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REVISION - 02/02/83
WHEAT YIELD REDUCTION MODEL

PART 1.0	 INTRODUCTION

1.1	 PURPOSE

This paper documents a yield reduction model for winter and spring
	 a

wheat. Reductions are expressed in percentage from a base yield and are

calculated on a daily basis. A synopsis of the model logic and com-

ponents is given.

1.2 SITUATION AND BACKGROUND

U.S. Department of Agriculture (USDA) policy is to provide American

farmers and coamodity analysts with timely information concerning world

agricultural conditions. In 1978 USDA's Foreign Agricultural Service

(FAS) created a Foreign Crop Condition Assessment Division (FCCAD) to

aggressively pursue this policy. To further enhance this pursuit, U.S.

government agencies involved in aerospace remote sensing coordinated

their activities in the Agricultural and Resource Inventory Surveys

Through Aerospace Remote Sensing (AgRISTARS).

An Early Warning/Crop Condition Assessment (EW/CCA) element of AgRISTARS

seeks means to detect changes in production quantity and quality of com-

modities and renewable resources. The overall objective of the EW/CCA

Project is to provide better capability for the USDA to identify

environmental and agronomic events which significantly affect crop

2



condition and tc determine extent and magnitude. Research conducted by

EW/CCA augments and strengthens the capability of FCCAD. Improved crop

condition information even based on subjective criteria is very useful

in assessing crop loss and damage. As research provides better tools,

subjective estimates will iteratively become more objective.

FCCAD operations call for assessments based on convergence of evidence

from available data sources. Information sources include traditional

reports from American embassies and consulates around the world and from

• information media. These are coupled to in-house use of agrometeorolog-

ical crop condition indicator models and subjective analysis of remotely

sensed patellite data.

The World Meteorological Organization (WMO) through its global tele-

communications system provides timely exchange of meteorological data

throughout the world. The U.S. Air Force collects meteorological data

from an even larger network of stations and adapts the data to a gridded

system. Environmental parameters, available daily, include in part max-

imum and minimum temperatures, type and quality of precipitation, solar

radiation, snowfall and snow cover, wind direction and speed, vapor`

pressure and evapoiransipiration.

EW/CCA and FCCAD developed crop stress indicator models and models that

track crop phenology and soil moisture. This paper describes a yield

reduction model which estimates daily stress impact on yield and
v

particularly the impact of desiccating events as combinations of high

temperature, low humidity, high wind speed and low soil moisture.

t
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(quantity of water available at specific phases of plant growth and

development greatly affects crop yield (Bauer and Young, 1969).

Evaporation, as a measure of atmospheric demand, strongly influencros

crop condition. Primarily, it is .s function of temperature, wind speed

and humidity (Denmead and Shaw, 1962). Temperature is a major factor

due to its effect on vapor pressure - an increase in temperature

increases the evaporation rate and decreases the time a given quantity

of water can effectively hydrate a plant.

Drought, a prolonged extension o,` desiccating conditions or soil

moisture deficits that disrupt: th,a water balance of plants, affects

thousands of square kilometers annually (Ventskevich, 1961). Disruption

of the water balance of plants may be induced either by a moisture

deficit in the soil or by exceedingly rapid evaporation from plant

surfaces. Hot, dry winds (called Sukhovey in the Soviet Union) may

cause extreme yield reductions and/or plant death even thou,;h soil

moisture conditions are optimal (Vitkevich, 1960). Sukhoveys have been

roughly characterized as: 1) temperatures gr-ater than 25°C, 2) relative

humidity less than 25 percent and 3) windspeeds greater than 3-5 m/sec

(CIA, 1974).

1

The operation of the yield reduction model does not require a specific

base yield; rather, it measures yield loss. Therefore, any base yield

;I
can be selected by the user for final assessment. The base yield may

j	 however be generally characterized as the maximum likely to be produced

commercially at a locution.
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PART 2.0	 WHEAT YIELD REDUCTION MODEL

2.1 MODEL COMPONENTS

The yield reduction model contains two integral components; a crop

calendar model and a soil moisture model. Both components require daily

minimum and maximum temperatures. The crop calendar model uses the

Robertson Biometeorological Time Scale (BMTS) (Figure 1) and the soil

moisture model is the two-layer or crop moisture index model.

The crop calendar model requires actual or estimated planting dates.

It identifies when 50 percent of the crop reaches a particular growth

phase. Future refinements may integrate other crop phase increments

into the model.

The two-layer soil moisture model requires long term monthly historical

mean temperatures, daily rainfall and daily mean temperature and an

estimate of the soil's available water-holding capacity.

There are two distinct modules in the operation of the yield reduction

model; the ETP/Sukhovey module and the stress module. Sukhovey loss and

damage can occur in a matter of minutes or hours while stress from

diminishing soil moisture evolves over a longer period. Both can be

very destructive.

5
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2.2	 PHENOLOGICAL GROWTH S'rAGE

The Robertson Biometeorological Time Scale measures phenological rhase

(Figure 1) and performs in the model as defined below and further

described in Figure 1.

--------------------------------- --------------------------------------
ROBERTSON'S

BMTS	 PHENOLOGICAL PHASE

0.0	 PLANTING
1.0	 EMERGENCE
1.5	 TILLERING
2.0	 JOINTING
2.5	 FLAG LEAF
3.0	 HEADI :1G

3.5	 MILK
40	 DOUGH

L----------------S-

.

O------------- -----------RIPE-----------------------

Attainment of maximum wheat yields is achieved through/ optimal environ-

mental conditions during each phenological phase. However, if critical

environmental factors such as soil, water and temperature are limiting,

they reduce yield potential.

2.3 TWO-LAYER SOIL MOISTURE MODEL

The two-layer soil moisture model used by FCCAD and EW/CCA is similar to

the Palmer two-layer model (Palmer, 1965). Atmospheric demand and

soil water availability determine the amount of water withdrawn from the

soil by both direct evaporation from the soil surface and transpiration

by plants.

d
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Both soil moisture models assume the first inch of available water is

held in the surface layer. The actual thickness of the surface layer is

voripble and depends on soil type, rooting depth and soil permeability.

i

The Palmer model assumes moisture is removed from he surface layer at a

rate equal to potential evapotranspiration, and that moisture is removed

from the subsurface layer at a fraction of the potential rate. The

model assumes that moisture cannot be removed from the lower layer until

the surface layer is completely dry. These assumptions are restrictive

and do not adequately represent the soil water budget process.

Stress indicator models require a more accurate representation of the

soil water budget, particularly in the surface layer. EW/CCA and FCCAD

modified the two-layer model to allow a more gradual and-realistic

depletion of the surface layer and also allow moisture to be depleted

from the lower layer before the surface layer is completely dry.

They also developed a moisture extraction function to allow depletion

from the surface at the potential rate of less than or equal to 75 per- 	 0

cent or surface capacity. Below 75 pecent, the model extracts moisture

from the surface at a reduced rate with the lower layer making up the

remaining requirement. It extracts moisture from the lower layer at a

fraction of potential and calculates this fraction as a ratio of actual

water held to that level held at field capacity.

7
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Precipitation enters the model by first completely filling the surface

layer and then the lower layer. When both layers reach capacity, excess

precipitation 'becomes runoff and/or deep percolation and is lost from

2.4	 SUKHOVEY/ETP FUNCTION

This component of the model assigns empirical loss/damage magnitudes

based on ETP and maximum temperature. The higher the temperature and

ETP, the greater the yield loss (Table 1).

Adjustments are then made for soil moisture (as % of available water-

holding capacity) (Table 2), crop phase (both for vulnerability and

ETP) and duration of Sukhovey conditions (Table 3). An empirical scale

assigns yield reduction by percent available soil water. Further

adjustments are applied for crop phase (CSE). As the crop advances

through growth and development, its water needs change. The crop

becomes more or lass vulnerable to environmental impact on yield. The

calendar factor increases from small values during early phases of

growth and development to a maximum value during early ripening (milk

stage); then it decreases as the grain matures. The model calculates

yield reduction as:



TABLE 1 — ETP/MAX TEMPERATURE

MATRIX

YIELD REDUCTION

ETP

8 9 10 11 12 13 14 15 16 17 18 19

26 0 0 0 0 0 0 0 0 0 1 2 3 4

27 0 0 0 0 0 0 0 1 2 3 4 5 6

28 0 0 0 0 0 1 2 3 4 5 6 7 8

M 29 0 0 0 1 2 3 4 5 6 7 8 9 10

A 30 0 1 2 3 4 5 6 7 8 9 10 11 12

X 31 2 3 4 5 6 7 8 9 10 11 12 13 14

32 4 5 6 7 8 9 10 11 12 13 14 15 16

T 33 6 7 8 9 10 1' 12 13 14 15 16 17 18

E 34 8 9 10 11 12 13 14 15 16 17 18 19 20

M 35 1', 11 12 !3 14 15 16 17 18 19 20 21 22

P 36 L2 13 14 15 16 17 18 19 20 21 22 23 24

37 14 15 16 17 18 19 20 21 22 23 24 25 26

38 16 17 18 19 20 21 22 23 24 25 26 27 28

39 18 19 20 21 22 23 24 25 26 27 28 29 30

40 20 21 22 23 24 25 26 27 28 29 30 31 32

41 22 23 24 25 26 27 28 29 30 31 32 33 34

42 24 25 26 27 28 29 30 31 32 33 34 35 36

43 26 27 28 29 30 31 32 33 34 35 36 37 38

z
44 28 29 30 31 32 33 34 35 36 37 38 39 40

45 30 31 32 33 34 35 36 37 38 39 40 41 42

y

i^

w

^j

n

CREMINS, W.

f



OF

TABLE 2 - SOIL WATER AVAILABLILITY FACTOR

AWHC	 YIELD REDUCTION FACTOR

	5 	 1.25

	

10	 1.25

	

15	 1.25

	

20	 1.20

	

25	 1.15

	

30	 1.10

	

35	 1.05

	

40	 1.00

	

45	 0.99

	

50	 0.98

	

55	 0.97

	

60	 0.96

	

65	 0.95

	

70	 0.94

	

75	 0.93

	

80	 0.92

	

85	 0.91

	

90	 0.90

	

95	 0.89

	

100	 0.88

SMIKA, D. - 1982

TABLE 3 - CONTINUOUS DAY ADJUSTMENT

DAY ADJUSTMENT

1 1.0
2 0.5
3 0.25
4 0.125
5 0.0625
6 0.03125

BEL
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YR	 (Table 1 value) * (Table 2 value) * (Table 3 value)	 CSC

(Creep stage equation)
t

Ii

Prior to MIT 4.0 milk) the model calculates crop phase effect as:

i

CSE 1 	8.208 - 9.452X + 3.405 X `' - 0.3666X3

u

t

where X BMT
j.
r

This second equation determines the milk to ripe crop stage effect:

CSE 2	16.94 - 6.829X + 0.948X 2 - 0.052X3

The model introduces a duration factor during each crop phase. The

first occurrence of a harmful event receives full impact value. Values

decrease one-half for the second occurrence during a crop phase,

one-fourth for the third and so on (Table 3). These need not be con-

secutive. The occurrence counter resets to fui' impact at crop phases

2.5, 3.0, 3.5, 4.0 and 4.5.

An example of the scheme:

If max Lamperature - 37°C

If CTP	 a 15

then yield reduction factor (matrix) v 21

9
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If x Awxc	 ss

then AWHC factor = . 97 x 21 = 20.37

If crop phase is flowering the impact factor = 1.3 (from CSE1)

then 1.3 x 20.37 = 26.48

!:f it is second day of event in the same crop phase; i.e., .5

then . 5 x 26 . 48 = 13.24

The event would cause a 13.24 point (x) yield reduction from a base

yield figure.

2.5	 SOIL MOISTURE/DEMAND FUNCTION

'	 If ETP and temperature values do not fall in the ETP / Su'khovey module,

the algorithm then defaults to the stress module. The stress module

assesses yield reduction for small grains using ETP, available soil

moisture and crop phase. The model assumes ETP to be the sum of the

demands that are being placed on the plant by the environment and uses

it to calculate a stress index. The stress index is a regression

equation generated from the Moisture:ETP:Stress nomograph ( Figure 2).

0

Index = . 9998 + ( . 108 ETP) + ( . 0145 AWC) — (.3536 (AWC)'5)

(.0001)

10
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ETP SOIL MOISTURE
m/m STRESS
DAY INDEX

20 .--1.0

I
18 .9

16 .8

14 .7

12 .6

10 .5

g .4

.3

4 .2

2 .l

0 0.0

PERCENT
CAPACITY

100

an

60

50

40

35

30

25

20J
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1 1 1,

where

Index - the crop stress index (between 0 and 1)

ETP	 = the evapotranspiration potential

AWC	 M the percent of soil water available to the plant

A daily Yield Reduction Index is then adjusted for crop phase (See

Figure 3). This is accomplished by multiplying the Index and the

maximum daily reduction.

An example:

If maximum temperature - 28°C

ETP	 = 10

% AWC	 = 10

then Index = 1.10

and if the crop phase is at heading, then the stage factor is 3.4.

1.10 X 3.4 = 3.74 yield reduction.

The model calculates ETP using the albedo is specified as a function of

crop phase.

5
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O FL1

ETP a (A-1) ETP, + ETP2

Phase

0 - .99

1 - 2.99

3 - 5.00

(A-1)

.9 - .14 phase

.76

.76 + .14 (phase - 3.0)

i

12
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APPENDIX I	 .

SOIL MOISTURE EQUATION

k

Top Layer	 =	 Contains 1 inch of plant available water.

Lower Layer	 Normally contains between 5 and 10 inches of
available water.

Ls	S' s - (ETP-P) D f

Lu	=	 (ETP-P-L s ) S'u : Lu _ S'u
AWC

D 	 =	
Surface moisture extraction function.

D 
	 1 if P	 ETP

D 
	 =	 (S's - .75) . .1 _ D  _ 1.

D 	 .1 if D 	 .1 and D  = 1. : D 	 1.

R	 Excess P after both layers are filled.

ETP	 =	 ETP'(d) [Thornwaite, 19481

If T less than 0 
ETP' = 0

If 00C. T	 260C
ETP' = 1.6 (1 T I)a

If T	 260C	
s

ETP' = Sin (T - 9.5) -.76

a	 =	 6.75 x 10-7 1 3 -7.71 x 10-5 1 2 + .01792I + .49239

12	 1.514
I	 (T/5)

i=1

d	 =	 -0.767 tan (.410117Cos(.0172264(JDAY-172)))

13
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APPENDIX II	 4a

DEFINITION OF TERMS

L	 Moisture loss from surface
s

S' s	=	 Available water in surface layer at start

P	 a	 Daily precipitation

L 
	 -	 Loss from lower layer

S1 	 a Available moisture stored in lower layer

AWC	 Combined available water capacity; i.e., MAX(S's + 
S' u)

R	 =	 Runoff.

D 
	 - Surface moisture extraction function

ETP	 = Evapotranspiration Potential - "The amount of water transpired
in unit time by a short, green crop completely shading the

ground, of uniform height and never short of water."

d	 Day length adjustment for ETP

T	 Average daily temp degree C

I	 Annual heat index

JDAY = Julian date

a	 =	 Coefficient

CSE	 =	 Crop stage equation

14
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