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Abstract

It is possible, though technically difficult, to produce beams of free

electrons that exhibit beats of a quantum-mechanicel nature, One mey readily

think of the following two applications:

1)

The generation of electromegnetic radiation, e.g., light, based on the
fact that the beats give rise to alternating charge and current
densities.

A frequency shifter, based on the fact that a beam with beats constitutes
a moving grating. When such a grating is exposed to external radiation
of suitable frequency and direction, the reflected radiation will be
shifted in frequency, since the grating is moving. 4 twofold increase
of the frequency is readily attainable.

In this report we show that

. It is impossible to generate radiation, because the alternating electro-

wagnetic fields that accompany the beats cannot reform themselves into
Treely propagating waves,

The frejuency shifter is useless as a practical device, because its
reflectance is extremely low for realizable beams,

Of course, when the work on this grant was started, one could not foresee

that, at a later dave, somebody (like this writer) would arrive at such

disappointing conclusions. It simply takes a lot of time to go through the

analysis.
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The Main Part (with page numbers ML, M2, ete.) of this report and ite
Appendix {with page numbers AL, A2, ete,) coataln a compiete record of how
this wrdter arrived at his conelusions, The report is addressed to someone
who has some application for electron beats in mind, and vho wishes to find

out whethey or mot his idea has any chance of success.,
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Are there any useful applications for electrons that

are made to exhibit quantum-mechanical beats?

by
Roland M. Lichtenstein
Professor of Physics, Emeritus

Rensselaer Polytechnic Institute
Troy, NY 12181
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Preface and Guide to the Reader.

This report concerns the use that one might meke of free electrons
with quantum mechanical beats.‘ The Main Part explains what the beats and
vhat the contemplated applicgtiens are, Two applications are investigated
in detail, the generation of light and a selective moving mirror. The con-
clusions are: |

1. It is impossible to generate light. .

2. The mirror device is useless, because its reflectance is
essentially zero. o
The negative results in these two instances induce the writer to believe that
there are no other possible spplications and that further work should be
suspended, until somebody else comes up with a fruitful idea. |

The reader should read the Main Part first. Then he may consult the
Appendix, where the physical theories and mathematical methods are explained.

This writer'is well aware of the fact that this report is not easy to
read. He apoligizes to the reader for making his task so difficult. But it
seems to be inherent in fhe subject that so many strands of argument have &o
be employed. Perhaps after two or more revisions, a2 more reédable report
might be produced. But in view of the negstive results, suchrevisions are

not worth the effort.
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I, Introducticn.,

A few years ago, H. Schwarz {in Phys. Rev. Lethers 42, 11k1 (1979)
and 43, 238(E) (1979) suggested that quantum-mechanical beats of electrous
could be exploited in a novel form of a free-electron laser. In this intro-
duction we explain the meaning of the word "beats". Throughout this report,
we shall describe electrons with the formalism of non-?elativistic quantum
mechanics, in the style of Schr&dinger. A relativistic theory, in the style
of Dirac, is not needed, because the speeds of the electrons are much smaller
than the speed of light, ¢, in the device proposed by Schwarz.
A single electron is described by a complex Schrodinger wave function
(> ,ct), where r is the position vector, and t is the time. We find it more
convenient to express the time by means of the product ct, instead of by t
itself, because ct 8”.d the position r ccs in %ne same unit, e,g. the meter.
This usage facllitates dimension checks, ¥or the same reason, we use the
product cp, whenever we deal with the electric charge density p, because cp
and the electric current density 3 come in the same unit, e.g. the amp m-2,
The wave function ¢ determines the associnted charge and current densities,
which are given by
ep(F,ct) = (-ec)y'y, (1)
J(r,ct) = (-ec) %Jﬁ(-w*v\p + 1) . (2)
Here, i = /=1, (-e) is the electronic charge (e = + 1.6 x 1071? coul), m is
the mass of an electron,fﬂ is Planék's constant divided by 2n,-£g=

me
3.86 x 1011 cm is the Compton wavelength divided by 27 (which implies that

I L e
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%% is the Compton wave number); the star denotes the complex conjugate, and
the symbol ¥ denotes the gradient. (Later on, the symbbls 7+ and Tx denote
the divergence and the curl,) The wave function V¥ is normalized by the
normalization condition ‘
fATrw*\P =1, (3)

where the integration is over the éntire position space, and where Arr is
the volume element in this r-space.

An electron is called "free" when no electromagnetic forces act on it.
In that case, the wave function ¢y satisfies the simplest form of the

Schr¥8dinger equation

.
15 b= v . (4)
A particular solution of (4) is the plane wave
= -w- - ﬁ 2
wplane const. exp (i kor s %elet) , (5)

where Kk is the vectorial wave number, and k2 = kek, The general solution of

(4) is the wave packet

p{r,ct) = TE%TE fATKF(E)exp(iE-§ - %gT%nzct) , ‘(6)
where F(k) is a complex amplitude factor that depends on the wave number k.
The integration is over the wave number space. ATK = AKxAKyAKz is the
volume element in this k-space. The structure and development of a wave
packet is completely specified by the function F(k) in the K-space.
Let us introduce the spatial Fourier transform §(%,ct) (pronounced
psi hat) and the temporal Fourier transform ¥(T, %0 (pronounced psi tilde)

of the wave function y(r,ct). (Whenever we deal with a frequency w, we use

the ratio g'because %-and Kk come in the same unit, e.g. m~1). These transforms

are defined by

M3
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V(k,ct) = fAT e Yrr,et) (1)

(The integration is over the position space, Arr = AxAyAz is the volume

elemeny in this F-spece.) and

- o ~-i 5 ct
¥(r, ) = [ det e ¥(r,ct) . + (8)
chtxaw ;
The theory of Fourier transforms yields the inversion formulas %
- 1ReF A=
Y(r,et) = ?E%Tg'f At e T W(k,et) , ’ (9) /
and :
o 1=ct ;
O(F,ct) = -é-}; [Pate © FE Y. (10) :
W _ :
- I D S
c A

A consequence of the Fourier transform theorems are the Parseval relations

[ ae 'y = oayy for 80, (11)
and
tF dety’y = -%- ety (12)
Cl==x w =
c

When we compare (6) and (9) we see that
P(R,et) = F(R)exp(~ 1 m;ﬁc-% k2et) . (13)
Then the Parseval relation (11) combined’with (3) gives us the following
normalization condition for the amplitude factor ¥(k).
far 7 @)F(R) = (2m)? (14)
(Whereas a wave packet can be normalized, the plane wave (5) cannot be
normalized, because the latter extends with constant absolute value

throughout the infinite r-space,)

Now let us write the charge density co(T,ct) in terms of the temporal

o e M T

- o *
Fourier transforms y and ¢ . For the ¢ in (1) we use (10). For the ¢

in (1) we use a similar formula, but with a renamed integration variable, %..

IR TR SR R T 5%
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Thus
o -1 =ect |, ‘
ViEet) =2 [TaZe © PED). (15)
A
c

The reason for this renaming is that we wish to write the product of two
integrals as the double integral over the product of the two inlegrands.
Here confusion would result, had we not renamed. Then (1), (10) and (15)

yield

w o
. = = =)ct
- (=ec) 771 . & 4 @ i(c c)c = W\ H =g
cp(r,et) = L {i d s d e 'Jl(r,'c')'b (r.'g) . (16)

We introduce two new integration variables % and -E— defined by
g 8_9
e e ¢ .
8 _ g (17)
c c /o

and vice versa,
c ¢ ¢
o _ 8 (18)
c ¢ .

The Jacobian of this transformation is unity. Furthermore, as %and -g-
range over the entire (% ’ g—)-plane, %.an’dﬁ range over ‘the entire (-:— . }%)'
c

plane,. Thus,

= _(—ec) ¥7 L@ gi-c-“--g By~*-= B
cp(r,ct) = T2 ff d=d_e Wr, 5+ A {r, S

or, after a change of notation for the integration or dummy variables, (back

to £ and %)
¢ ¢ 12 ot N
co(Fror) = {528l e e L Tl Be 03, ). (o)
a
c

w
- =0

c
If we compare (19) with (10), the latter equation being applied to cp instead

of ¢y, we see that the temporal Fourier transform 53(?, %) of the charge

TR RS LT Ry
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density cp(r,ct) is given by
~- W (-ec) ® 0= W, Tre¥- o
eo(r, ) =5 [ A IE, SHIN(F, D), (20)
L - - )
c
where, of course, w
- . 1 o W i E'Ct o~y )
ep(Fyct) = 5= ) fale eh(T, &) . (21)
- R OO
e

It is helpful to express the function ¥(F, <) , which occurs in (20),
in terms of the amplitude factor F(K). We start with (6) .and use spherical
polar coordinates k = |k|, 8, ¢ in the c-space. Then

At = dekdbksinddé = akk2dq ,
where
A0 = 40 sind dé

is the solid angle element. Then (6) becomes

F,ot) = 7o XL o\ 1ReF
¥(F,ct) = Wo{:o a k exp(-i = = kZct) %dﬂcF(K‘)e . (22)
where‘§$ denotes the surface integral over the sphere of radius k. We
K
express k' in terms of the frequency %’, i.e. by way of the equation
0 A,
S ol Ll (23)
Then {22) becomes
W
ry ct

i
- N o . w -
W(Fyet) =52 [Pace

%Tﬁvﬁ an «F( K)eﬁa.; . (24)

?'-::- S0 for .
We compare (23) with (10) and conclude that

~ iker w

WE, D = B rtorff ancr(®)e!® T for £ < 0

for
- me W .
K —v/:;’j;iz_— (25)

0for2s>0
c—
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As an example for an application of equation (25), we consider an

approximately mono-znergetic wave packet, for which F(k) = 0 unless k. lies

on a very thin spherical shell (with center at ¥ = §) in the K-space, Then
(25) tells us that §(F, 2) = 0 unless 2 lies in a very narrow interval I

that straddles the frequency which is related to the radius of the shell by
(23). As a consequence, the integral in (20) is zero, unless %-lies in a
very narrow interval that straddles the frequency zero. The reason is that
one of the factors in the integrand is definitely zero when the other is non-
zero, unless %-s 0, so that the whole integral is zero. (%'+ %'and %-cannot
both lie in the narrow interval I that we mentioned above, unless %~= 0.)
Thus, for an approximately monou-energetic wave packet, the temporal Fourier
“transform cp(r, %? of the charge density p(r,ct) vanishes unless %-1ies in a
very narrovw interval that straddles the frequency zero. We express this state
of affairs briefly, by saying that cp(r,ct) is apprximately d.c. ("d.c." for
"direct current').

On the other hand, for a wave packet that is not mono-energetic, equation

(25) permits @Yr, %) to be non-zero over an extended range of-% « And then
(20) permits 36(;,-%) to be non-zero over an extended domain of the frequency
%-, beyond a very. narrow interval around %-= 0., We express this state of
briefly by saying that cp(r,ct) has alternating components or beats. Specifi-
cally, the beat at a given frequeéncy %-is the product of the temporal Fourier
transform ¢p(r, %0, regarded as a function of the position ¥, and the time
factor ei %'Ct. The first factor is the (complex) amplitude function (it
depends on r) of the beat. The second factor produces the alternating or

a.c. behavior ("a.c." for "alternating current"). According to equation (21),
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the charge density cp(¥,ct) is a superposition of beats,
Everything that we have said about the charge density cp(r,ct) and its
()
beats o (T, %Oei s °% .an be extended - mutatis mutandis - to the cuywsit

- = 1w
density J(¥,ct) and its beats J(r, %ﬁe e °t. e analogs of equations (20)

and (21) are
e, 0 - L prag iy P G LD
+ 1U(F, L4 gwa"(;, 9)) , (26)
vhere, of course, n
- . 1 0 Ct 3 -
J(F,ct) = -5;; f" (¥, 3) - (27)

To summarize; Both the charge density e (F,ct) and the current density

ei -ct

'(r ct) are linear superpositions of the beats cB(r, c) and ;

W
&(., c)e e ot

, as shown by equations (21) and (27). The complex beat ampli-
tudes cp(?, %0 and 5{5,%) are given by (20) and (26). The amplitude W(r, %),
which occurs in the latter two equations can be calculated according to (25).
For an approximately mono-energetic wave.packet, there are only beats of very
low frequency. In the limit of a strictly mono-energgtic wave packet (It
cannot be normalizeq, but is a useful construct.), the charge density and
current density do not depend on the time ct$ they are strictly d.c. For a
wave packet that is not mono-energetic, the charge density and the current
density may contain beats of appreciable freqnency; The word "beat" refers
to the fact that, as shown by (20) and (26) the beat amplitudes 33(5,95 and
J(r, -0 are of second order in the temporal Fourier transforms of the wave

function, and that the beat frequency -is the difference (—- E; - -of the

s soerts
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two frequencies that occur in the integrands of (20) and (26).

In the device th2t was proposed by H. Schwarz a syarm of electrons
is employed, eacti exhibiting beats in the optical frequency range., Since
the charge and current densities cp(T,ct) and J(F,ct) are the sources of
the electromagnetic field, and since both densities contain beats in the
optical frequency renge, one might expect that light is produced in Schwarz's
device,

However, this expectation is illusory. Two authors, A. Peres (Phys.
Kev, A, 2627 (1979) and M. Peshkin (ibid. page 2629), attempted to prove
that free electrons, even though they were made to exhibit beets, cannot
produce electromagnetic radiation. But these proofs are not very convincing
to. this writer, because they employ only verbal arguments., (One of these’
arguments, namely the use of the superposition principle, is wrong, because
beats involve products of wave functions, whereas the invoked prigciple
applies only to linear expressions.) We, therefore, supplement the work of
Peres and Peshkin with a more detailed mathematical treatment, which - though
a bit tedious - can demonstrate exactly where the attempt to generate light
fails. This analysis, which is based on the principles derived in the
Appendix, will be presented in Section 3. But there we shall have to make
use of the decomposition of a vector field into its longitudinal and trans-
verse part. This matter will be explained in Section 2.

We conclude the present section with some remarks about the physical
meaning of cp(F,ct) and J(¥,ct) as given by equations (1) and (2). These

quantities are really the quantum-mechanical expectation values of the charge

oarariac

RO S
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and current density. But one can show, as it is done in the Appendix,
that thete expectation velues nre the sources of the electromagnetic field
if this field is treated classically, while the gleetrons are described
quantum-mechanically. The use of quantum mechanics for the electrons and
of classical physies for the electromagnetic field is‘calledkthé semi-
classical method, It is described in the Appendix. We use it throughout
this report, because we deem it accurate enough for our purposes, and
becavse it is more easily handled than a fully quentized theory, in which

also the electromagnetic field would be described quantum-mechanically.

ITX. The Decomposition of a Vector Field Into Its Longitudipal and

Transverse Part .

We start with a vector field, e.g. the current density J(r,ct) and
take its spatial Fourier transform J(k,ct) (pronounced "Jay hat") defined
by

T(&,ct) = far e HTI(E et) | (1)
This definition is the vectorial analog of (1,7). By the Fourier integral

theorem, we have the inversion formula

- A

= 1 iker =/=-

J(r,ct) = ¢k IATKe J(T,et) (2)
the analog of (1,9). Now we define the longitudinal part 3L(§,ct) of
J(T,ct) by way of its spatial Fourier transform 3L(E,ct). The definition of
EL(E;ct) is

RR+3(R,ct), for § # O. (3)

LR 2

= 1
L(K,ct) "%
This equation states that EL(E,ct) is the projection of J(k,ct) onto an axis
parallel to the wave number vector k. For kK = 0, the definition (3) becomes

indeterminate, so that we must use a separate definition for this case., We

e s T

zerr
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3y (B,ct) = L F(0,08) (4)
Equation (U) results from (3) if we first take the average of (3) as
ranges over the surface of a small sphere in K-space (with its center at
the origin J)% and then we let the radius of this sphere go to zero. The
faztor %-ariaca from the fact that the average <> of the tencor Kk is
gqual to g‘sz, where T = IT + 35 + KK ts the unit tensor or idemfactor.
The definition of JL( K,ct) permits us to obtain JL(r,ct) by taking the inverse
Fourier trnnaform, in analogy ©o the general formula(2). We have
J (r,ct) TEFTT fAT eiK rﬁ (&,ct = 75%77 fArKeia'i ;%-EE*?(E.ct). (5)
We assume that the convergence of the integrals in the x-space is good
enough so that we may take spatial derivatives of JL(E,ct), such as the
divergence 3-3L and the curl ¥ x EL' by taking the derivatives of the inte-

grand. Then (5 denotes the gradient with respect .to )

sfant (7e%°T) « B EEFEet)
m‘ \T K‘TKK JK»‘C ()
and
v - . l i;'i‘ :: ool
xJ’IﬁW.{AT (Ve )X"'!‘MC'J(K‘ Ct) .
And since
¥ KT o gReleeT ’ (6)
we abtain
T3, = oy o e T 4 on) (1)
"L TEm)s S i
and
¥ x EL = ( (8)

Bquation (8) states that the longitudinal part of a vector field is irrota-

tional.
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If we take the d:lvergence of (2) we obtaflf’ ﬂghgg (f AGE g
.3 = ey /o e TR F R et). ALy (9)
On comparing (T) and (9), we see that
T3, = 7.3 . (10)

L
Inspection of equation {7) and (9) shows that the Fourier transforms
N\

-J J(K,ct) and (¥+J)(k,ct) are given by
2NN

v J )( ,ot)=(7eT) (K, ct) = ikeJ(<,ct) . (11)
Then equation (5) may be written in the form ~
= = 1 I A
JL(r,ct) = - Ten)7 fArke T ik o3 (VeF)(K,ct)
or
EL(r,ct) = - Ty, (12a)
with
W(F,ct) = ?E}W? far eMT F (T.3)(Ryet) (12v)

(There is no connection between the ¥ of equations (12a, b) and the Schr¥dinger
wave functions of Section 1.)

Now, the inverse Fourier transform of 1 is H-_ a9 one zan easily show by
direct calculation. Thus, by (12b), the Fourier transform of ¥(r,ct) is the
product of two Fourier transforms, that of ﬁ%; and that of ¥-J. Hence, by the
convolution theorem of Fourier transforms, Y(r,t) is the convolution of H%; and
.7, Thus, (12) may be written in the form
(Fyet) = = Ty, (13e)

Iy,

with

W(F,ct) rfAr - (FeT)(5,ct) . (13b)

-F
Equations (13) may be found in many textbooks, e.g. Morse and Feshbach, Methods

of Theoretical Physics, McGraw-Hill 1953, pages 53, 54 or Panofsky, and

oty TS St RO 3 T
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Phillips, Classical Electricity and Magnetism, Addison-Wesley 1962, page 2.
However, we find it more convenient to define JL(F,ct) by way of its Fourier
transform (3).

We are finished with the discussion of the longitudinal part EL(F,ct).
The transverse part ﬁT(F,ct) is defined by the requirement that both parts

add up to J(r,ct), i.e. that

J(r,ct) = :I'L(i",ct) + 3T(~§,ct) . (1%)
Then, a similar equation, namely
J(k,ct) = EL(E,ct) + Tp(R,ct) (15)

must hold for the Fourier transforms, so that

o

Tp(E,et) = J(F,ct) - = &R -J(€,ct) =
= -;;%-‘o? x, (K x J(K,et), fork # 0, (16)

and

A
- -

Tp(Baet) = £3(5,et) an

Equation (16) shows that J.(K,ct) is the projection of J(K,ct) onto a plane

T
that is normal to K,
The remainder of the discussion is pretty much a repetition of what was

done for EL' So we can be brief. The analogs of equations (5), (7), (8) are

Tp(Fyet) = 1573 o T 3 (@ ,et) =
= TyT a1 T 3 (F x (@ x T@&,et))), (18)
Y x 3y = T fae T 4F x I(F,et) (19)
TeJ,=0. (20)

T
Equation (20) states that J&(F,ct) is solenoidal. The analogs of equation

(10) and (11) are

©is oAb e e b
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/\ 5*3,1,:5*3, (21)
(F x ) (Fyet) = (F x D(Ryet) = 17 x 5(R,ct) (22)

Instead of (12), we have

ET(F,gt) =7 x¢C, (23a)
with

8(F,ct) = 1-2%7-5-,- far o™ F (T x F)(F,ct) . (23b)

When we take the divergence of (23b) by differentiating the integrand and
when we also use (22), we see that

V=0, (2k)
vhich implies that C(r,ct) is purely transverse. (Because of (13), 7<C = 0

yields C. = 0,)

L
Finally, the analog of (13) is

ET(;,ct) =7 x0C, (25a)
with
G(F,ct) = = far, "l'l (F x 3)(3,ct) (25b)
S=-r

This is a well-kriown relation. [See the references quoted after (13).]

Let us consider two real wvector fields F(r,ct) and G(r,ct). We take the
longitudinal part of the first and the transverse part of the second field.

Then we consider the scalar product FL . ﬁT' Now, by (13), ﬁL is the

negative gradient of some scalar field y, and, by (25), G, is the curl of

T
some vector field C. Then
FpeB, = =(F)e (¥ xT) = = T (47 x T) + y7:(V x T) ,

or, since the divergence of a curl is zero,

F oG, = = Te(yV x )

L T

2




ORIGINAL. POGE: if3

OF POOR QUALIFY,
We integrate this equation over the interior of some large sphere of radius
and convert the integral of the right-hand side into a surface integral, by

virtue of the theorem of Gauss. Thus

[ ox BBy = - ALyt x T

sphere

vhere AT is the vectorial surface element. We assume that ¥ » F and ¥ x G
vanish outside a finite region of space, as it usually happens in practice.
(Somewhat less stringent requirements will suffice for the argument that
follows. For instance, V+F and ¥ % G should tend to zero for |F| + » at &
sufficiently fast rate.) Then, by (13) and (25), ¢ and G are of order R-!
for R+ =, Then ¥ x C is of order R™2, and the surface integral in (26) is

of order R™!, Thus, when we go to the limit R -+ =, equation (26) becomes

M15

R,

for FeGp =0, (27)

vhich is an important orthogonality relation.

Another demonstration of (27) is by way of the Parseval relation

[ B (7,00) By(Fyet) = iyy [oe B (-F,0t) (Ret) (28)

But the definitions (3) and (16) show that the integrand of the right-hand
side of (28) is zero (except at the single point k = 03 this exception does

not affect the integral.),

A consequence of (27) is: When a vector field F is zero everywhere, then

its longitudinal and transverse part must be zero individually. For, with

F=TF +Fp, we have (if F = 0)

for FooF, + for FooFp +‘2fA1rFL-FT = 0
The third integral is zero, by (27). The remaining two integrals (their

integrands are never negative) can add up to zero only if individually

F, = 0 and ?T = 0, In the same way one shows that a longitudinal field ?L
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and a transverse field G, can never add up to zero. For we have

T
fArr(FL+GT)-(?L+CT) = fAtrFL-FL + fArrGT-GT + aférrPL'ET

By (27), the third integral on the right is zero. The other two are

definitely positive, unless ?L = 0 and ET = 0 everywhere. Therefore, if

and only if these two equstions are satisfied, can F. + ET be zero everywhere.

L
We also remark that the longitudinal part of the curl of a vector field
vanishes, For V(7 x F) = 0, and hence (V x ?)L = 0, as seen from (13). Also
from (13) we see that a solenoidal vector field (i.e. a field whose divergence
vanishes) is purely transverse because its longitudinal part vanishes., And
(25) shows that an irrotational vector field (i.e. a field whose curl venishes)
is purely longitudinal because its transverse part vanishes. Vice versa: A
purely longitudinal vector field is irrotational, since - by (13) - it is the
negative gradient of a scalar ¢ and ¥ x (¥y) = 0. And a purely transverse
vector field is solenoidal, since - by (25) ~ it is the curl of a vector [o
and V+(V x G) = 0. Thus, the properties "purely longitudinal" and "irrota-
tional" are equivalent, as are the properties ﬁpurely transverse'" and
"solenoidal", A non-vanishing vector field F cannot be both purely longi-

dinal (meaning F = 0) at the same

T L

time, since F = ?L + ?T yields F = O under these conditions. (Of course,

the assumption is always that F tends to zero for ]?i + o rapidly enough so

= 0) and purely transverse (meaning F

that the Fourier transform'theory, on which everything was based, is appli-
cable.) Therefore, because of the equivalences of properties spelled out
above, we conclude that a field that is both irrotational and purely trans-
verse is zero everywhere, The same conclusion holds for a field that is both

solenoidal and purely longitudinal,

R A T T eSS

M 8 T R LN
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We apply the results of thissection to the Maxwell equations of the

electromagnetic field.

TxEsgircBao, (298)
¥ x cE.- SEE'E = nod , (29v)
V. .E= NeCP » (29¢)
PecB=0, (294)
Here

E = Flectric field strength,

B = Magnetic induction,

N = Impedance of free space = 377 ohm.

The quantity o is related to

= 4r 10~7 volt sec

M, = Permeability of free space amp m »

v m
¢ = Speed of light = 3 x 10° Ses

eo = Permittivity of free space = ;—%2 .
o

through
n = h:uc:—l—'-
) € o] eec *
o o

Of course, the electric charge density p and the electric current density J

‘must be coupled by the continuity equation

- = 3 _ ,
TT+5gcen=0. (30)

We apply (29) in the following manner: cp(r,t) and J(r,ct) are given;
F(r,ct) and cB(F,ct) are to be found. Fquation (29a) tells us that cB is

solenoidal, hence purely transverse. Thus

C§ = cﬁT . (31)

Then, by (24) and (25), there exists a purely transverse vector field cKT

such that,

MLT

T e IR
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cB =0 x cZT . (32)
The vector cKT is called the "vector potential in the Coulomb gauge". We

decompose E and also J intc their longitudinal and transverse parts, so that

E= E + (33)
J=3 +3;. (34)
Then the equations (29) become (Note that ¥ X EL = 0 and 5-ET = 0)
- 3wy _
v x (ET + -5—-1_‘- cAT) =0 (358.)
5 - -
V% (7 xRy - act B, - =% Bp * "oy * Moln (350)
V-EL = n_cp {35¢)
T (T x cKT) =0 (354)
Equation (35d) is redundent. Equation (35a) tells us that B + a:f, ekp

which is obviously purely transverse, is also solenoidal, hence purely
longitudinal. Therefore ET + azt cAT, being both purely transverse and

purely longitudinal, must be zero everywhere, so that

By = - 5o okp (36)

We no longer need equations (35a) and (35d). Equation (35b) must hold
separately for its transverse and longitudinal part. Thus, with (36),
this equation yields

T x (7 xcky) + Gz cAT =nJp (37e)
and
(37v)
We also have [see (35¢))

V-EL =n,ee . (37e)
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Now, by (13), there exists a scalar field ¢, such that
EL = . ¥ . {28)
The quantity ¢ is called the "scalar potential in the Coulomb gauge'". Then
(37b) and (37Tc) become
(39a)
and
- TeT¢ = NP . (39b)

Equation (39b) states that at any instant ct, the scalar potential ¢ is equal
to tha eléctrostatic potential associated wiich the churge density at that
instant, But one should keep in mind that ¢ depends on the time, because cp
depends on the time.

The procedure for obtaining the electromagnetic field from a given

charge density cp(r,ct) and current density J(r,ct) is then as follows.

First one determines the potentials ¢(r,ct) and cKT(F,ct) from [See (37a)

and (39b)].
776 = - nes , (40a)
and
¥ x (¥ x ci,) 32 (4
7 x (7 x chy) * cAT n, T . Ob)
Here, nOJT may be obtained either by way of ¢, namely by [See (39a)].
J
oJT met -7 3ct (koe)
or one may bypass the determination of ¢ and obtain ET from J itself through

(16) or (25). After ¢ and cKT have been determined, one obtains the fields
E(r,ct) and cB(r,ct) from
E=E +E,, (41a)

E =-7, (b1b)

g R <ragrng gROS - AKALS st v /b s g e R 1= g

T

;
i
!
i
:
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3w
Bp = - 505 By s (ble)
Bl xcy . (110)

Equations (40) and (41) are, of course, well-known. We showed how
they are derived, not only for the sake of completeness, but also because
we wanted to exhibit why the source function for cKT. i.e. the right-hand
side of (LOb) is no’T’ not noﬁ.

One of the favorite ways of dealing with equations (40) and (k1) is by
way of tﬁeir spatial Fourier transforms, What corresponds to the operation
Vin the r-space is the multiplication by ik in the k-space. Thus the trans-
forms of Ve¥¢ and ¥ x (¥ x cKT) are

1% » k¢ = - k2§
and
4R x (ik x cﬁT) = zcﬁT - EE-cﬁT
But since V-cKT = 0, we have in-ciT = 0, so that
ik x (1k x cAT) = xchT

Thus, equations (LO) and (41) become

€28(R,ct) = n_ca(Ryot) | (42a)
<ol (R,ct) + raioyy chp(Rict) = 0T (R,et) (k2b)
n, ¥ (K,ct) =, J(k,ot) = 1k —— t ¢(x ct) , (42e)
and
B(R,et) = B (R,et) + Ey(%,et) , (43a)
B (%,ct) = - 12%(; ct) , (43b)
Ep(Ryct) = - act chy(®,ct) (43c)

c%(?.ct)=i§ x cAT(K,ct) . , (k3a)
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Equation (42b) states that the Fourier transform ci(ﬁ,ct) behaves like the
excursicn of a driven harmonic oscillator, whose resonance frequency Qik) is
given by

(D2(R) = 2, (44)
The "driving force" for such an oscillator is nosTfE,ct). We shall return
to this remark in the next section.

The energy density p of th~ electromagnetic field is given by i

energy
Penergy = 2n === (EE + cBecB) (45)
or, since E = EL + E
Penergy = 2“0 (EL-EL + 2E B + BB + cBecB) (46)
When we integrate this expression over the entire r=space we obtain the stored

electromegnetic energy U. According to the orthogonality relation (27), the

integral of EL'ET vanishes. Thus

U= Ustat + Ura,d ’ . (47a)
with A
Ustat = 2n c IA gn c IA )-(Ve¢) , (470) |
Urad 2n - fAt E + cBeeB) = (47e) ;é

A )e(=2— CcA >+ ¥ x ok )e(% x dA
2n — [t [(act chy)e(zop cAp/+ (V x shp)e (¥ x aiy)]
The energy U is therefore the sum of two parts, the electrostatic energy Ustax

associated with the longitudinal field E. and the energy U
the L rad

calleqf;adiation field, i.e., the field specified by cB and the transverse

of what may be

part ET of E. The decomposition (47a) is a natural one. ¥We shall be inter-
ested.mainly in Urad’ since we can regard Ustat as a purely configurational
energy. For it depends, by way of ¢, only on the instantaneous charge dis-

tribution.
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We can convert the integrals over r-space in (47) into integrals over
k-space by means of the Parseval relation for Fourier transforms. This

relation states that for two complex vector fields F(r,t) and G(¥,t) we have
[ar(B(F,e)" « B(F,ct) = oty far F(E,et)" “B(R,et) (48)
We use ///ﬂ\\
(¥ x cAp)" + (F xchy) = (-1 x (chy)' b (1%  chy) =
PO Y S S T 2% 2
= nz(cAT) * chy -K.-(cAT) kechy, = xz(cAT) ock -0,

(Note that ?ﬂcZT = 0, since V -cKT = 0), Then (47) becomes

U= Ustat * Vraa (9m)
with
ustat 2n - fAT k2($(k,ct) $(K,ct) . (Lob)
Upd = 2n - jAr e m o (K,ct)] cAT(K ct) +
+ Kz(c'dr('o'c,ct) °cKT(T<.ct)] . (49¢)

Equation (l49c) states that U is the sum (actually an integral) of the

rad
energies of the individual field oscillators, whose excursions are given by
cﬁT(i,ct). Seemingly, each oscillator has three degrees of freedom, since
ciT(E,ct) is a vector. But since “his vector is constrained by the condition
that it be normal to the wave number vector k, each field oscillator has
only two degrees of freedom.

We are now ready to show (in the next section) that free electrons,

even though they may have beats, cannot radiate,

IITI., Proof 6f the Statement that "Quantum-mechanical beats cannot enable
free electrons to radiate in free space’,

We start with the expression (2, 49c) for the energy U.qq Of the
radiation field., We repeat it here for the sake of convenience,

J:'a.d(c:t 2n c fA‘t[(act : (" Ct) * ___8_ OAT(K ct) +

+ "2(°AT 7et)” -(cAT(E,ct)] . (1)
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We assume that in the distant past, ct + - ®», there was no electromagnetic
field present as yet. Then what we wish to show is that in the distant
future, ct + + «, the radietion energy is zero, i.e., we wish to prove that

lim U .(ct) =0, (2)

ot + 4o - rad
In the meantime, there may be a build-up of radiation energy. But this
energy will be reabsorbed agein (not radiated away) in the end.
+ Ve determine cKT(E,ct) by means of equation (2-42b), which we repeat

here for the sake of convenience, ’
52

Toeeyz ohn(Fyct) + k2ehp(Ryet) = n Fi(F,et) (3)

As we said before, this is the equation for a driven harmonic oscillator.

We determine the driving "force" nofT(E,ct) by taking the spatial Fourier

transform of (see (1-42)) ’
J(Fyet) = (-ec) ;‘} (-19"Fp + 1074") (L)

(Afterwards, we extract the transverse pert.)

In order to do this, we start with (1,6), but use a different dummy variable, .

nemely E. Thus -

W(Esct) = robyr ar P(Bexp(1EF - 1 &£ ct) (5)
Similarly, this time with the dummy variable n,
v (F,ct) = -(-2-1%-; fArnF*(ﬁ)exp(-iﬁ'?' +1 ;E—-'% ct) . (6)
On taking the gradient of (5) and (6), we obtain
(79)(F,et) = qabyy for, (UDP(Dexp(iBF - 1 Z 2t (1)
(Vw*) (ryet) T_-TT fcr -in)F *( )exp(-ln-r‘+ ifﬁ;'ng et). (8)

We insert the expressions (5) - (8) into (4). But we write the product of
two integrals as the double integral of the products of the integrands. We

obtain

RIIIINGIE TR T bR A R e

LI

A me e
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J(r,ct) = (=ec) --Ya;yg ffAT AT ;E-ﬁl'F(E)F”(%)

exp(4(E-R)F - 1 aéyg(ez- n2)et) (9)

Instead of £ and ), we use two new dummy variables Kk and X defined by

-~,
- -

Kk=Ean, (10)
by

|

%E + %n ).

Vice versa:

ol
L]

+ 4% + X, (11)

37

==k +X.).

The Jacobiah of the*transformation (11) is equal to unity, as one can see
vhen one examines the three Jacobians for each of the three cartesian
components; all three are equal to unity, and 13 = ), Thus AtEArn = ATKATA,

and equation (9) becomes

F(F,ct) = (-ec) -—-(-—Tg [fax ot IETIR(T HR)F(R - 4R .

ne
exp(-i'iﬁ Kelet) ’ (12)
me *
From this equation one can read out ti.« spatial Fourier trensform J(¥,ct).
See (2,2).,) It is given by
2 A 1 = 4(.
J(k,ct) = (-ec) me Ton)T fATAXE(X %k )F (X Xx)exp(-i Kedet) . (13)
However, in the equation of motion (3), we need JT(K,ct), the Fourier trans-
form of the transverse part 3T of J. The definitions (2,16) eand (2,17) relate

J, to J. Thus

T
3T(§,ct) = (-ec) -—-75;73 fAr (X - “!'KK'X)F(X + /K)F (X = %)
exp (-1 %E-X et), for k # 0 , (1%)
and
SpBaet) = H-ee) & ey ae DM . (15)

gssociated with each

2
We now make the assumption that the energy Cg;)

Fourier component y(ik,ct) of the wave function Y(r,ct) is limited to a value
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that 1 mueh smaller than the rest energy me®, Thin nssumption is falfilded
{n the device that Bohwars proposed,  Farthermore, we have to adopt thiw
agaunption already in view of the deciaion, made at the ontael, to use & nonw

velativistie treatment. iz uzaumption impllen that ¥{(R) b= sere whenever

,

e )2 "

‘:: y teckoned nonwrelativistieally, is mueh amallar than
. . e

'12\@2.)215\31~ inatance, we might choone R o he equal to % 3»‘%; v Bo that

ST '
n

ol g;mc?, whieh {8 In the vrder of &0 kiloweleotronvolé, We summarine
L #3 .

aXteedd yome maxj.m’mnﬁ%lue Ry ? which 1g chosen in sueh a way that the coryregw

ponding energy 3

thede remaykas by the atatement that
BERY = O, Por v > Ky (16)
One vonsequence of (16) 1a that
f?‘.],(“ﬁ,(z't) =0, for R > 08 . (1)
Me vesgon ta that PR« HOF (X - ) tn (1) 1w mera, Wwilean N lies aimuls
taneously in the two spheves (drawn in T-space) |X < 'R x R, At [N s (a 4R) | Ny
(Metr centers are at &8 and = ¥ vespectivelyy and both have the vadiua Rn‘x‘)
But when |48| > Ko bthe bwo epheves o nobk overlap, fPima the integrand in {ah)
{5 wero for every N\, and (17) resulba.
A wore Important congequence of (10) {z that, for each ¥, the quantity
.
Ty

we examine the fregquencles i;)* E s

(%,et) 1u band=limited bo a low-padga frequency band. I erder to aee thia,
-};g{;‘u ¥+ X that veeur in the time facton

exp (=1 ‘1’7\% WX eb) of (1h). Then, what we ave leaking for, are the extveme
values of ¥+X, when Y fs vestricted to lie in the domain that {a conmon to

R . A sketoh of the twa apheres

<
=N

the two gpheves |X = 1R gk and [V = (2R)]
will show that the extreme values of X\ oecura when \ Llea ab the twe polnta

- A - <3
(= Ry %&')a [Mhe zurface of sach aphere interaecta the axia that goes
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through - %k and % in two points, whose distances from the origin are ﬁn‘+ %
end K - %x. The two critical vectors X that we nced lie at the inter-

section points that are closest to the origin. And thit glves us the two

points + (=Y + Km‘% %)]. Therefore, for a given wave vector k, the fre-

quencies %-- - ég ¥ex that occur in the excitation function noﬁm(i,ct) of (3)

are limited to the band
W i

A . . .
- kms (g -k) <2 g k= (K - hK) (18)
The excitation function n, J{%,ct) is thus band-limited to the low-pass band (18),

We could substantiate this conclusion by a detailed calculation of the
temporal Fourier transform nOJ (K,EO (pronounced jay-tee-hat-tilde) of the

excitation function 3T(E.cu). This transform is defined by

~ . -i
- o c - ;
Em(k,sd = {7 dct e Jw(k,ct) . (19)
Qts_m
The inversion formula of (19) is

A 1 "" ct

- = A +ao ) m )

Jm(tc,ct) = Bv [T a s © ) (20)
W ow
c

However we do not need to perform this straight-forwerd caleulation (which is

g

done most convincingly with (20) as the starting point). The reason is that,

=

" as w2 shall see later, we need P( ,g& only for one particular value of the
frequency 3-. And this value corresponds to the resonance frequency K of the
harmonic oscillator: type equation of motion (3). Now, k lies well outside
the low-pass band (18), (For our numerical example = 1 IS h » the resonance
frequency k lles outside the low-pass band (18) by a margin that is better

than 2 to 1.) Thus we arrive at the important equations.

Am<EgKD =0 ’ - (21&)
g for |k] £ 0.
Jp(Ry=k) = 0 (21v)

T evm—

TR S A e e

o7 v 2
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Now we take up the rzuson that we are interested mainly in the temporal
Fourier transform n 3T(§ k) at the single frequency value %-" K, rather than

in the complete time function J,(K,ct). We assume that the electromagnetic

m(
field was in its quiescent state in the distant past, so that

lim cKT(;,ct) =0, lim 5= t cAT(r ct) =0, lim U__.(et) =0 .7 (22)

(
ctrmo ctmw cth—m rad

The first two equations of (22) imply that similar equations hold also for
the spatizl Fourier transforms, so that

lim cKT(?.ct) =0, lim -2- ek (k,et) = 0 . (23)
cte ctdem

We wish to evaluate how much radiation energy will have been produced in the

distant future, i.e., we wish to calculate 1lim U_ .(ect). We start with the

ot rad
expression (1) for Vg (ct) We then need lim cAT(K ct) and 1lim ——— cAT(K ct).
ct-tos t-ﬁm

We could determine cAT %,ct) directly from the equation of motion (3). However,
we find it more convenient to determine the two auxiliary functions F(¥,ct)

and G(%,ct) which are defined by

- ol K
%(K,Ct) = (82t T(K ct) - iKcAT k,ct)e i et y (2l)
2

=3ipct

(&, ct) cA (‘k,ct) + ikz AT(K ct))e >

Qb

(3 t
vhere, as always, k = |x‘. Note that both auxiliary functions vanish in the

distant past because of (23). For the complex conjugates, we have

aw priks

F {,ct) = act cAT k,ct) + ik cAT(K,ct Leat .
(25)

Ak ‘ ;

G (k,ct) = act cKT(K,ct) - iucAT(K,ct» ket .

From (24) and (25) we obtain
K(F (Ryot) o F(R,ct) + G (F,ct)sG(K,ct))=

...(_

1._."?.“' ‘22*.—- .3»-
= T(K,ct)) actcﬁm(x,ct)+n cAT(K,ct) cAT(K,ct) . (26)

T 2

One should not confuse the (vectorial and time-dependent) F in (2h) with the
the (scalar and time-independent) F in (5).

T~Wha.tf, makes it possible to stipulate these initial conditions is that, in the

distant past, the beats have not yet developed and that the wave packet is of
infinite size.

;
;
!
i
i
!

124 L T T R R R
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The right-hand side of (26) is the integrand of equation (1). Thus, (1)
may be written in the form

(21)

n g (ct) = ﬁfa Jo I (Ryet) F(Rpet) + 8(R,0t) B(R,et))

Now we calculate the two. auxiliary functions #(k,ct) and G(k,ct). We
take the time derivative of (24) and use the equation of motion (3). Then

(there are two terms that cancel)

3 2 _ 32 7 yelket _ % iret

5ot * = (T5en) °AT + kZehp)e USSR (28)
3 2 _ 3% 2 2 2y =iket _ % ~ikct

3t 0 = (Toetyz SAp - chy)e = NoIp® :

The functions F and G can then be determined by simple quadratures. Because

these functions vanish for ct + -, we have

F(k,ct) = fct des el*C8 no3T(§,cs) . :
CE=mo o (29)
G(k,ct) = fCt des e~iKeS ojT( »cs) .

CS=~®
Now we take the limit ct + +», TIn view of the definition (19) for the

temporal Fourier transform, we have

lim F(x,et) = n T (%,-x) ,
ofT
ctte T (30)
lim G(k,et) = n.J _(%,x). .
ottt o T

We use these expressions in equation (27). Then the radiation energy in

the distant future becomes

~

n - % A
1im U (et) = = far [(T (%,=k)) *F (R,~k) +
oo rad HE kT T
*

b Gy 01 (31)
But according to (21), all the Fourier transforms in (31) are zero. Thus
we have the final result

ciifm Urad(ct) =0, (32)
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In words: A single free electron in free space, even though it may havel
quantum-mechanical beats, cannot produce any radiation energy in the end.
Of course, there may be some temporary production of radiation energy. But,
in the end, this energy is reabsorbed by the electron. What made it impos-
sible to generate radiation is that, for a beat of wave number k, the
frequency w/c¢ is well below the required value g = lE'. And the reason for
that was the band width limitation (18).

So far we have considered just one electron. Now let us consider a
swarm of electrons. We enumerate the electrons with some digit p = 1,2,3, ver
Let p3(§,ct) be the current density that belongs to electron #p. When we
wish to adapt our previous calculation to the swarm of electrons, then we
merely have to replace J by the sum ) J. Ia equation (30) and (31) there
appear the sums ) 3(?,-K) and Zﬂgii,i). Since each term in the sums is zero,
the sums themselﬁeg are zero, pTgus, equation (32) holds also for a swarm of
free electrons in free space. Note that we did not make any assumption ebout
the instants at which the electrons are emitted. The conclusion (32) holds
not only when the electrons are emitted at random instants, but also when the
electrons are bunched by some gating device.

This finishes the proéf for the absence of radiation. We conclude this
section with some miscellaneous comments.

Several times we have mentioned the spatial and temporél Fourier trans-

P

form ET(E, %) of the transverse current density ET(E,ct). We never needed to
'7\— ) .Y -
calculate it, because only the special values ET(?,K) and JT(K,-K) were

required in our proof. And these values were seen to be zero, Nevertheless,
for the sake of completeness, we exhibit an expression for the general value

3T(g,'§). We start with equation (14) for the spatial Fourier transform

SektaSi T T e 2T

1 e T e g e e

R R

= R
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E,P(E ,ct). We repeat this equation for the sake of convenience.

3ol yct) = 5 & sy [an(% - H DR+ PR - )
exp(= 1 :; ReX ct) (14, repeated)

In the X-space, over which the integration in (1k4) is performed, we introduce

cartesian coordinates £, n, ¢ referred to the three mutually orthcgonal unit

vectors i— , 8, b. The first of these depends on the given wave number vector

K, which appears on the left-hand side of (14). Then we can always choose the

remaining unit vectors a and b in such a way that E—, a, b are mutually ortho-

gonal., Thus we can write

X= Eﬁ+nﬁ+c§-

and
ATA = dEdndr.
Equation (14) then becomes
3T(E.Lct) = (-ec) Kgré}v’ }I;f}; i} dEdndz(£a + nb)F(Ea + nb + (g + -g—) g—) '
E oy L=
F(Ea + b + (g - '-‘4)'-°-) exp(-i —fcnct) . (33)

Here we replace the integration variable L by the integration variable -‘;—’-

such that
w__ A .
e "~ me KE -
Then
dg = _m?c: ’

and % runs from +» to ==, We can remove the minus sign that results from
the equation for 4z by making (-:- run from -= to +o again, Then equation (33)

becomes

T

LT

e
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5T(nc,ct) = (-ec) = = Té%r')"-"' ‘. nft{s;: ’fm dEdr( Ea+nb)F(Ea+nb + (“‘T%% %)%)

Yoz me lw _ Kyk [}
F (gatnb+ (S = = - 2)K) exp(i = ct) . (34)
Next we note that the spatial Fourier transform .'I'm(n'c',ct) is related to the
b daki
spatial and temporal Fourier transform 3,1.( E, L:-) by

C = [ aLT(FE, Yexpls L et). | (35)

K,ct) = 5=

_ c
On comparing (34) and (35) we obtain the final result

Tp(Ry ) = (<ec) mzoyz Efrf‘:_w agan(ga+nb)F(gasnb + (ZE 34+ 5% )
F(gaen + (B3 2855, (36)

Here, as always in our calculations, the quantity x stands for lKl On the
other hand, %ta.kes on both positive and negative values.

According to our essumption about the energies encountered in the wave
packet, the functions F and F* in (36) venish unless their vectorial arguments
are smaller in magnitude than some maximum value Km’ for which we suggested,
by way of an example, the quantity %—% + Thus the effective domain of the
(E£,n) - integration is constrdained by the two inequalities

52,,“2.,(11%%_ ‘.L’+%)2 < Kri ,

BB <2 £

Therefore, the effective domain of the integral in (36) is finite, in spite
of the +~ marked on the integration signs. Hence, there are no convergences

problems.

{

o

Again, let us tske the example Km =

ct

g-= * k. Then, it cannot ever happen tha

l‘i—% . Let us now calculate :]"T(E., -‘é’-} for

both inequalities (37) are satisfied.

R
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(For %-= +k, the first is definitely violated, and for %-* -k, the second is
definitely violated). Thus the effective domain for the integration in (36)
has shrunk to zero, so that.
ET'(E"K) "0 for Rl # o0 (38)
Iplicy=r) = 0
This result agrees with the equations (2la,b), which were established without
a.detailed calculation of the spatial and temporal Fourier transform.
Ve may establish the validity of equations (38), on which the impossibility
of radiation was based, also directly from equation (9). We modify this

equation so that it yields the transverse part J The modified equation is

o
3 (F.ct) = A1 E+n _ (E-R)(E-R) , E+R
Tp(Fyct) = (-ec) 20 sler nmgmn[%-(% il

F(SF ()

ext [1(E-R)+F - & == (£2-n2)et] . (39)

We generalize this equation to a form which is valid also in the relativistic
region of velocities, But we still adhere to the description in terms of
scalar Schr&ding;f wvaves, i.e., we refrain from using the Dirac spinors. The
relativistic formulation allows us to dispense with the introduction of some
meximum weve number k , as we did in connection with equations (16) and (17).
In order to obtain the relativistic generalization we have to replace the

e

. 2
quantities £ %E2 and m—f %n2 in the exponent of (1k4) by (%%) + £2 and

E2 = (me2)2 + (cp)2 (ko)
between the energy E and the momentum p, as well as from thede Broglie relations

E={c‘g-,§; =AE, 5, =0 . (k1)



M33

ORIGINAL PAGE |
S
OF POOR QuaLiTy

The relativistic generalization of (39) is then
_ (B-n)(B-m) E-O-ﬁ]

JT(i,ct) = (-ec) x—:g’-(a—}r)-g HATEAT ['E

T (E-R)e(B-R) 2
F(E)F (n)
expl1(E-7)  F - 1(/AED2e 2= B2 + n?)et] . (k2)

This equation shows that each doublet (E,R) of wave number vectors contributes
a sinusoldal wave to 3,1,. The wave number vector k¥ and the frequency % of such

an elementary wave are given by

-n

ol

K=

== /(5242 ﬂmyc) 2+ny .

(Dii'feren: doublets (E,n) can produce a common k and %— . But this lack of

(43)

a one-to-one correspondence need not concern us.) Now let us examine the-

ratio _lw_./-c_]_ of an elementary wave. We have

K
Iw/cl _ 2+52 \/( )2+n2
x| I -l
But since
-5l |12l - | = |- v
wve obtain —
(T2) %482 - (L",ﬁ*)z'rnzl
lw/el .
i Mz
Now
@)FJ' g2 \ﬂ%)zmz J( €Y 2402 +j'mc 2+n2‘ £2n2
/EE - R e |

so that

e Mg i e
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lw/el . VEZ + /nZ
%] -:/(%%)2+£2 +,/(-;%)2+n5 ¢

The expression on the right-hand side is clearly less than unity. Thus we

arrive at the result

lofel oy, (k)
||
The inequality (4h) tells us that every elementary wave in (42) has a fre-
quency=-to-wave number ratio that is less than unity. But gT(i,k) and 3T(E;£)
are the amplitude factors of elementary waves whose frequency-to-wave number

ratio is equal to unity. Since we have seen that elementary waves with a

ratio equal to unity do not occur in (42), we conclude that

-~

:} for l<| # 0.

x> 2

(ko) =0,

.T
(Ls)

4l
——
=1
-
L}
¥ Y
at”
n
o

L)

H

And these equations are identical with (38).

We conclude this section with a remark about the spirit of the calcula-
tions we have performed. We started with a given free wave packet of
Schr¥dinger waves. The word "free" indicates that the wave packet is not f
influenced by electromagnetic forces. Then we calculated the electromagnetic ﬁ
field that is generated by the electric current density associated with the %
wave packet, Now in principle, this field would influence the behavior of ;
the Schr8dinger waves. However, we neglected to take into account this back=- f
reaction that proceeds from the electro-magnetic field to the Schr¥dinger
waves, We only considered the forward action that proceeds from the
Schr¥dinger waves to the electromagnetic field. What we have done then is
in accordance with the perturbation calculus, whose principles are explained

in Section 10 of the Appendix. We had to resort to the perturbation calculua
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because an exact calculation is impracticable. It is believed that the
accuracy of the perturbation calculus is good enough for our purposes, One
could, in principle, adduce some evidence for this belief by carrying out
the perturbation calculus to the next higher order of approximation. But
this would entail a lot of effort, more than we can afford to devote to ?
this task. As far as this writer knows, tnere are no general principles
that could obviate the necessity of those cumbersome calculations. Even if

the next order of approximation were to predict some radiation, it would be

too weak to be of practical use,

We have seen that no radiation can be expected from free electrons, even
if they exhibit beats. Naturally, there comes up the following questiong
Can one use the beats in some other way? For instance, one may ask whether
electrons with beats interact with externally produced radiation in some
peculiar, and perhaps useful, way. We explore this question in tbe next
section.

IV. A Selective Moving Mirror ,

H., Schwarz suggested a device that produces an electron beam which is
a superposition of two plane waves of different wavelength. In mathematical

language: The Schr@dinger wave that describes the electron beam is of the form

, . , .. 2 K 2 i
Y(z,ct) = Clexp(ikyz - 1 r-ng%— ct) + exp(ikyz = im;-f—gL ct)} . (1)

Here C is an amplitude factor. The beam travels in the z-direction of some

cartesian coordinate system. Each of the two partial waves is anlane?wave.

2

The first partial wave has the wave number Kk, and the kinetic energy%%; Klz.
K.2 2
The frequency w; is therefore given by Q-é- = m—f -%—- . Similarly, ki a.nd% K,2
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are the wave number and kinetic energy of tie second partial wave., Both
kinetic energies are of the order of 30 x 103 electrovolt. And their
difference is in the optical range, i.e., we have’%#»(”zz - ﬁlz) = 3 electron-
volt. The constants'ﬁz m, ¢ have their usual meaning, namely 5% * Planck's
constant, electronic mass, anﬁ speed of light in vacuo.

We give a brief description of Schwarz's design. An electron beam is
sent through a beam splitter that splits it into two divergent beams #) and
#2, Several inches down their paths, they are made to converge again into
the working region of the apparatus (near z = 0), where they form a single
beam again, This writer is not competent in the field of electron optics.
Therefore, we will refrain from describing how this mey be accomplished.
Perhaps one may imagine that the beam splitter and, further down the line,
the beam joiner consist of diffraction gratings, presumably in the form of
single crystals, What is important to keep in mind is that the beam splitter
does not sort out different individual electrons. Instead, it splits the
Schr¥dinger wave of each electron into two divergehﬁ portions., Similar re-
marks may be made aﬂ;ut the beam Jciner, So far then, the lay-out of the
beams is as follows., First there is a straight and narrow beam along the
z-axis; The beam enters the beam splitter and becomes two beams, diverging
off to the north and the south respectively. After a few inches down the
line, these two beams are bent back to the z-axis. Where they meet, they aré
Joined by the beam joiner and form again a straight beam along the z-axis.
(The beam joiner %ill waste some of the beam by sending off additional beams
to the sides,) Eventually this beam enters the working region of the

apparatus near z = 0,

BB LS
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In the region between the two curving beams, a device is installed that
contains a magnetic field in the vertical direction. This field is made
to change with time. According to Faraday's induction law, an electric
vortex field arises that speeds up the northern partial beam and slows down f
the southern partial beam. The beam that emergies beyond the beam joiner g
is then a superposition of two beaps with different energies, the energy
difference being chosen to be in the optical range. Because the beam splitter
and the beam joiner act on the Schr8dinger wave of each electron, the super-
position is linear as described by equation (1), '

If, in a more realistic manner, we consider that the Schr&dinger wave of
an individual electron would be a localized wavé packet instead of a c.w.
wave (c.w. = continuous wave) of infinite extent, then we conclude that an
additionel device is needed. After all, since the northern beam was sped up
whereas the southern beam was slowed down, the southern wave packet would lag
behind the northern wave packet beyond the beem joiner, so that the superposi-
tion deseribed by equation (1) could not teke place. Thefefore, ve have to
install a delay section in the northern psrtial beam to remove the lag.

From now on, we shall assume that a pe¢.-fect design of the electron beam
~in the working region has been achieved. By this we mean that the Schr&dinger
Qave ¥(z,ct) is the linear superpostion of two partial waves y;(z,ct) and
Ya(z,ct),

‘p(zat) = ‘pl(z:t) + ‘Pz(z,'t) ’ (2)
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and that at the center of the working region (i.e, at z = 0) the quantities
p2{o,ct) and y;(o,ct) are related by
Yo(o,ct) = wl(c,ct)e-tit . (3)
where F is a constant. In terms of K and K; we have
FeE e -2 ()

of course,qﬁhF is the energy difference for the two partial beams. We
assume that (3) holds, no matter how y;(o,ct) depends on the time t. As
we implied by the notation Y{z,ct), we ignore any dependence on x and y. That
is, we assume that the Schr¥dinger waves are plane waves. Certainly the c.w.
wave (1) conforms to the specification (2) - (4). The specification (3)
rermits the investigation not only of c.w. waves but also of wave packets.

To begin with, we examine c.w. waves. We will discuss wave packets iater
on, We start with the example of equation (1). The density of electrons is

*
given by ¥ . In our case, we obtain

w*w = 20*0‘{1 + cos{(ko=Xy)(z - 5-%5-1-;1%- et)]} : (5)
The first term in‘the curled bracket describes a constant background, whereas
the seéond term exhibits the beats, The beats persist with constant strength
for all values of z. The beats have the wave number K; - ¥, and their

velocity v is given by

v _ A KK,
c me 2 (6)

Now we come to the matter of wave packets.  Let us first consider the

partial wave #1, Instead of the c.w. wave

Y1(z,ct) = & explikyz ~ i %2 ég ct] , | (7)

ve consider a superposition of plane waves, each with a different wave num-

ber k, However the g-values should be closely clustered around the nominal

et s ez s
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value Kk}, Accordingly we write
A Vs
W(z,et) = Ny [ ac £(k) explirz - 1 kx2 <2 oy] (8)

c
KT =00 me

where |f(k)|? is sharply peaked near k = ;. The quantity Ny is a (complex)

normalization factor, which we determine later. The conclusions that wi wish

to draw 4o not depend on the choice of the weighting function f(x), as long
as it is sharply peaked. We choose f(k) to be equal to unity when x lies in
a narrow range centered at ¥;, and ve set f(x) equal to zero when p lies
outside this narrow range. We therefore write

a+ '
0i(z,t) = M [ explins - 4 he? Zoot) (9)
K=Kl~dl

We demand that
Q)] S< K2 = K1 (10)
where K; and X, (Eg > k1) are the nominal wave numbers of the first and

secnd partial beam respectively. We replace the integration variable g by

E = k=K1, Then (9) becomes

Pylz,ct) = Ny f+u1 A€ exp(i(ky+E)z = 1%l 245 0+E2) ég ct] . (10a)
E=-ay

So that we may evaluate the integral in a convenient closed form, we decide
to keep track of the wave packet only for those times that satisfy the

condition
a2 éé'ICﬁl << 1. (11)

Then we may delete the term E2 in (10a) and obtain

Py(z,ct) = Ny explicyz - 1% K12,_31 et] ™1 A expli(z-x, -2§'ct)5]
me E=—ay me

or

?é

e SRR SR s AT T T
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‘h
2sinfay(z=¥ = ct)]
¥(z,ct) = Ny expligz - 1 %2 —'L{ct] Te

s (12)

-h
2=K1 o= ct
We might express the approximation we made whcn we deleted the E2-term in e

different way: We replace the exact parabolic relation

@ _ 2 (13)
c ]
between frequency %-and wvave number x by its tangent line at x;, i.e, by
P "
W22k, )
e N il g3 me (k1) (1k)

After having made this replacement we can afford to abandon the inequality (11).
Thus the substitution of the new "dispersion relation'" (14) for the old re-
lation (13) makes the wave packet formula (12) an exact one.

The exponential in (12) describes the ripples of the wave packet. The
last factor in (12) describes the envelope. The envelope consists of a
central peak with its center at 2, = K1 ég-ct. The height of the peak is 2a,
and its width is %% . On both sides of the central peak, the envelope factor
decays, with ups and downs, to zero. The envelope pattern moves rigidly with

the velocity vy given by

.

X

(15)

|

l’J-:Kl
o]

=]

c
The rigidity of the envelope pattern is a consequence of our approximation
((14) instead of (13)]. An exact calculation would show that the peak becomes
wider and lower for times that do not satisify the inequaiity (11}. But this
is of no concern to us.

The expression (12) describes a wave packet whose center passes the
origin z = 0 at the time zero. If the center passes z = 0 at some other
time s, then we merely need to replace ct by ct - ¢s., We are allowed to

multiply by the constant phase factor exp[-i Yy 2 ;gfcs], or - expressed

R T B T s

R R et T
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differently - to absorb expl[+ i %2 n—?—f cs] into the normalization factor Nj.

Thus, for a wave packet whose center passes z = 0 at gime 5, We have
2sina) (z=k) ;n% (ct-cs))]

vi(z,et) = Ny explik)z-i %x,? ;:% ct] (16)

i) "
z=K] = (ct-cs)
The concomitant wave packet in the partial beam #2 is described by an

analogous expression, namely

N
» _ 2sinflap(z-xg = (ct=cs))] .
Yalz,ct) = Np explixyz-i %xp? 'n-x% ct ) T L . (17)

Z-Ky ;n-;;- (cti-cs)
We relate the constants ap, Np in (17) to the'constants ay, Ny in (16) with

the aid of the design conditions (3), (). To this end, we examine the ratio

P
: sinfagky == (ct-cs)]
Upfo,et) _ . wio o ooy M LNy K me
oetT = xp[~1%(kp2-ky2) == ct] T2 g —— ~ - (18)

The factor that follows the exponential should come out to be unity because
of the design condition (3). This requirement yields

UKy = 0Ky ’ (19)

2z

K
" E% , or with (19), Naap = Nyay. (20)

The heights of the central peaks of the two wave packets are respectively
|N1a1| and |N2°‘2' . They are equal to each other, by virtue of (20).
Next, we Aztermine the normalization factors Ny and No. As we are

dealing with a single electron, we have the condition

[ © amy=1 (21)

pATC

And, since Y = Y+¥,, we obtain

P amp oy v [ azeat M e T g = 1 (22)

RN
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These four integrals are evaluated most easily by way of the Fourier trans-
forms Yp(k,ct) and $2(K,ct). For, according to the Parseval relation, we

have

00 » ' PO ]
f+ dzyy Yo = ?—}r' f+ dxyy ¢2 {23)
P T KkE—

and similarly for the other three integrals. We can read out the Fourier
transform @(K,ct) from the definition (9). But we must remember that we
2 Ky
linearized the dispersion relation, i.e., we replaced -7 by -%r-+ iy (k=ry ),
Also we replaced ct by ct - e¢s, and we multiplied by the constant phase

factor exp(- 1n%x1 JEfcs] Thus, instead of (9), we now have
K1tay

Py1(z,ct) = Ny [ ax explikz-i é%(gf12+K1(x-K1)(ct-cs) - 1 kK2 -B-cs] (2k)

K=K =0
We compare (24) with the inverse Fourier transform formula

ilzet) = 2= [ 7 ac e % (ket) (25)

K= =m0

and read out

Py(k,ct) = 27N exp(-1 lﬁihk 2 4 Kky(kek;)ct-cs) -1 %6, ° -zi'cs]

.for IK-K1| <o

P1(x,ct) = 0 for |k=ky| > ay
A similar formula holds for @2(K,ct). We merely have to replace the subscript
1l by 2. Because of the inequality (10) and the related inequality a, << kp=K,,
the intervals in which §;(x,ct) and Pp(k,ct) are non-zero do not overlap. Con-
sequently, the integrand on the right~hand side of (23) is always zero. Thus

we obtain

£y » '~ *
{*7az¢, ¥, = 0, and similarly [TTdzy, ¢, = O (27)

AT AT

e E e S R e




3
ORIGINAL PAGE IS .

' OF POOR QUALITY

Therefore, the functions ¥;(z,ct) and y(z,ct) are orthogonal to each other,
Since
~ * ~ 2 “
U1 (%et)Py(kyet) = (2m)2N; Ny for |weky| < o)
= 0 for |e=x1]| < a3 (28)

we obtain [from an equation similar to (23)]

) » »
[Tdz ¥y ¢, = 27N; Ny20,. (29)
| Z%a0
Similarly,
W * *
[ az.p, Vg = 2mN, Np20, . (30)
= we 00

The normalizetion condition (22) then gives us
#* »
le(GIN]_ N; + asNs Nz) =1, (31)

When we combine this result with (20), we obtain

" 1 as
-
MM = Elaray) op”
* 1 a
=
N2 N2 = g7 T _J-dp_. | (32)

Let us divide (30) by (29). With the aid of (32) and (19) we obtain

+o * .

d .
f. zwz*\bz T T L 3 (33)
f+°° dzdy V1 02 L1 Vi

(See (15) and the related equation for vs). This equation shows that the
electron has a slightly higher probability (xp > ki, ﬁﬁfil << 1) to be in beam
#2 than in beam #1, if the design conditions (3), (4) are fulfilled,

Now we shall investigate the probability density w*w. We calculate ¢ =
¥ + ¥, from (16) and (1T). In order to simplify the notatior, we introduce
the abbreviation

L= ajky ?Ef- (es-ct) = agka g (es-ct) , (3k)
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vhere we have used aym; = asK; [see (19)]. We also use a;N; = apN, [see (20)].

Then
Y = 203N { ﬁ%&t}&_ exp[iRyz - 1 %k,2 -}{ct]
» SN oryikys - 1 k2 A o) (35)
so that

- )2 sin(z+a,z) sin( +a z) 2 |
v W b(ay)?M N Q-E:ET;L__ C+azz ¥ ;

sin(z+ayz) sin(z+asz)
g+age L+asz

+ 2 cos[(Ky-ky)z = %(Ky2- §2) -"-ct] .

(36)

The factors containing f are envelope factors. The cosine term describes

the pattern of beats. We see that - apart from the envelope factors -~ the

beat factor is universal, This means that the peaks and valleys of the beat
pattern of any particular electron coincides with those of its sister electrons.
The Schr8dinger wave packets of different electrons are incoherent, because the
normalization factors Nj for each electron contain uncontrollable'phase factors.
Nevertheless, as we have seen, the begt patterns are coherent, because they
depend only on the product Nl*Nl in which the uncontrollable phase factors
cancel. This coherence of the beat patterns i1s important in the application

that we wish to examine later on.

e agemieaey e o s

So far we have considered a single electron. Now we are going to evalu-~
ate the electron density for an electron beam, which consists of a great many
electrons, Wé‘will ignore fluctuations (the shot effect)., Thus we consider §
the electrons as everly spaced, which means that the time interval ds between |
the instants when two consecutive electrons pass the origin z = 0 is given by

ds = %-, where R is the rate at which electrons pass the origin. Let us

;
]
:
§
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express this statement in a different way. We are going to assign integer
order numbers n to the electrons, in the order of their zero-passage time s.
Thus, as the order number advances from n to n + dn, the zero-passage time
advances from s to & + ds, and we have
dn = Rds . (37)
When we combine this with (34), we obtain (keeping z and ct fixed)

= R__1
dn = S mdc . (38)
me
The (1linear) electron density p(z,ct) (number of electrons per unit length

along the beam) is given by

olz,et) = [*° o pdn (39)

Nx=%

or with (38),

+o0 "
p(z,ct) = %;;;%—:;; [77 anvy (ko)
me

*
The integrand ¢ ¢ is given by (36).
We then have to evaluate integrals of the type

, = f+m ar sin(C+G1§l,Sin(C*“Dzl,. . (hl)

Ty hay 2 GHanz

L
C=—,~.

We use the Parseval theorem. It states that for two function £(z) and g(zg)

we have

' et "sle) = g ' axl201"500) (k2)

C:_m

where f(k) and g(k) are the Fourier transforms of f(z) and g (z). 1In our

case we have

sin(g+a;z) _ sin(gtaoz)
£e) = S 8(8) = ez (43)
Since
Sin(C*G]Z) = _l f+l dk‘eikc eikﬂlc , (hh)

C*GIZ ‘aﬂ ==1

T S B RS TS e
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we see that

ikayz for [kl <1,

(k) = me
=0 for || > 1. (45)

Similarly for g(k). Thus

1 e oL g Gdk(az=ay) in(as=a,
& [Ta00r0 < 3 [ oo sl

so that
sin(ao,=ay)z :
Il’z = 7 az-al 2 . (hs)

The other two integrals we need are I and I2,2. Their velues follow from
(46) when ve make ay + ay and a; + az, Thus

Ly=m = (v1)
We insert (46) and (47) into (40), where the integrand was given by (36).
We obtain

p(z,ct) = h(ul) N12n .

caKl /ﬁ
mc

sin(as-a 2
M - i -K —-
{1+ 'Tﬁg'ﬁTT%l" cos[(¥0=N1)z - %(kp2 ) ct]}
Finally we use the expression (32) for N, N1 and also the relation (19).

The end result is »
- LTI sin(as-a;)z 2.
p(z,ct) ;- (mc -‘--3-) 1{1+ WCOS[(m- 1)z = %(x,2-k,2) "“’t] (48)

We see that there is a constant background, attiibutable to the 1 in the
curled bracket, and a beat pattern, attributable to the cosine term. This
beat pattern fades with increasing distance from the origin, as described
by the sji_n_(_gz_-_cﬁ_)& - term.
02—01 )
We shall now discuss this fading term. According to equation (9), the

quantity a; is of the order of the quantum-mechanical wave number uncertainty

e e
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of the y,-packet, Thustﬁ&l is of the order of the momentum uncertainty,
Similarly,vﬁ&z =K ;t ay =1ﬁ;1 is of the(order of the quantum-mechanical
momentum uncertainty of the y,-packet, Nothing is known about these uncer-
tainties. 1In the absence of any hard information about this matter, we use
the simplest assumption, namely that we can make a; and a, in (L8) go to zero.

Then the fading factor Ei%égfi%&%ﬁ‘tends to unity, and (48) simplifies to

olzset) = B (E EE2)-1 (140051 (kpnky ham s(Kp2402) K oty (k9)

According to (h9), the beats persist for all values of z. There is no fading.
We feel fairly confident that we are permitted to replace (48) by (49),

because it is very likely that any fading of the quantum-mechanical nature

is overridden by a fading of thermal origin, which we shall describe now.

The electrons are emitted by a themionic cathode. So they come off with an

energy uncertainty S8E, which is of the order of kT, where k is the Boltzmann

constant and T is the cathode temperature. Since the cathode is hot, §E is

of the order of %-electronvolt. The same energy uncertainty 6E obtains after

acceleration and hence in the working region (near z=0) of the apparatus.

Now let us examine the yj-packet in the partial beam #l. Since

%2
we have
SE

so that the thermal wave number uncertainty 6x; is given by

SE
8%y = ¥y —Ef . (50)
Now there is no uncertainty in the difference xy%- k2 because of the design

condition (L), namely
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F = é?{!g(oczz-nlz) . (4, repeated)
vhere F is a precise constant, If we take the variation of (4) and use
§F = 0, we obtain
Kzskz'- K18k} = 0 ,
so that
fko = fi 6Ky, (51)
Then we get [from (50) and (51)] )
§(ka-ky) = - ﬁL:f"‘ fky = - ii‘ (kg=x1) 9—%}- = - %(icp-k)) ﬁ%i‘ . (52)
Therefore the quantity (Kz-xl) in the cosine-term of (49) has an uncertainty
which is given by (52), wherras the quantity kp?-k;2 is still exact. We take
care of this uncertainty by taking a suitable average of the formula (49).
The easiest averdge to take is the Gaussian average, as then the resulting
integrals can be evaluated in closed form. Ve can afford to treat the quantity
51%51 in the prefactor of (49) as exact, the resulting error is not important.

Thus, if we denote averages by carets < >, we have

<p(z,ct)> R('ﬁ EJ:ISL) {1 + < cos[(kp=k;)z = %(Kkp2-k32) 'li et] >}, (53)
Now
<cos[...]> = %<exp i[...]> + c.c. , (54)

where c.c. stands for "complex conjugate". And, since we decided to take a

Gaussian average,
. , ..T{'

<exp[i(¥y-K,)z - %{Kzz K,2) EE'Ct]> =

(4

<exp i[...]>

expl- —(" -%12) -—ct] <exp(1(Kz=X1)z)> =

f dn exp(i("z-"'1+n)z -(a2/2)n2)
= expl- 2{ie2?ic1?) ,—n”-;(ct] = , . (55)
[** dn exp(-(a2/2)n2)

n=_m
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where the quantity a is of the order of the reciprocal of G(kz-kl). as given
by (52). Thus we may write
a = '.i"-a.—KTn -—-E—:Ju o (56)
The integrals N and D in the numerator and denominator of (55) have the values
2r 2 .
N = =X exp(i(kp=k))z) exp(- zo7) ,
and
I
a
Thus, (55) yields
s
<ex_p[i('<~2-'<1)z -1 15(",22-?12) 'ni‘%' ct]> =
2

= exp(=~ -2—:5) exp(i(Kk-ky)z - 1 %(kp2-ky2) ;}gct] . (57)

Then (54) becomes

<cos[(Ky=K)z = %(ky2%,2) éﬁfct]> =

2
= exp(- zoplcos[(Kp-K 1)z = %(k 2k} 2) ;n-’gct] . (58)
When we insert this into (53), we obtain the final answer
Ky 4K 2 . . A.
<p(z,0t)> = %(;ﬁ —L-e—-z)'l{l+exp(- -z-%f)cos[(x;z-xq)z - %(k 22k 2) x-n?«]}’ (59)

or, when written in a slightly different'form,

. TN 2 -
wlzct)> = B (2 E12)-1 exp(= Ep)cosl (ko )z - E1E2 B ee))y,  (60)

: 2
So now we again have a fading factor, namely exp(- 3&7)' Let us calcu-

late the fading length a. From (56) we have

- K~14K~2 : 1 El
a = h ) K'Z"K‘ 12 6E1 (61)

Since the energy difference AE - E; - E; of the two partial beams is given by
A2
0E = 5= (% 42)

we may write (61) es

nap Y

SEITRTLIRL,
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=
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A2,
or,with E; = Bm S}

1.'4.1:52._1._.1.
a=b = >~ % ¢ (62)

Since xp=-K) <<'K; and E;=E; << E;, we need no longer distinguish between i
and ¥, or between E; and E;. Thus we can drop the subscripts 1 and 2 in (62)

and write this formula simply as
. 8= B— -lg- —g
. k AE GE *
A2 £ fme?
Finally we use E = 5= x? or -’-c- = —5-5 , and obtain
2E AE GB (63)

To repeat: AE is the energy difference between the two partial beams, it is

a

typically of the order of 3 electronvolt., And SE is the thermal energy un-
certainty, which is of the order of -;- electronvolt, With E about 30 kilo=-
electronvolt, we have —= ~ 10% and —= ~ (1.5) % 105. Also me? = 500 kilo-

A SE
2 .
electronvolt, so that / °F * %%m 3, Thus a v 4 x 3 x 1,5 x 109 ;’g'\'

2 x 1010 l-;g . Now == is 5% timesthe Compton wavelength, or = = (3.86) x
10~11 cm, ’I'hus finally,

avlem, ‘ (64)
So the best we can hope for is that the beats persist over a length of about
1 cm. (Actually 2 cm, as there is 1 cm on either side of the origin. But
we are only making rough estimates.) Of course we could stretch this length
by installing a narrow-band energy filter in front of the beam splitter, thus
reducing 6E. But then we would reduce the beam intensity. How the electron

beam with beats will perform in its comtemplated use, which we shall discuss

presently, will depend not only on the fading length but also on the beanm

AT M I R
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intensity. So, most probably, we would be no better off in the end, had we
installed the energy filter.
We shall now describe the contemplated use of an electron beam with
beats. The (linear) electron density in this beam is given by equation (60). }

Apart from a constant background (attributable to the 1 in the curled brakcet)

there exists a sinusoidal density pattern, the beats, (attributable to the §
remaining term in the curled bracket). This beat pattern moves in the positive ‘

z=direction with a speed v given by

K, 4K A{ )
Lol = (65)

The wave number of this beat pattern is ;- k). lLet us send a plane electro-
magnetic wave in the direction of the negative z-axis, i.e, against the electron
beam. We assume that this wave is polarized with the electric field paraliel
to the x-axis, 1.e, normal to the z-axis. This electric field acts on the
electrons in the heam and makes them oscillate in the x-direction, This
oscillatory motion is, of course, superimpwsed on the steady motion, which is

in the z-direction. The oscilllating electrons give rise to a new wave, the
reflected wave which propagates in the positive z-direction, i.e. agalnst the
incident electromagnetic wave. (The oscillating electrons produce also a wave

in the negative z-direction, 1.,e. in the direction of the incident wave, But

S-SR )

this wave is of no interest to us,) Since the electrons in the beam exhibit i
a best pattern, the process of reflection is similar to the reflection from a
grating, as in x-ray crystallography. The reflected wave will be strongest
when the Bragg condition is fulfilled, i.e, when the wave number Mn of the
incident wave is related to the wave number K;-K; of the beats by

Kin = k(ﬁz-ﬁl)(l—V/c) . (66)



ORIGINAL PAGE IS M52
OF POOR QUALITY

The factor (l-v/c) comes in because the beat pattern is moving. We shall
derive (66) after the discussion of the Doppler-shift formula (67). Since
the beats move with a speed given by (65), we are dealing with a moving
grating. Because of this, the wave numberr:r of the reflected beam will be
Doppler-shifted upward, according to

LY/C o (K pmky) (14v/c) (67)

Kp = %in Tv/e

Now we are ready to derive equation (66). The Bragg condition is
) =

(Later on, when we develop the detailed theory of the reflection, we shall

k- (=K

= Kook
r ' in Kpeat = 271 ¢ (67a)

meet an independent proof of the Bragg condition for a moviug grating.) And
indeed, with (66) and (67), the Bragg condition (67a) is satisfied. We thus
have the possibility of constructing a highly szlective frequency shifter.
The selectivity comes from the fact that, for good refiection, the Bragg
condition (66) must be satisfied. Expressed differently: One may consiruct a
selective moving mirror. The speed of the mirror is a good fraction of the
speed of light. For electron:z with an energy of 30 kilo electronvolt, equa-
tion (65) gives a v/c-ratio of the order of 1/3. The frequency shift is
appreciable, For v/c = 1/3, equation (67) shows that the wave number, and
hence also the freguency, of the reflected wave is twice that of the incident
wave,

All of this sounds rather attractive, Nevertheless, the device is useless,
because the reflection coefficient, i.e. the ratio of the reflected power
density to the incident power density is exceedingly smell. The reason is that
there Just are notbenough electrons available for a strong reflection to occur.

Let us make a rough estimate to show that this is the case. A realistic

B MSERLT a4 aEe.om i e w e
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estimate for the electric current density J in the electron beam is J =

1 milliamp per millimeter squared = 10~3 amp + 1072 em? = 10”! amp/cm?,
about what may be found in a television tube. The electron current density
is then %-J, where e is the electronic charge = 1.6 x 10 19 coul. Thus %-J
is of the order of 10!8 electrons/sec cm?. The spatial electron density is
then %»J %3 vhere v is the speed of the electrons. With v = 1010 em/sec
(for v/c = 1/3), we get %-J %'= 108 electrons/cm3. But only a length of

the order of the fading length a = 1 cri contributes to the reflection by the
beam. The aresl density o (number of electrons per unit crrss sectional ares
of the incident electromagnetic wave) is than o = %-J %-= 108 electrons/cm?.
This is much less (by a factor of 1078 to 10”7) than the areal density of
-optically active electrons in a monomolecular layer of a solid. Now we
certainly do not get much reflection from a monomolecular layer, let alone
a8 layer that is sparser by a factor of 10~8 to 10-7.

The reader whom the precediﬁg estimate convinces that the moving-mirror
device is useless can stop reading right-here. We continue a formal demon-
stration to satisfy the more skeptical reader. Another reason is that the
derivations that follow are instructive. They may be helpful for the feasi-

bility analysis of other devices that one may wish to consider.

We start with the equations (256) - (262) of the Appendix. These equations

are the result of the perturbation calculus. We repeat these equations for

the sake of easier reference.

(o + m§0>p =0, : (68)
‘1‘%%*%6'%% =0, (69)

P sl PR S
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(1Ty, + mXy), = = (%) L 5 (-e)ek (70)
(s 95 = - 5(T) + L (el (11)
2
-(-g?;-yzcxo-&Vl(V xc.'A'o)=0, (12)
32 = = = = 1
=g ok + T x (Fxch)) =5 &P ) (-e)fé()(o Yo+ XoVo ) (73)
o T,low electrons
#p
32 - = . =
o)z CA2 +V X (V x eAp)
-L v I (=e)%(Ro ¥1¥a ¥otovs #Xavo), - (Th)
o T,low electrons P

#n
Here m and (-e) are the electronic mass and charge. The index p refers to

electron #p. The quantities with the subscript O are the zero-order approxima-
tions. Those with subscripts 1 and 2 are the first-order and second-order
corrections.

We are not interested in equation (73), which tells us how to calculate
the first-order correction of the electromagnetic field. To be sure, this
correction does not vanish in general. Hoﬁever, as we showed in Section 3,
there is no radiation that is attributable to these fields. It is for this
reason that we are not interested in cAy. Furthermore, in our example in
which the zero-order Schrdinger waves of the electrons are plane waves in
z-direction, the sum in (73) is purely longitudinal in character. Thﬁs, when
the projection operator P acts onm this sum, the result is zero, since P

T,low T,low
retains only the transverse part, which is zero. Therefore, the right-hand

side of (73) is zero in our example, so that (73) is satisfied by cA; = O.

As a consequence, the first-order correction cB; = ¥ x cA; to the magnetic

st
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3cA,
act

B, = - ¥¢, where ¢, in the electrostatic potential associated with the zero-

field vanishes, and the first-order correction El = - - T, is simply
order approximation to the charge density. A straightforward calculation of
electrostntiés, which we‘will'not reproduce here, shows that the alternating
part of By, which is attributable to the beats, is only of the order of 10-"
volt/cm, much too small to be of any interest. (This magnitude of an electric
field occurs in a laser beam with a power density of less than 10710 watt/cm?,) ;
Having disposed of the first-order correction cﬁl as something that is of y
no interest, we concentrate our attention on the second-order correction cAj,,
which we can calculate from equation (Th). Even though cxz will turn out to
be a genuine radiation field, it will be too weak to be of any use. Let us
substantiate this prediction by means of an explicit calculation. First we
have to evaluate the quantities (wl)p and (id)P on the right-hand side of (Th).
The remaining quantities (wo)p and (io)p are given by the properties of the
electron beam, First we note that equations (70) and (Tl) are satisfied by :
(b, =0 (75)
m(il) %

= - (bl & (=e)eR .. (76)

P
T gt N
The reason is first that xo = - 4o (from (68)) has only a non-vanishing

z-component, since y does not depend on x and y. Furthermore, by assumption, ;

cAg has only a non-vanishing x-component, so that the dot product on the right-

hand side of (71) vanishes, In the second place, on taking the divergence of %
(70), we obtain

H(TTpy) + m(Te%y)

( Wl)P m( Xl)p

But the right-hand side of this equation vanishes, since V:cAp = 0 (because of

= - 2=e){(Tuo) +cRo + (vo), Trcho} .

naabte g et
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z-component and cIo has only a non-vanishing x-component). This equation
then becomes

1((6-6‘4,1)1) +n(T%), =0 . (17)
When we combine'(77) with (71) and use the fact that the right-hand side of
(71) vanishes, we obtain

(1 2+ Eany) =0 . (18)
This equation is satisfied by (wl)p = 0, so that (75) holds. Equation (76)
then follows from (70) and (75).

»
Equation (T4) then simplifies to

-

32 - - - - (=e)2 * -
T5ct)2 chy + 7 x (V x chy) = = ——=% ) (Wo Wo)_[cho- (79)
3ct €0MC” e1ectrons P

#p
But the expression in the square bracket is the spatial electron density.

It is related to the linesr electron density <p(z,ct)> of equation (60).
We merely have to divide by the cross section Q of the electron beam. Thus,

with the abbreviation (65),

2
1 (’bo*%)p = %% (%)"1{14- exp(- éz)cos[(‘kz-h)(z - -::L ctl} . (80)
electrons
#p

R
Q

current density is then (-e) % .

We note that is the electron current density of the beam. The electrical
Now we combine equation (T79) and (80). In order to simplify the writing,

we introduce the classical electron radius

e?

= = « 10-13
Ty = TreomeZ - (2.82) + 10 em , (81)
and the symbol
=R
Je = q (82)

for the .electron current density of the beam. Thus

—
We can delete the projection operator PT low® because the right-hand side
1

of (79) is purely transverse and has only low-modes components,

I TN R L
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za—zmc.iz + V x (V XCRZ) =
2 , - .
— _1% (%)-1 r J {l+exp(- Ezy)cos[(nz-m)(b % et)1}eho, (83)

Finally, we use the fact that, by assumption, the incident electromagnetic
field is polarized in the x-direction. Then the desired field cA; will elso be
polarized in the x-direction. Then, with thé Cartesian unit vectors I, J, k,
we can write

chg(z,ct) = Teag(z,t), ) (8)
chy(z,et) = TeAy(z,et),

where we are stipulating that both fields do not depend on x and y. We also

have
V?‘chz=E"I'§%CA2=35%°A21 ’
and

32 32

\-77‘(67‘052)=}-{X3WCA2=-18—Z':0A2 ,
Then, when we delete the unit vector I, which is common to all terms, equation

(83) becomes

32 32 -
3ct)Z Ch2 = 357 ch2 T
) -1 2
= - -L% (% roJe{l+exp(— §€7)c05[(n2—k1)(z- -‘-é- ct)]lehq (85)

We then have to find the solution w(z,ct) of a partial differential

equation of the type

2 2
(agt‘)kz - gzg) = £(z,ct) . (86)

Here both z and ct run from -» to +», and f(z,ct) vanishes in the distant

past, i.e. for ct + -», The explicit solution of this differential equation is

" z+(et-ck)
Wz,et) = % [ den / 4z £(g,c1) (87)
CT==o g=z-(ct-c1)




There is no connection between the dummy variable f of this equation and
the [ of equation (34),

This writer could find the explicit formula (87) in ohly one book,
namely "Mathematical Physics" by Eugene Butkov, Addison-Wesley, 1968, pg. 60T7.
As this book is not readily available, we establish the validity of (87)
here, We will not go through the process of creating this equation. This
process is based on physical intuition, which comes from the examination of
vibrating stringsy officially it goes by the name of Green function téchniques.
Instead, we will check that the differential eguation (86) is setisfied by
the solution (87). We calculate tﬁe required partial derivatives. Ve start
with 3%; . In (87), the ct occurs in 3 places, On taking the derivative
with respect to each place in turn we obhtain
3 [z+( c}-c‘l’) N

= V=% as r(zg,ct) +
fct r=z-{ct-ct) at cr=ct

+ % fwtdcrffz+(ct-ot),ct) +

=00

+% ICt detf(z-(ct-ct),c1) -
cr=-o

The first term vanishes, because the domain of integration has shrunk to
zero. In each of the other terms, the ¢t occurs in two places. If we denote
the first partial derivative of f(z,ct) with respect to the first argument

by g(z,ct),we obtain

32 ct
e ¥ = %{f(z,et) + [°° der glz+(ct-caler) +
cT=—»
+ f(z,ct) - ICt det g(z~(ct-ct),ct)} ,
CT=m®

or
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Jvct

.r;%érr b= f(z,ct) + % det [g(z+(ct-ct),ct)~g(2z=(ct-cT),c1)] . (88)

CTEm®

Now we come to the z-derivatives. In (87), the z occurs in 2 places.

Proceeding, as we did before, we obtain

%%“ % ICt det [f(z+(ct-ct)-f(2z-(ct-cT),c1)] ,

Crmac
and

32 - 1 tct

57=% [ det [g(z+(ct-ct) - glz-(et-et),e7)] . (89)
g cTz-o

When we subtract (80) from (88), we see that (86) is setisfied indeed.

We should require not only that the differential equation (86) is
satisfied by the solution (87), but also that the solution contains only
outgoing waves, Let us check that the second requirement is fulfilled as
w2ll, We assume that the excitation f£(z,ct) is confined to a finite domain .-
of the z-axis, say to the domain {z] < b, where b is some constant length.

We therefore assume that
£(z,ct) = 0 for [z] > b .
Now let us examine the time derivative 5%%” rather than ¢ itself., We already

calculated this derivative and found

azé =% ICt det f£(z+(ct-ct),c1) +
CT==0

+ Y% fCt det f£(z~(et-ct),c1) .
cT=-e

Let us pick a point 2z to the right of the excitation domain; thus z > b, Since
et=ct > 0, we have z + (ct-ct) > b, so that the integrand iun the first term
vanishes., Therefore only the second term survives. But in this term, z and ct
occur only in the combination z-ct, which signifies waves that travel in the

positive z-direction, i.e. outgoing waves., Similar statements apply to a
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point z which is to the left of the excitation domain. Thus, (87) contains
only outgoing waves,

Let us now apply the solution (87) to the problem of equation (85).
We obtain

cAp(z,ct) = = % B% (lc_f')-l rJ .

o'e
z+(ct-ct)

2 .
. ICt det [ dg{1+exp(- Eéiqcos[xz-nl)(c- %—cr)]}cAo(t.cT) . (90)

eT=am g=z=(ct-ct)
We observe that this result is a linear functional of the incident electro-
magnetic vector potential cAp. Let us assume that cAp is a monochromatic
wave; whose wave number is matched to the wave number K-k of the beats, so
that we can obtain the strongest possible response. Accordingly, we write
(with (66)) |

cAg(Zyct) = cAg'cos( (1~ %J 52§iL (gter)] , (91)
where cAp is a constant amplitude factor. The plus sign in the (z+et )=term
indicates that the incident wave travels in the negative z-direcﬁion.

A precise interpretation of the formula (87) would require that we make
the right-hand side of (85) tend to zero in the distant past. We can achieve
this by first decomposing (91) into two exponentisl terms, i.e. by writing

cAg(g,e ) = %eAp' exp[(1- ‘E'-)(i %"-‘-)(cmv)]
+ Jiehg'expl (1- D) (- 1 BB (geer)] . - (92)
And then we should replace the wave numbers i Ezgil and -i EQEEL by i :2§iL + B
and i 52354-+ B respectively, where B is a positive real quantity. We then
would replace (92) by
cAo(z,cr) = %ehg'expl (1= D) (1 521 + g)(gwer )]

+ YeAg'expl (1~ ) (-1 K251+ 8) (g4er)] (93)
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The presence of the quantity B in (93) would ensure that cAgy(g,co) tends to zero
for ¢t -+ w» with sufficient rapidity. We would then calculate the respence
cAy separately for each exponential term in (93) and add the results, which wve
are permitted to do because of the linearity of the functional (90). In the
end we would make B approach zero. But this concession to logical precision
is not worth the effort, Therefore, we shall evaluate (90) on the basis of
expression (91).

Furthermore, we shall ignore the constant background of the electron beam,
wheh we calculate the response cAj, as being of no great interest. Accordingly

we delete the term "1" in the curled bracket of (90). Thus, with (91), we

obtain
chy(z,ct) = = % Lud (l).-1 rJ chy' .
( beats ¢ ¢ o e
" z+(ct-c1) 2
) fc deco dg exp(- éy)cos[(Kz-Kl)(C— % et)] .

cT=-® g=z-(ct=ct)

» cos[(1- I) £2ZEL (g4er)] .
For the sake of greater convenience, we calculate, not cA; itself, but its
time derivative S%cAz We repeat the differentiation process that we used

when we checked the validity of (87) and obtain

-1
3chy (z,0t) = - % Elc'. (3) r JeCAo! .

det c
beats
fCt der{exp(- (z+(g;—c1‘ Jeos{(kg-ky)(z+et-(1+ %)c'v] .

eT==m
cos[(1- {-) %E-L (z+et)] +

+ exp(- L2=letoet ) oogp (k pok, ) (gect (2= T)et)]

cos( (1~ {-) f-L;il‘- (z-ct+cs) 1} . (95)
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We assume that the field point z is far beyond the region of beats in the
direction of the positive z-axis. Then z > 0, and z >> a, Since also ct-ct
is positive, we see that the exponential fading factor in the first term of
(95) is essentially zero, We can therefore delete the first term. In the
second term ye rewvrite the product of cosines according to the formula

cosEcom = Y%cos(Em )+%cos(E-n) .

Then

3cA, _ oy, bmvy-?

act(z,ct) =X -;(c) r Jcho' .
beats

. (et (z=(ct-cv
[ ar exp(ERgmEL)

N cr==x
' KK
¢ feos[~Z=L (241~ T)(z-ct) + 2(kp-k) (1= Tlet] +

+ cos[ﬁzéﬁl (1+ %0(z-ct)]} A | (96)

Now we perform the integration over ct. Let us look at the first cosine
term in (96), This is a rapidly varying function of ct with average value O,
The rapid variation is attributable to the term 2(K2-K1)(1-~§)ct in the argu-
ment of the cosine. On the other hand the exponential fading factor is a com-
paratively smooth function of er, It is comparatively smooth, because
(kp=ky)(1 - %J‘is much larger than the inverse fading length %-. As a result,
the contribution of the first cosine term to the integral is essentially zero.
There remains the second cosine term, which does not depend on the dummy
variable ¢t and can therefore be factored out. The only thing thit needs to
bé done is the intergral over the exponential fading factor. With the substi-
tution £ = cv + cz-ct, we obtain v

!ct (Zn(ct-cr))z)

2
der exp(- ez )= fz ‘dg exp(- 555)-

O == f=e o
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Since z >> a, we may replace the upper limit by +e, without meking an

appreciable error. Thus

[ qor exp(L2zletee )y, v (97)
C Xa®

On combining (96) and (97) we. obtain

) -1
aggt(z.Ct) = -a VE;-g'(%J rJeoho' coslk (z-ct)] , (98)
beats .

where we have used the expression (67) for the wave number Kr of the reflected
wave, This wave propagates in the positive z-direction, as indicated by the
minus sign in the cosine term, i.,e. in the direction opposite to that of
the incident wave.

The transverse electric field EZI of the reflected wave is given by

By = - 3%; cAs. (99)
(There is no contribution - v¢2beats from the scalar potential ¢2beaxs’ In
the first place, the domain of non-zero values of ¢2beats is confined to the
region of the beats, since ¢2beats is a solution of the electrostatic Poisson
equation
VT, =t cp ’

beats €pc  beats
which does not yield any propagating waves., On the other hand, the region
for which we calculated the reflected wave is beyond the region of the beats.
In the second place, where the scalar potential does not vanish, its gradient
1s in the z-direction, thus purely longitudine.!, We compare the x-components
of the reflected and the incident waves. TFor the incident wave, we have,
from (91) and (66),

Eq(z,ct) = - 3%; chAg = k,, cAg' sin [Kip(z+ct)] . (100)

it
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vhereas, for the reflected wave, we have, from (98) and (99),

Ezbeats(z’ct) = &/2—% ('})‘l roJecAo'cos[xr(z.-cﬁ)] (101)

The ratio & of the reflected to incident power density is the square of the

ratio of the amplitude factors in (101) and (100), so that

2
. LAYAATS
R= (= /oar - (D-1ra,) . (102)
in
If we introduce the wavelength Ain= Kﬂ- of the incident radiation, equation
; in
(102) becomes
all vyl 2
R=(an, AL g2, (103)

Let us insert numbers, For the fading length a we take the optimistic value
of 1 cm. Suppose we adjust the device to an optical wavelength A in =5 x 10~5 cm.
We also have %N % . Then for J_ ~ 1018 cm=2 gec, corresponding to an elec-
trical current density of the order of 10~! amp/cm?, we obtain, with (81),

R~ 10718 (10k)
This exceedingly small value of the reflection coefficient R shows that the
device is useless. This verdict stands, even i1f we boost the electron beay
cuz:rent by many orders of magnitude, Owr detailed calculation substantiates

our previous estimate, which was hased on the sparseness of scattering electrons.
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Appendix: The Semiclassical Method.

{he problem that we wish to address in this appendix is that of the inter-
action between an atom (or molecule) and electromagnetic radiation. We confine
ourseives to the semiclassical method in which the atom is treated quantum-mechani-
cally, i.e. by way of the Schr¥dinger equation, whereas the radiation is treated
classically, i.e. by way of the Maxwell equations. Of course, quantum mechanics
could be used also for the electromagnetic field., But for the kind of applica- o
tions we have in mind this is not necessary.

Most textbooks of quantum mechanics discuss how a given'electrommgnetic
field influences an atom. But what is hardly ever explained iz how, in wreturn,
the atom reacts back on the field. This aspect is, of course, important in
laser physics. Only a rule is sometimes used, but hardly ever explicitly stéted
nor derived. According to fhis rule, the atomic sources of the electron-magnetic
field are the quantum-mechanical averages of the electric charge densities and
the electric current densities. Here we wish to derive this rule.

The derivation is based on the following consideration. We are dealing
with a two-way process: Forward from field to atom and, in reverse, from atom
to field. We know the equations of motion for the forward process, and we wish
to infer the equations of motion for the reverse process. In order to make this
inference one employs the action principle of analytical dynamics. One finds,
as we shall see, that with the application of this principle the equations of
motica for the forwérd process will determine those of the reverse process.

In order to instill confideace in this procedure we shall employ it first in the
case where both the atom and the radiation are treated classically. 1In this cace

the outcome is, of course, known: The Maxwell equations will be the result, This
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case, then, provides a good confirmation of the procedure. Later on we shall
apply the procedure to the case where the atom is treated quantum-mechanically.

In order to state and use the action principle one has to define a number of
tgrms. We will give these definitions, not in abstract generality, but for the
concrete example at hand, an atom interacting with electromagnetic radiation. The
terms that we wish to define are, in this order, the instantaneous configuration,
the history, the instantaneous’ dynamical state, and the driver fields.

1. [Tne Instantaneous Configuration,

As far as the atom is conderned, its configuration is spécified by the
locations of each of the atomic" particles, if we neglect the spins of the par-
ticles. These locations may be specified by a set of n cartesian coordinates,
three for each particle, Thus n, the number of degrees of freedom of the atom,
is three times the number of particles, In order to avoid cumbersome language
and notation, we will say that the configuration is specified by a pqint q in the
n-dimensional "configuration space" of the atom. If we so desire, we may specify
the point q by the set {a}!, q2, ... qn}, abbreviated by {qi}, of n "configura-
tional coordinates" chosen in any convenient way. ({...} means "set of". Latin
indices run from 1 to n.)

Each point of the configuration space determines an electric charge pattern ?
in the three-dimensional sﬁace in which all of us live, our '"home-space".

Because of the plint-like nature of the atomic particles,this pattern is,
technically speeking, a distribution. Thevelectric charge is concentrated in a
number of discrete points (one for each particle); everywhere else the charge
density ié iero. So as to avoid the technicalities of the distribution theory

we will. envision the atomic particles as being of finite, though small, extent.
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from a high value at the center to zero at the surface of the particle. We '

can then reéard the charge density p of the atom a3 * vhole as being a smooth
function of the home=-space posit;on vector ¥ and of the n configurational coor-
dinates qi. When we wish to indicate what variables the charge density p depends
on we denote it by p(qi,F) or sometimes by b(q,?). - As the text of this pera-
graph shows, two spaces are involved in the theory, the home-sapce and the atomic
configuration space. Vectors in the home-spsce will be denoted by an upper bar,
as we have already done it for the position vector r.

We have completed the discussion of the atomic configuration. We can now

go shead and define what is meant by the instantaneous configuration of the elec-

tromegnetic field. Here we shall use the familiar notation and terminology of
engineering electromagnetics, although there exists a more felicitous notation,
namely that of the exterior calculus, which conforms more closely to the geometric
imagination., As most readers may not be familiar with the latter notation, we use
the former, thus trading ease of visualization for familiarity, All quantities
and formulas will be expressed in the SI system of units (Syst®me International).
One's first inciination might be to describe the instantaneous configuration
of the electromagnetic field by means of the following two fields: the electriec
field strength E and the magnetic induction B, But then one does not account
for the fact that E and B are subject to the constraint expressed by the first
pair of the Maxwell equations, namely

3 = _ 5 . ® =
VxE+-a?EcB-0andv cB=0, (1)
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(We have inserted the factor c (¢ = speed of 1light in vacuo) in various places.
The advantage is that E and cB ave expressed in the same unit, namely volt m !
and that the differential operators V and.gf%bring in the same unit, namely mf?),
In order to enforce this constra§nt, one sdopts the usual procedure of expressing E
and cB in terms of the vector potential A and the scalar potential ¢, as shown
by
E=- (3%; CA + V¢) and cB = ¥ x A (2)
(Both cA and ¢ come in the same unit, namely volt.) The fields of ckK and ¢ are
free of constraints. We use'them to specify the instan-
taneous configuration of the electromagnetic fiéld.

At this point we must say something about the boundary conditions for the
electromagnetic field, We imagine that fhe atom is located inside a large room
(singly connected and bounded by a single surface, like a room in a house) with
perfectly reflecting walls. The boundary conditions for E and cB are then that
i 1z normal to the wall and that cB is tangential to the wall, i.e. that

Af xE =0, and AT *» cB =0 , (3]

where AF is the vectorial surface element, directed outward. We can enforce (3)
by stipulating the following boundary conditions for cK and ¢.

AF x cA =0, and 4 = 0 at the wall, (L)

The instantaneous configuration of the entire system comprising the atom and
the electromagnetic field is given by the point q (or the n configurational
coordinates qi) of the atomic configuration space and the two field functions ¢(Tr)
and cA(T) in the three-dimensional home-space.

2. The History.

The history of a system is determined, when we specify the instantaneous

configuration as a functicn of the time t of its occurrence. In our case then

Sk e N

LT,

R T T AT TR SIS

.




ORIGINAL PAGE I3 A>
OF POOR QUALITY

we specify the history by the functions qi(t), ¢(r,t), end cK(?,t). In general
the history may be made to conform to any prearranged plan. But then the system
will have to be drivenby means of suitably chosen driving agencies, which will bve
discussed in section k.

3. The Instantaneous Dynamical State.

The instantaneous dynamlecal state of a system is determined, when we speclfy
the time t of its occurrence, the configuration {qi,¢(§), cA(T)} et that time, and
also the time derivatives of the configurational parameters at that time, i.e,
the set {vi, 3% ¢, 3%~¢K}, where we have used the customary abbreviation vi
E%-q?. The partial derivatives ngindicate that the time derivatives are to
be taken while the position r in the home-spece is held fixed. Altogether then,

the instantaneous dynamical state is given by the set {:, qi, vi, ¢, cK, 3%-¢, 3% c

.

As far as the fields ¢, cK, etec. in this set are concerned, they have to be speci-

fied throughout the room in which the fields exist. The utility of @he concept
"instantaneous dynamical state" arises from the fact that the specification of
this state at one single time, e.g. at t = 0, is enough to determine the entire"
history, provided that the system is "free-running", i.e. not driven.

We have seen that the instantaneous configuration of the atom, i.e. the
set {qi}, determines a charge density fleld p(qi,F). Similarly the iﬁstantaneous
dynamical state of the atom, i.e. the set {t, q}, vi}, determines n?t only a
charge density fleld o(qé,?) at the time t, but also a current density field
E(qi,vi,E) at that time. The current density field will be linear in the v

so that we can write

Tt vt F) = VJEJ(qi,;) , (5)

5
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where we have used the summation convention: We will always sum over any repeated
index, here j, which appears both as a superscript and a subscript. Latin indices,
range from 1 to n, where n is the number of degrees of freedom of the atom,

One should keep in mind that the functions p(qi,f) and‘EJ(qi,F) do not expli-
citly depend on the time t. The time-dependence of the charge density field and
of the current density field is implicity it arises from the fact that, when the
history is examined, the qi and vi are seen to be functions of the time.

The continuity equation

-a-%p+v-.1=o (6)

entails a relation between the functions p(qi,i) and Ej(qi,F). Since p depends

cn t by way of the qi, we have

- NP - S RN R R A
5T P (dtQ)an v =5 .

Also, from (5),
Tor=vLF,, ,
since the vJ do not depend on r. Thus the continuity equation yields
Wdrp+7.51=0.
dq
This equation must hold for any arbitrary choice of the velocity components vJ.

Thus we get
"-3—3-p+V-JJ=o. (1)
3q
One should note that the derivative -33 attacks one of the qi in the functional
3q -
form p(qi,E) whereas the divergence Veattacks the r in JJ(qi,T).

Equation (7) is not the only relation connecting the functions (¢,7) and
Ej(qi,F). There is another important relation, which we derive in Note #1.
It is

R e S
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3 = 3 = - 1= - '
——J, e, =T x(=J, xJ,) ., (8)
aqid an i p i J

The origin of equation (8) is more subtle than that of the continuity equation (6),

on which equation (T) was based. Equation (8) is derived from the principle of

"gene-identity". This word, meaning identifisbility, was coined in Germary, per-

haps around the turn of the century, probably because it is easier to pronounce
than its synonym. We say that the atomic system obeys the principle of gene-
identity, if each element of chgrge can be regarded as an identifiable object,
i.e., if it can be tagged. This is certainly the case if each atomic particle
is a point-like object. We shall maske the asgumption that the n + 1 functions

p(qi,F), EJ(qi,F) are structured in such a way that gene-identity is fulfilled

even for smeared-out, i.e. continuous, charge and current densities. Equation (8)

is the necessary and sufficient condition for gene-identity.
Equation (8) is an important link between the history of a system and the
driver fields. These fields will be discussed in the next section.

4, The Driver Fields .

., In Section 2 we introduced the notion of driving agencies. These agencies
are fields in the home-space, namely a force field with force density fd(F,t),
an electric charge field with charge density Sd(F,t) and an electric current
field with current density Ed(?,t). These three driver fields have to be
impressed from the outside, i.e. from sources that are external to the system.
Figuratively speaking, the driver fiel&s are impressed "by hand".

We have affixed the superscript d ("d" for driver), mainly in order to

distinguish the driver Tields pd and 3d from the atomic fields p and J (without

a superscript), which were discussed in the previous sections. The driver fields

d

AT

p and 3d have to be superimposed on the atomic fields p and 3; so that the total

TR L e A e 4
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fields pt and Et ("£" for total) are given by pt = p + pd and Tt = T+ Ed. In

a and J are spatially well separated from

actual practice the driver flelds p
the atomic fields p end 3, so that the superposition, when viewed as a technical
task, is easily accomplished.

We have to make a comment about the forces whose density we denoted by Fd.
Heré only those forces are included which are impressed directly on the atomic
constitutents by the "man" who steers the system to make its history conform to
a prearranged plan. Of course, this "man"would also have to impress forces on
the electrical drivers, whose densities we dennted by pd and Ed,in order to over-
come inertia effects and to counteract the electromegnetic forces on the drivers.
(The density of these electrcmagnetic forces is given by the ususl expression
pdﬁ +‘3d x B), Perhaps the word "interface" used by computer engineers may help
to explain why the density Fd should pertain only to those forces that are im-
pressed directly on the atomic constituents., The interface between the system
under study (namely the atom and the radiation field) and the external world
(namely the "man" who steers the system and.his actions) consists of nothing but

d, and Ed. Thus the forces that the "man" impresses

the three driver fields Fd,kp
on the two electrical drivers (whose densities are pd and Ed) are entirely within
the external world; they do not penetrate the interface.

When the history of the system is made to conform to some prearranged plan,
then the system has to be "steered" by means of the three driver fields Fd, pd,
and Ed. The required driver fields can be calculated by way of the action
principle, which is the subject of the next section. The case that is usually
treated in the literature is that of a "free-running" system, i.e. & system

whose history unfolds according to spontaneous evolution. A free-running system

A o R R AR ADHANAN
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then need not be driven, so that the condition that a system be free-running
is that all three driver fields be zero, This condition yields the well-known
Lagrangian equations of motion. |

5. The Action Principle,

With each history‘{qi(t), ¢(7,t), cA(¥,t)} and a set of two times t = a,
t =b > a there is associated a quantity Aa b? the action accumulated between
?

these two times. The units in which Aa is expressed are those of an action,
?

b
for instance joule sec or joule hertz !. It is given by
= [P '
Aob = Ji=a 8 L (9)

vhere L, the Lagrangian, is a function of the instantaneous dynamical state.
The units 1in which L is expressed are those of an energy, for instance jJoule.
The nature of the function L is obtained essentially through revelation, of
course not divine revelation, but revelation stemming from the long tradition
of scienc;. But one ought to check the revealed result against other things
we know. And that we shall dorto some extent later on. For the system con-
sisting of an atom and an electromagnetic field, the Lagrangian L is the sum
of three terms, the atomic Lagrangian Latom the electromagnetic Lagrangian

Le.m.’ and the interaction Lagrangian Lint'

L= Lafom + Le.m. + Lint ¢ (10)

We now proceed to write decwn these three terms. 1In the non-relativistic

approximation, to which we shall adhere, the atomic Lagrangian is given by

i
= L iy’ o) ‘A v, ooz 49
Lotom = 3V Mijv PUV -V v, (11)

where the guantities Mij; Ui, V! depend on the atomic configuration {qk}, but

not explicitly on the time t. (In general these quantities could be permitted
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to depend explicitly on t, but such a t-dependence is not needed for our
sya#em.) We have affixed primes tb Mid’ Ui’ V, because we wish to reserve
the unprimed symbols for related quantities that are of more immediate practical
importance. They will appear lgter on in our development. The first term in
(11) is the kinetic energy, the last term is the potential energy. And the Ui
are the components of a vector potential in the configuration space. For par-
ticles without spin all the Ui are zero, We shall restrict our treatment to
spin-less particles,

The electromagnetic Lagrangian Le n is the volume integral of the

Lagrange density Le m of the electromagnetic field,

= : ' )
Le.m. I ATLe.m. i (12)
where At is the volume element. The integral is taken over the whule room in

which the atom is situated, The Lagrange density Le m is given by

€ €

= 2 FeF - -2 cBecH ,
Ly . = 5 B'E = =5 cBecB , (13)

where E; is the permittivity of vacuum., The two terms in (13) are, respectively,
the electric energy density, and the magnetic energy density. Equations (2)
enable us to express Le n, Tore directly in terms of the configurational para-

meters cA and ¢ of the electromagnetic field:

€ €
= 2 (ol ah o+ Th) (O of 4 T} « -2 Ve (T x op
Ly m. =73 (actcA + 76) (gog oA + 7¢) : (7 x cA)e(V x cA) . (14)
The interaction Lagrangian Lint is a similar volume integral, this time
of the interaction Lagrange density Lint'
L, = [ffeel (25)
The integrand Lint is given by
= L (ekeT -
Lint =3 (cAed = ¢cp). . (16)

R I TITET T A TR T e g st
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Note that J and cp are expressed in the same units, for instence amp m“2, Accord-

All

ing to (5), equation (16) may be written in the more directly useful form
l, = i
Lint = = (cA Fiv - ¢cp) . (17)
Perhaps it is advisable to repeat (17), this time with all the independent

variables indicated:

Lint(qi.vi,F,t) = %{cx(i,t) : Ei(qé,f)vi - ¢(Fyt)ep(a’,F)] . (18)

g o

The sction principle is concerned witi: the variation GAa b of the action,
9

when the actual history'{qi(t), ¢(r,t), cA(r,t)].is replaced by a slightly varied

history {q?(t) + qu(t), ¢(¥,t) + 8¢(F,t), cA(r,t) + ScA(r;t)). Here the varia-

tions qu, 8¢, 6ch of the configurational parameters are very small in some sense
(i.e. almost infinitesimals), but otherwise arbitrary. One then evaluates the

variation of the action 6A z A

a,b = A (varied history) - Aa,b (actual history).to
first order in the 6q , 8¢, ScA with the aid of the rules of the calculus of
variations, Although this is a very common calculation, we will repeat it here,
because it uses and generates some interesting ideas.“

But before we start with this calculation, we should adopt a policy of pru-
dence and eliminate the somewhat vague concepts of "very small in some sense" and

"almost infinitesimal". The procedure that we shall follow is also common., In-

stead‘of examining just two histories, namely the actual one and the varied one,

we examine a whole faﬁily of histories, ordered and labeled by'some "variational
parameter”" n., The case of n = 0 GOrresponds to the actual history; and the more 3
deviates from zero; the more does the history labeled by n deviate from the history
labeled by 0. Accordinély, the configurational parameters qi, ¢, and cA will elsd
depend on the label n., Thus the history labeled by n is given by the set

{q?(n,t), ¢(n,r,t), chin,r,t)} Since qi depends not only on the

When we vary the action A , we keep the end points a and b of the surveillance-
time interval fixed, Howe#er, in some investigations, one finds it useful to
vary also the end points by the amounts 6a and éb. But we can get along without
the introduction of these more general variations.

471 ST TN
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time t, but on the variational parameter n as well, the configurational velocity

component vi is given by the partial derivative -9- « Then we simply define
i - i
8q, 64, GcA, and GA& b by

- 3A
st = ..9.. &n, 8¢ = ..2 &n, 6ck = -5% Ny A, o = —31‘-‘% &n
g | 2 1
i_ 3 9¢q”

And the &n that appears in these equations could be of any magnitude; it need
not be "small" of "infinitesimal". In fact, all we need to calculate is the
partial derivative a: Aa,b In a way, the &n is mere decoration. In the end,

1f we wish to do so, we may multiply the resulting equations by &n and use (19)
to recover the 6q s 8¢, sck, éAa,b' During the calculation we will make free use
of the fact that second partial derivatives do not depend on the order in which
they are taken. Thus we may replace ag égé'by 82 2%; ' ¢ by V-Jz ; ete. In

order to make it easier to read what is being done, we perform the calculation

for each of the three portions of the action separately. These three portions are

= [P b ;
As,b = t=a 4t Lotom? Aa,b 'F lg=a at Lo m, * (20) : i
atom i
e.m' H
AL =[2 an, , .
‘g t=a int i
int
a. The Portion 8A ab ;
atom ;
We have
8 b 3
an Aa b o Jt=a dt oan Latom ‘
atom

In order to write the integrand in a useful form, we use the fact that

(t, q y V ) depends on n by way of ‘the qi and v . Thus

atOm
21, = (2L ) B, (g ) 22
an “atom avi atom’ 9N éqi atom’ 9n ° :

e SRR
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We use the customary abbreviation OF PoOR Quffn!ys
9
— IJ = P' .
avi aton i
The pi are the configurational momentum components. In our case, ve have
p,' =M Ve
i 13 i
where we have used the symmetry condition M' = 51 , which does not entail any

1
loss of generality. This expression for pi, involving the primed quantities

MiJ and Ui, shows why we have affixed a prime to p,. We use

i i i
v - 23 I
on ~ o —%§ ot on °

Thus
i
9 - 3 9q ) Lo
an Latom pi o + (aq} Latom) an =
{  9p! .1 i
,__Q_(p,a ‘)_..B.i-ig—...(_a_.y_, )QL.
9t 'F1 on ot on aq} atom’ 9n

Next we integrate over the time t. Afterwards we multiply by én (Note that

8n does not depend on t), thus obtaining the final result

op' .
o 1yb _ (b i R I i
GAa,b = (Piaq )' = Jg=a 3 ot aqi I'&;A:carn)aq * (21)

atom t=a

b. The Portion SAa’b.
e.m.
We have
_ )

3
an Aa,b = Jtea ¥ T Lem. ?
e.m.
and

. n((f ae 2
.ﬁ Le.m. - f!'r AT 8" Leum.

Equations (1L) yields

T I et
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3_ ack 3% 3Ry | o5
'5? Le.m. (act an) €oF - (¥ '5'rT) * coE - (7 x an) €SB »

where we have used equations (2) to shorten the notation, We rewrite each of

the three terms in a way that is preliminary to an integration by parts.

3, 3 ,3cA " 3chA 3
an Le.,,,m. ® = Pt { an eOE} * 30 Bet coﬁ

-¥. {-a%%-x eocE} -3-_?:-- (7 x eocE) .

We integrate this equation over the volume of the room that contains the atoms
and the radiation field. As for the first term on the right-hand side, we may

interchange the space-integration and the fime-differentiation, obtaining
acA -

By virtue of the theorem of Gauss, the contributions made by the third and the
fifth term gets transformed into the surface integrals.
- T 3¢
N A eoﬁ 3n *
and

acl 3cA
- 4 4T - nxecB}=-<ﬁ’(Af’< 5 e,cB .

Now, the derivatives a% and 84; fulfill the same kind of boundary conditions

that were given by equations (L4), namely

AT x 3%—% = 0, and —g% = 0 at the wall, (22)

All

(Simply differentiate (4) with respect to n.) As a consequence, the two surface

integrals vanish. Thus we get
9 dcA ) =
— L at{fffA -S—-eE}-*fffAr?ﬁ-V-eoE-

an e.m.
3cA = = ) =
-fffA'r '[VxeocB-act €.kl . |
Next we integrate over the time t. Afterwards we multiply by én (Note that é&n

does not depend on ¥ and t), and obtain the final result
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%0 °U415r';§
aAa’b = - L— [If ax(8ch) « ¢ E} +
e.nm, t=a
+ f:sa at{fff at(&)7 - eoﬁ} -
- [2, atUff] de(8ck) « (¥ x e B - 53 € E1} . (23)

¢c. The Portion §A _ .,
8,b

int _
Here our development will become a bit more perspicuous, if we vary

the atomic configurational parameters qi and the electromagnetic configurational
parameters ¢ and ci separately. We are not forced to do it that way, dbut it
eases the task of writing and reading the equations. Accordingly we examine

e family of histories that depend on two variational parameters n and §. The
history labeled by the pair {n,z} is given by the set {qi(n,t), ¢(z,r,t),

cA(z,r,t)}. Then we define GAa b Y
9

int
int int int
First we calculate =2 A . We have
an a,b
int
2a = a2y
on "a,b t=a 3n “int °?

int

and
3 - i
T Yint = [1] an Ling *

We obtain‘s% Lint from equation (16). But there only 3 and p depend on the

variational parameter n. So we have

B al(g.¥ 2%
1) Lint T e (ca an ¢c an) . (24)

2 P TR
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i
The next task is to express %%-and %%-in terms of the 2%; . Equation (5) yields
e ‘1 a7, 1 93
a7 3 v g 3 _9 3g + i vi .

an = Y1 Tan T Tn V4 T 915 Tan T Thn
We rewrite the first term in a way that is preliminery to an integration by

parts. And in the second term we replace the dummy index i by §. Thus

aqt aJ 3F
33 3 1
5n = 3% (94 an) -+ an
. . Kk aqd . 4
Since the J, end JJ depend on t and n by way of the q , we get (Note: T )
1 i aF, 87

'33 3 (J 23_.)+.a£-_vd(_—d.___i.) .

3n 9t Ui on an ‘aqi an

Now we use equation (8), which followed from the principle of gene-identity.
At the same time we can bring the E%Eiand v} behind the curl 7%, since neither

of these quantitiés depends on r¥. Thus we obtain

- i
S _ 3 7 390 L= 2 % o
We use (5) to replace 33 v by J. Also, since the combination %-Ji 2%-ﬁ-will

occur frequently later on, we rewrite the first term in such a way that this

combination will appear. Thus

3
== 5 [p(

2 2149 123, A . 7). (25)

e} i an

Next we calculate sﬁ-in e similar manner. We have
2 3o a0
- ’
an aqi an
or, with (7),

§£.=_._L .
. 3 =V 3,

The E%R-nmy be brought behind the divergence Ve , since this quantity does not

depend on r. Thus

i
B._F. ek, 2, (26)
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Equations (25) and (26) may be written in a shorter way. We multiply

these equations by én. The lert-hand gides then become

&7 = ﬁi-sn and 6p = 2£ &y , (27)
an an
On the right-hand sides we may bring the &n behind the differentiation operators i
3%', v x, 5-, since én does not depend on r and t. Then there will appear the :
combination
i
17 23g i
Q.Jl on Sn oy qu i

for which the customary abbreviation is 6r. The physical significance of §r

will be explained presently. Then, with

6F = =760t (28)

equations (25) and (26) beccme
57 = a: (p8T) + ¥ x (6% x J) , (29)
§p = = 7 « (pdr) . (30)

Another derivation of equations (29) and (30), which are used in our

subsequent discussions, may be found in Note #2, There the derivation is.

I
{
H
i

s

bagsed on the vector calculus.

SN

&I

We interrupt the process of calculating GAh b in order to discuss the

meaning of 8%, called the field of virtuel dispiiSements. According to the

S et

SR S

principle of gene-identity, each elemernt of charge may be tagged, i.e. it may

be considered as an identifiable object. Let us consider one such element,

and let a be its position in the home-space. Now a depends explicitly only on

the atomic configurational parameters ql. When the qi depend on the time t, i
the velocity gt of this charge element is given by .
i P

aa_e 2 _s 4 5
st~ T a&- ,T7 ° %

9q 9q

R S

W)
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But the velocity ought to be related to the local charge density p and the local

current density J by p %%-- J. With the aid of (5), this equation yields
da l= i
i " Ji *
We compare the two expressions for — d and use the fact that the set {v } of the

dt
configurational velocity components may be chosen arbitrarily. Then we find

(%)
H-ml
D|F-

3y . (31)
g .
Now let the qi also depend on the variational parameters n, as before. Then

we have
- - i -
63,5-,3%611 -a—i%dnz—%ﬁqi.
2q aq
With the aid of (31), this equation becomes
- 17 .14 -
6a=37,80 . (32)

An equation of this type holds not only for this particular charge element, but

for every charge element. Of course, the p and the 3 in (32) have to be evalua-

i
ted at the position at which the charge element is situated. We may therefore

regard (32) as a generic relation. The customary symbol tor a generic éa is
&, although &a would be preferable on strictly logical grounds. With this

change of notation, (32) becomes

Sr = ot

l -
1 repeated.
According to (28), each set of {8q --Jl— 8n} engenders a field of

virtual displacements 8r, Additional material, 'especially as it concerns
equation (31), may be found in Note #1.
9
We may resume the calculation of n Aa,b'
accustomed to the use of quantities which %%E prefixed by a § that we can skip

At this point we have become so

a few steps and calculate (3%-Aa b)Sn directly. To repeat: No infinitesimals
: ’ »
int

L M AN TN T e et e s L
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are involved, A quantity, say Q, that is prefixed by a § simply stands'for
the n-derivative-aa'multiplied by 6n. And 8n is of finite magnitude, Further-

an
more, &n does not depend on r and t; it is a constant. We have

3 b
(Fy 84,500 = t=a lint *
int

and
8L, o = [ffor 8L,
Equation (24) yields
= 1.7 . &7
GLint = E{cA 8T - écbp) .
With the aid of (29) and (30), this equation becomes

sL, o = %‘ {cA ‘3% (p8F) + cA * [T x (8T x J)] + ¢c¥ « (p6T)}

We rewrite each term in a way that is preliminary to an integration by parté,
and obtain

5L =_L(c§.ps§)--§-°-‘i-ps; +

QQ

int ct ct

+
ol o]

. [(6% *x T) ch]+§(6'ch) . (6% % 3J) +

<l

7« [ocpsT] - HTp) « cosF ,
or, with the aid of equation (2),

e (cR e p6F) + 1T« [(6F xF) x ok + 4opt
GLint = =% (cA ¢ pbY) + =V [(67 x J) x cA + dcpdr]

+ %-(cpﬁ +J % cB) ¢ 6% .
We integrate this equation over the vclume of the room that contains the atom
and the radiation field. As for the first term, we may interchange space-
integration and time-differentiation., The second term gets transformed into
a surface integrel by virtue of the theorem of Gauss., But this surface integral

vanishes because of the boundary conditions (4); it is treated in a way that

S e A et

Ry

grcos

e T

st g e,

R e e e

s e

T, BN NG K - 51 e T b i

g e
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is very similar to what was done in the preceding section, We then obtain

6L . = 3%:{IIIA+K . p8T} + %-fffA%(cpﬁ +J % cB) « &7

int
Finally we integrate over the time t and obtain

- b T
(-a-% A p)on = (fffath o o8F) | -4 [° at ([ffas( E+ T % B) « 67} . (33)
1ﬁt =g t=a

Next we calculate (3%-Aa b)&c. Again we work with quantitles that have
L

a § as a prefix. Here, of c%ﬁ?se,the § indicates the f-derivative multiplied
by 8;. Equation (16) yields
1 - -
8Ly = Z(J s ScA - cpbd) .
The only thing we have to do here is to integrate this equation over space and

time, We obtain

(ﬁ a.,'b)sc = f:ﬁa dt{fffAT %'(3 ¢ GCK - CDG¢)} . (3)4)
int

Finally we add equations (33) and (34). Then, according to the first

equation of this subsection, we obtain the desired quentity GAa b ‘We arrive
]

ad int
Sy p = USIatE ¢ 0673 4
int t=a
+ [° at{ff[acl(oF + T x B) + 6F + T+ 6ck - o8]}, (35)

t=a

which is the last equation of this subsection.

Now that we have finished expressing each of the three portions of GAA b

in a form that is useful for our purposes, we obtain GAA b
9

equations (21), (23), and (35). We change the order of the various terms so

itself by adding

that related terms appear together. Since in the final expression the varia-

tional parameters n and § no longer occur, we can replace the partial

OGS S e R

S S D e =

=

M 54572 B AR A 577 758 e 2 ks e
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ap; dp!
derivative a—ti in (21) by the total time-derivative Ti . (The partial deriva-

op!
tive *Eé-appeared at an earlier stage of our discussion, because then the pi

were considered to depend not only on the time t but also on the variational
parameter n. From now on we can ignore the n-dependence, since in essence it

was only a procedural artifact in our derivations.,) We obtain

- R |
84y p = (pjéa’ + [[[atd + 6F - [[fsre E « 6a) o
. S
- ft=a at{(—F - = " atom)&q - f”ét(pE +J xB) » 6% +
+ [[fax[(F x-f-ﬁ-azeE-J)-6A-(v-eE-p)6¢]} (36)
o |

where we have introduced the permeability My of the vacuum, given by Mo = T a7
(o]

Later on, when we will state the action principle, it will be helpful if

we replace those terms in (36) that contain the Sqi by terms in S§r. To this

i

end we introduce n vector fields s~ in the home-space. (Note that n was the

number of atomic degrees of freedom) which are "reciprocal” to the n vector
fields J,, i.e. which fulfil the relation

[ffsst « 5y = 6} ' (37)

Here 6% is the Kronecker-delta: 6+ = 1 for i = Js 65 =0 for 1 #J. 'The 3% are

J J J
not uniquely determined by (37). But our further considerations do not depend

on the feature of uniqueness. At any rate, later on the Ei will occur only in

the products pEi; and these are determined uniquely, because the atomic configura-

tions are not subject to the kind of constraints that we find in engineering
mechanics. in the form of mechanical linkages.
We can express the 8q° in terms of the &r-field if we multiply equation (28)

by 05Y end then integrate over the volume. Then, by virtue of (37), we obtain

e

[

Le St pran g gt s cnen
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sa’ = f[[arpsd o oF . J QUA“TV (38)
We use this result to rewrite equation (36). Here the p1 and the expression

dp!
( di 81 atom> may be moved behind the integration signs f[f, since these
3q

quantities do not depend on r. ’We obtain

6, o = {mmsip; +K)  6F - [ffove F » 6A)

t=a
- [ dt{fffAr[( = - . 2on, 08 - (0B + T x B)] ¢ 6F
’q
+f]fAr[(Vx§l§-a:eE-J) + 6A - (V¢ g B - p)6s]} . (39)
[o)

At this point we are ready to state the action prinaiplg. But before
we do so, we briefly review what we have done so far. We started with an
expression for the action Aa,b as a functionel of the history. This step vras
a part of Physics. Then there followed a rather lengthy derivation resulEing
in the expression (39) for the variation of the action, This derivation was
mostly of a purely formal nature, except for the use of the principle of

gene-identity [as in equation (8)], which is a part of Physics.

The action principle, a part of Physics, states that the driver fields
Fd, pd, and 3d are related to the variation of ‘the action by the equation

y = UIE gy 65 - (1] - R -

t=a
- fb=a{dt{fffAt;d - 6T 4 ff[A‘l'[E'd . 6 - %6411 , ‘ (40)

where Sﬁom.is the momentum density of the atomic constituents, and where D is

the electric displacement.
When we subtract equation (39) from equation (L) we obtain
. - - - 1b
Ufaelp_ - o('p} + K)] - 6F - [[[ae(D - e ] - 6A}| =
mom i bua,

ap! o )
= fb dt{fffAT[Fd ( d% ;ir atom)ps + (E + J x B)] s &1 -

o T AR AT, R S P A e

(T x LB oL e B oF-F) 6K (T e B-p-pHeel} . (M)
. uo ot _o o

s
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In order to extract useful information from equation (41), we remember
that the atom possesses enough degrees o6f freedom so that there are no
restrictions on the displacement variations &r. (Where there are no atomic
constituents the 6r is complete}y arbitrary by default.) Furthermore there
are no restrictions on §A and §¢, except that, at the walls of the room, these
variations are subject to the bouncary conditions
AT % 6 = 0, and §¢ = 0 at the wall.

These conditions are merely a different version of (22). In addition, the end
points t = a and t = b of the time interval of surveillance are arbitrary. We
observe that the left-hand side of (41) is contributed only by the end points
of this time interval, whereas the right-hand side is contributed only by the

wterior points., Each side is therefore a linear functional of a different
set of guantities., Thus they can be equal to each othei only if they are zero.
Because of the arbitrariness of 6r, 6K, and 8¢ each side can vanish only if the

factors of these quantities are zero. Thus we obtain

- T
Prom = (870} +12), (42)
D=¢E, (43)

dp! °
e (L. 1,  )osl- (pE+ 37 x5 )

dt aqi atom ’
T =7 x - B - st € E-T (45)
A = -
‘ p =V o eoE -0 v (46)
Equation (44) = (46) serve to determine the required driver fields ?d,

ﬁd, and pd. Additional information is furnished by equations (42) and (43).

&5

Ctrga i
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But we will not use them, Equation (4k4) is of great interest. It states that
in the absence of electromagnetic fields the required driving force density is
given by the first term, whereas in the presence of electromagnetic fields the
required force density is reducgd by the amount pE + J x B, This means that the
electromagnetic fielcis exert forces on the atomic constituents with a force
density equal to pE + J x B, Since this agrees with the predictions of electro-
magnetic theory, our choice of Lint' as given by equation (16), has been con-
firmed. [It was the interaction part of the total action that produced the
term pE-+ J x B, as shown by equation (35).] It is hard to imagine - and probably
also impossible - that any other choice for Lint would have produced thé same
result. But then equations (U45) and (46) follow automatically. In terms of
the total charge density pt =p + pd and the total current density P37 Ed,
these equations yield the second pair of the Maxwell equations
Vx-‘;-i-ﬁ-a—ta-eo'ﬁ=3tand'v'-eoﬁ=pt, o

which supplement the first pair (1).

The most familiar application of the actioﬁ principle concerns the behavior
of a free-running system, In this case the three driverfields iﬂ’ Ed, and pd

are zero. Before we set ?d equal to zero in (Lk4), we multiply this equation

by %-33 and then integrate over the volume. With the aid of (37), we obtain
dp! ‘
at " 1 Laton ”'{A-T%JJ - (pE + T x B), (48)

This equation tells us how the electromagnetic field influences the atom.
Equations (45) and (46) yield directly
1 9 = _ v
AT AEE LELER (49)
and
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These two equations tell us how the atom influences the electromagnetic field.

Of course, in all three of these equations we have to express E and B by the

potentials ci and ¢, as shown by (2). At this point we can appreciate the great

utility of the action principle. If the action functional is formulated in such ;

a way thet it yields the expected equation of motion (L8) for the forward process

gk L

"radiation + atom", then it will automatically produce the equations of motion
(49), (50) for the reverse process "atom + radiation". :
We have written down the equations of motion (48) - (50) for the free-
running system in order to show that something we are familiar witﬁ results from

the action prineiple. But it is more useful to work directly with the action
principle, even in the case of a free-running system, and to leave the equations
oi motion as something that is implied by the principle. In this case the action
principle may be stated in a rather concise form, Equation (40) shows that,

when tlie three driver fields ?d, jd, and pd are zero, the termscontributed by
the interior of the time interval t = a to t = b vanish and that only the terms
contributed by the end points ¢+ = a and t = b survive. Thus the action principle
states <~imply that

5A E.T.0. , | (51)

a,b :
' o
where E.T.0, stands for "End Terms Only". In order to apply the principle (51),

one first writes down the action functional A For the system consisting of

a,b’
an atomand a radiation field both treated according to classical physics,this

functional is given by 3 A
, da dq? i
! Uvig__v.o. :
a., t=a 2 e P A at ~«
€. :
+ [[]atl— i -E ck + T¢) » (-- ek + T4) - -%-(V x cA) o (7 x ¢R) + :

i

+2 (ck + T, s gep) 1}, (52)

QU BRI T SR
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as we have seen, Then one works out the variation 6Aa,b by purely mathematical
manipulations and obteins (39). The next step is to set the Minterior term"
f:_a{dt ++s} equal to zero., Here one uses the fact that the variations &r, &3,
and é¢ are arbitrary. The result is the equations of motion (48) - (50), The
end terms themselves are of no interest in the applications we have in mind.

We shall follow the sdme procedure later on when we treat the atom according
to the quantum mechanics. The only modification occurs in the very first step,

namely in the formulation of the action functional. This step will be made

easier, if we rewrite the various terms of (52) in a different order, namely

Aoy = [2 2t S E'i*“TU'*‘fUH‘ . e (vt + [[[ate4] +
a,b  ‘t=a 2 dt 1) dt "4 Wy ac - L wé

€ 4
$ [ w2 (G + )« (GE R+ Tp) - 2 (T xck) » (Txe)]} . (53)

We see that the vector potential component Ui in the atomic configuration space
is augmented by f[fArﬁi + A, and that the potential energy V' is augmented by
[[[bt04. We may regard fffﬁrii « & as the "pull-back" of the home-space vector
potential and [[[ATp$ as the pull back of the scalar potential ¢. In.the pull-
back operation one starts with & quantity defined in the home-space and con--

structs a related quantity ip.the configuration space. A third example of a

pull-back is furnished by equation (48), In treatises an analytical dynamics j

this equation is usually written as E

4
2

? €.Mm,
dat an atom 3

where F° '™ ig the component of the generalized force (here of electromagnetic

J
origin as indicated by the superseript e.m.). We see then that Foem

J

is

given by
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Fy™ o [ffbr -}3, . (E+7 xB) (54)
Thus Fj‘m' may be regarded as the pull-back of the electromagnetic force density

pﬁ +J x B. A fourth example is furnished by equation (38), which describes the
pull-back of a dispiacement field &r, A related equation would be the pull-back
of a velocity field w from the home-space into configurational velocity components
vd, namely

v = [ffaresd - W . (55)

The inverse of the pull-back is the "push-out", 1In this operation we
start with a quantity defined in the atomic configuration space and construct e
related quentity in the home-space. Ve can aiways recover one of these two
operations from its inverse by means ¢f equation (37). For instance the push-
out that is related to the pull-back (55) is

| R A (56)
As we go from pull-back to push-out we use (37) to check the result, whereas we
use (37) directly when we go from push-out to pull-back. Equations (28) and (38)
constitute another pair of'tﬁesé two inverse operations.

The action principle (51) in conjunction with (52) or (53) seems to be all
that is réquired for the analysis of the free-running system. But when one
comes to the equations of motion (48) - (50), one meets a difficult situation.
For the sake of simplicity and physical réality one would like to treat the
atomic particles as point-like objects, But E and B tend to infinity as we
approach the object. As a coﬁéequence, the meaning of the right-hand side of
(48) becomes obscure, as the following consideration will show. The factor %:3

i
in the integrand presents no difficuities. As equation (56) shows, this factor

ACH B B AN 135
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nust be finite, so that w, which here is the velocity of the particle in
question, comes out to be finite for any arbitrary choice of the set {vi}.
Integrals of the type fffAt(%-EJ)p and fffAt(%'EJ)3 present no difficulties,
even though p and J become infinite at the 1ocation of the particle. The values
of these integrals are (%— J f )Q and (% 34) Q w, where Q is the charge of the
particle. But unfortunately the integrand in (48) containsalso F and B, which
tend to Infinity as the particle is approached, And it is this feature that
inakes the meaning of the integral obscure. As far as equations (49) and (50)
are concerned, the situation is manageable, as the theory of the Liénard-Wiechert
potentials would show, But we will not pursue this matter, since the difficulty
about equation (48) still remains.

The discipline of quantum electrodynamics was created for the purpose 6f
coping with this difficulty. But we shall not use this discipline here, because
it is too complex. Furthermore it treats‘the particles relativistically, and
the electromagnetic field quantum-mechanically, whereas we decided at the outset
to treat the particles non-relativistically and to use the classical théory for
the fields. Instead of quantum e}lec¢trodynamiecs, we are going to employ a moré
elementary method. This nethod is based on two approximations, which will be
explained in Section T.

But before we deal with these approximations we will describe some simplifi-
cations that result from the choice of a particular "gauge" for the electro-
magnetic potentials cA and ¢. Chbosing a gauge means’to sub,ject the divergence
~of cA to any requirement that will assist further developments of the analysis.
Our ability to stipulate what ¥ ¢ cA should be is based on the following argument.

According to equations (2) the electromagnetic fields E and cB remain unchanged

et vy

7 I T R R
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if we subject cA and ¢ to a gauge transformation, 1. e., ir ve replace cA and ¢
by cA + Vx and ¢ - 3%; X respectively where x is an arbitrary function of the
position r and the time t. There is then some redundancy in cA and ¢, which we
sain exploit to impore conditions on ¥ ¢ cK. The most common conditions are :
« ch + 33;'¢ =0, (57)
which embodies the choice of the Lorentz gauge, and
Fech=0, 1 (58)

which embodies the choice of the Coulomb or radiation gauge. We choose the

latter. The consequences of this choice will be described in the next section.
Besidas the constraint (58) we will also impose a similar constraint on the
variation 6cA, namely
T+ (8ch) =0 - (59)

The statement that we are going‘to use the Coulomb gauge is not quite precise
enough. What we are really going to do is to expand the vector field cA in terms
of longitudinal and transverse cavity modes. And then we impose the constraint
that cA be a linear combination of only the transverse modes. In other words:
Those expansion coefficients that belong to the longitudinal modes are set equal
to zero. The equations (58) and (59) still hold. But cA and ScA when constrained

in this manner will have additional properties. For instance, the boundary conditions

AT

Af x ¢ = 0 and AT x 6cA = 0 (60) i

will be fulfilled. [See (4) and (22)]. All of this will be explained in the
next section. Instead of saying that we will subject the vector potentiasl cA : ;

to the Coulomb gauge (58), we will say that we constrain c¢A to be "transverse".

CEY R

C -2
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We shall base owr discusalons oh the formalism that may be found in the
book "Microwave BElectronica" by John €. Slater, (Van Nostrand 1950), As this
book may be out of print we shall repeat the argumenta that are yresented there
but nometimen in modified form. We alall une the word "cavity", customary in
this context, for the room that containg the wtom and the radiation field.

This cavity in nssumed to hava perfectly conducting walls, which impliea that

the electric fleld B and the magnetic induction ofl satingy the bLoundary condi-

tiong
AF X Bw 0, ana AT » el = 0 (2) repeaten
Blater's formalism pertaing to the expansion of flalds in terms of cavity modes.

Refore we pet atarted we veview three theorems of geometry. The firat
theorem gtates that the surface integral of the curl of an arbitrary smooth
vector fleld ¥ ia waro, when this integral is taken over a closed surface.

That ia, we have
fhat c TxTwo, (61)
In order to prove (61) we tranaform the aurface integral into a volume integral
over the enclosed space, by virtue of the theorem of Gauss. hun
SPAT O xVw fff AT - T xT,
filnce the divergence of a curd ias wero, equation (A1) follows,

The gecond theoyam states that, for a scalar function ¥ which hag the

constant value 0 on some smooth surface F, we have
Al' x Ty w 0, 18 9 = 0 on F, (6a)
l.e, the gradlent iz normal to the surface. This should be clear, when the

geometrical situation ia visualised. A more formal proof goes as follows., We



A3l
ORIGINAL PAGE IS
OF FOOR OVIALITY

can always extend the surface, so that it forms a part of a closed surface? Equa-
tion (62) is equivalent to the statement that
(AT x Ty) e w= o0
for any arbitrary smooth vector field W. And this statement results from the
following calculation.
FPAF x Ty) o & = LfAF « (Tp x %) = {faF « [F x (yw) - ¢F x %) .
The integral of the first term is zero by virtue of (61)., The integral of the
second term vanishes, because y = 0 on the surface. Since V§ is not affected,
vhen we add a constant to §, the statement (62) may be generalized to read
Af x Uy = 0, if ¢ = const on F. (63)
The third theorem states that, for a vector field E, which is normal to a
smooth surface , i.e. for which AT x E = 0, the curl is tangential to the sur-
face, so that
| AF » P xE=0, irAfF xE=0o0n F , (64)
In order to prove (€4), we agein extend the surface, so that it forms a part of
a closed surface.’ Equation (64) is equivalent to the statement that
ff aF « (W xEw=0
for any arbitrary smooth scalar field w. And this statement results from the
following calculation. |
AF « (V x B)w = S$AF » [T x (Bw) - (W) x E]
= fAF « ¥ x (Bw) +FAT x Bw .
The first term vanishes by virtue of (61), The second term vanishes because of

the assumption AT x E = 0."

"
We assume that Y = 0 on the extended surface,

+We assume that AT X E = 0 on the extended surface.
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We now consider the following two eigenvalue-eiéenfunction problems:

(T . ?a) + zgﬁa = 0, with the boundary condition ¥ e ﬁa =0, (65)
and
Wy G;) + m:ﬁ; = 0, with the boundary condition AT o G; = 0, (66)

Here the l: and mg are the (positive) eigenvalues, and the ?a and ﬁa are the
vectorial eigenfunctions. These eigenfunctions are irrotational (i.e. the curls
vanish), as one can see. when one takes the curl of (65) and (66). (Note that
the curl of a gradient is zero.) The index "a'" labels the eigenvalues and
eigenfunctionsjthere is an infinite number of them. We assign the indices "a"
in such a way that the eigenvalues are ordered according to their megnitude, so
that

LI FLICHE T L PP

m? < m? <m? < .., .

In order to meke sure that the problems (65) and (66) conform to the
classical paradigm of such problems, we have to prove that the operator TVeis
self-gdjoint. The self-adjointness conditions are:

[[[ax [Fe (T « F') = F' « §(¥ « F)] = 0 for two functions F and F'
that satisfy the boundation conditions ¥ + F=0and ¥ - F' = 0, (67)

and :

J[[6<[G « T(7 « G') - G' ¥(V .+ G)] =0 for two functions G and G' !
0. (68)

that satisfy the boundary conditions AF « § = 0 and AF « &'
To prove these relations we note that
FeT(TeF)=T o [FVeF'] (V. «FY(V.F).

Similarly

<3l

F1e¥(@eF) =T « [FT.Fl-(F.F)T-F) .
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On subtracting, we obtain .
FeWT .F)-F e (T eF)=¥ .« [FN:F -FF.F].

We integrate this equation over the cavity and transform the right-hand side
into a surface integral with thg aid of the theorem of Gauss.  Thus

[I[AT[F « 9T o F') - F' « U(T o F)] = ff0F « [FF - F - P'F - F] .
But the surface integral vanishes because of the boundary conditions that are
stated in (67). Hence (67) is established. We prove (68) in the same way. The
only change is that here the surface integral vanishes because of AT « G = 0
and Af « G' = 0,

Next we prove the orthogonality relations

fffAtF + F, =0, for 22 # 22, (69)
and
G [ —1 2 2
fI[sG, + G =0, for nZ # mZ . (70)
We take the scalar product of (65) with ﬁb and obtain
2- L ] F - - ) [ ] (T L ] P
$3F « Fy Fy V(v Fa) .

Similerly,

2 o'-=_- .--o)-
’“be; ,Fa. F V(v F'b).

We subtract and integrate over the cavity. Then, with the aid of the self-
adjointness relation (67), we obtain
(82 - 2)f[[aF_+ F =0.
And, since we assumed 22 - zb # 0, equation (69) follows. Equation (70) is
proved in the same way. | 7
So far we have proved (69) under the assumption that £§ # 2%. But when an
eigenvalue is degenerate, i.e. when it admits several different eigenfunctions,

we may always redefine these functions (by taking suitable linear combinations)
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in such a way that (69) still holds, even when L: = 92, Similar comments apply

b

to equation (70). Finally we normalize the eigenfunctions so that

Hfod, - 8, =1, ()
and

[f[aG, « B =1, (72)
On combining (69) and (71), we obtain the orthonormality relation '

[[fasF, « F =6, . , (73)
Similerly

| [T]asB, » G = 6y (T4)

Here, § ab is the Kronecker delts: Gab = 0 for a # b, ab = ] for a = b, There

is no orthonormality relation between an F and a b'
W2 can get a better insight into the behavior of the vectorial eigenfunc-
tions ?a and Ea, if we relate them to scalar functions wa and Xg defined by
sy, ==-9F , , (75)

and

mX, = - 7. G, , , (76)
Here la and m,  are the positive square roots of the eigenvalues 2: and mg.
By direct substitution of these relatioﬁs into the first terms of (65) and (€6),
we obtain the inverses of (75) and (76); namely
2 F o=y , (17)

and

m G = Vx, . (78)
Inspection of (75) and (78) in conjunction with the
boundary conditions for the ﬁa and aa stated in (65) and (66) yields the

following boundary conditions.for wa and Xg*

e T AT Y

S s anear s 1a

Sttt e pe
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Yo = O at the vall, (79)
and
AT « ¥x, = 0 at the wall (80)
On combining (62), (77) and (T9) we siee that the Fa automatically satisfy also
the boundary condition
AT x 5& =0, (81)
i.e. the ?a are normal to the wall,
Waen we take the divergence of (65) and (66), divide by - %, and - m_
respectively, use (75) and (76), and adjoin the boundary conditions (79) and
(80), we see that the wa and xa_could have been determined also directly from

the following two eigenvalue-eigenfunction problems:

V. 6wa + zéwa = 0, with the boundary condition y_= 0, (82)
and
7. Uy ot mgxa = 0, with the boundary conditioy -+ e an =0, (83)
Here the self-adjoir*ness relations for the operatcr V * V are:
[Ifat{y® « Tyt —y'T « Tp] = 0 for two functions ¥ and v
that setisfy the boundary conditions ¥ = 0 and ¢' =0 , (84)

and
[[[A(xF « Tx' = x'¥ + Ux] = 0 for two functions x and X'
that setisfy the boundary conditions AT « ¥x = 0 and AT « Vx' = 0 (85) .
These relations are established by the same technique that was used in the
proof of (67) end (68). One starts with the formula
BT T - T Ty = T e LA - T
Consequences of the orthonormality by relations (73) and (T4) are the

following orthonormality relations for the wa and Xg!

AR U R A 2 TR 1 pet TR f o
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[IIacb by =8 s (86)
and

”IA"XaXb = 68.b. (87)
In order to prove (86), we use (75) and arrive at

B0 2y = (Ve Fq)(v e F) =T o [F(VF)I-F - W R
or, with the aid of (65),
. - . - - N - 2- . -
8 %W by =V [Fa(V Fb)] S R

We integrate this equation cver the cavity. By virtue of the theorem of Gauss,
the first term gets transformed into a surface integral, which vanishes because
of the boundary condition V « F_ = 0, Then (86) fcllows. Equation (87) is

b
proved in the same way.

According to established eigenvalue-eigenfunction theory the set {wa} is
complete, i.e. any function ¥ that occurs in practice may be expanded in terms
of the wa’ so that we may write . ,
v =a§l C by | | (88)
We can determine the expansion coefficients C'a in the following nanner. We
multiply (88) by ¥, and integrate over the cavity. It is permissible to use
term-by—term integration on the right~hand side.* Then the crthonormality
. relation (86) yields
Cy = ff[Awqf;b . V (89)

Similarly the set {Xa} is complete, if we adjoin the (constant) function

Xo = , where Vol is the volume of the cavity, Here we have to supple- ..
ol
ment (87) by the orthonormality relation

[II8m %, = 8y » ) (90)

» : _
Term-by-term integration is permissible when the expansion (88) converges in
the mean. See equations (107) - (111), which pertain to the analogous case
of vector fields.

[
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vhich is easily proved., For b = 0, (90) is obvious, For b ¥ 0, we have,
with (83),

1

Xoxb " - ;;.?'Xov ¢ v)(b .

Then (xo = const), with the theorem of Gauss,

l * P [ )]

fffAtxoxb’ --m-b-z' ,,,o“{:[At‘ be.
But the gsurface integral vanishes because of the boundary condition AT - be = 0,
The eigenvalue mo2 is, of course, zero.
The convergence of the expansion series is most rapid, when the function V¥

that is to be expanded satisfies the same boundary conditions that‘the eigen-

functions satisfy. Thus we would prefer 'to expand a function ¥ with the boundary

condition ¥ = 0 (alternatively AF * VY = 0) in terms of the wa (alternatively xa)'

Any irrotational vector field may be expanded in terms of the eigenfunctions
ﬁa’ or in terms of the eigenfunctions aa. But we are_not geing to pursue this
matter yet, because we are interested in the expansioh of general vector fields,
not just of irrotational ones, For general fields, the seté {Fa} or {ﬁa} are
not complete. Therefore we must construct.additional sets of vectorial eigen-~
functions. There will be two sets {ﬁa} and {ﬁ&} of solenoidal eigenfunctions.
('Solenoidal' means; the divergence is zero.) They arise from the eigenvalue-
eigenfunction problem

7 x (7 x Ea) - kgﬁa = 0, with the boundary condition AT x Ea =0, (91)
and | |
7 x (V x ﬁa) - kgﬁa = 0, with the boundary condition AT x (¥ x ﬁa) = 0. (92)
The (positive) eigenvalues ki g:e the same in both problems, as we shall see
shortly. Again we assign the'indices "a" in such a way that the eigenvalues are

ordered by megnitude, so that

Al
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k12 < ko? £ k3% < ..l s
That the Eﬂ and ﬁa are solenoidal is seen easily when we take the divergence
of (91) and (92) and cbserve that the divergence of a curl is zero, Here the
gelf-adjointness relations are
[IIAc[E « ¥ x (T x B') = E' « ¥ x (F xE)] = 0 for two functions E and £
that satisfy the boundary conditions AT x E = 0 and AT x E' = 0 , (93)
and
JI[ac[B « T (¥ x B') - H' « ¥ x (¥ x fi)] = 0 for two functions H
and B' that satisfy the boundary conditions AF x (7 x H) = O'and
A% < (T x f') = 0, (9k)
In order to prove (93), we note that
EeTx (TxE)=7e«[(TxE'")xEl+(VxE)-(VxE).
Similarly
B e Tx (FTxE)=7V e« [(FxE)xB')+ (Fx8) « (FxE).
Subtraction, integration, and the theorem of Gauss yield
fffA'r'[E' Tx (Fx E'") = F' « ¥ x (Vx £)]
=ffaf o [(Fx B)x E- (Vx B)x B'],
But the surface integral vanilshes becausé of the boundary conditions. The
relation (94) is proved in the same way.
Now we show that tlhie eigenvalues kaz are the same in the two eigenvalue-
eigenfunction problems (91) and (92). Instead of determining the ﬁa by way of
(92), we can obtain them also through the definition

kaﬂas v x E& , (95)

from the ﬁ;. . Here ka denotes the positive square root of ﬁ;. If we substitute

(95) in the first term of (91) we obtain the inverse of (95), namely

AE

R
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kB, =7 xR . (96)
Then, when we take the curl of (91) (and also divide by }c&);, and use (95) and
(96), we see that (92) is a direct consequence of (91).
Equation (95), in conjunction with the theorem (6L4), tells us that the ﬁa
automatically satisfy the boundary condition
' $F-R =0, (97)
Just as we established the orthamormality by relations (73) for the F‘a, ve
obtain the orthonormality relations
[HfaE, o B =6 . (98)
All we need to do, is %o substitute ﬁa for E and f:b for E' in the self-adjoint-
ness relation (93) and to use egusation (91). The use of the formula
kA ool B = (FxB) (9 xE) =7 (8= (VxE)]+
+E&-V x (T xR)=7. [EaX(Vxﬁb)]-fk.bzﬁa-'ﬁb .
integration, the theorem of Gauss, and the boundary condition AT !.Ea. =0,
give us the orthonormality relations
[[fpeBt + B =8 , (99)
as a direct consequence of (98)., There is no orthonormality relation between
an Ea and an H .

Finally we prove the orthogonality relations

[ffaE B =0, (200)
fffAtEa < B =0. (101)

and
[[[scF, - B =0 - (102)

For we have
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a kbnb = Fa e ¥ x ﬁb =7 (ﬁb x Fa) + ﬂb e ¥ x ia ,

ot .

Ea . kbﬂb = ﬁa o ¥V x ﬁb =7 . (Eb x Ga) + ﬁb « ¥V x Ea R
and
Fa . kbnb = Fa o ¥ x Eb.ﬁ v. (Eb X Fa) + Eb e ¥ x fa .
But ¥ x ?a =0 and ¥ x Ba = 0, Then, integration and the theorem of Gauss give
us
kbfffAr?a . Eb = ¢$A? . ib'x Fa ’
o [[[eB, + By = faT + B x G, .
and

K JIacF o B =fa? « (B x B )
But the surface integrals vanish, because Fa and Eb are parallel to AF.
Before we continue with our discussions, we summarize the most important
properties of the eigenfunctions in boxes, in order to facilitate the task ’
of referring to an equation,

Box #1. FEigenvalue-eigenfunction problems. (BC stands for boundary condition.)

(% o F 2F = T F = '
(T Fa) +22F =0, BC: 7 F,=0, (65)
-o 2‘ = 4 =

7 W;a +22y =0,BCty =0. (82)
™Y . Ea) + m:’c-‘:a = 0, BC: AF - Ga =0 . (66)

¢ T 2 - ok} - ;] =
¥ Ux, + m2x, =0, BC:. AT - Vx_ =0. (83)
FxB)aerk2? = c AP x B =

¥ x (7 x 7 k2 Ea 0, BC: Af x E_=0 . (91)
7% (¥ x ﬁa) - ké '1'{’5 = 0, BC: AT x (V x ﬁa) =0. (92)

We note that there is a duality in the BC's for each pair. One BC involves the

function itself, whereas the other BC iavolves a derivative.

S



Box #2.

Box #30

Box #b.

Relations between eigenfunctions,

GBS tuoe

Additional boundary conditions.

Yo, = 4F, . (17
ToF ==, . (715)
an = maﬁa (78)
v. Ga = - mX, (76)
VxE = ka“a (95)
¥ x Ha = kaEa (96)
AF x F*a =0, (81)
AT x v‘/wa =0 , (77 + 81)
AT Ha = 0 (97)
Af « (T xBE ) =0 (95 + 97)

Properties of derivatives, as obtained from Box #2.

Px¥F =0,7VxG =0,V 1
8 a

a

=0, Ve+E =0,

a

Abl

A N R
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Box #5. Orthonormality relations.

[[[tF, B =8, . (13)
[[fozo 9, = 6, . (86)
[IfaE, T, = 8y (74)
[[Ibex x, = 8,4 (87)
[[[ME, « B =6, (98)
[[IaR, - B =6, (99)
[[[asF, B =0 (100)
J[[aC . R, =0 (101)
[[{tF, « B =0 (102)

So far our treatment of the eigenfunctions was strictly formal. But they
allow a direct ‘physice.l interpretation. For instance, a possible free-running
(no charges, no currents, except in the walls) electromagnetic field in the
cavity is given by |

E(r,t) = C_E (¥)sin k et ,
N a .8- _ a (103)
¢B(F,t) = C B _(F) cos ket , |
vhere Ca-,is a constant. One easily checks that the Maxwell equations (1),
(47), (for p° = 0, J° = 0) and the boundary conditions (3) are fulfilled. In
this case the fields oscillate in the single (normal) mode #a. Therefore the
functions 'ﬁa('f) end ﬁa(;) are called the electric and magnetic part of the

mode pattern #a. The other eigenfunctions, namely the pair !!ga(f"), Fa(F) and
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the pair xa(?), Ea(F), do not permit such an interpretation in terms of electro-
nmagnetic oscillations. But they are asscciated in a similar way with acoustice
vibrations in an air~filled cavity. Thus, the pressure excursion p and the
velocity v in a cavity with "ha?d" walls, which impose the boundary condition
AT «¥ = 0, are given by

p= Caxasin mact ’

F=c 23 cosmet, (104)
for mode #a. Here, of course, ¢ is the speed of sound, and s is thg aitbient
mass density of the air. One easily checks that (104) is consistent with the
first-order (for vibrations of small aumplitude) equations of motion and
continuity, namely

9 -
5 33 v=~9Vp,

Qr

-— T = 27 . v :
s se<V ¢« v, (105)
where we have used the relation B = sc? for the bulk modulus B = s,%g-. We

may also contemplate a cavity with "soft" walls, which impose the boundary
conditions p = 0, even though it is hard to envision how such walls might be
constructed. (A liquid drop may be one way in which such a soft-walled "cavity"

can be realized.) In this case, the motion for a single mode #a is given by

P

Cawa sin mact

= 0, == F, cos mot. | (106)
We have related the modes with the patterns (Ea, ﬁa) to electromagnetic

oscillations and the two classes of modes with the patterns (x&,ﬁa) and

(wa,?a) to acoustic oscillétions. Since plane electromagnetic waves are trans-

verse, and since plane acoustic waves are longitudinal, one uses the term

"transverse modes" for the (ﬁa,ﬁa) -~ modes and the term "longitudinal modes"

SR RN el SES S
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for the (xd,ﬁa) - modes and for the (wa,fa) - modes. This terminology is
somewhat inaccurate, because the words "transverse' and "longitudinal"” make
sense only for plane waves, which are characterized by a definite direction.
No such direction can »# assigned to the complex patterns of the cavity modes.
Nevertheless, these two words are commonly used, because they simplify the
language. |
We accept, without giving & proof here, that the two sets {Ea} and {I_“a}

taken together are complete., This means that any vector field V¥ in the cavity
that occurs in practice may be expanded in terms of the Ea end Fa, 80 that we
can write

- pas o -

v :Zl ciF +a£1 cE . .(1?7)
Here, the c; and c, are the expansion coefficients. The first series in (107)

is called the longitudinal part of V and is denoted by V_, the second series is

L’
called the transverse part of V and is denoted by VT. The series in (107) are

"convergent in the mean". Thus, if we approximate V by the first N terms, i.e.

if we replace it by

N N ‘
_ ) = _ o
vaPPr.N aZl CaFa * azl CaEa ? , (108)
the error V - ¥ has the property that the integral of the square of its

appr,N
magnitude tends to zero, as N tends to infinity, so that-

) ¢+ (V - )=0 (109)

]

1im [ff AT - ¥

N+e

appr,N V&PPI' N
The expansion coefficients Ca' and Ca may be determined from V in terms of
integrals, as shown by the following argument. We start with the inequality

of Schiwarz

[fffatT « W12 < [ff[e<T « TUS[[acT « W1, (110)
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which holds for any pair U,W of vectorial functions., Let us make the choice

J=2Va

<

and ¥ = Fb. Then, with the normelization condition

f'ffA'r-i*b R =1

appr,N

we obtain
- - - . - 2 . - - . - -
Uff[ac (¥ vappr’N) F 12 < [ffen(V Vappr’N) (¥ vappr’N)
Now let us take the limit for N + , According to (109), the right-hand side

tends to zero. Thus we get

lim {[[a- 7 «F =f[faVF
But as soon as the index N exceeds the index b, the integral on the left assumes
the value C ', by the orthonormality relations. Thus the limit is also equal to

b

Cb', and we obtain

' = [[[t¥ « F,

Similarly,

c, = [[fit¥ + 5 . o ()
The result (111) agrees with the following procedure: Take the scalar product
of (107) with ib (or Eb), integrate term-by-term, and use the orthonormality
relations. Now that we have established the legitimacy of term-by-term inte-
gration, we can use it freely in our future work.

Let us assume that the vector field V is of sufficient suoothness so that
the derivatives V ¢ V and ¥ * ¥V exist and that these derivatives can be expanded
in terms of eigenfunctions. We choose the types of eigenfunctions in the expan-
sion for ¥ « ¥ and ¥ x ¥ in such a way that the new expansion coefficients can
be easily expressed in terms of the coefficier .3 Ca' and Ca, which occurred in

the expansion (107) for ¥#. Accordingly we write
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Ve¥=]kKy , (112)
a aha

and
T '
Tx7= E D3, + E DR, (113)
Indeed, we have

kU= [ffary ¥ o Vo= [[f9c(T - (4, ) - T« Ty, ]

= {faF - v,V - LafffArV - F.
The surfuss integral vanishes because of the boundary condition wa = (0, Then,

with (111), we obtain

" '
kK'==-2C", (11k)

so that

5 LTl . .

TeT= E c 'V, (1}5)
We would have obtained the same result (115), if we had taken the divergence
of (107) term-by-term, since

¢.F =-2y and V- E =0,
a a'a a
Next we calculate the .expansion coefficients Uh' and D, in (113). We have
| Dy = fffArGa c T x V= [ffae]¥ ¢ (V% Ea) +V o7 x Ea] =
L =ffaF « TxG + [ffar T +TxG =
' a a
: =4fAF - T xG +0, '
- a
since ¥ x Ea = 0. Similarly |
D, = ffjArHa- T x ¥ = §faF AR [{{aa¥ « T x B
=§faT « Vx E +kC ,

a a'a

where we have used the relation ¥ x Ha = kaEa and the second formula (111). On

inserting these results for D and D! into (113) we obtain
VxV=[LIffaF + Vx818 + IOFfAT - Tx R +kCIH . (116)
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Had we taken the curl of (113) term-by-term, we would have obtained a different
result. For we would have lost the surface integrals that appear in the expan-
sion coefficients of (116). However, if V happens to satisfy the boundary
condition _

Af x V=0, (117)
then these surface integrals vanish. In this case then, we are permitted to
evaluate the curl termeby-term.

If the series (107), (112), (113) for the fields V, 7 ¢ ¥, and ¥ x ¥ were
uniformly convergent, then we could deduce (by the usual continuity arguments)
that these fields satisfy the same boundary conditions that the eigenfunctions
satisfy. Thus, for uniform convergence, we would have

AF x T =0,7 TV =0, AT « (F xV) =0, at the wall. (118)
Unfortunately, the proofs for uniform convergence, at any rate those that are |
most easily carried out, start with conditions that are not satisfied in the
application we wish to make. (Vhat foils these proofs is the point-like
nature of the atomic particles.) However, later on we are going to make an
approximetion in the Lagrangian. As a result of this approximation, the
infinite seriés wili be replaced by finite series, so that all the convergence
problems will disappear. And then the boundary conditions (118) are certainly
satisfied,

So far we have considered a general vector field V and its derivatives
.7V and ¥ x 7. Now we apply what we have seen to a specific case, the vector

potential cA. In analogy to (107) we write

ch =) Q! F, + ) QE, » (119)
8 a

R AT S T

;
¢
;
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where the Q; and Qa are the expansion coefficients. And in analogy to (118),
we have the boundary conditions

A x A =0, 7+ ch=0, AT« (¥ x c&) = 0, at the wall. (120)
The third of these conditions is a consequence of the first, as we have seen
in the proof for (64). Again we remind ourselves of the circumstance that,
in the end, the series (119) will have only a finite number of terms, so that
ve will not be bothered by convergence problems. [See the remarks following
(118)].

Now we are ready to formulate the gauge condition for the vector poten-
tial cA. We require that all the primed expansion coefficients Q; be zero.
Then the longitudinal part of cK, i.e. the.first series in (119) vanishes, and
only the transverse part, i.e., the second series, remains. Our gauge condition
is then that the vector potential cA is purely transverse. As a consequence
[see (115)] the divergence of ch vanishes everywhere. " Thus we have

Vech=0. (121)
But, in addition, the boundary conditions-(l20)_are sapisfied. The second of
these is already implied by (121). Thus
AT x cK =0, AT + 7 xck = 0, at the wall. (122)
Similar remarks apply to the variation ScA: Merely insert the symbol § as a
prefix to cﬁ,'Qa , and Q_.

We summarize the discussion of this long section by the statement that we
choose the "transverse gauge" for the vector potential. This term is more
restrictive than the term "Coulomb gauge". The latter implies only (121). But
the former implies that cA can be expanded as a series in the eigenfunctions Ea

alone, the Fa are not needed. A particular consequence is that the boundary



Al9

ORIGINAL PAGE IS
OF POOR QUALITY

(122) are satisfied.

In the next section we will introduce the approximatimswe have already
alluded to, They will make if: possible to replace infinite series by finite
ones,

T. 'I‘wo .A’pproxime.t ions .

We start with the expression (53) for the action tunctional, which we

write down again for the sake of easier reference.

" J = =.dat
I d“e ‘31-‘“15 8-y fu,r + fffaeT, o RIS - (vr o+ [f[favos]

+ fffAT[—g- (m-ch'-o- 7o) o (E%E"’T“W) --e-g-(Vx cA) ¢« (¥ x cA)]} .

(53 repeated)
The functions that are to be obtained from the action principle are qi(t),
¢(r,t), and ck(r,t). Since we agreed to use the transverse gauge for the
vector potential cA, we can simplify (53). For, when we multiply out the

scalar product that contains V¢, the following sum of three integrals appears

in (53).
e e H"' '
[[fee =3¢ « T + [[[ax 5 (act ck) . (3.2? oK) + [ffac e T4 - a_c.t_cx

The last of these vanishes because of our choice of the transverse gauge for cA.
For we have

- 9 - -

[f[ave T4 « 5z R = ¢ [[[ar[V

where we have interchanged -3—23' and 7V in the last term. But since V » cA = 0,

(¢ 5et act et °A) - —ca?c'v » Al ,

we obtain

eé:f:ﬁA? « ¢ -5-2%- cA

when we convert the remaining volume integral into a surface integral with

: -
fffA'teoWi vy cA

the aid of the theorem of Gauss. But this surface integral vanishes because

RS

Socicats
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of the boundary condition ¢ = 0. As a result, the expression (53) is

simplified to

i
A&,b It£ {; dgt M.{J dt + [U' + fffATJ -d%-_ [v' + ff!ATp¢]

VI3 - T+ 2 (gl oB) + (R oh) -2 (7 x ) - (T xcD)]}. (129)
We see that the scalar potential ¢ and the vector potential cA have become
"decoupled", since terms that are mixed in ¢ and cA no longer occur in (123).

‘ One of the consequences of the action principle is equation (L46), namely
pd =7 eoﬁ -p . (46) repeated

(It results, when we examine GAa,b under the assumption that only ¢ is varied.)
For a free-running system, to which we confine our attent%on here, the driver

rie1d 0% is zero. Thus (46) yields

V. eE=p .

And with
s = 5.7
we obtain ?
e P T=cp. (12L)

This equation shows that ¢ is equal to the electrostatic potential associated
with the atomic charge density p. Since p depends explicitly pnly on the con=-

figuration {qi} and the position r, the scalar potential ¢ will depend explicitly

only on these variables. Then the two integrals

[[facos sna =3 [ffcTs + B
which appear in (123), will depend only on {qi}, since the r-dependence of ¢
and p was wiped out by the integration process; These two integrals are

closely related. Indeed with (124), we have
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[[fsto4 = = € [[fateV » Vg = = € [[[ac(T + (474) - To - Fo] ,
The integral over the first term 1s converted into the surface integral

<ffaT « ¢¥¢, which vanishes because of the boundary condition ¢ = 0. Thus

[[[ovod = f[facPs « Ty , (125)
We use this result to simplify (123). With the abbreviation
€
, v(a') = V(") + =3 [ffatTe « T (126)

equation (123) becomes

A l!b. ldi dJ - di'
CR I dt(E—%-t-MiJ v [u + [[fax 3, - K] --v+

+ 1003 (G oR) ¢ (e oK) = 2 (V x o) « (7 x M) . (i2])
We note that the quantity V depends explicitly only on the atomic configuration
(qi}, and that the scalar potential ¢ has disappeared from the aétion functional.
The procedure that enabled us to eliminate the scalar potentisl ¢ from the
action: functional may be applied also to the vector potential cA. 1In order to
get ready for it, we use the eigenfunction expansion (119). Since we are using
the transverse gauge, in which all the ccefficients Qa' are zero, the expansion

simplifies to

cA = E OpE, - (128)
Similarly,
aq
3 s _1lvev Tasm
3ct CA = 3 E dt Eav’ (129)

and, because term-by-term differentiation is permissible ,

V X ek = ZkaQaHa (130)
)

Next we express the three volume integrals in (127) that contain the vector

potential in terms of the expansion coefficients Q&. We have
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€ - € 4aq d
187 % (o oB) » (5gg o) = 2 [ffa (D 2 B) - (E'%%Eb) -
€, an de €y an )
"z Ll [/l - By = gz L)% (131)
a a

where we have used the orthonormality relat’ons (98), (See Box #5.) Similarly
€ €
—2- [ 1 .—9- 2
[Jar =% (¥ x cR) + (V¥ x ch) = 3 E (k0. )2 .
In the remaining integral we expand the functions 31 in terms of the Fa and Ea’

i.,e, we wvrite

- . = =
I, =1 9 oFat Y Ty aFa - (132)
a | a
The expansion coefficients J! a and Ji a depend on the atomic configuration
’ 9
{qJ}. The first series in (132) is the longitudinal part 31 L, °f 31, the
9

second series is the transverse part 31 Then, with the aid of the ortho~

T.
]
normality relations (98), (100) (See Box #5) we obtain

= z_1 :
[lfeed; + R=5 13, 08, - (133)
When we insert (131) - (133) into (127), we obtain
ALy = [P qped gty dd? 1 do*
8,0 oo 15 5 M;J ar + (U *EE Ty,0% FE =V o+
€ dq €

Q —ay2 _ .0 2y

+ :‘,;z-z (5% 5 E(kaQa) } (13k)

(We have used the same symbol "a" for two different purposes. It indicates

not only the lower limit in the time-integration, but also the mode~numbers.

This double usage should not cause ary confusion, since the place where the "a"

is writter makes itsmeaning unambiguous.) The functiocils that are to be determined

from the action principle are the n functions qi(t) and the infinite set {Qa(t)}.
In order to derive fhe equation of mofion for one of the Qa(t)’ we exaéine

the variation of the action under the assumption that only this particular Qa

is varied, With the aid of the calculation

ST B SR TSR Ty B e
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Q dQ aQ daQ a2q
1 2 - 2 d - df 8 _ a
85 ( ) P 8w " e %% " mlw Sl - e S
ve obtain 5
1 e a=q
b l dq~ o) a 2
6 a, [ 6Q ] t{th[ i,a dt - -cT dtz - eo(ka) QE]GQG . (135)
t-a
The action principle
§A . = E.T.0. (51) repeated

a,b
for a free-running system causes the square bracket in the integral of (135)

to vanish. Thus

9 agt’
Tt i =50 dt (136)

This equation shows that the expansion coefficient Qa(t) behaves like the .
excursion of a harmonic oscillator that is driven by the "force" E£=Ji.a g%;=.
The resonance frequency R& of this oscillator is given by °
, = ck, (137)
Equation (136) suggests the kind of approximation we are going to make.
We will first go through the procedure of this approximation. Only later will
we discuss the motivation for it. At this point we merely mention that it
serves to eliminate infinities that arise when the atomic particles are treated
as point-like entities. We divide the modes into two groups: the "low" modes
vhose resonance frequencies lie below some critical frequency chit’ which will
be selected later, and the "high" modes whose resonance frequencies lie above
chit' For the low ggges, we retain equation (136). But in the high mndes,
the "intertia term" —EE% is small when it is compared to the "stiffness term"
(cka)zqa. We may therefore neglect the inertia term. Acéordingly, ve re=
place (1322 by .
-E;% + (Cka)zQa = Ei'Ji,a Q%g , for the low modes, (138a)

i
H
k
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23; » for the high modes, (138b)

2 -
(Cka) U = € Ji,a d

& o
We decompose the sums over the modes in (134) into two sums, one over the low

modes, the other over the high modes, so that

I= ] + I . (139)
a a,lov a,high

The deletion of the inertia term in (138b) ic accounted for by a change in
the action functional (13l4), where we would have to omit the term ) ( )2

a,high
Accordingly, we e.pproximate A b P
’

1 1
Aab t.{ vz % Mm AR - . gish T1,a% ot *
2
appr 1 4 i €y X an)z
+ = Q V 4+ = — -
c“'a,l i,a’a dt 2c 1 dt
fo 2 _ o 2
-5 I kQ)rP-—=5 I (k0)?%. (1%0)

a,low
We express the expansion coefficients @, for the high modes by means of (1368b).

We therefore write

i J
i c do__ .1 . ¢ d9_
Qa = {ckasz €, Ji,a at zckaSE €, J.‘!,a. dt °

Here we must be prepared to use two different summation indices i and J, in
order to avoid confusion later on. The two terms in (1L0) that contain the U

of the high modes are then

i i J
1 Z dq 1 da da’
c a,high i,a%a dt € dt ,high Z 5! i,a J,a dt
and
- 29, )2 S8 ( 7§ 7——,; ydal
-— k = -—- .
2 a,high eo dt a,high ck i,a,j a’ dt
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We see that they resemble each other. Ve combine these two terma and use
the abbreviation
= M 4 =t 1
Mg =Myt e, }dsh Tek )7 '1,8%9,0 (1k2)
Then (140) becomes
J 1 i
b 1.JL. da da_ _ + = da_
Ay,b t! alls My ot Y azlow Iy,a% at
appr
2 ] dQ‘“)2 2 1 (xa)?) (142)
+ 5% ) —)l - — k Q . 142
2e a,low dt 2 a,low aa

The functions that are to be determined from the action principle (51) are the
n functions qi(t) and the, now finite, set {Qa(t)} for the low modes.
When we reverse some of the procedures that led from (127) to (13k4), we

can write (142) also in the form

1 | i
da’ agt - -
ALb =/ {[ U SIS Ry, ¢

t dt iJ dt
a
weer 3 3 €
* IUM[% (3'6? c‘K)low ‘ (m cxlow) - _% (¥ cT\J.ow) (% x CA )]} ’
(143)
where
CAlow i a.gow QaEa ] (1h)

Because of the orthonormality relations, we may also replace the complete

current density J in (143) by J , the low-mode part of the transverse

T,low
portion of J, which is given by

1
= = da_
I, 1ow a}w at J1,a% ° (1k5)

However, the best policy is to work with equation (1L42).
We are now in the position to discuss the motivation for the approximation

we have made. The expression (123) contains the integral

R T
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vhich is equal to the electrostatic energy associated with the atomic particles.
(Remember that ¢ was the electrostatic potential, as shown by (124). But for
point=like particles, this energy is infinitely large, because |5¢| increases
to infinity with decreasing distance from the particle so rapidly that the
energy integral diverges., The other terms represented by triple integrals in

(123) offer similar difficulties. For instance, the term

S [1fax(Y x RMT x o)

which is the magnetic energy, is infinitely large for moving point-like particles,

because the immediate vicinity of a perticle contributes a diverging amount to
the integral, Thus for point-like atomic particles, equation (127) is really
without meaning.

On the other hand, the approximation described by (142) appears to be
meaningful, as neither diverging triple integrals nor infinite series occur in
this equation. Of course, this appearance is deceptive, because the second

terms in the equations

€
V= V' + ég-fffArV¢ U, (125) repeated
end
My = M{J + Ei )y ?E%-TisJi J (142) repeated
o a,high a 18 4,8

are infinitely large for point-like particles. But it is conceivable that the
infinities of the second terms in (125) and (141) are compensated by infinities
of the opposite sign in the first terms, so that the left-hand sides V and MiJ
turn out to be finite. It is generally believed, although there are no

rational foundations for this belief, that this actually happens. It is

oE L SR TR T
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believed furthermore that the square bracket in (lb2), which looks like an
atomic Lagrangian, is in fact equal to the conventional atomic Lagrangian,
if the critical freaquency chit’ which formed the dividing point between low and

high modes, is chosen low enough. This means that, for chit + 0, the
i i

expression %'Q%E'Mid Q%E is equal to the conventional kinetic energy (in the

sense of elementary particles) of the atomic particles, that V is their conven-
tional potential energy (again in the sense of elementary particles) and that
the nuantities Ui' are zero,
We have introduced two approximations,
(1) The approximation that was made when we deleted the inertial
tern for the high modes, as in (138b).
(2) The approximation that was made when we replaced the square
bracket in (142) by the conventional Lagrangian of the atom.
The quality of the first approximation is improved, when we raise t@e eritical
frequency chit' And the quality of the second’apv*uximation is improred when

we lower the critical frequency ch Therefore, we have to make a compromise

it*
when we choose chit' We believe that the quality of the overall approximation

is good enough for our purposes, when we choose Q to be of the order of ten

eriv
times the dominant frequencies, e.g. ten times the frequency of visible light
for the example of the laser. I!Infortunately we have no evidence for this
belief at the moment. But to adhere to this belief is the best we can do.

At any rate, the approximations we have made and the béliefs we have
adopted furnish us with the definite action functibnal (142), Since our future

work is based on it, we write it down again in a box. We use the statement

that all

st atsamset e
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the Ui' are zero, and we indicate the variables on which the various quantities
depend.
 al[ RS o kyrd k
A =L astll5lgg @' (0) Iy (M) Igg @' (0)] - v(a9]] +
appr
1 kan d 1
+= 7 7, (a¥a (t)=p a7 ()] +
c a,low i,a a dt
€
0 v d e}
tem 1 e (t))2-= ] 2
2e% | fow Ot ® 2 a’low[kaQa(t)] }. (146)

The expression in the double square bracket is the conventionesl Lagrangian cf

the atom, when the atom is isolated from.the radiation field.

This action functional is of the standard type that one always meets in classical
dynemics. It pertains to a system with (n + N) degrees of freedom. Here n is
the number of the degrees of freedom of the atom, and N is the number of trans-
verse modes whose resonance frequencies are less than the critical frequency chit'
The configurational coordinates are the n quantities qi, and the N expansion
coefficients Qa’ The action functional depends on the functions Qa(t) in a
particularly simple way, characteristic of harmonic oscillators. There is no
direct coupling among these oscillators, as shown by the absence of mixed terms
of the type QaQb ete, However, the "radiation field" oscillators are coupled

to the atom by the term on the second line of (146). Hence they are coupled

to each other in an indirect way.

The other form, analogous to (143), of the action functional is

L TR T e

R R
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N R e R kit

Ay = 7 a3 o o)y, (M) I (0] - vighil +

+ [f]ax 3@,1ow(;’qk) * A (Tat) 4 .

€
+ =2 [[favlse eA(F,t)) ¢ (55 cA(F,0)] -
low

low
€
- =3 [If el % cK(F,6)] « [T x ck(F,t))} . (147)
low low ‘

We note that ET low(;’qk) depends on the time t in an indirect way through
9

the functions qk(t).

There is another way of looking at (146). We retain the first and second
lines as they are, But in the third line we delete the subscript "low".
Then equation (138a) holds for all transverse modes, not just the low ones.
But the excitation term, i.e. the right-hand side of (138a) vanishes for the

high modes. Thus if we use the initial conditions

=0, -2q = = i
Q=03 Q =0 a# t = 0 for the high modes, (148)
we find that the high modes are.never excited, so that the Qa high are auto-
=9

matically zero at all times. The preceding remarks may be interpreted in the

following way. Since, in the spirit of our approximation, the interaction term

(i.e. the second line of (1L46)) is a sum that extends only over the low modes,

g
i
i
H

the real atom has been converted by our approximation into an obJect that is
completely inert to radiation whose frequencies exceed the critical frequency

Q In this way then our approximate treatment differs from reality. But

erit’
this deviation is not harmful in the applications we have in mind. In these

applications we are interested in radiation whose frequencies lie in or near
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those of visible light.
We close this section with a qualitative argument which is designed to
show that the approxiwation in (138h), where we deleted the term.a%; Qa’ is
good only in the non-relativist@c domain, i.e. when the speeds of the atomic
particles satisfy the condition (speed)? << ¢2, Let us consiier just one
atomic particle of charge e, We assume that it travels with constant velocity
w along the x-axis of some cartesian coordinate system. Its position r is then
given by r = wti where I is the unit vector in the x-direction. Here we need
only one configufational coordinate 41; which we choose to be equal to x. From
the expansion (132) we determine Jl,a by integration. We have
9. [[[es3) - E,
Since 31 is a distribution that is concentrated in just one point, the integra-
tion 1s easy to carry out. The result is
Jl,a = ei - fla(wt-i')

As the time t progresses, the value of J will change appreciably when the

l,a

particle has travelled a distance, which is of the order of il-. The elapsed
a

time is then —l—u The inverse W = wk - is the dominant frequency of J, . Now
wka a a l,a
we calculate Q_from (138b). It is proportional to J, o+ Thus the dominant
- L]
frequency of Qa 1s also wka. Now we ask: Were we permitted to delete the term
2 2
E%T Q, in (138b) 7 Since -agz- Q, is of the order of (frequencyf Qs our question
becomes: ;s(wka)2|Qa| much smaller than (cka)leal? The answer is yes, if and
only if (%02 << 1, And this is the condition for the non-relativistic veloeity
range,

We have seen that the approximation in (138b) is of poor quality, if the

particle velocities lie in the relativistic range. The converse of this

ORIGINAL PAGE IS
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statement is not necessarily true. Non-relativistic velocities do not neces-
sarily guarantee that the approximation is of good quality. After all, in the
foregoing estimate, we have considered only a particle that moves with constant
velocity, Nevertheless, we stigk to our approximate treatment, because it is
presumably the best that can be done without the use of advanced quantum electro-
dynamics. Furthermore, it yields a definite action functional, which permits
further analysis. N

In the next section, we are going to make the transition to quantum mechanics.
We shall apply quantum mechanics only to the atom, not to the radiation field.
However, the‘procédure that we are going tc use can be easily adapted also to
the case in which quantum mechanics is used for the radiation field as well.

8. The Transition to Quantum Mechanics,

The usual method for making the transition to quantum mechanics (or "quan-
tizing") is to define the generalized momenta and the Hamiltonian function, and
then to proceed to the Schrddinger equation. But this means that additional
concepts must be used. Another drawback of this method is that it can tell us
only how the atom responds to the radiation. It will not tell us how, in reverse,
the atom influences the radiation field. However, both of these questions are

answered, when the action principle is used. Therefore, we stay with the action

principle. All we have to do, in order to meke the transition to quantum mechanics,'

is to modify the action functional (146) in the appropriate manner.
In order to simplify the presentation of this approach, we shorten the

notation in (146). We use the abbreviations

= o) = v (1k9)

(This one we have used before), and




T T WS DR

T

A62

ORIGINAL PAGE [s
OF POOR QUALITY

1 Z k k
= J, (a™)e (¢) = U (g7,t). (150)
c a,low i,a a D
(This Ui is without a prime. The primed quantities Ui vere all zero, as we had

mentioned in the paragraph that followed equations (125), (14l) (repeated) of
the previous section.) We also. delete the variables on which the quantities
of (146) depend, i.e. we delete the variables in the round parentheses. Then,

if we put the term U vi inside the double square bracket, the shortened version

i
of (246) appears as
b L K J
Aa..b tia db{{[ Mdkv * UJV = V1) +
appr
—7‘5°2[]2—°z[12 (151)
2e a,low e a,low aa

In order to quantize the atomic subsystem, we introduce a time-dependent
complex scalar field w(qm,t) defined throughout the configuration space of £he
atom. And we also introduce a time-dependent complex vector field in this
space ,with components xj(qm,t). These components are referred to axes that,
locally, coniorm to the coordinate lines of the contigurational coordinates qJ.
Then we replace the double square bracket in (151) by an integral over the

entire configuration space of the atom, i.e. we make the replacement

[[%’VJMJka + UJVi -Vv]] »

*
s [ aolt (" By B M Ry ) T )
ecs aq 3q

# (G X g + 2650+ D, - e (152)

X 3

where: the stars indicate the complex conjugate quantities. The symbol'ﬂ denotes

Planck's constant divided by 2n. The "i" in front of A stands for V-1. The

symbol Ac denotes the volume element in the configuration space. In order to

%
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explain the meaning of Ao, we consider a volume element that is shaped like a
small parallelepiped whose edges conform to the coordinate lines of the configura-
tionnl coordinates qq. The extents of the edges are Aql, qu, cen Aqn. The
volume element Ao is proportional to the product of these extents, so that we
can write

Ao = MAq! Aq? ... AQ" . (153)
The proportionality‘factor M is equal to the positive square root of the deter-
minate of an n-by-n matrix whose matrix elements are the quantities MJk in (152).
Thus, in simplified notation,

M= (DetMJk);é . (154)

The letters ecs under the integration sign stand for "entire configuration space.,"
They will be omitted henceforth.

Some insight into the physical meaning of the field quantities ¥ and xJ is
gained, when they are related to probabilistic statements. In quantum mechanics,
the instantaneous configuration of the atom is no longer given by a definite
point {qJ} in the configuration space. Instead, we deal with a probability dis-
tribution, whose density s is given by

s=yy. | (155)
This means that the probability A(prob) of finding the configuration to be in
some volume element Ao is given by
A(prob) = sho = ¥ YAo = ¥ UMAqlAq2 ... AqP. (156)
(The last member of this string pertains to the case in which the volume
element is shaped 1iﬁe a parallelepiped of the type we described earlier.)
Since the probability of finding the configuration to lie somewhere in the

configuration space is unity, the field quantity ¥ should satisfy the

EE
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faoy"y = 1 . (157)
Associated with the probability density s is the probability current density
(in the configuration space) whose components K are given by
k= a4 v (158)
The probability density and the probability current density are linked by the

continuity equation
Do .13
AR b o) = 0 (159)

as we shall see later.

When we make the replacement (152) in (151) we obtain the quantum mechanical

action functional.

v
Moo = [P at{fsqlaq? ... A" M[[%((w 2oy Bgt KB 2y,
appr,quant U % 3q 3q
+ (O g + M0+ ey - ]
€ dQ 2 € 2
taer L g3l -3 kaql } . (160)
2cZ o, low O 2 a,§ow 0%,
*

The functions that are to be determined from the action pringiplg are w(qivt),
the n functions x*(a’,t), and the N function _(t). We repeat the definitions

of n and N. The number n is equal. to the number of the afomic degrees of N
freedom, and N is the number of transverse modes whose resonancg‘frequencies

lie below the critical frequency chit' We might élso say that N is the number
of electromagnetic degrees of freedom that we retained after the approximations
of the preceding éection. Whén we apply the action principle (for a free-running

» *
system),we may regard the variations 8¢, &y , Gxd, 8§x J as independent variations,

*The UJ in (160) are given by (150),

e e
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even though W* is tied to Y and )(“'j is tied to xJ by the condition that the
starred quantities are the complex conjugates of the uns£arred ones. What
enables us to do this is that we will héQe to deal with quantities of the type
Féy + F*Gw“, which have to be equated to zero, Choosing 5V to be purely real
yields F + F* = 0, And choosing 6y to be purely imaginary yields F =~ F' =0,
These two equations imply that F = 0 and F“ = 0, These are just the results
that we would have obtained, had we regarded &y and Gw* as independent varie-
tions.,

Had we desired to quantize also the electromagnetic field, then we could
have extended the procedufe that led from (151) to (160). In this case we would have
used, instead of an integral over the n-dimensional configuration space of the
atom, an inﬁegral over the (n + ﬁ)-dimensional configuration space of the total
system. We need not elaborate any further upon this theme, since we decided
at the outset to quantize only the atom and to treat the radiation field
classically.

Now let us apply the action principle

GAé’b‘= E.T.0. (51) repeated

for a free-running system. We use the action functional (160), If we vary

*.
only the xJ s We obtain
* ’
sA = [P at{fuqlag? ... Aq™ Mex d(E 2 4w xE o+ nu0))
a,b t=a 2 ach vjk J

. ;
Equation (51) tells us that the factor of 8y J must vanish. Thus

k = = ] __3!)_ - |
Mjkx i an UJw . (161)

1)

We introduce the matrix with elements M™“, which is the inverse to the matrix

with the elements MiJ' (Both are symmetric.) The condition that these two
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matrices are the inverses of each other is reflected by the following equations

for the mytrix elements

5} SN S T B
My M 6, I M My = 8 (162)

(The summation convention remains in effect), where the 6? are the Kronecker

deltas. Then, if we premultiply (161) by MzJ, we obtain

Y M- —3‘§- - up) (163)
9q J
Similarly,
»
»
x ¥ = MM (s 18 35"—1 - UJw*) (164)
‘ aq- .
» »
Now let us vary only ¢ , In GAA b there appear the terms - ¥ 3%-6¢ and
’
o
Xd -33 8¢ , which require some menipulation., We have
3q

- 52 oy” = - 52 Givew”) # 2L gyt o Byt

The first tefm, being & full time-derivative contributes only to the end terms
E.T.0. The last term vanishes, since we assumed that the matrix elements MJk
do not depend on the time t. Thus M = (Det MJk)!5 does not depend on't, so that
M .0, similarly

ot

- e ot = - 2o ondee”) 4 a" 25 ond) L
9qY 8q 3q

The first term is a full configurational derivative. When we integrate it over
the entire configuration space, the result is zero, because deﬁw* vanishes in
the far reaches of the configuration space, (We could even require that46w*
vanishes except in a finite domain.) |

Combined with the results of these manipulations, equation (160) yields
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$Aap = - ':'l% (faa'aq? ... A myew"}| *
' t=a
+ [P at{faqlae? ... Aq"M(ey") ([ L + L*_g'.l_ B My +
t=a M aq«’

The action principle (51) tells us that the expression in the double square

bracket must vanish. Thus

v , 11 3 .3y _Ly,J '
e -84 Lo 00) - Fopd v v (165)
Similarly
»
L L3y Ly,
- 1w A 3 b AUSES LR AR (166)

On combining (163) with (165), we obtain

2 My 2t 2 Mg
if k 3 1 k
+ —2-UJM‘1 ;—‘5— + 3 UJM‘1 U+ vy, , (167)
or, in somewhat abbreviated notation,
L R RPN R 1Y . I B ‘
¥ ot 5 ( -8 ” U, ( - o LRI ") (168)

Equation (168) is the well-known Schrddinger equation for time-independent
"kinetic coefficients" Mjk’ MJk, M. We will refer to the pair of equations
(161) ana (165), from which (168) could be derived, as the "pair of Schrédinger
equations". The influence of the radiation field is contained in the quantities
UJ, which -—aécording to equation (150) - depend on the electromagnetic vari-

ables Qa(t). Similarly, when we consider the variations 6y of Y, we obtain

* =
1R 3t = B (+ £ oD v, O S aqk Uk)\p V. (169)

This equation is, of course, the complex conjugate of (168).
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At this point we are rea.dy 4o check the continuity equation (159).

) J .___ ) 1, * ") .
at“naa‘”‘” (') + aqa[“'a"“”‘"*"”‘ )]
—i.‘.— J-al--’-w 1'—3- (M*XJ)+Q.C. ’
aqd ET'3q" .

where c.c, stands for conjugate complex. With (165) we obtain

" .a_z _x1._'L+\p .211#._3_(“4’(.1)

3q] 3q'
»
.-yt iy }_J.@L =
Y ! UJx +VY) + 5 )
~ oz xM- vy +1K—L) 5 y*yv =

=2—igxmdkx"+;;;wv.

where, in the last step, we have used the complex conjugate of (161).

A68

We have

But

this expression is purely imeginary, since the factors of -ﬁ]-'fafe purely real.

Thus, when we add the complex conjugate "c.c.", we get zero, And this com-

pletes the check.

So far we have exploited the action principle only in part, in that we

#
examined what happens when the quantum-mechanical quantities ¢, ¢ , )(‘1 s X

*3

are varied. Now we subject the electromagnetic quantities Q to variations

GQa. Here we must not forget that, according to equation (150), the Q, are

contained in the Ui'

We therefore write down the action functional (160)

again, but this time with the Qa. exhibited wherever they occur. All the

other terms are indicated by a sequence of dots, Then, with the use of (150),

we obtain
A -fb at{ } Q[anlAq_ oo 8" M—(X 'P*X‘P)c Ja k)]"'
LTI, a,low
€ aQ_ 2 € 2
e tzzy L[ -—= [ [kall.
* ma,low at 2 a,dow °°®

(170)
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Q. 2
In the variation GAa b there appear the terms 5[-3%4 » which require some mani.
1
pulation, We have
dQ_ o aq aq aQ
a a 8 s d
Sg) =2z sl =2 3t dt (43,) =
dqQ a<qQ
» d a
=25 [ 09,) - 2 2 60,
The first term, being a full time-derivative, contributes only to the end terms
E.T.0. We then obtain
dQ b

€
QO a
Mg = e tor I [gpeqlf +

t=a
dZ

€ Q
+f° at ] sq{-=2—8-¢ (k)%*+
t=a a,low a ¢ dt o "a’ "a

+ [aqlag? ... AqﬁM%ﬁxudw + wa')%-Jj.a(qk)} .

The action p}inciplﬁ tells us that the expression in the curlei brackets must

vanish. Thus

d%q » *
ZT5t e, (k,)2q, = % [aqlaq? ... AW _15()( Ty o+ xly MWya (171)

These N equatiohs (one for each of the low transverse modes #a) describe how the
atom influences the electromagnetic field. Each of these equations is constructed
like the equation of motion for a driven harmonic oscillator. With the aid of

(153) and (158), we can write (171) in more compact form, namely as

= LS a0 kg
€ C :
(o]

E"-Qa-’ )
(dct )2+ (ka) Qa j,a?

after we have divided it by €yt This equation is the main result of this section.

(172)

It is the quantum~mechanical analog of the classical equation (138a).
In order to explain the meaning of (172), we write it down agaih in con-
Junction with (138a), also divided by €o* Only this time we indicate the vari-

i
ables on which the various quantities depend. In (138a) we replace g%;-by its

R T

R s
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Classically: R c‘n'M“TV
a2 2 S S k
TactTT P lt) + (k)%Q (t) e Y (£)7, L(a7(tD) (173)

Quantiidn-mechanically:
2 .
TooTr % (8) + (k,)%Q,(4) = ;i—- Jaokd(q*,6)3, (d¥) . (174)

Of course, the words "Mlassically" and "Quantum-mechanically'" refer only to the
treatment of the atomic subsystem. The electromagnetic subsystem is always
treated classically in our presentation.

In order to make the transition from (173) to (174) more evident, we rewrite
the right-hand side (R.H.8.) of (173) in a cumbersome, but instructive, way. We
could regard the precisely defined configuration qu(t)} as the reflection of a
highiy concentrated probab;lity distribution in the atomic configuration space,
Let s(qz,t) be the density of this distribution. It is sharply peaked near the
point {qk(t)} and zero elsewhere. When we integrate s over the entire configura-
tion space, the result must be unity. Of course only the immediate vicinity of
the point qk(t) contributes to the integral. We can therefore write the R.H.S.
of (173) in the form

R.H.S. = gz—c- {jAofs}v"(t)JJ'a(qk(t)-) .

Here s in the integral is evaluated at the generic or "running" configuration of

the integration process, whereas Jd a is evaluated at the »recisely defined
y ;

configuration {qk(t)}. But, because s is so sharply peaked near {qk(t)} we

may pull J into the integrand and evaluate it at the .uanning configuration,

J,a
without changing the value of the R.H.S. We may pull in the vd(t) as well,

* because this quantity figures as a constant in the integration process. Thus
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1 J
R.H.S, = X faa sv (t)JJ’& .

But st is the component #j of the probability current density KJ in the atomic
configuration space. Like s, the KJ as well are sharply peaked near the point
{a(t)}. We then obtain

L :

And now the R.H.S. of (173) 1o§ks like the R.H.S. of (174). This shows the :
intimate connection between the vlassical and quantum-mechanical equations (173)
and (17h). S
We may recapitulate the considerations of the preceding paragraph in the ;
following way. The R.H.S. of the classical equation (173) is deterministic in
form and in substance, since it refers to a precisely defined configuration
{qk(t)} and velocity with components {VJ(t)}. But we may contrive to write it
in a probabilistic form, as in (175). In substance, it is still deterministic,
because the probability current density components KJ are such highiy concentrated

distributions. When we go over to the quantum-mechanical equation (174), the

same probabilistic form is retained. OnlyAnow the R.H.S. is probabilistic not.

TR R TR TR L R s e

only in form but also in substance, because the quantum-mechanical KJ are no

longer highly concentrated distributions. We may therefore regard (1Thk) as the

e T LA 6

direct probabilistic analog of (173).

Now that we have elucidated the meaning of the quantum—mechanical equation
(174), we are permitted to make the transition from (173) to (1T4) in a rather
mechanical manner, i.e. by a purely typogrephical procedure., All we have to do
is to replace the symbol v in (173) by the symbol ]AOKJ and to pull in the

symbol J under the integral., We do this, while the independent variables

Jsa

a.z:e deleted, Afterwards we restore the appropriate independent variables. Thus:
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v%w%mmWw>+N%&+[m@%m +MﬁNJ¢NLJJ). (176)

We ought to make sure that the ultimate independent variable is the same
on both sides of (173) and also of (1T4). The left-hand sides depend only on
the time t. And in fact, the right-hand sides have only t as the ultimate inde-
pendent variable, In (173) this is assured, because the qk depend on t. And
in (174) this is assured, because the qk get "integrated out".

The equations (173) and (LT4) tell us how the atom influences the electro- :
magnetic field. In the form we have written them, they describe how the atom
affects the individual mode excursions Qa(t). We may also write down equivalent
equation for the vector potential field cA(r,t). To this end, we multiply each
of the N equations (173) and (1T4) (one for each mode #a) by the corresponding
transverse mode pattern Ea(i). Then we sum over the low modes #a. We use
equation (91) (See Box #Ll of Section ), namely

<ka)2ﬁn = ¥ x (Vx Ea) , (91) repeated

and equation (14l), namely

ek, (r,t) = Q ()8 () . (144) repeated
low a,gow a a ~

Then we obtain

Classically:

32 - = = - - - }
‘ oRy (T,6) + ¥ x (¥ xch,_(F,6))= == v)(x) ] J
(act55 Low low eoc a,low

J.aWEE), Q)

Quantum mechanically:

2 - - - - - ' = ey
TrayT Moy (Fab) + 7 % (T x oy (Fye)) = 2 faok!(Q,8)1, (d)E (F).  (178)

Llow o J,
Next we introduce the abbreviation
Kym = - k -
J Elr)=J ) Y
a,gow 3,2 QBE) = 3y 0 g (ahE) (179)
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which is suggested by equation (145), Then equations (177) and (178) can be

written in more compact form:

Classically:
Sz Ry (Fat) + U x [0 x oF, (78] = AL RO LY

Quantum mechanically:

32

dct (181)

chy () + T x [(F x k) (F,8)] = ;—27 Jaor! (a*,6)3, o 1o (a5,F)

We may also reverse the procecure that led from (173) or (174) to (180) or
(181). All we have to do is multiply (180) or (181) by the transverse mode '
pattern Ea(?). and then to integrate over the cavity. As far as the details
of the calculation are converned, one uses the series expansions (1kkL) and
(179), and also the orthonormality relations (98). (Secz Box #5 of Section 6.)
One also uses term-by-term integration and differentiation of the expansion
series, This is certainly permissible, since all the series are finite.

We Just went through a procedure that carried us from equations (173) and
(174), the equations of motion for the mode excursions, to equations (180) and
(181), the equations of motion for the vector potential field cA(r,t) as a whole.
We could have gone through this procedure also in the action functional. In the
case of classical dynamics for the atom, we have done it alreedy, as we went
from (146) to (;h?). When the atom is trested quantum-mechanically, the field-

analog of (160) would have been

Ao AR A i et e et e i et et
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Aasb = [° at(faq'a? ... aqWIEEL (pf 2Ly By M B 2
appr,quant. t=a 9q aq

+ (G XM+ Lodv o Ay - et s
[ ’
+ =2 [IfarlzE ok ()] o (55 Ry (Fi6)) -

€. v
- —g— J[ac[® x cKlow(F.t)] « [V x cA

1oyl Trt) ]} (182)

For Ud(qk,t) in this expression, we would prefer, instead of (150), the equivalent

formula

U, (q",¢) fffArJJ T, low(q_ JF) o ow(;,t) . (183)

All the equations of motion for a free-running system follow from the action
principle
GAn.b = §,T,0. ‘(Sl) repeated
The transition from (173) and (lTh)‘to (180) and (181) in the equations of
motion for the electromagnetic field does not produce any new resul£s. It is
merely a change in the‘mathematical idiom. However, it affords us some 1hsight
into the physical significance of the excitation terms, namely the right hand
sides. In the classical equation (180) the excitation term (except for the
factor EEEQ is the low-modes portion of the ﬁransverse current density |
Tp 1ou(Frt) = v‘j(t)ﬁd‘w’low(qk(t).i:) (184)

In the quantum-mechanical equation (181), this quantity J (r,t) is replaced

T,low
by its quantum-mechanical expectation value,

So far we have considered only one atom in the cavity. The next question
that arises naturally is: How does one proceed when several or many atoms are

present? We take up this question in the next section. We omit the classical
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treatment of the atoms and proceed right away to the more interesting case
in which the atoms are treated quantum-mechanically.
9. The Quantum-Mechanical Problem of Many Atoms.

In order to explain the pringiple of the method that we shall employ, we
first discuss the case of just two atoms. We assume that the two atoms are
far enough apart so that they do not influence each other directly. But thef
are permitted to interact with each other in an indirect way, namely through
the low-modes portion of the vector potential field cA(r,t).

The first atom has n' degrees of freedom. Its configuration is described
by the n' coordinates qk', (k' = l,é, see n').‘ The second atom has n" degrees
of freedom. Its configuration is described by the n" coordinates qk", (x" =1,
2, ... n"). The correct procedure would be to treat the two atoms as one suber-
atom with n = n' + n'" degrees of freedom. One would then start with the action
functional, e.g. of the form (182). But this procedure is much too unwieldy,
especially so, when many more than two atoms are involved. Therefore, we shall
look for some assumptions that will simplify the treatment. In order to spell
out these assumptions, ;e have to devise a consistent scheme of notation.
Single-primed symbols and symbols with single-primed indices refer to the first
atom, while double-primed symbols and symbols with double-primed indices refer
to the second atom. Unprimed symbols and symbols with unprimed indices refer to
thé super-atom. Single-primed, double-primed, and unprimed indices run respec-
tively from 1 to n', from 1 to n", and from 1 to n = n' + n". We relabel the
index set 1,2, .e. n'y n' +1, n' +2, ... n' + n" as

l', 2', s e n', 1", 2" LU n" .

TR A ENMANE
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One consequence of this relabeling is that the product of differentials Aqlag2...

' t ' " " 1]

AqQ” that oceurs in (182) can be rewritten as (Aq! Aq2 ... Aq® )(Aq! 8q2 ... AQ").
Next we examine the matrix of the kinetic coefficients with elements MJk'
of the relabeling, this matrix becomes partitioned into four boxes, namely

Because

Myvger | My

MJ"k!' MJ"k" *

Matrix(MJk) =

Since the two atoms do not interact with each other in a direct way, we conclude

that the matrix elements MJ'k“’ MJ in the off-diagonal boxes are zero. Thus

"k'

M

- |k| o L
Matrix(Mdk) = 3 Mj"k" . (1.85)

A consequence of (185) is that the appropriate determinants satisfy the relation

Det M,, = (Det MJ,k,)(Det MJ"k") (186)
1
Then the quantity M = (Det Mdk)4 which occurs in (182) can be written as
M= MY M .‘ (187)

in rather qbvioué notation. We note also that M' and the matrix elements Mj'k'

]
depend only on the qz , while M" and the matrix elements Mj"k" depend only on

"
the qm . The nature of these dependences is the same that we find in the single

atoms. Again, because of the appearance of the zeros in (185), we have

#* k L X k! *. " k"

JMka =X . Mj'k'x "')(1 Mjnknx . (188)
[] "

1
But the xk depend on both sets of coordinates qz . qz and the time t. And

X
1t
so do the xk .
To continue with our examination of the terms that occur in (182), we note
that

" 1"
(x g + XJJSUJ = (x3'y + Xj'w*)UJ' + (3 + w*>UJ" (189)
) "
The quantity ¢ in (189) depends on both sets of coordinates qzv, qz and the

. ]
time t.  However, the U, depend only on the set ql , and the U,,, depend only

J'
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” )
on the set of qz . We see this when we examine equation (183), which defines

the U,. In this equation, there occur the quantities J (q?,?), which are

J J,Tylow
of purely kinematicel origin, in that the low-modes portion of tpe current
density in our home-space is given by

' K o
Tp 10a(Frt) = ¥ )T, 1 1oy (@¥(8),5)

After the relabeling that we introduced earlier this equation becomes
T JowlTet) = v (t) Iyr,m, 1°w(q "(6),0% (),F)

P03 Tyn 10w (' (£),a5" (£),F) (190s)

Since the contribution to JT 1ow

(190s) cannot depend on the configuration of the second atom, we conclude that

made by the first atom (the first term in

- ' -
Iy can depend only on the set qk . Similarly J can depend only
J',T,low

3", T,low
"
on the set qk + Equation (190a) thus becomes

20 Fot) = W (0350 11 (@ 0,8 v @)y g @ 0,5 (a00)

The equations that define the UJ, and UJ" (see (183)) then become
k' 1 - k' - . 7 - _
Uy a® 5t) = 3 1182341 po1ou(@ sT) * ok L (F,t) (191a)

and

U CR I N 1175 M o T RSN - (2010)
Thi2y show that the’UJ, can depend only on the set qk' and that the UJ" can
depend only on the set qk", as we already indicated by the way we wrote the
left-hand sides.
Furthermore, since the two atoms do not interact directly, the potential
V(q®) that occurs in (182) will be of the form

() = v (g®') + () , (192)
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where the two functions V' and V" are the potentials for the single atoms.

Now we are ready to incorporate our previous considerations into the

action functional. We shorten the notation somewhat by the use of the volume

element in configuration space. On combining (153) and (187), we have

Ao = Aqlaq? ... AQ™M = (Aql'Aq?r ... Aqn'M')(Aql"AQZ" - Aq,_n"ﬁ ';) = Ag'Ag"

Also we use two integration signs in front of Ac'Ac" in order to remind our-

selves that we have to integrate over both configuration spaces. With these

changes of notation equation (182) becomes

» " [
Ay = [P ast[faoron (14 (b1 oy By MR N B
’ =
appr,quant tea » . 9q | a:
'3 . "3 1 #4 k! 1 4 k
-XJ rﬁd—'-,- XJ -a—ZTn-) + ((E X J Md'k'x + -é- X J MJ"k"x +

" "
+ 5 0 W oy, + 20 g

- otvr - M) ]+
9 - - .
+ -% IHAT[E:TE. c‘A‘lcw] * [3—2? c:Alow] -
e .
-3 [[[8al® x ek 1 - (¥ x ch) T}, (193)

where we have omitted the indication of the independent variables in order to
keep the notation as szhort as possible,

And now we come to the statement of the assumptions we are going to make.
We shall assume that the (n' + n" + 1) functions x° (d5,t), x* (a¥,¢), v(¥,t)

are of a rather restricted form, namely that

b(a,8) = (@ eemat e, (19%s)

x'(,8) = (R e e | (19k0)

O, 8) = "X e (XLt (194c)

et m——
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(Similarly for the complex conjugates, the starred quantities,) Furthermore,
the functions ¢' and y" shall fulfill the normalization conditions

Jaoryr*yr = 1, faomyyn =2 (195)
(Actually we need to postulate these normalization conditions only for one
particular time, say t = O, Then they will be satisfied at all times, since
the Schrédinger equations for y', xJ' and those for V", xJ" turn out to be
satisfied, And this, in turn, guarantees the validity of the continuity
equations of the type (159), once for the single-primed quantities and then
again for the double-primed quantities. And when we integrate the continuity
equations over the appropriate configuration spaces, we see that the nnormaliza-
tion integrals of (195) do not depend on the time t.)

As we shall see, the assumptions (194a) - (195) will yield a workable
action functional, from which - by way of ﬁhe action principle - equations of
motion can be derived that are well defined. Of course, because of the restricted
nature of the quantum-mechanical functions as embodied by (194a) - (195), only
a restricted class of syétem histories can be obtained from these equations of
motion. The histories that are rejected by our assumptlons.are, though possible
ones, not of technical importance at the moment,

‘When we use the equations (194a) - (194c), but not yet the equations (195),
in the action functional (193), we obtain, after a reordering of the terms, the

following expression:

e ey A R IR e e -
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In the first configuration-space integral of (196) we first integrate over the

douﬁie-primed space. Because of one of the normalization conditions (195), this

portion of the integration yieldsunity. Thus there is only the integral over the

single-primed space left. We proceed in a similar way in the second integral,

where we first integrate over the single-primed space. Thus the expression (196)

simplifies into

" —
Ao = [P antaan (BN By Bl 0" B
appr,quant ° % 3q 3q

+ (3 'X*J!M.j o' X

' " »
+ on"[[iﬁ (p " .iL. Y QiL_.*.n "y :QJ "XJ" :mdx) .
. q q .

L vx*J'lpv + 'XJ'U)*')U , - w*vwvvv))]] +

+ 2(

# 05 "X My 3K e - )0 4

o) 9 . = 9 = '
+ 28 [feigly byl ¢ by Ry, ) -

€
-—-g-fffA-r [V x, cﬁlow] o [V x ek 1t . (197)

~ We see that the quantum-mechanical portion of the action functional has
been decomposed into two completely separated portions, one for each of the
two atoms. A consequence of this observation is that the quantum-mechanical

' ‘
functions ', 'xJ of the first atom satisfy their own pair of Schr8dinger

) +

A80

Ay = [° at{ffac' a0y "w"[[”’(w ' ag; -y 3%1.,—' s’ oy ) -
:épr quant t=a 3qJ' aq’
* '15 'X'J'Mau_g-'xk' # 30X e oy Ny, - w"w'v'))]l +
) N . *, e - o st
+ f!onAa"w’"'w'{[%w"' R Y —-%‘33" ' -?—.,) '
A ~
v
+ ((l "XJ MJ"k""xk" + .J;(st“d".wn + "XJ"“’*")UJn -y "W V"))]] + g
? 1%
o 9 A - “Qh “pyl
2 [imlg chyy,) b ofy,) c(s;\e? Q
€
- —%'IIIAT[V X cxlow] + [¥x cllow]} y (196)

st

TR A S5 b pam st s

e

ST



A8L

ORIGINAL PAGE IS

equations, namely OF POOR QUALITY
-~ ! k!
and
i*f%%L+"'§'ﬁa—a.:'v‘<ﬂ"xJ'> +5U v o, (199)
q

in anelogy to (161) and (165). Equations (198) and (199) ensue from the action
principle in the usual manner, when we vary 'x“J' and ¢*'~ Similar statements
pertain to the second atom. The foregoing remarks do not imply however that
the two atoms are.completely independent from each other. For they interact
through the low-modes portion of the vector potential field czlow’ which is
contained in the UJ, and,UJ" according to (191a) and (191b), The equation that

governs cxlow is obtained from the action principle, when we vary ci of.

low’
course, when we perform this variation, we must not forget that cxlow is con-

tained in the U,, and U,,. Then, with the abbreviations

J!
' LI L !
= 20w (200)
and
W #att N N wl
"KJ = %("x J ‘p + "XJ ‘p ") . (201)
in analogy to (158), we obtain
32 ry v/ g A P v orged! T
dct CAlow +Ux (Vx CAlow) T e IAO K" d J',7,low +
l '. ""'“
+ o fao" ngd'3 4T low (202)

This equation resembles (181). However, each atom contributes separately and
independently to the exciting term, the right-hand side.
We could have skipped the entire preceding discussion of this section.

Instead we could have postulated (197) as a workable action functional. But
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then we woul(, not know what kind of assumptions lie behind this postulational
approach. But now that we have recognized the assumptions, namely the restricted
product form for the quantum-mechanical functions, we can use the postulational
approach for the case of more than two atoms. Let us tag the atoms with the
index p. Then, when we write dcwn the analog of{197) we can afford to omit the
index p for most of the symbols. Instead, we write it below the integration sign
of the configuration-space integral, In this way, we imply that the p should be
appended to each symbol behind the integration sign. This shortened notation

should not cause any confusion., Then the generalization of (197) is:

»
appr,quant -®  atomsfp p 9q 9q

+ (G + 30N x%“)uJ - "wIN

O - 9 -
B 16X R I 7 A

-2 22 [ffaelT x ehy e [Fx ek 1} . (203)
wvhere
1
AT F I3 RS . (204)

With each atom #p there is associated its own pair of Schrédinger equations,

which are built like (198) and (199). And the generalization of (202) is

L. 7 a7

(205)
Low €o% atoms #p p

dct low JsTylow
This equation shows that each atom contributes separately to the exciting
term. Each of these contributions is the gquantum-mechanical expectation value

of the current density for the atom in question, except for the factor Egt;'
o]

A82
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The equatlons of motion for the whole system consist of the pairs of
Schrédinger equations, one for each'atom (An example of such a pair is given
by (198), (199)), and equation (205) for the vector potential. These equations
are intertwined, because the Schradingér equations contain the vector potential
(by way of the UJ)’ and because equation (205) contains the quantum-mechanical
functions (by way of the KJ). It is impossible in practice to solve such an .
intertwined system exactly. Therefore, one has to use approximate methods for
the solution. The favorite method is the perturbation calculus, which we shall
discuss in the next section.

10. The Perturbation Calculus ,

We start with the action functional (203), in which we regard the term with
the UJ as a perturbation. It is this term which causes the equations of motion
to become intertwined. As is the custom, we multiply this term by an "expansion
parameter" A, which in the end we set equal to unity. Ve algo expand the quantum-
mechanical function ¢, x‘1 for each atom #p and the vector potential cxlow as
power series in A, Accordingly we write

(w)p = (Y, + My + Ay, + ...) (206)

P 2
(xJ)p = ( ‘3 sad eazd vl )p » (207)

and similarly for the starred quantities. In the expansion for cA » we delete

low
the subsecript "low" on the right-hand side, in order to keep the notation as
concise as possible. Thus

- _ oz - 2.7 4

chyy = CA + AcAy + AZch, + ... (208)

The termz with the index O constitute the zero-order approximation, those with

index 1 ronstitute the first-order correction, and so on,
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Ye insert the expansions (206) - (208) into the action functional (203) and

multiply the terms with the U, (which wc write out according to (204) by A.

J
In doing so, we multiply the inserted series term-by-term, but break off after
the terms in AV (for the NP order Ferturbation calculus)."We indicate this

breaking-off by the prefix [B(AN)l. In our applications, we will be satisfied
with the second-order perturbation calculus, Thus we break off after the terms
in A2, The action functional (203) is then replaced by an approximation, which !
we denote by Aa,b ("pert" for perturbation). We refrain from writing out the ;

inserted seriegeagd the results of the multiplications in detail, and simply write

Aap = [B(,\2)]t£: dt{atomg - :{ sol (42 (4" —5"— + x" ﬁ’- _— ?:%)
pert -
. (G x*JMkak -ty + 3 (M e xR [ J'T«le * ch) 1]
R e_g [ bl By 1 o (e Ry ]
- fffAt[V x ch ] o [F x k) 1} | (209)

This is a workable action functional.
When we apply the actioﬁ prineciple, we can vary all the functions Vg, ¥;,
VYo eece o cA independently. We start by varying the x*J for atom #p. Then,’in
the usual manner, we conclude that we must have ;
[B(A2) 1 (6xg? + A6x;d + AZ6xp) ,)[ih’(-a%l + 2 ﬂ-%- s 22 242
. 3q aq' 3q

+ Mdk(xo + xxlf + Azxz) + Mug + M) ffon T+ (chq + Acil)]}p =0

J,T,low
(210)
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Here we have written out the series in detail. 1In the last term we could

shorten the series, because of the factor A in front of it. Now we remember

» ) »
that Gxod ’ leJ , 6x2J can be chosen independently. We also remember that we

»
break off after the terms in A2, Then, on equating to zero the factor of GXZJ ,

we obtain
A2tk 22 4y x5 =0, (211)
gl JKXo’p
Q
*
""he factor A% may be cancelled, of course. Next, we equate the factor of leJ

in (210) to zero. We obtain

AL 290 4 M W87 e a20i L K ryg 2 fffar T« cRpl =0
agd K0P aqd  JKL T M0 3,7, 10w 0°p

Now, the first term vanishes, because of (211). Then, after we canccl the

factor A2, we obtain .
[ 2L 4 Mdkx‘f +¥=[ffax 3 k) w0, (212)
9q J,T,low P
»
Finally we equate the factor of Gxod in (210) to zero. We obtain
Y . ‘ - -

(14 —7+ Mkal;] + A[ﬁ'f?-q’-‘]j-+ Mdkxll‘ b %— [ff[ar F  + cR 1+
aq p 9q J.T,1low

+ A2[14 32§-+ Mkak Y %-ff]Ar J e ck +
3q 2 JsTylow

s ifffax I Rl =0,
J,Tylow

Now, the first and second terms vanish, because of (211) and (212). Then, after

we cancel the factor A%, we obtain

[ 22 oy vy 2 [ffar 3 Ry = fffar T . cK) =0
an . ojk 2 c J’T’low 1 ¢ J,T’low OP

*
In the next step, we vary the ¢ for atoms #p in (209). In the normal

manner, which involves some integrations by parts, we conclude that we must have

U R e N Y

R
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[B(A2)1{(8py + A6y + Azsw:)[m(?-‘g% + 2 .3%%. + )22 %,

+ %%—% (M(Xb’ + }\x‘z + Azx%)) - v(zpo + APy + 12,‘,2)
J,T,1low p

We apply the same step-by-step procedure that we used before. That is, we
* "
equate to zero first the factor of 8y,, then the factor of 8¢y, finally the

*
factor of &Y. And at each step we use the results of the previous steps.

Then we obtain

[+ aat * 'ﬂ'el/ﬁ% 33 (txg) - Véol, =0 , (215) |
_?.L b1 T 131 = e
(18 % 20 33 Mx1) - W1 + 5 x5 = [f[en J,'I'?low cAo]p =0, (216) :
Wy, K1 3 1.41 . -
[ =2 4 ELw] (Mx3) = Vo + 5 x3 = [[[ae J '.'.‘Jlow . ok, +
M % xl; P f.UAT J * chgl =0, (217)
J,T,low

In the last step we vary ci in (209). In the usual manner, which involves

low
some integrations by part we conclude that we must have

- [B(x2)1(8cky + Aschy + A26chy)ef I [Ao 2 T(xg? + Ay (v Apy) +
atoms #p

+Od e+ )1 23 ' j
J,T,low

32
= € Toect)?2 (cAg + Xehy + A%cR,) - €y ¥ x (Vx (cKg + Ach; + A2¢R,))} =
(218)
Now we apply the same step-by-step procedure that we used twice before. It
yields

82 = == =y
€ Ts;;jz-cAo - eov x (¥ x chy) =0 , (219)

ORiGINAL
PAG
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32 = /5 . .=
- €, Tct)2 ck; - BOV x (V x chy) +

o 1 Mokt +xdvhE 3 =0 (220)
atoms #p p 2270 %o oo¢ JsTylow ’ y

» " -
+ 1 faoxdn e xtee s xdun +xdv) 2 7 =0
atoms #p p o J,T,low
(221)

We may rewrite these equations in a way that appeals to our physical

intuition. According to equations (200) and (201), the probability current
density components (KJ)p for atom #p is given by i
!Cj l *J J »* '
= = + . 222
( )p 2(x Yo+ XY )p (222)
On the right-hand side we use the expansions (206), (207). We use a similar
expansion for the left-hand side, namely
= (kd J 24 4
o= o] eand e (223)
It will suffice for our purposes, if we break off the ensuing expressions after
the term in A, Then equation (222) becomes
1,, * * » »
(or M) = BOVIOY + a?) o + 2en) + (xd + ) wo + 1)1

Comparing the terms in A? and A!, we read out
* *
(K5), = (xoTwo + xiwo) (224)
* * » *
(K], = 5001+ x000 + xdv1 + xdvo) (225)

Then, instead of (219) - (221), we can write after an obvious rearrangement !

o

2 - N = -
ﬁggﬁcAo»fv’WV*éﬁ\@)v-o, (226)

EIEARDIR I TRATE S Tt e T S R
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Poop’ o A8t g
r_raz Ky +9x (Fxek) === [  faod 3 AL/ry(am
cAy x x cAy) = = o
et )2 €% atoms Fp p J,T,1low ’
32 o = = 1 -
Toeryz o2 + T x (T x chp) = = ) faoxd 3 . (228)
det €o° atoms #p p ! JsTylow

We see that the exciting terms for the first and second order correction to the
vector potential are the zero-order atomic current density and the first-order

correction to it respectively (except for the factor Elg).
o]

We summarize the results of this section by writing down the equations of
motion we have derived, only this time in the order in which they are applied.
We can delete equations (213) and (217), since they determine only the second
order corrections to the atomic structures, in which we are not interested.
The center of our interest is the electromagnetic field, bécause of its technical
importance. And here it is mainly the second order correction that we need to
know. For it constitutes the response to the excitation provided by the zero-
order approximation to the electfomagnetic field. To begin with, we have the

equations of motion for the zero-order approximation, namely

. ky
(h - v, + Mdkxo)p 0, (229)
(153%-%+%%-9?(ng)- Vo) =0 , (230)
aq p
52 - - - -
Goryz cBo + T x (¥ xehy) = 0 (231)

Usually we do not have to solve these equations, because the solutions are
given to us as the starting point of a technical problem. Then we determine

the first order corrections from the following set of equations.

R ]
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(1 L e M o) = (wdfffar T o cKy) (232)
agd  JEP oc 111 5,0,10w P
AL LD 0y vy b d L fffae T -ch) . (233)
M RTI B p == 506 5 ] I g
2 - - - - X
azt‘ chy + VX (V %cky) = ;1—- ) [ao %(x:'j% + xgw:) J (234)

o atoms #p p 3,7,1low
The pair of Schriddinger equations (229), (230) and the pair (232), (233) have
similar structures. The only difference 1s that inhomogeneous exciting terms
have been added in the latter pair. Equation (234) is not of great importance
in our technical applications, because cKI does not depend on the "incident"
field cKo, Finally we have the important equation for the second order

correction cAy, namely

2 - = = =
(300) chy + V % (Vx chp) =

= ?LE ! Jao %(XSJ%* X*;'j‘Po + X‘c’:‘l’/; + x’l‘l'o*) J . (235)
o atoms #p p . J,Tylow

In order to use it we have to first determine the solutions of (232), (233)

aind their complex conjugates. ‘
Sometimes it may be helpful to rewrite the equations (232) - (235) in such

a way that only the symbol J, appears in them, instead of the symbol A3 .
S J,T,low

The reason for this is that analytical expressions for 5J are more easily

formulated than those for 33 é 1ow' In order to explain the modification that
949

we are going to meke, we review the definition of J We had (see

J ’T’low ¢ *
equation (132))

Fo=Ja F +74, E . (236)
J ad a
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By definition, J i3 the low=-modes portion of the transverse part of EJ’

J,Tylow
so that

JJ,aEa

J = (237)
J,T,low a,lov

By assumption, cio i3z purely transverse and its high-modes portion vanishes.
This statement implies that cio may be expressed in the series
ckg= } o E ., (238)

‘8,0 &
a,low

According to the orthonormality theorems (98), (100) of Box #5, all those terms
in the series (236) that are not contained in the series (237) contribute zero
to the integralsin (232) and (233). Thus we may delete the subscripts T, low
in these integrals,

However, this mere deletion is not permissible in equations (23L), (235).
Here we must proceed in a different way if we wish to rewrite these equations

in terms of JJ instead of JJ,T,low'

We start with equation (237). This time
we write in the independent variables. Thus

’35 (a)E,(F) . (239)

. K =y _
,1ow(q B = ] Jj,a.

? a,low

We express the expansion coefficients in terms of integrals taken over the

home-gpace., We obtain

k
J
J,a(qf

= 1 [ . !
) IIIAT (Ea(r ) JJ ,T,low(q Sr )
Here we have affixed primes to AT and r in order to avoid confusion in the
equations that follow. For the reasons that were explained in the paragraph
following equation (238), we may delete the subscripts T and low. Thus our

last equation becomes

3, &) = [[f0E G - 3 (20)

R
-

ST



ORIGINg,
OF PooR o \GE Is
On combining (237) and (240), we obtain LiTy
k r r 'E r! ] I r!
J'JpT’JsQV(q ’r') = G.EOW Ea(r)fffAT Ea(r ) Ja(q oT ) ’
or
RO RN ICH I XX COREACDR (241)

by means of a linear

This equation shows that J is obtained from J

JsTylow J

operation, called a projection (into the sub-space spanned by the low-modes

patterns Ea). We denote this projection by the symbol PT 1oy Then the short-
y

hand notation for (241) will be

Iy.0,20w = Pr, 10079 (22)

Now we come to the integrals in (23L) and (235), Here we use (242). The
integral in (234) becomes
1% 3 *.p -

£A“ 2% o + Xo¥o Vg 1047
But the projection PT low® being an integration over the home-space (according

]
to (241)) mey be interchanged with the integration over the configuration space,
so that the integral becomes

P 1,.%) J  *\=

T,lowéAd Eﬁxo Yo * Xo wo)JJ *
We may even interchange the projection and the summation over the atoms #p.
Similar statements apply to the integral in (235). Therefore, equations (232) -

(235) may be replaced by

L o et
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(yﬁ B+ mpD)y = = (b 3 [ff0r3, cxo (243)
3 1{1 3 1,51 -
(1 B+ 20 - 7 00d) = wy) )= - 300 2 fffaxdy oRy) . (24
22 5. ATy o oL *
YT Cxl + T x (7x cA1) eoc PT,low a,toms o 1{A(.! -()(o Yo + x‘sd)o)J (24s)
52 - = - -
(€L chy + T x (Vx chp) =
_1 *) *
=7 Pn, bo 3 xw+xw+x¢ +xfw>J- (246)

The main part of our repcrt is based on these equations. Of course, they are to

be supplemented by the equations (229) - (231) for the zero-order approximations.
It may be helpful to rewrite equations (243) - (246) in a more abbreviated

form, in which they may appeal to the physical intuition. To this end, we intro-

duce the abbreviation

(U, ), HIATE + ek - (2u7)

The quantity (Uj,o)p is the vector potential component #}) in the configuration
space of atom #p. The index 0 indicates that (UJ,o) is based on the zero~order
‘approximationkcﬁo to the electromagnetic field. Furthermore, we abbreviate the
two integrals in (245) and (246) by <30> . and <31>p. These two quantities are
the zero-order approximation and first-order correction to the quantum-mechani-
cal expectation values (as indicated by the carets < >) of the atomic electric
current density (in our home-space) of atom #p. With these abbreviations, equa-

tions (243) - (246) assume the form
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(46 25+ 1 x5) = - (bgU, ) s (248)
aqd TP Jro'p '’
WL L3 d) vy e R
32 - - = -\ 1 -
. chy + ¥ % (V xchy) = rardd I <>, (250)
dct 1 Boc T,low atoms #p oy
32 - - - 1
4 ” CA2 + ¥ (V b CA'Z) = — P z <31> . (251)
det €,C T,low atoms #p P

In fact, someone who is not too concerned about mathematical probfs would be
inclined to write down these equations at the outset of an investigation. He
could well say to himself: Things just have to be that way, they cannot be
otherwise. Perhaps he may have forgotten to include the projection oparator
P'I‘,low °

otherwise cA; and cA; would not turn out to be purely transverse and devoid of

But, after some reflection, he would have spotted the need for it,

the bothersome contributions of the high modes,

g

(4 DRt RMCEIYS 0wt ke TRk i s



A9

Chivavmb e 1Y
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The atoms (or molecules) that we have considered so far are, in general,
composite entities consisting of several particles (electrons and nuclei).
Now we are going:to examine an gspecially simple example, ih which each of these
entities consists of a single freé electron; no nuclel are present. The electron
will be treated non-relativistically and quantum-mechanically. In this simple
example, the configuration space of each electron may be considered as being
identical with our three-dimensional home=space. We may therefore identify the
three configurational coordinates ql, qz, q3 of a given electron with the three
cartesian coordinates x, y, z of its position. And we may combine ql, qz, q3

into the position vector g = qle, + q%8, + q%e;, where the e, are the cartesian

J
unit vectors. The configuration of the electron is then characterized by its
position vector 3. We may therefore choose a more appropriate notation for the
function p(qi,i) of Section 1) and the functions ﬁj(qi,i) of equation (5). The
new notation will be p(q,r) and 3J(§,F). Because the charge (-e) of an electron
(e = 1.6 x 10719 coul) is concentrated in a single point, the functions p(q,r)
and EJ(E,F) have a particularly simple form, namely
e(q,r) = (~e)é(g-r) , (252)
and
EJ(E,F) = (-e)é(q-r) 8 0=1,2,3, (253)
where 6(q-r) is the three-dimensional Dirac delta-function (really a distribution,
whose meaning is given in terms of integrals). It has the following properties:
§(q-r) =0 for g # 1 ,
[1]8 8@-P)0(@) = £(F) (254)
[[]sc_8(a-F)e(F) = £(a) ,

o~
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for any arbitrary smooth function f.

We can now proceed to adapt equations (243)-(246) to the case of free
electrons, First of all, since each electron #p is free, the function V is
zero, Of course, we neglect thg direct interaction of the electrons with each
other, just as we did for the atoms. This is permissible if the electron density

is not too great, In the second place, the coefficients M,, in (243) have rather

Jk
simple values. Here we go back to the dicussion that followed equations (125,

repeated) and (141, repeated), which may be found after equation (145). There
J k '
we see that the expression%'g%E'Mjk Q%g is equal to the conventional kinetic

J

energy of an electron. And since we are using cartesian coordinates as the q“,

we conclude that M,, = 0 for J # k, and M,, = m for J = k, where m is the conven=-

Jk Jk 4
tional electronic mass. Then with the aid of (253) and (25h), equation (243)

becomes
v,
- 1, = -
(th —+mx))_ == (-e) S (y &, + k) .
We may regard 32} and x‘j as the cartesian components #J of the vectors VW1 and

3q
X13 The last equation we wrote stands for three equations, one for each of the

three values 1, 2, 3 of the index j. We can combine these three equations into
one vectorial equation, namely

(4091 + mky) =-e)glu ek) (255)
So far the independent variables on which the functions in (255) depend are
(E)p,t. (The r that occurred in (253) disappeared by virtue of the integration
over the home-space,) But since the configuration space of each electron #p is
identical with our home-=space, we may Jjust as well use ;,t as the independent

variables,

¥
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We use the delta-function expression (253) for the J 3 in the remaining
equations (2Lh) - (246). And we also use vectorial notation. For convenience

we add the equations for the zero-order approximations (¥ o)p? (go)p’ and cﬁo.

)P
We then arrive at the following system of equations, where, as btefore, the

subscript p indicates that the quantum-mechanical functions refer to electron #p.

(4% + m¥,)p = 0 ' (256)
(,{?_z%»,i.?v . io)pgo , (257)
(40, + m%,) ) = = (4,)) H-e)eR (258)
(B s oLz = k7)) - Mook (259)
iy <A, +Tx (7 xek) =0, (260)
T’(%V cky + 7 x (¥ xechy) = Eig PT’IW elec'ib:rons(-e)%(ﬁ% + io‘p:)!p , (261)
#p
D chy + T x (7 x chp) = B Pror L (e RRgh ¢ Ko + R 4 )
#p :
| (262)

Note that the projection operator PT,ldW’ which selects the low=modes part of the
transverse portion, appears in (261) and (262). Again we observe that the excita-
tion terms for the vector potentials cA; and cA, are (apart from the operation
PT,low and the factor ;‘l'g) the quantum-mechanical expecteiion values of the
current densities, Equztign (256) - (262) are the basis ci the main part of
this report. |

It may be helpful to adapt also the expression (203) fo the action func-

tional to the case of free electrons, so that equations (256) - (262) may be

* .
As we did it before, we have omitted the subscript "low" of the symbols
QKQ, cky, cks,
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derived also directly without the detour through the problem of composite

atoms. In this derivation one uses the same rules of the calculus of variations
and of the calculus # perturbations that we have employed before. For the sake
of convenience, we replace the triple integrals [[[ by a single integral [. On
the other hand, for the sake of clearness, we will have to indicate the indepen-
dent variables. In (203) there occur the quantities UJ(E,t), vhich are given by

(204). Ve repeat the latter equation, but omit the index p.

UJ(E,R) = fAf cA (r t) . J T, low(q,r) (204), repeated
Then, with (241), we obtain

Uy(@e) = & Il ek (Fie) - T B (BB - TEE

Now we use the delta-function expression (253) for 33(5,?'). It permits us to
perform the integration over r! in a simple way. The result is

Uy(3,8) = & (-e)fax oF, (F,¢) « JLRER® -E

Now, UJ(E,t) is the cartesian component #j of the vector U(aq,t). This vector
is therefore given by

W(3,t) = & (-e)farek; (F,6) -+ | E(FIE(D ,
a,low '

or, with a change of notation for the indepsndent variabdles, 3

U(r,t) = -(-e)fAr o) L (T'at) * ) E (FE(r) .
a,low

We write this equation more suceintly as '

U= %-(-e)fbr'cﬁiow - 1 E'E | (263)
a,low

We use this expression in (203). At the same time we make the changes of

notation that we made before. For instance, we use the vector X instead of its

J

cartesian components x“, and we introduce the electronic mass m. Of course, we

set V equal to zero, since we are dealing with free electrons. The final result is
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b ..o 3 3 oo 62762.49
Aapb -tia, dt(—é. IM [m cxlo'w] ) [-a_&- cxlow] - 407'?
appr,guant |
| e —% [ac [T x Ay ) s (Fxch 14
»
S AT NIC ST S W PR IS
electrons . : ;
#p §
: g i
2B R o) faraceRy, o [ BB, RV 4 9) )
a,low
) . , (26h)

When we apply the action principle to this action functional, we obtain the

following set of equations in the usual manner:

v Y o T =
vy, +om, + v H-e)fox' ] EE - ek

at p 2¢ 8 low
a,low
32 - - - 1 ~ = = - * S ;
T5et)? A, + T x (Vx ch ) =—=(-e) 3 Jarr T EEr e (XU et ax' W) =

dct low 19 €o° electrons a,low %2 p P PP !
1 - - i
= == (-e)P I Xy, + X ,) - |

o° Tylow electrons 2 °p'p PP

#p
To obtain the last equation we had interchanged the primed and unprimed

coordinates in the double integral of (264). Since cxlow is a superposition of

terms comprising only the low transverse modes, we have

' m -' [ ) -> - Y
foer T EE! e cRy o =chA . (265) 1
a,low i
Thus, the set of three equations simplifies to ?
_;;- L o ‘
iﬁwp + mx, = = wp S (-e)CAlow . (266)
Y
—2 ﬁ Y [ ] v - -i - v [J n
oggm v 57 Xy =g (mexg s ek, s (267)
52 - - - - 1 1,=% .
ch, + U x (Fxch, )====_(-e) ) Hx v+ x v ) (268)
zact5! low low €,C T,low elictrons 2 p'p P P

#p

it AP e by - ik sre At e L
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These three equations are the exact equations of motion for tiie action functional
(26L4), whereas the set (256) - (262) results from the perturbation calculus.
Equation (268) shows that the excitation term for the vector potential is the
quantum-mechanical expectation value of the current density, except for the
factor Elg . Of course, we must not forget to use the projection operator
PT,lcw' °Its presence ensures that cxlow continues to be a linear combination of
low transverse modes only, if it started out that way.

If we combine esquations (266) and (267) we arrive at the usual form of

the SchrBdinger equation for electron #p, namely

W g2 v = g (-7 - Heoe)ehy ) o (467 - T-e)eky v (269)

In the entire development of this section we have treated each electron as
an independent entity, Just as we did it for the atoms that were described by (203).
In mathematical terms, this means that we regarded the quantum-mechanical func-
tions of the many-electron problem as produéts of single-electron functions in
the manner of equations (1¢4a) - (19%c). This is not quite correct because our
procedure did nét take account of the Pauli.exclusion principle, which requires
that, instead of products, we should have used determinants. But the pursuit of

this matter is probably not worth the effort.

TS AR
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Note #1. Derivation of the Relation —=—1J, - —==F, = 9% (3, * 3,) .
: aqi 3 aqd i o i J
We start with the requirement that e tagged element of charze which happens to

be at position r for the atomic configuration'{qi} ought to mew» with a velocity w
given by

pw=7J, | (N1,1)
where, of course, p and J are evalusted at (qi,F).

Next we consider a particular element which happens to be at the position
Z(qi) in our home-space when the atomic configuration is {qi}. We chose the
symbol a, not r, because r stood for the generic position, which ranges over the
whole room that contains the atom and the radiation field, whereas a refers to
Just one discrete and tagged point. Now we evaluate the velocity E% a of this
tagged point. Here we have to be careful with the notation for partial deriva-
tives. We have used the symbol -gi-when‘the qi ggg_i were the independent vari-
ables, But a depends only on thzqqi, ﬁhe r does not enter. So when‘only the qi
(not the qi and r) are the independent variables, we use the symbol —ET ("4 slash")
to denote ﬁartial derivatives. Then we have P |

e dgi _ fa i

Sa=f2dL -2 (¥2,2)
™ fq
But according to (N1,1) we should have
d - 1 2 3 =44 1 = 3= 3l
- a = ——=——— J(q",a(q")) = — J (q”,a(q"))v" , (¥1,3)
at o(q?,a(e?)) o(a?,a(qd)) 1

J

where we indicated, how the p and 31 depend on the n configurational coordinates q¢“.

This dependence is not only explicit, as indicated by the first QJ in (qj,a(qj)),

but also implicit by way of the position r = E(qJ), as indicated by the second qJ

i

in (qJ,E(qq ). On comparing (N1,1) with (N1,3) and remembering that the v might

be any arbitrary set of configurational velocity components we obtain

S terE e st e o .

ERp R
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ﬁi =— L T 7 (q aled)) . (M1,L)
#a~  plq’,a(q))
Now we take the partial derivative of this equation with respect to qJ, i.e. we
take -!3-, (not 2 . Here we must remember that the dependence on the q'j is not

X J
q aq
only explicit, but also implicit. In order to make the ensuing equation less

cumbersome to write, we leave out the symbol (qJ,E(qJ)) for the independent

variables, We obtain

g #a_ 3 (1= O
= (=7J,) + ¥ (=7,) .
ﬂqJ 5qi 8qJ p i ﬂqJ

We express the —12 an the right-hand side with the aid of (N1,4) written for

dq’
the index J instead of i. We then get
.y 3_ (L= .l 21 -
e — T e—t— — J — ° - (Nl )
| zq.’ ﬁi aqj (p i) + p ;'1 V(P Ji) ,ISE.
Similarly (Interchange i and j).
g _Za 3 (1l = 1= =1 =
= » - J ) +=-J, ¢ V("’J ) . (N1,5b)
dat 4 et P4 e d pd '

According to the principle of gene-identity the position a of the tagged
particle is a function of the atomic configuration'{qi} alone. A necessary and

sufficient condition for this is that the two mixed partial derivatives on the

left-hand sides of (N1, S5a of b) have the same value. Equating the two right-

hand sides yields

3_ (153 1= | slzy=3_(3y,.13 .57
;J—(in) s \7(5-.11)-3qi (p'_JJ) =35 v(p JJ). (N1,6)

This equation may be brought into a form that will be more useful to us
later on, namely into the form shown in the title of this note. We multiply

(N1,6) by p and differentiate out the products. At the same time we replace

-2 oana- Loy

and ¥ + J, respectively, according to equation (T)
aq? dq J 1

s tr e o

oo gl st
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of the appendix. We then obtain
l== = ) l = - T
- V e + — + = . : -— =
ROARKS - 3; 59, VJi-h.TJ"(Vp N
les = ) 1 = - = = 1=
= - v . o vm—— - -~ . + . -
> JJ Iy aqi 33 59 v Iy + 39y (v p)JJ ,
or after rearranging,
d = 3 = s 1, - = 1l - -
J, = === 7 V=)%x (J, xd + =V J .
T ng it TR x Gy T+ 5T 3y T
The two terms on the right may be combined. Thus finally
0 = 3 = - 1 = -
—J, - e—J =¥ =J, J . Nl
et il i X (p § % J) (N1,7)

And this is the equation shown in the title.

Equation (N1,7) must hold wherever there is an element of charge that mey
be tagged, i.e. at all points r of the home-space where the charge density pvdoes
not vanish. But wherever the charge density p (and then also 31 and 35) is zero,
the equation is fulfilled by défault. It simply states "0 = 0", Thus (N1,7) is
fulfilled everywhere.

The reader who i§ satisfied with this broof may stop right here. Others,
however, might feel more comfortable if they saw a second and different proof.

In this second proof, we use the same set of independent variables, namely the
qi and r, that was used in the main text of the appendix. So there is no need
for employing the slash-derivatives _ZI" Instead of tagging Just one element
of charge, as we did before, we tag :%1 elements at once. Since the charge
elements form a continuous distribution, we have to employ a triplet {&!,£2,£3}

of quantities to tag each particular element. For instance, for the Eu (Greek

indices range from 1 to 3, whereas latin indices range from 1 to n.) we might

g i < e e
-

e AR SR RS L

PR
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use the cartesian coordinates of the element when it was placed according to
some arbitrerily chosen fiducial configuration of the atom. We then have to
deal with the three functions Ea(qi,F). They tell us which tagged element is
at some chosen location r for tne atonmic configuration'{qi}.

The principle of gene-identity allows us to evaluate the velocity G(qi,F)
of an element of charge. We know that the Ea-tags of an element never change

]

when the element is in motion, Thus the material time derivatives g&g (taken

as we move with the element) must vanish. But

d,0 @ 3,0 = (=0
e e (WY, (n1,8)

where 3%-Ea is the local time derivative (taken at fixed position r), given by

—9. Ed = J-—d ----—-SE = vi ___BE‘ o (Nl‘,9)
ot dt , i i
3q 3q
The requirement that 3% Ea‘be zero yields
. el
7. (Fe%) = -viﬁ% . " (m1,10)

3q
Equations (N1,10) are a system of 3 scalar equations (one for each a =1, 2, 3)

for the velocity vector w. Hence w is determined. If we were to solve these
equations (but we are not going to solve them) we would find that v is a linear
function of the n wvelocity components vi. Thus we can write

7= v, 5, (N1,11)
where the n functions Gi(qJ,F) depend only on the atomic configuration {qJ}and
the position r. On combining (N1,10) and (N1,11) we obtain

{ e

v, o TE® = o vt S,

i
But this equation must hold for any choice of the configurational velocity

components vi. Thus we obtain

ORIGINAL PAGE I8
OF POOR QUALITY
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& s - Be® . (N1,12)
aq

We differentiate this equation with respect to qJ and obtain

d_2E" _ _ i C VS e T 3

T ]
8q‘j aqi an 1 BqJ
o
where we have interchanged ¥ and.-és-. We replace the 253 on the right-hand
- - 3q 3q
side by - wd . VE“, according to equation (N1,12), written for the index J
instead of i, Thus
o 3w
LB euten {CAER
9q" 9q 2q"
or, on differentiating out the product in the last term,
TSy e« v, (va) o FE O+ P (V9e™) o w (N1,13a)
3g" 9q aq '
Similarly (Interchange i and j),
3 ae® 8w, @ . = /== & . = em.y | =
= o=l o FET 4y, o (Th,) o TEY + 5,0 (FOE) o w, . (N1,13b)
i3 , 3 i 3 i
aq” 3q aq

Now we subtract (N1, 13b) from (N1, 13a). The terms on the left-hand side will
cancel, because mixed partial derivatives do not depend on the order. Also the
last terms on the right-=hand side will cancel, because VV&“ is 'a symmetric

tensor, Thus, after rearranging and factoring out the common term e VS“,

- D = e me . =0
-——, =W, * VW, } e VE =0,
T T I R
q
This single printed equation really stands for three equations; one for each

a =1, 2, 3. But the three vectors Vaa are linearly independent. Thus the

expression in the parenthesis must vanish, and we obtain

(v1,14)
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From the equations (N1,1), (N1,11), and (5) of the arpendix, repeated here

for convenience,

p;' = J , (N1,1)
¥ =iy, (¥1,11)
3=+, , (5)
we conclude that
- i = 1
pwiv = Jiv .

But this equation must hold for any choice of the configurational velocity

components vi, so that

- _ 1=
Inserting this into (N1,14) yields
3 l = 1l =1 = 9 l = l = =1 =
—— | o - . V - = e | o= — . v -—
aQJ (p 3) > 9 (p Jy) - (p JJ) + 53 (p Ji) (N1,16)

But this equation is the same as (N1, 6), from which the desired relation (N1,7)

follows by means of purely algebraic manipulations.

L R L R 38
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Note #2, Vectorial Derivation of the Equations

87 = 55 (p6F) + T x (67 x ) and 6p = = T + (06F) ,
One may always express the charge density p and the current density J in
terms of three scalar functions a(r,t), B(r,t), v(r,t) of the position r and

the time t. These expressions are

p=Va o T8 x Ty, (N2,1)
and
3’=--g%VBxVy-%%VyxVa-%}VaX$B. (N2,2)
One can readily verify that the continuity equation
B ,5.5=0. (nz,3)
3t

is automatically satisfied, The triple {a,8,Y} may be regarded as a teg for an
individual element of charge.

Sometimes one may wish to express p and J in terms of several triples

{an,an,yn}, as in

o =LV, - T8, x Ty, (r2,4)
and
_ aan _ L aBn - _ ayn _ _
J = E {-=t VB, % V'Yn.- 7t XV - g Ve X VBn}- (¥2,5)

However, one such triple suffices. At any rate, our derivations will employ
only linear operations. Thus what 1s true for one triple will also hold for
the more general expressions (N2,4) and (N2,5). Therefore, we stay with the

simpler forms (N2,1) and (N2,2).

Now let us subject the three functions a, B8, Y to the variations §a, 88, 8y.

The resulting variations 6p and 6J of p and J are then given by

B

ST o ol R %
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6p = (T6a) « 78 x 9y + (F6B) « Ty x Ta + (Voy) » Va 5 V8
and
63 = - (5% da)e T8 x Ty - 22 (Top) x Ty - 22 78 x (Tay) -
- (52 88) + Ty x o ~ 22 (Foy) %o - 28 0y x (Fea) -
- (52 6v) + Ya x %8 - &L (Tsa) x T8 - 22 0a x (Fep) .

By means of a straightforward, though tedious, calculation one shows that the

preceding two equations may be written in the following form.

8p =V ¢« [8a B x Vy + 68 Ty x Va + &y ¥a x ¥8) , (N2,6)
and

8F = - 3% [8a 7B x Ty + 68 Ty x Vo + 8y Ta x 7R] +

38 5, .3 g (AL Foio 2 3a 50 _ 383 '

So far we left the variations 8a, 68, 8y unspecified. But now we shall
introduce specific variations related to shifts 65, 6t in the event space,
i.e, the four dimensional space of position r and time t. We shift the three
function patterns a, B, v by 6r and 6t. The variations §r and 6t may still
depend on the event r,t. Then, for each fixed (r,t), the variations 6a, &8,
8y are given by
-6t 22 . 6F o Ta ,

3%
88 = - 6t %E-- 5% - T8 , (N2,8)

Sa

- 6t 2L _ 67 .
8y 8t 5t §r » Vy .
Note the minus signs, which céme about in the following way. Since we shifted
the functional pattern a, we know that the new a at the shifted event T + T,

t + 6t is equal to the o0ld a at the original event. Thus we have

i

TSR 2 AR R
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A1D8
(a + 8a)(r + 67, t + 6t) = a(F,t)
On expanding the left-hand side by Taylor's theorem and retaining only the
zero-order and first order terms, we obtain
a(F,6) + 66 55+ 6F  Ta + ba = alF,¢)
On cancelling a(¥,t), we obtain the first equation of (N2,8). The other two
equations result in a similar way. '
We insert the expressions (N2,8) into (N2,6) and (N2,T) and use equations
(N2,1) and (N2,2). With the aid of the relation
(Fa) (T8 x Ty) + (F8)(Ty x Ta) + (Fy)(Fa x T6) = (Fa - V& x Ty) I,  (n2,9)
where 1 is the unit tensor (or idemfactor), we have
Sa T8 x Ty + 68 Ty x Vo + 8y Va x VB = - pbT + J6t (N2,10)
In the expression behind the curl sign Vx of (N2,7), the terms in &t will cancel,

vhile the terms in 6r combine to 8r x J. Altogether then, we obtain

§p == T o (pé7 - Jbt) . (N2,11)
67 = 3% (p6F - J6t) + T x (6% x T) (N2,12)

In the special.-case §t = 0 (no shift in the time direction), we obtain the

equations in the title of this note,

e
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