^^1 + *2)

+ 2( Xp + XXJ)c III AT 
	

(cAp + XCA1)])p = 0	 (21k)
J,T,low

We apply the same step-by-step procedure that we used before. That is, we

equate to zero first the factor, of 602, then the factor of 8* 1 , finally the

factor of 8*0. And at each step we use the results of the previous steps.

Then we obtain

[ a-an 
+ i2 M a2 (Mxo) - 

V001p = o
	 (215)

aq

[i'fi 
a t + 

32 P4 aa^ (!^{Xi) -Vo l  + 2 xi	 IIIc T	 s	 CAO]p o ,	 (216)

	

q	 J ,T,low

	

[i'at
+i2T aJ (^x2 ) - v*2 + 2Xo cII IAT 	 CAi +

	

aq	 J,T,low

+ 2 Xi c IIIAT

	

	 CIO ]P= 0	 (217)
,j,T,low

In the last step we vary CAlow in (209)• In the usual manner, which involves

some integrations by part we conclude that we must have

[B(x2 )](acAp + AacA l + X2 6C!2)' { '  + x	 + A^	 I	 2 ^[ (x2^	 xis ) (^o	 Vii ) +
atoms #p

+ NO	 11)(40Jlxi) (4p + ax*)]	 J	 -

	

2	 3 , T, low
- Co	 (cA + acA + X 2CA ) -	 x	 -	 2 °

	

o a pt	 o	 i	 2	 Co0 	 (o X (cAo + acA l + 7► cA2))} = o .

(218)

Now we apply the same step-by-step procedure that we used twice before. It

a l
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a?	 —
so pct cA l - eo1 x 0 x cA1) +

+	 G	 1^0 2XO*11+X000 	 0•
atoms Mp p	 j ,T.low

Eo ac
2

U	 "Z - EoV x (V x c12 ) +

A87

(c20)

x

+	 F	 fAcr 	 ^l + X1^*0 + Xp^	 + X1*^) 
c

J	 = 0 ^ '

atoms Np p 9,T,low
(221)

j` We may rewrite these equations in a way that a	 physicalq	 y	 appeals to our	 h sical

intuition.	 According to equations ( 200) and ( 201), the probability current
1

k density components ( KJ )p for atom #p is given by

*( Kj )	 = 1( X*, ^ + X^V^* )	 .2 (222)p	 p

.
On the right-hand side we use the expansions ( 206), (207).	 We use a similar

expansion for the left -hand side, namely
I

(K j̀ )p = (Kp + AKi	 + a 2T01 + ... )p (223)

It will suffice for our purposes, if we break off the ensuing expressions after

the term in A 1 .	 Then equation ( 222) becomes

' (Kj,+ 71X1 )p = CR(A)J21(X O j + A X1 J )(*o + 41) + (Xj + Axl) ( *0 + A** )]p

Comparing the terms in X0 and A l , we read out

Kj.
(224)

,. (Ki)p = 2(xo J ^Ui + X1 J 'Vo + X01+ 	 xi^,o) (225)

Then, instead of (219) - (221), we can write after an obvious rearrangement

^

a2
apt 2 

cA0 + V	 (v'	 clip) - 0 , (226) ;x_

t
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a2	
QQ441),

act 2 CAI + V x (p x cX I )	 e C	 IA(y	 J	 ,	 (22T)
	o atoms #p p	 J,T,low

2	 _

act CA2 + b x (y x cA2 ) = el
C 	 jAaKjl	 J	 (228)

	

o atoms dip p	 J,T,low

We see that the exciting terms for the first and second order correction to the

vector potential are the zero -order atomic current density and the first-order

correction to it respectively (except for the factor C 1c).
0

We summarize the results of this section by writing 'down the equations of

motion we have derived, only this time in the order in which they are applied.

We can delete equations (213) and (217), since they determine only the second

order corrections to the atomic structures, in which we are not interested.

The center of our interest is the electromagnetic field, because of its technical

importance. And here it is mainly the second order correction that we need to

know. For it constitutes the response to the excitation provided by the zero-

order approximation to the electromagnetic field. To begin with, we have the

equations of motion for the zero -order approximation, namely

(i, 
aaj 

o + Mj kXO)p = 0 ,	 (229)
q

3*n

	

at
 + ^ M a^ 

(MX6)- V^ O )p 0 ,	 (230)
aq

	

92	 -

	

act	 CIO + 
V x (V x CIO) = 0 	 (231)

Usually we do not have to solve these equations, because the solutions are

given to us as the starting point of a technical problem. Then we determine

the first order corrections from the following set of equations.

r

i

C



d

ORIGINAL PAGE 1S	
A89

OF POOR QUALITY
z
i

+ M,kXI)p = - (oC fffoT 	 J	 CIO )p .	 (232)

i

1

aq	 J,T,low

(i'lii ^ + i2 1 a	
(MXj ) - wo	 _ - 2( XO 	 fffeT	 I	 • cAp )	 (233)

M aqJ	 P	 J ,T,low	 p

8ct	
e,A;i + V	 (V	 XcAI) =	 I

f Aa 2(X *J*o + XJ ** )	 J	 ( 234)
o	 atoms #p p	 3,T,low

z

The pair of Schrddinger equations ( 229), (230) and the pair ( 232), (233) have K

similar structures.	 The only difference is that inhomogeneous exciting terms

have been added in the latter pair. 	 Equation ( 234) is not of great importance !

in our technical applications, because CA 1 does not depend on the "incident" r

field cAo,	 Finally we have the important equation for the second order

correction c12 , namely

a2
(act)	 cA

2 + V K (V M C12)

r	 =	 E	 fAa 2(XoJ ^1+ X 1
J
^o + Xo	 + xi *O * )V^o*)	 J	 .	 (235)

elco	 atoms #p p	 J ,T,low

in order to use it we have to first determine the solutions of (232), ( 233)
n

and their complex conjugates.

Sometimes it may be helpful to rewrite the equations (232) - (235) in such
^f

a way that only the symbol J^ appears in them, instead of the symbol `xJ,T,low' -
i 31

: E	 The reason for this is thatanalytical expressions for , J^ are more easily-

'•	 formulated than those for JIn order to explain the modification that
J ,T,low

r

we are going to make, we review the definition of JWe had (seeJ,T,low•'
k

equation (132))

J^ _	 J^^ara +	 ij,aEa	
(236)

a	 a

r
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By definition,JJ,T,low is the low-modes portion of the transverse part of Jig

so that

Jj j,low

	

	 JJ aEa	 (237)
aglow '

By assumption, cAp is purely transverse and its high-modes portion vanishes.
z

This statement implies that CIO may be expressed in the series
8

CI O =	 4,	 E	 (238)	 r
aglow  

a gO a

Ifi	 According to the orthonormality theorems (98), (100) of Box #5, all those terms

p	 in the series (236) that are not contained in the series (237) contribute zero

E

	

	 to the integra]sin (232) and (233). Thus we may delete the subscripts T, low

in these integrals.

However, this mere deletion is not perfaissible in equations (234), (235).

Here we must proceed in a different way if we wish to rewrite these equations

in terms of J  instead of JJ,T,low. 
We start with equation (237). This time

we write in the independent variables. Thus

J	 (qk,r) =	 J	 ( qk )E (r)	 (239)	 ?.
j,Tglow	 aglow .1,a	 a

We express the expansion coefficients in terms ofintegrals taken over the

home-space. We obtain
F

J	 (qk)	 MAT (2 (r') • J	 (qk,r')
J, a	a	 J,T,low a

r	 Here we have affixed primes to bT and r in order to avoid confusion in the

t equations that follow. For the reasons that were explained in the paragraph

following equation (238), we may delete the subscripts T and 'low. Thus our

last equation becomes

J
J
 
'a ( qk )	 IIIeT 1Eg	 (gk,P )	 (240)

E

f	
3



x

d

^ p^ ALOR 
QUALITYn combining ( 237) and ( 240), we obtain

(qk+it) _	 1	 (r)HAT'E (i t )	 J (qk*r'),T,Iow	
a,low a	 a	 )

or

J.1 ,T,low (gk ' x') = lltb=	 t M Ea(it ) - Ja (gk ,r')	 (241)
a,low

This equation shows that J
,T,low 

is obtained from J  by means of a linear

operation, called a projection ( into the sub-space spanned by the low-modes

patternsEa ). We denote this projection by the symbol 
PT,low' 

Then the short-

hand notation for (241) will be

JJ,T,low 0 PT,low	
(242)

Now we come to the integrals in (234) and (235). Here we use (242). The

integral in (234) becomes

J Ac .( X*j ^0 + Xp4O*)PT,low
P

But the projection 
PT,low, 

being an integration over the home-space (according

to (241)) may be interchanged with the integration over the configuration space,

so that the integral becomes

PT low^Aa 2( Xo^* 0 + X0 '*Q ),T^
p

We may even interchange the projection and the summation over the atoms Np.

y
'i

i
a

Similar statements apply to the integral in (235). Therefore, equations (232)

(235) may be replaced by

4

4

M1
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(i%i a"^ + M,kX1) p 	- ( V^0 ^ j f 1 Qrl `1 • Ck ) p 	 (243)
9.

(i^ 
aat + i2 

^4 a^ w Xi) V*,.)  p = - 2( Xp 1 jffdTa	 cAo )p ,^	 (244)

aq

act cAl + S x 0 x C7.0 _ Eoc pT,low atoms	
f,&c 2(Xo *0 + 440)j 	 (245)

#p p

92

act c12 + V X (6 x cA2)

	

e c pT low	 E	 IoQ 2( X*1 V^i + Xl 'j *0 + Xb*l + X4* )J^ .	 (246)

	

o To low 	 #p p

The main part of our report is based on these equations. Of course, they are to

be supplemented by the equations (229) - (231) for the zero-order approximations.

It may be helpful to rewrite equations (243) - (246) in a more abbreviated

form, in which they may appeal to the physical intuition. To this end, we intro -

duce the abbreviation

(UJ , o)P	 ( llleTa • cAo )p 	 ( 2.47)

The quantity (UJ 9o )p is the vector potential component #j in the configuration

space of atom #p. The index 0 indicates that (UJ o ) is based on the zero-order

approximation cAo to the electromagnetic field. Furthermore, we abbreviate the

two integrals in (245) and (246) by <^o> p and <J, ,>p . These two quantities are

the zero-order approximation and first-order correction to the quantum-mechani-

cal expectation values (as indicated by the carets < >) of the atomic electric

current density (in our home-space) of atom #p. With these abbreviations, eque

tions (243)	 (246) assume the form

a



(i.f	 + M, kX )p

Bit,
n - 

{'^^vJ.o)p
(248)

(14 41 + i2 h! _
2 	

(Pfxj )
aq

- V*J )	 : - 2(4U	 o )	 ,
p	 J	 p

(249)

2
cAl8ct t V x (O K cxl) Elc pTlow	 ->,	

Np	
o p (250)

o	 atoms

2

8a	
cA2

ca
+ 9 x 0 x cA2) = P

C	
<	 >

T low	 E	 l
P

(251)
o	 '	 atoms Np

In fact, someone who is not too concerned about mathematical proofs would be

inclined to write down these equations at the outset of an investigation.. He

could well say to himself: Things just have to be that way, they cannot be

otherwise. Perhaps he may have forgotten to include the projection operator

p
T,low ' But, after some reflection, he would have spotted the need for it,

otherwise cAl and cA2 would not turn out to be purely transverse and devoid of

the bothersome contributions of the high modes.
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The atoms (or molecules) that we have considered so far are, in general,

composite entities consisting of several particles (electrons and nuclei).

Now we are going to examine an especially simple example, in which each of these

entities consists of a single free electron; no nuclei are present. The electron

will be treated non-relativistically and quantum -mechanically. In this simple

example, the configuration space of each electron may be considered as being

identical, with our three-dimensional home-space. We may, therefore identify the

three configurational coordinates ql, q2 , q3 of a given electron with the three

cartesian coordinates x,, y, z. of its position. And we may combine ql, q29 q3

'.

	

	 into the position vector q = q1 el+ g2e2+ 	 q3 ;3, where the a are the cartesian

unit vectors. The configuration of the electron is then characterized by its

position vector q. We may therefore choose a more appropriate notation for the

fimction p(gi ,r) of Section 1) and the functions J^(gi ,r) of equation ( 5). The

new notation will be p(q,r) and J^ ( q,r). Because the charge ( -e) of an electron
a

(e 1.6 x 10-19 coul) is concentrated in a single point, the functions p(q,r)

and J^ (q,r) have a particularly simple form, namely

P(q,r) _ (-e ) a ( 9-r) ,	 (252)

and

J^(q,r)	 ( -e) d ( q-r) e i ^ 1	 1 9 2, 3 ,	 (253)
F 

`

	

	 where 6(j-r) is the three -dimensional Dirac delta-function (really a distribution,

whose meaning is given in terms of integrals). It has the following properties:

`
6(4-r) = 0 for q r ,

1!fAT gd ( q-r)f(q) = f(r)

ljfATra(q-r)f(r)	 f(q)
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for any arbitrary smooth function f.

We can now proceed to adapt equations (24$)-(246 ) to the case of free

electrons. First of all, since each electron Np is free, the function V,is

zero. Of course, we neglect the direct interaction of the electrons with each

other, dust as we did for the atoms. This is permissible if the electron density

is not too great. In the second place, the coefficients 
Mjk 

in (243) have rather

simple values. Here we go back to the dicussion that followed equations (125,

repeated) and (141, repeated),, which may be found after equation (145). There
a	 k

we see that the expression 2 d
-dt Mi
k	 dt is equal to the conventional kinetic

energy of an electron. And since we are using Cartesian coordinates as the qj,

we conclude that M,k = 0 for j 0 k, and M,k = m for J = k, where m is the conven-

tional electronic mass. Then with the aid of (253) and (254), equation (243)

becomes

(ih 8
	

+ m Xi )
p	

- (-e)	 (V►o e
j
	 CA 	 •

q

We may regard 1L and Xj as the Cartesian components #j of the vectors 0*1 and
aq

ill The last equation we wrote stands for 'three equations, one for each of the

three values 1, 2, 3 of the index J. We can combine these three equations into

one vectorial equation, namely

(10*1 + i-X =-(-e)c( V►ocAo)p^	 (255)

So far the independent variables on which the functions in (255) depend are

(q)p,t. (The r that occurred in (253) disappeared by virtue of the integrat'a.on

over the home-space.) But since the configuration space of each electron Np is

identical with our home-space, we may dust as well use r,t as the independent

variables.

r

ay

t



ORIGINAL PAGE IS	 A96
OF POOR QUALITY

We, use the delta-function expression (253) for the J j in the remaining

equations (24 10 - (246). And we also use vectorial notation. For convenience

we add the equations for the zero -order approximations ( *0 ) p , q 0) p , and cXo.

We then arrive at the following system of equations, where, as before ., the

subscript p indicates that the quantum-mechanical functions refer to electron #p.

0 + MX0 ) p 0	 (256)

I: t< 0 + i2 	 (257)
at	 2	 0 p

(m0* 1 + my(, )p	 (* )P c
1 
_e) A0 	 (258)

0 

(V 90, +	 XOp(259)at	 2	
2(Xo)  p c	 0

92

(act) cA
o + 7 X 0 X cxo ) - 0	 (26o)

92

act cA I + I x (I X cX I ) - C	 (—e)vl—x0* + X
00	 (261)l)z	 0 c	 electrons	 2 ^0 

#p

a2 1
l )z cX2 + I x ( I X CX2 ) - -I— PT	 (-e)—(X *I + Xl* + X. 'act	 + X00)9 0 c 'low electron	 2 o	 o

'#P

(262)

Note that theprojection operator PT,low$ which selects the low!"modespart of the

transverse portion * appears in (261) and (262). Again we observe that the excita-

tion terms for the vector potentials ell and CK2 are (api^rt from the operation

P	 and the factor C 1C ) the quantum-mechanical expects. Aion values of theT,low	 0 
current densities. Equation ( 256) - (262) are the basis ct the main part of

this report.

It may be helpful to adapt also the expression (203) fo- the action func-

tional to the case of free electrons, so that equations (256)	 (262) may be

As we did it before, we have omitted the subscript lt lowlt of the symbols
C-X O9 CA 19 CX2.
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derived also directly without the detour through the problem of composite

atoms. In this derivation one uses the same rules of the calculus of variations

and of the calculue ?:;" perturbations that we have employed before. For the sake

of convenience, we replace the triple integrals fff by a single integral f. On

the other hand, for the sake of clearness, we will have to indicate the indepen-

dent variables. In (203) there occur the quantities U,(q,t), which are given by

(204). We repeat the latter equation, but omit the index p.

U,(q,k) _	 AT CA
low(r 't)	

J^,T,low(q,r)	 (204), repeated

Then, with ( 241), we obtain

Ui(q•t) 	 ffATAT ICA
low ( r ,t) 	 Ea(r)Ea(r')	 3 (q,r')

a,low

Now we use the delta-function expression (253) for J^(q,r^). It permits us to

perform the integration over r' in a simple way. The result is

U, (q;t )	 (-e) f	 low	 (r)Ea	 a
e AT CA	 (r,t)	 E	 (q)	 e

a, low

Now, U3 (q,t) is the Cartesian component Nj of the vector 5(q,t). This vector

is therefore given by

5(9,t)	
l 

(-e)AT C	 ,	 a	 a)	 i
C 	 jA low ( r t
	 - (r)N(g)

	

a,low	 +

or, with a change of notation for the independent variables,

U(r t) _	 ( -e)fAt'cAlow(r' ,t) •	 1	 2 (r')Eg(r)
a,low	 .M

We write this equation more succintly as 	 +

G	
5 =	 (-e)fAT' cA1ow	 L
	 212	 (263)(263)

r	 a,low

We use this expression in (203). At the same time we make the changes of

notation that we made before. For instance, we use the vector x instead of its

Cartesian components X, and we introduce the electronic mass m. Of course, we

set V equal to zero, since we are dealing with free electrons. The final result is

F
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0"p'00" 14 40

Aag	 lb dt (-a fhT [ --I— cx	
cAlow]	

4 Q qGF /8
b tua	 2	 act lov	 act

appr quan	 C
, AT R x A	 x cx	 +
2	 low	 low

+
j^ * 

a*I	 ( [jet  2 (4' at 	
a.. 
	 +electrons

#P

+ +	 jo.	 a(-e )ffAT V ATCX 	 +	 13)2	 P c	 aglow	 a	 P

(264)

When we apply the action principle to this action functional, we obtain the

following set of equations in the usual manner:

rr

c -e)fA-- f	 1	 2- t? - CX'	 =AV* 
P 

+ MX 
p + 

p 	 I 

ag low
 Ea a	 low 

0

iii 

3* 
P	 IKI -	 -	

-fAT4' 1	 21 • cat + —2 V Xp +	 p	 aglow
 Ea

 a	 xiow 0

;2 
A	 + I x 0 x c!	 e a (-e)	 I	 fAT'	 1 Ea

 a21 •(act )2	 low	 0	 electrons	 .'10. 
#p

*1 +it *ps*)
P P P

(-e)P x 0 + xP p

#P
To obtain the last equation we had interchanged the primed and unprimed

coordinates in the double integral of (264). since A low is a superposition of

terms comprising only the lov transverse modes, we have

fAT'	 E 2! - C11	 cA	 (265)
'I	 I

ajow

Thus, the set of three equations simplifies to

p
+ mx-

p 	 P c 
(-e) c!low	

(266)1 

3*
(26T)-P +	 -V	 X-	 (-e)xp	 cAl.,,

	

iii at	 2	 p

;2
c	 + x	 x c!A	 (268)(-e)P 	 + x(act) 2 low	 low	 c	 T,low	 2 p p	 p P

0	 elo-etrons

#P

•
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These three equations are the exact equations of motion for the action functional

(264), whereas the set (256) - (262) results from the perturbation calculus.

Equation (268) shows that the excitation term for the vector potential is the

quantum-mechanical expectation value of the current density, except for the

factor etc	
Of course, we must not forget to use the projection operator

0

PT low' 
Its presence ensures that cAlow 

continues to be a linear combination of

low transverse modes only, if it started out that way.

If we combine equations (266) and (267) we arrive at the usual form of

the Sthrbdinger equation for electron Np, namely

i t —a	 = —1 (—i^'i—v — 1(—e)cA ) (-MOV 1(—e)cl	 (269)
at p 2m	 c	 low	 c	 low p

In the entire development of this section we have treated each electron as
i

an independent entity, just as we did it for the atoms that were described by (203).

In mathematical terms, this means that we regarded the quantum-mechanical func-

tions of the many-electron problem as products of single-electron functions in

the manner of equations (194a) - (194c). This is not quite correct because our

procedure did not take account of the Pauli exclusion principle, which requires

that, instead of products, we should have used determinants. But the pursuit of

this matter is probably not worth the effort.

F

t	 `
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Note #1. Derivation of-the-Relation	 i
I	 : -_ Tq'

We start with the requirement that a tagged

be at position ; for the atomic configuratii

a	 -	 1 -Tqj 17, = I k I J, X J
element of charce which happens to

i
5n (q ) ought to	 with a velocity

given by

P,^ = j ,
	 (Nl,l.)

where, of course, p and j are evaluated at (q i 9^)*

Next we consider a particular element which happens to be at the position

i(q in our home-space when the atomic configuration is {q i ). We chose the

symbol i. not i. because i stood for the generic position,, which ranges over the

whole room that contains the atom and the radiation field, whereas i refers to

just one discrete and tagged point. Now we evaluate the velocity d i of thisdt
tagged point. Here we have to be careful*with the notation for partial deriva-

the q and i were the independent vari-tives. We have used the symbol 	 when
Dq

ia les. But i depends only on the q the ^ does not enter. So when only the qb

(not the q and ;) are the independent variables, we use the symbol	 slash")

to denote partial derivatives. Then we have

d -	 dq7
a	 v	 (Nl,2)

dt^?jj-	Tq i

But according to (Nl,l) we should have

d a	 J(q la( ql ))	 ))Vi	 (Nl,3)
TT	 i	 JP( q ; ( qj ))	 P(q ;(q

where we indicated, how the p and J depend on the n configurational coordinates qi

This dependence is not only explicit, as indicated by the first 'i in

	

q	 qj	 j))11

but also implicit by way of the position g(qj), as indicated by the second qj

in (qj ,;(q J )). On comparing (Nl,l) with (Nl,3) and remembering that the v i might

be any arbitrary set of configurational velocity components we obtain
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A =	 1	 J i (q^,a{q^))	 (N1,4)
,0qi	 p (4'j , a(qj)) 

Nov we take the partial derivative of this equation with respect to q j , i.e. we

take = , (not 9 ). Here we must remember that the dependence on the q j is not
q̂ 	 aq

only explicit, but also implicit. In order to make the ensuing equation less

cumbersome to write, we leave out the symbol (gj ,a(gJ )) for the independent

variables. We obtain

0^ Ai ==(p Ji) +p (p Ji)

oq Iq	 aq
	

0q 
i

We express the $, an the right-hand side with the aid of (N1, 14) written for
Oq

the index j instead of i. We then get

1

Oq 4qi	 aql P i)	 P ,j	 7(p Ji
(N1,5a)

Similazly (Interchange i and J).

i
8i 

(p J ) + P Ji	 0(p J )	 (Nl,,5b)

	

%q 0q	 aq

According to the principle of gene.-identity the position a, of the tagged

particle is a function of the atomic configuration {q i } alone. A necessary and

sufficient condition for this is that the two mixed partial derivatives on the

left-hand sides of (N1, 5a of b) have the some value. Equating the two right-

hand sides yields

,;	 a {1 J) + l J	 V(1 J ) = a (1 J ) + 1 J.	 0(1 J )	 (N1,6)
iaqj P 	 J	 P i	 aqi P_ i	 P 1	 P ,j

This equation may be brought into a form that will be more useful to us
t	 ^'

later on, namely into the form shown in the title of this note. We multiply

F ^^
(N1,6) by p and differentiate out the products. At the same time we replace

r r;
	

-	 -	 -	 -

ap- and - ai by V J^ and V Ji respectively, according to equation (7)a
aq	 q

G
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of the appendix. We then obtain

1
J V J + a	 + 1

J	 3J *3 : (V 1)J .:P i	 aqj i	 P j	 i	 P i

P	 i	 aqi 	 ., P	 i	 P

or after rearranging,

	

8 i ij - 
a^ Ji = (V ^) x (ji x. J,) + P V	 ( Ji x J, )

^,	 aq	 aq

The two terms on the right may be combined. Thus finally

a , Ji = V x (p
	

X Ja )	 (N1,7)
aq	 aq

And this is the equation shown in the title.

Equation (N1,7) must hold wherever there is an element of charge that may

be tagged, i.e. at all points r of the home-space where the charge density p_does

not vanish. But wherever the charge density p (and then also J i and J,) is zero,

the equation is fulfilled by default. ,It simply states "0 = 0".- Thus (N1,7) is

fulfilled everywhere.

The reader who is satisfied with this proof may stop right here. Others,

however, might feel more comfortable if they saw a second and different proof.

	

In this second proof, we use the same set of independent variables, namely the 	 i.

qi and r, that was used inthe main text of the appendix. So there is no need

for employing the slash-derivatives 	 Instead of tagging just one element
^Q

of charge, as we did before, we tag all elements at once. Since the charge

elements form a continuous distribution, we have to employ a triplet {1^2^^3}

of quantities to tag each particular element. For instance, for the Co (Greek

indices range from 1 to 3, whereas latin indices range from 1 to n.) we might
r^	 r

^r

u
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use the cartesian coordinates of the element when it was placed according to

some arbitrarily chosen fiducial configuration of the atom. We then have to

deal with the three functions E a (gi ,r). They tell us which tagged element is

at some chosen locations for the atomic configuration {qi},

The principle of gene-identity allows us to evaluate the velocity w(gi,r)

of an element of charge. We know that the ^a-tags of an element never change
a

when the element is in motion. Thus the material time derivatives d (taken

as we move with the element) must vanish. But

	

dt 9a - at Ca + w ( O a )	 (Nl,^)

F

k_	 whereat Ca is the local time derivative (taken at fixed position r), given by

	

a a = ddq' 9Ca

	 i aga	

(N199)	at g	 dt 
aq - 

v aqi

The requirement that dt E a be zero yields

a

	w 	 (oEa ) _ - vi	(N1,10)
aq

Equations (N1,10) are a system of 3 scalar equations (one for each a = 1, 2, 3)

for the velocity vector W. Hence w is determined. If we were to solve these

equations (but we are not going to solve them) we would find that w is a linear

function of the n velocity components vi . Thus we can write

w = viwi (qj ,r) 	 (Nl,ll)

where the n functions wi (gJ ,r) depend only on the atomic configuration {qj}and

h_	 i i	 ( 1	 )	 (	 )t e pas t on r. On combining N 1 0 and N1,11 we obtain

	

vl	
via

w	 - vi akai	 aqi

But this equation must hold for any choice of the configurational velocity

components vi. Thus we obtain

ORIGINAL PAGE 1i
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a
e _ - wi • via .

We differentiate this equation with respect to qj and obtain

a	 a 	 awi	
Ea - w 

a ^a

	

aq'j 
9q	
	 aq'	

i	 aqJ

(N1,12)

a
where we have interchanged V and aq . We replace the n on the right-hand

side by - w, D a , according to equation (N1,12), written for the index a

instead of i. Thus

 a
	 aw

aQj aqi = - Dqj • W+ wi ^ 1(;jVia)

or, on differentiating out the product in the last term,

a	 awaa ^ V_ - 
aq

i • Vea + wi ('vw,) 
aCa 

+ w	 Mc") w^j 	(N1,13a)

q q

Similarly (Interchange i and J),
a	 awa 8i aci_ 	 - ^ . VCa 

+ w, • Mi) 
a^a 

+ w, • (OD a ) wi	 (N1,13b)
q 9 	 9q

Now we subtract (N1, 13b) from (Nl, 13a). The terms on the left-hand side will

cancel, because mixed partial derivatives do not depend on the order. Also the

last terms on the right-hand side will cancel, because oVya is a symmetric

tensor. Thus, after rearranging and factoring out the commonterm o9 a,

{ 3  -i + wi Vwj - 
a
^ wi - wj • vwi ) • Via 0

aq	 aq

(	 This single printed equation really stands for three equations, one for each

a = 1 9 2, 3. But the three vectorsov
a
 are linearly independent. Thus the

x

expression in the.parenthesis must vanish, and we obtain 	 F

wi +w^ • Vwi = 
8i 

wj + wi vw,	 (Nl,14)
aq	 aq

IL

u
i

x
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From the equations (Nl,l), (Nl,ll), and (5) of the appendix, repeated here

for convenience,
9

pw = J , (Nl,l)
.r

W7 viwi , {N1,11)

J	 viJ	 , (5)

we conclude that

Pw vi	 J vi
i	 i

'	 But this equation must hold for any choice of the configurational velocity
µ

fs	
components v i , so that

(N1,15)

Inserting this into (N1,14) yields

a	 ( 1 J) + 1 J	 0(1 J ) _	 a	 (1
i	 i J } + 1 J	 •_ V(1 J ) (1`11,16)

aq^	 P	 P	 P	 a qi	 P ,1	 P

But this equation is the same as (Ni, 6), from which the desired relation-(N1,7)

follows by means of purely	 algebraic manipulations.

1

r

r
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Note N2. Vectorial Derivation of the Equations

6J =
at (

Par) + V x ( ar x J) and ¢P ' - V	 (par)

One may always express the charge density p and the current density J in

terms of three scalar functions .a(r,t), S ( r,t), y(r,t) of the positions and

the time t.	 These expressions are

P = Va	 Vs x by., (N291) ,.

and j4
a

70 X ay- 2-0 Vy x Va -	 Va x VS (N2,2)at	 at	 at

One can readily verify that the continuity equation ,f

ap + 
-v • J = 0 .at (N2,3)

is automatically satisfied.	 The triple {a,s,y} may be _regarded as a tag for an

individual element of charge.

Sometimes one may wish to express p and J in terms of several triples

(anIsn9yn} 	
as in A

J
-	 -	 -

P -	 Va	 vs	 X. Vy (N2,4)n	 n	 nn

and
as 	 as	 _	 ay

J	 { -	 n VS	 x Vy	 -	 n Vy	 x. Va	 -	 n Va	 x V^ }.
( N2 'S)at	 n	 n	 a tn

However, one such triple suffices. 	 At any rate, our derivations will employ
s

t

P

only linear operations.	 Thus what is true for one triple will also hold for

the more general expressions (N2.4) and ( N2,5).	 Therefore, we stay with the
t

simpler forms ( N2,1) and ( N2,2).

Now let us subject the three functions a, s, y to the variations aa, as,	 ay.

The resulting variations dp and aJ of p and J are then given by

z
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ap	 080) 18 x oy + (vas) ay x as + (lay) • Va V VS

and

83 _ — ( at aa) . Vs x VV—
y 

a 
(3as) x Vy — at 10 x (Say ) —

-
at 

as) • Vy x Va,
'^ at (lay) x Sa - at'ay 

x (Vaa) -

-
at 

ay) • Va x 10 -	 08a) x SS - 8t 44 x 060)

i	 By means of a straightforward, though tedious, calculation one shows that theR

t	 preceding two equations may be written in the following form.f

ap = V . [ aa VR x VY + as VY x Va +ay Va x Va) ,	 ( N21,6)

and

S.T = - 3fi [aa VS x VY + 60 ly x Va + _ dy oa x V0 ] +

+ a x [aa 
(at 

Vy - a as) + as (a Va:-	 at VY ) + aY (at 
Va - at Va) ^	 (N2,T)

So far we left the variations aa, ds, aY unspecified. But now we shall

introduce specifi c variations related to shifts 6r, at in the event spacq,

i.e, the four dimensional space of position r and time t. We shift the three

function patterns a, S, Y by ar and at. The variations ar and at may still

depend on the event r,t. Then, for each fixed (.r,t), the variations aa, as,

ay are given by

as = - at 8t - 6; • Da

k
60 = - at at - ar • !a	 (N2,8)

a ly — —
ay = - at at - or • Vy .

	

I '	 Note the minus signs, which come about in the following way. Since we shifted
E^

the functional pattern a, we know that the new a at the shifted event 'r + ar,

<G
t + at is equal to the old a at the original event. Thus we have

	

!	 Y

LL
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(a + aa)(r + ar, t + at) : a(r,t)

On expanding the left-hand side by Taylor's theorem and retaining onlr the

zero-order and first order terms, we obtain

[	 0(-r,t) + at 8t + 6; la + as = a(r,t)

On cancelling a(F,t), we obtain the first equation of (N2,8). The other two

equations result in a similar way. k

S	 1

We insert the expressions (N2,8) into (N2,6) and (N2,7) and use equations

(N2,1) and (N242). With the aid of the relation

	

(3a)(10 X aY) + (Vs)(VY x'Da) + ( VY)( Va x VB) _ ( Va	 10 x VY) 1 ,	 (N219) r
where 1 is the unit tensor (or idemfactor), we have

60 10 xVY +asVYx% +aYVaXV0 -P6+Nt	 (N2,10)

In the expression behind the curl sign I x of (N2,7), the terms in at will cancel,

while the terms in ar combine to ar x 7. Altogether then, we obtain

sp_ -V • (PSF -_Nt)	 (N2911)

as = wt 	 - 'sat) ++V X (ar x J)	 (N2,12)

In the special -case at = 0 (no shift in the time direction), we obtain the

equations in the title of this note.

$

1
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k
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