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ABSTRACT

A method for diagnosing surface parameters on a regional scale via

geosynchronous satellite imagery is presented. The method is a modifi-

cation of one described by Carlson and Boland (1978). Moisture

availability, thermal inertia, atmospheric heat flux, and t)tal

evaporation are determined from three infrared images obtained from

the Geostationary Operational Environmental Satellite (GOES). The

output fields compare favorably with fields generated by the

Carlsson et al. (1981) method, which uses HCMM data.

Three GOES images - early morning, midafternoon, and night -

are obtained from computer tape. Two temperature-difference images

are then created. The boundary-layer model of Carlson et al. (1981)

is run, and its output is inverted via cubic regression equations.

The satellite imagery is efficiently converted into output-variable

fields. All computations are executed on a PDP 11/34 minicomputer.

Output fields can be produced within one hour of the availability of

aligned satellite stibimages of a target area.
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1.0 INTRODUCTION

1.1 THE PROBLEM

Remote sensing of the terrestrial environment has provided earth

scientists with a wealth of data, and is beginning to yield economic

benefits. Noteworthy are the Economic and research benefits derived

from weather satellite imagery and LANDSAT imagery. Weather satel-

lites are valuable sources of timely meteorological data for opera-

tional forecasters, and are becoming significant data sources for

operational numerical weather prediction (NWP). LANDSAT has

provided valuable data to economic geologists, cartographers and

planners (Short et al., 1976) .

The principal operational weather satellites are equipped with

two types of sensors: visible-light detectors and detectors sensi-

tive to the thermal emission of the earth (longwave IR). LANDSAT

has detectors for visible light and solar infrared reflected from

the earth (shortwave IR). Weather satellites may thus be able to

study ground properties invisible to LANDSAT by detecting variations

in surface infrared emission.

The longwave IR sensors on the Geostationary Operational

Environmental Satellite (GOES) and Heat Capacity Mapping Mission

(HCMM) satellite measure effective surface blackbody temperature.

Several soil properties can be deduced from surface temperature and
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temperature change during the daily heating and cooling cycle. A

simple energy-balance equation for the earth's surface can be written:

S(l-A) + I+ - Ho + LEo + It + Go	(1.1)

where:

S = shortwave flux incident on the surface (insolation)

A - albedo (visible and ^hortwave IR)

1 - longwave IR flux from atmosphere, incident on surface

It - longwave I'.t flux emitted by surface

Ho - sensible heat flux from surface to atmosphere

L - latent heat of evaporation

E  - evaporative flux (mass of water)

Go - sensible heat flux into the ground

The longwave IR emissivity of the ground is assumed to be 1.

S is determied by geometry, the solar constant, and atmospheric

moisture and turbidity. A can be estimated for most land-use cate-

gories. The satellite measures a flux related to I?. If the

remaining terms can be estimated, soil moisture availability and

thermal inertia can be determined.

Soil moisture availability (M) can be defined as the ratio

of actual evaporation to tte evaporation that would occur from a

flat surface of pure water. M influences evaporation (E 0 ), since M

is a direct parameterization of One amount of water available to

evaporate. Thermal inertia (P), is defined by the equation:

P = (CgXs)1/2	
(1.2)
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where:

Cg = ground heat capacity (volumetric)

Xs . thermal conductivity of the soil

P is a measure of the ability of the ground to store heat during

the day and release it at night. Go is determined largely by P.

In this work, a numerical model is used to provide values of

I^, Ho , E0 , and Go . M and P are input parameters of the model, and

are varied over a range of possible values. Model output is then

compared with satellite data, and actual M and P values are diagnosed.

H and E values are also obtained, at no extra cost.
0	 0

1.2 HISTORY

The use of the longwave Tit detection capability of weather

satellites for remote sensing of soil characteristics is in its

infancy. Wetzel and Atlas (1981) have developed a technique for

diagnosing soil moisture from morning surface temperature change

and windspeed. De ,jace and Megier ( 1979), following Rosema et al. U978),

have mapped soil moisture, ground thermal inertia, and daily evapora-

tion using aircraft measurements of longwave IR and HCMM imagery.

Carlson et al. (1981), following Carlson and Boland (1978), diagnosed

moisture availability, thermal inertia, and the surface energy

budget over two cities, using HCMM data. The above approaches are

similar to one another. A computer model of soil and lower atmos-

phere is run, using a variety of soil characteristics as initial

conditions. A set of forecast surface temperatures is generated.

4
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Observed data is then processed, and the model is inverted mat

matically, to yield soil characteristics from the observed

temperatures. Price (1980, 1982a, 1982b) has adopted a different

approach. Surface temperature data are incorporated directly into

the basic energy-budget equation for the surface, yielding estimates

of soil parameters and evaporation.

This thesis is an extension of Dodd's work (Dodd, 1979),

reported by Carlson et al. (1981). The method is similar to the

Carlson and Boland (1978) method. Dodd used HCMM imagery to obtain

surface temperatures; my work compares HCMM and GOBS imagery. Dodd

studied a small-scale phenomenon characterized by large differences

in surface parametersi: the urban heat island. I extend Dodd's

technique to studies of regional-scale patterns of surface moisture

variability, which I relate to antecedent rainfall differences and

crop moisture index variability over agricultural regions.

The method of diagnosing soil parameters from satellite data

developed by Carlson is described briefly in Section 2. Several

modifications were made in this procedure when GOES imagery was

incorporated. These modifications and their implications are dis-

cussed in Section 3. Of particular importance are the model

sensitivity studies presented in Section 3.6. Two case studies are

presented in Section 4. Conclusions and suggestions for future

research are collected in Section 5.
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2.0 THE CARLSON/DODD METHOD

Quoting from the abstract of Dodd (1979):

A fl,xible analysis system has been developed which
combines high-resolution satellite-derived radio-
metric ground temperature information with output
from a numerical model of the boundary layer to infer
the spatial variation of thermal inertia (P),
moisture availability (M), and the surface energy
budget.

The system consists of three basic phases:

1) Data acquisition and preprocossing

2) Numerical boundary-layer simulation

3) Production, and display of output fields

Satellite images are received on magnetic tape. Utility

programs LONLAT and REGGIE are run to select sub',mages of identical

size, shape, and geographical location from a day-night HCMM image

pair. Also, the raw satellite intensities are converted into

effective surface temperatures, using atmospheric moisture values

obtained from soundings.

A one-dimensional numerical model developed by Carlson and

Boland (1978) is used to simulate atmospheric and ground response

to insulation. The model and its use in Dodd's study is completely

descrl.bed in Section 2.1 of Dodd (1979), and will not be repeated

here.

Model simulations are run for 16 ordered pairs of (M, P) values.

Output from the model at simulated satellite overpass times is
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passed to a regression routine. Regression equations for M, P, Hu,

and total evaporation (E) are produced, using surface temperature

at satellite overpass times as the predictors. Biquadratic regression

equations omitting the cross-product term were used in Dodd (1979).

The regression equations derived from the numerical model are then

used to convert the satellite subimages into output images of M, P.

Ho , and E. The output images are then plotted or displayed on a

graphics terminal. For a complete discussion of this method, refer

to Section 2 of Dodd (1979). Henceforth, this procedure will be

abbreviated CD.

Note the .following features of CD:

1) CD utilized HCMM data. Only two image times per day were

used: approximately 1400 and 0200 local time.

2) The postprocessing phase produced biquadratic equations

in midafternoon temperature (TD) and night temperature (TN).

Hi-her-de£;ree regression equations were not used.

3) CD was implemented on a mainframe computer, Penn State's

IBM 370/3033. The numerical model and regression routines

in particular had to be submitted as batch-processing jobs.

Slow turnaround and the mechanics of batch job submission

rendered interactive use of the model impossible.

These are the principal .features of CD which have been modified to

produce the system to be described in Section 3, the GOES method.



3.0 THE GOES METHOD

3.1 THE PROBLEM

CD uses HCMM polar-orbiter data to diagnose M, P, Ho , and E

over small areas. Dodd (1979) studied the urban complex.

Kocin (1979) estimated M over a small rural watershed. Carlson

and DiCristofaro (1981) discussed the applicability of diagnosed

Ho in estimating plume spread over urban and rural areas. In

these studies, the target area was on the order of 10 3 to 104 km2.

For other applications, such as regional crop assessment, target

areas on the order of 10 5 to 106 km2 may need to be studied.

Either CD should be demonstrated successfully on this larger scale

(henceforth called 'regional scale'), or another method should be

devised to handle regional-scale domains.

As Kocin (1979) noted, studies of the development of M and

P anomalies with time are difficult using polar-orbiter data. Due

to its orbital parameters, HCMM provides a day/night image pair

only once per 16 days for target areas in midlatitudes. The situa-

tion is similar with TIROS N, but not quite as restrictive. Cloud

cover at either image time can render the affected image pair

unusable. Thus, diagnoses of M, P, Ho , and E derived from HCMM

images, using the CD method, can have no better time resolution

than 16 days. For studies of the time-dependent behavior of soil

parameters, a different data source is desirable.

7
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CD was restricted to two image times per day, since HCMM never

scanned an area in midlatitudes more than twice in a day. However,

the HCMM overpass times, approximately 1400 and 0200 local solar

time, were close to ideal, given the restriction of only two image

times per day (Carlson and Boland, 1978). These optimum times

occur near the times of maximum and minimum surface temperature,

respectively. If observations of surface temperature were available

more frequently during the diurnal cycle, better diagnoses of M, P,

Ho , and/or E might have been possible. Wetzel and Atlas (1981)

suggest that the time derivative of temperature may be better cor-

related with M than the actual temperature. The possibility that

additional data could improve the CD method is certainly worth

investigating.

In this thesis, a modification of CD is presented which uses

GOES images instead of HCMM images for surface temperature data.

The greater spatial and temporal availability of GOES data addresses

the problems cited above. The rationale behind the use of GOES

imagery is described in Section 3.2. Theoretical justification is

presented in Section 3.3, and practical considerations are con-

sidered in Section 3.4. Section 3.5 discusses . the image-differencing

feature of the GOES method. An extensive series of quality and

sensitivity tests were run on the GOES method; the results are

reported in Section 3.6.
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3.2 WHY USE GOES IMAGERY?

CD is theoretically valid only when:

1) HCMM provides a day/night image pair of the target area

2) nonadvective conditions prevail

3) skies are clear

Obtaining all three conditions simultaneously over an area of interest

can be a major challenge. Obtaining all three simultaneously on a

regular basis over a period of months is a forlorn hope. Even

fulfilling condition (1) alone is difficult. Dodd (1979) used a

night/day image pair in both his urban complex cases. Kocin (1979)

used an image pair (June 9-10) in which the night overpass time was

36 hours before the day overpass time -- a departure of 48 hours

from the modeled night overpass time. GOES imagery is available

every day; HC11M image pairs are available only once per 16 days.

If GOES data are used, the assumption that nonadvective conditions

last more than a day is never necessary; if HCMM data must be used,

this assumption of stationarity must often be made (as in Kocin, 1979).

If GOES data are used, no one day is crucial. If clouds cover the sky

or advection is significant on any particular day, the next day's

data can be used. With HCMM data, clear skies and nonadvective con-

ditions on a day/night overpass-pair day are crucial: the next

day/night pair is not available for over two weeks. Even under the

restriction that we must use images at 1400 and 0200 local standard

time (LST), GOES imagery provides sixteen times the chance of meeting

the three criteria listed above.

L.-i
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GOES imagery is produced every 30 minutes. This greater

availability of imagery adds another dimension of flexibility to

the diagnostic technique. GOES imagery can be used to diagnose

relevant variables even if:

1) skies are partly cloudy

2) the clouds do not cover enough of the sky long enough to

invalidate the energy budget calculations of the model

3) the clouds are moving fairly rapidly

HCMM imagery would almost certainly fail under these conditions.

With either source of imagery, areas obscured by clouds at any

image time used riust be discarded. With HCMM, only two i.mage times

exist, and both are needed for CD. Soil parameters could not be

diagnosed at any point where there were clouds at either HCMM over-

pass time. With GOES imagery, there is flexibility in choice, of

image times,: If a crucial spot is covered by clouds at one image,

time, a previous or subsequent image could be used (but see Sections 3.4

and 3.6). Also, if hardware or software failure causes one GOES

image to be lost, a subsequent or previous image could be used. Such

a failure could cause a HCMM case to be discarded.

The greater availability of GOES data allows a more fundamental

change in CD. There is no need to restrict the diagnostic method

to two images or to any particular image times if GOES data are used.

There are 48 GOES image times per day; in principle, there are 248

possible sets of image times which could be used.

,;..1'i
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Incorporating GOES data into the CD diagnostic method provides

the following advantages:

1) more days with images at convenient times

2) greater flexibility in selecting image times.

3) the option to use more than two images in the method

These advantages must be weighed against the disadvantages of using

a geostationary platform instead of a platform in low earth orbit:

1) poorer resolution (larger pixel size)

2) greater distortion of the image, due to the curvature

of the earth

For regional-scale studies, the advantages outweight the disadvan-

tages. For high-resolution, small-scale studies, HCfiIM data

probably should be used, if available. The greater flexibility

resulting from the use of GOES data may be important even for small-

scale studies.

3.3 THE GOES METHOD: THEORETICAL JUSTIFICATION

CD used two images per day because only two were available.

Wetzel and Atlas (1981) implied that the choice of image times

and particularly the number of images used in CD may not be optimal.

With the greater data base provided by the GOES satellite, the restric-

tions on image times encountered in CD are removed. Consideration

of the effects of M and P on the daily march of surface temperature

suggests that three or four images per day .should produce superior

diagnoses. The reasoning leading to this conclusion is outlined in

this section.
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M is a measure of the amount of water available for evaporation.

It therefore plays an important role in the partitioning of Lnergy

between sensible heat flux and latent heat flux during the day. A

high M value implies more evaporation, and less sensible heat to be

distributed between ground and air. Carlson and Boland (1978) and

Wetzel and Atlas (1981) showed that the effect of M on surface

temperature is greatest during the morning. In the morning, available

moisture will be evaporating, and the mass of the air beneath the

decaying nocturnal inversion will be small. A relatively small

change in the ratio of latent to sensible heat can produce a rela-

tively large change in the morning temperature rise, since the heat

capacity of a thin layer of air is small. In the afternoon, the

boundary layer reaches its greatest thickness. Temperature rise is

slower, since the thick layer has a larger heat capacity. The

magnitude of the temperature r1se becomes less sensitive to M. At

nigtlt, evaporation ceases or becomes negative; M becomes indeterminate

and its effect is inconsequential.

P is a measure of the ability of the ground to store heat

during the day and release it at night. The effect of P on surface

temperature should be most pronounced during early evening. As

insolation decreases and the surface begins to cool, atmospheric

convection subsides. The atmosphere tends to decosple from the

surface, particularly if the wind Ls light. The surface cools more

rapidly than the atmosphere, since the surface is a better radiator

than the air. During the evening;: stored heat from below must supply

A



13

most of the energy radiated from the surface to space. A large P

value implies relatively large amounts of heat will be stored in

the soil, and that there is sufficiently large thermal conductivity

to allow the heat to reach the surface from below. Large P implies

slow cooling of the surface. Later at night, the downward thermal

emission from the relatively warm atmosphere partially compensates

for the radiative loss from the surface. If wind and stability con-

ditions are right, an increase in wind speed above the surface layer

will occur. Low Richardson-number conditions will develop, producing

turbulent transfer of heat to the surface. P remains important in

determining surface temperature throughout the ni: bt, but its rela-

tive importance decreases as the night progresses.

The analysis of the effect of P on surface temperature during

the day is more difficult. Certainly, if energy is released at

night, it must be stored during the day. As the sun rises and

insolation increases rapidly, P must have a strong effect on surface

temperature. However, as surface temperature rises, the atmosphere

becomes convectively coupled to the ground. This coupling (,:nhances

evaporation and atmospheric heat flux. Each flux increases at its

own rate as the morning progresses. In the early morning, when

surface temperature is most sensitive to variations in the magnitude

of heat sinks, latent heat flux and atmospheric heat flux are both

significant and both varying. Ground heat flux tends toward a

minimum during this period (Sellers, 1965). The effect of P tends

to be masked by the effects of M and Ho . CD model simulations

_..ice



(Carlson and Boland, 1978) show that P is more closely correlated

with night temperature than with midafternoon temperature.

3.4 GOES METHOD: PRACTICAL AND NUMERICAL CONSIDERATIONS

As stated in Section 3.3, M is closely related to morning

temperature rise; P is probably closely related to evening tempera-

ture fall. With only two image times available, it is not possible

to express both these rates of change. The success of the CD method

under the data-availability restrictions of HCMM is encouraging.

With GOES imagery, we have the freedom to use more images and dif-

ferent combinations of image times, to capture any portions of the

diurnal march of temperature that might be useful. Three image

times could be used:

1) early morning, just aft-t. sunrise

2) midafternoon

3) near midnight

Alternatively, four images could be used to isolate the two tempera-

ture changes which should be most closely related to M and P:

1) early morning

2) late morning

3) midafternoon

4) near midnight (late evening)

In principle, all 48 GOES images for a given day could be used.

There are several fundamental problems with the use of multiple

imagery in CD-type models. These problems are linked to uncertainties,

errors, and approximations characteristic of all numerical models and

i
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remote-sensing instrumentation. In this section, we consider the

practical and numerical restrictions on the use of imagery in the

diagnostic model.

Although the HCMM and GOES satellites both have high-quality

radiometers, both have limitations in resolution and accuracy.

These limitations are more severe for GOES. Both must view the

earth through an atmosphere containing a variable amount of water

vapor and a variable vertical temperature profile. Corrections for

water-vapor absorption are applied to the raw satellite data,

greatly reducing errors but not eliminating them. The effect of

thin cirrus clouds on the quality of satellite imagery is difficult

to assess.

The satellites detect thermal infrared radiation (longwave IR)

incident from below. A narrow band of wavelengths is measured to

minimize atmospheric interference. The emission is converted to a

temperature by inverting the blackbody radiation equation

(Goody, 1964, Sec. 2.2, Eq. 2.35-2.37):

where:

B^ = Planck function at wavelength X (energy flux per unit of
wavelength)

C1 = 2Tncc2

C 2 = he/k

h = Planck's constant



c	 speed of light.

k - Boltzmann's constant

6 - thermodynamic (absolute) temperature

This temperature is assumed to be the surface temperature. Tr,

surface temperature is the temperature of the earth's surfs+ce:

temperature of the infinitesimal layer of condensed-phase matt

forming the lower boundary of the atmosphere. True surfact. tempera-

ture, unlike the conventional surface air temperature, is difficult

to measure. A thermometer placed in a standard instrument shelter

1.3 meters above the ground measures the surface air temperature,

by definition. The reading will be fairly independent of the con-

struction of the thermometer and the shelter, within reasonable

limits. If a thermometer is placed in direct sunlight on the surface

of the earth, a temperature can be recorded. However, this tempera-

ture will be influenced as much by the properties of the thermometer

as by the temperature of the surface which the thermometer obscures

and possibly deforms. In a vegetated region, surface temperature is

hard to define; its measurement may be an intractible problem. One

could debate where or what the 'surface' is: is the surface the top

of the plants in a particular area, or is it at some level in the

canopy? Hand-held IR radiometers can be used to measure surface

temperature. They reveal significant small-scale variability.

Cooper (1981) reports that a single point on a vegetated surface

will have a range of 'observed' temperatures: observed IR temperature

is a function of the orientation of the instrument and configuration

of the canopy in many cases.

4

F.



17

The boundary-layer model used in CD is comparable to many one-

dimensional models, but is nevertheless only an approximation. 1t

is one-dimensional; the atmosphere is three-dimensional. The model

is discrete in space and time; the atmosphere is continuous. The

atmosphere is not limited by approximate physics, and is not subject

to truncation error and closure assumptions. The model output is

converted into regression equations, to invert the ;model mathematically.

These regression equations represent the model well, but not perfectly.

The problem of diagnosing the surface parameters reduces to

the problems encountered in using:

-regression ec;,uations instead of actual model runs

-an imperfect numerical model

-imperfect satellite measurements

'surface temperature' - a quantity which may not be definable,

and therefore, not measurable

In addition, we must assume that the 'surface temperature' used in

the numerical model is the same physical quantity as the 'surface

temperature' observed by the satellite. The errors and uncertainties

inherent in these problems have significant numerical implications.

These uncertainties place several restrictions on the choice of

image times and analysis techniques which may be used in a GOES-based

diagnostic model. The nrinci;-31 restrictions involve the interval of

time between image times, and the total number of images which can be

used .

To obtain an estimate of the midmorning time-derivative of

surface temperature, it is necessary to use a pair of image times

r



bracketing midmorning. In theory, the smaller the time interval

between the two images, the better the approximation to the deriva-

tive. In practice, with uncertain data and uncertain model otitput,

a short time interval between images will produce a very poor estimate

of the derivative. Refer to Appendix I, Section 1 for details. Image

times several hours apart are needed, to guarantee a large temperature

change between image times. Errors in the estimate of the derivative

introduced by the nonlinearity of temperature as a function of time

must be accepted. Figure 3.1 (from Wetzel and Atlas (1982) after

Schmugge et al. (1978)) shows that morning temperature rise and

evening temperature fall are close enough to linear to permit finite-

difference approximations to derivatives using data times several

hours apart.	 ,

The temperatures atthe image times become the predictors in a

multivariate ?olynorial regression equation foe each diagnosed

variable. Numerical constraints on the number of image times and

the permissible degree of the regression equations are discussed in

Appendix I, Section 2. To avoid overfitting the model output, it

is necessary to restrict the total number of regression coefficients

and the degree of the regressio:. equations.

To maximize the actual 'temperature differences betwe e n images

while minimizing the total number of images used, the following

image times were selected:

1) early morning;

2) midafternoon (near daily temperature maximum);

3) around or after midnight.
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Prelimtnary testing was done, simulating the use of two images (CD)

and four images, as well as simulating the above image times. The

three-image simulation was superior to the two-image simulation.

A four-image simulation, using late-morning and mid-late-afternoon

instead of the midafternoon time, provided no improvement over the

three-image simulation. Since numerical difficulties and cost

increase as the number of images increases, the three-image method

was adopted.

3.5 IMAGE DIFFERENCING

The three images used as input to the GOES method are dif-

ferenced, producing two temperature-change fields:

DTD - (midafternoon temperature) - (early-morning temperature)

DTN - (midafternoon temperature) - (night temperature)

There are three reasons for performing this difference, as will be

explained in this section:

1) to approximate the derivative of temperature

2) to reduce numerical errors

3) to correct for large-scale temperature variability across

the target area

It has been shown that M and P are strongly correlated with

DT . DTD is a crude approximation to at at midmorning. DTN iq a

crude approximation to at in the early evening. In Section 3.4, it

was shown that these crude approximations are adequate and that

better approximations may be unattainable. If at is to be used to

-A
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diagnose M and P, at itself must be estimated from satellite data.`'+

Numerically, DTD and DTN are probably the best estimates of at

obtainable from satellite data at the present time.

Using DTD and DTN as predictors, a bicubic regression equation

of the following form can be used:

X = a 0 + a11DTD + a12DTN + a21 DTD 2 + a22 DTN 2 + a31 DTD 3 + a32 DTN 3

(3.2)

There are seven regression coefficients. Were three temperatures

to be used, ten coefficients would be needed for a cubic regression

equation. It is unclear whether the additional coefficients could

be added to the regression equation without overfitting the data.

Using differenced fields appears to be the best way of taking

advantage of a higher-order regression equation.

When three quantities are mapped into two, some information is

inevitably lost. In this case, when three temperatures are sapped

into two differences, the information discarded contain a potential

source of error. The information discarded when computing DTD and

DTN is contained in the mean: 1/3 (T 1 + T2 + T3).

The target areas for the studies presented in Section 4 are

several hundred km in longest dimension. Over distances that large,

it would not be unusual to find systematic temperature differences,

even in relatively uniform air masses. The numerical model used

to simulate the boundary layer over these areas is one.-dimensional.

Horizontal temperature differences cannot be modeled. Only one

initial surface temperature and only one*.initial sounding can be

used. If the target area is dominated by a relatively uniform air
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mass, the vertical structure of the lower atmosphere will be similar

throughout the region. Soundings from various points in the target

area would have similar profiles when plotted on skew-T/log-P charts.

In the absence of advection, any two points in the region with iden-

tical surface characteristics should experience the same temperature

rise and fall during a 24-hour period. However, one of these points

could be a few degrees cooler or warmer than the other point through-

out the period. Consider an extreme example. Let the surface

temperature be 300 K at point A in the region, and let the surface

temperature be 305 K at point B in the region, several hundred km

from A. Assume identical surface characteristics at the two points.

Also assume clear skies and negligible advection throughout the region.

Assume that the soundings at thq two points have similar shapes in the

lower 200 mb: sounding A is uniformly 5 K cooler than sounding B.

Let both points receive the same total insolation. Will the surface

temperature difference between point A and point B vary significantly

with time?

The term in the surface energy budget equation (Eq. 1.1) most

directly dependent on surface temperature is It - QT 4 . Go and Ho

depend on vertical temperature gradients in ground and air, respec-

tively. E  depends on surface temperature, vertical temperature

gradient, relative humidity, and vertical moisture gradient. We

will ignore the absolute-temperature dependency of E  here, with

ample justification. The 5 K temperature difference between points A

and B represents a difference of (305/300) 4 , or a factor of 1.068 in

L_41



23

total radiation emitted from the surface. If we make the reasonable

assumption that vertical gradients of temperature and moisture are

the same at A and B, we can ignore effects due to Go , Ho , and Eo . As

a rough estimate, assume that DTD is directly proportional to energy

surplus at the surface. A 7 percent change in IT might then produce a

7 percent change in DTD. If DTD - 35 K at point B, then DTD at

point A would be 1.07(35) - 37.45 K, a difference of about 2.5 K.

It is important to note that If is not the only term in Eq. 1.1

which depends on absolute temperature. I+ depends on an effective

average temperature of the atmosphere. If we assume that this average

atmospheric temperature (Ta) at B is 5 K higher than at A, I+ at B will

be larger than I+ at A The compensation will not be perfect, since

Y  < T in most cases, and the effective emissivity of the atmosphere

differs from the effective emissivity of the surface. The compensa-

tion will be significant. In a numerical simulation, using the

boundary layer model, lowering all input temperatures by 5 K lowered

all output temperatures by about 5 K. DTD and DTN changed by about

0.5 K.

Since a temperature gradient on the order of 1 K/100 km produces

a variation of only about 0.5 K in modeled surface temperature

change in a regional-scale study, the effect of large-scale tempera-

ture gradients on the GOES method is unimportant. If there is a

large enough temperature difference across the target area to produce

unacceptable errors in modeled DTD and DTN due to radiative effects,

the nonadvective assumption will be invalid and the GOES method cannot

be used.
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3.6 GOES METHOD: SENSITIVITY AND ACCURACY STUDIES

In any 24-hour period, there are 17296 distinct ordered triplets

of GOES times. Even if the choice of GOES -time triplets is restricted

to a morning image, midafternoon image, and a night image around or

before local midnight, there are nearly 1000 possible triplets.

This section describes the selection of GOES time triplets which can

be used in the GOES method, subject to the data quality and numerical

restraints considered in Section 3.4. A method for evaluating GOES

triplets is presented in Part 1. The results of the evaluation are

tabulated in Table 3.1 and are discussed in Part 2.

3.6.1 An Evaluation Method for GOES Time Triplets

The best way to evaluate the performance of a numerical model

is to test it against actual data:

-Gather accurate data for several contrasting situations

*Simulate each situation numerically

-Compare numerical results with observations

This procedure could not be followed for the GOES method. M, P, Ho,

and E are difficult to measure. It would be logistically impossible

to measure them on the regional scale. Even a set of local measure-

ments in several selected locations would have proven economically

infeasible. The difficulties in measuring (or even defining) sur-

face temperature have been mentioned in Section 3.4. The numerical

difficulties described in Section 3.4 must also be considered.

A model simulation which provides satisfactory results with high-

quality ground-based temperature measurements might fail when

x
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Table 3.1A

Sensitivity Testing Summary: M

Worst

GOES Times Output Storage 2

(LST) Value am am Error r

1 2 3 M-.5 aDTD aDTN M-0.5 Percent

06 14 23 .5541 -.1593 .1029 .1043 98.0

07 14 23 .4726 -.1387 .0674 .0808 95.3

08 14 23 .4972 -.1383 .0135 .0595 90.2

09 14 23 .4996 -.1992 -.0191 .0861 94.1

10 14 23 .4901 -.2714 -.0389 .1216 92.6

11 14 23 .4997 -.3689 -.0333 .1603 89.4

07 09 23 .6034 -.2739 .1428 .1652 89.5

07 10 23 .5839 -.2269 .1238 .1393 91.4

07 11 23 .5764 -.1930 .1079 .1195 93.4

07 12 23 .5406 -.1709 .0938 .1048 95.2

07 13 23 .5510 -.1520 .0885 .0948 96.1

07 14 23 .4726 -.1387 .0674 .0808 95.3

07 15 23 .4803 -.1454 .0419 .0743 91.7

07 16 23 .4933 -.1553 .0249 .0714 93.2

07 17 23 .5109 -.1958 -.0125 .0829 92.9

07 18 23 .5613 -.2113 -.0141 .0909 87.5

07 19 23 .5217 -.2225 -.0735 .1073 86.3

09 12 23 .5093 -.2167 .0188 .0942 91.3

09 13 23 .5061 -.2078 .0003 .0832 92.8

09 14 23 .4996 -.1992 -.0191 .0873 94.1

09 15 23 .4932 -.2044 -.0406 .0980 92.9

09 16 23 .5028 -.2093 -.4170 .2505 91.5

07 14 16 .5736 -.0912 .1236 .0964 93.6

07 14 17 .5907 -.0966 .0945 .0800 94.1

07 14 18 .5384 -.1119 .0787 .0772 93.7

07 14 19 .5523 -.1169 .0748 .0762 93.4

07 14 20 .4789 -.1323 .0622 .0769 94.4

07 14 21 .5186 -.1273 .0696 .0776 93.9

07 14 22 .4507 -.1739 .1090 .1117 94.8

07 14 23 .4726 -.1387 .0674 .0808 95.3

07 14 24 .5417 -.1371 .0726 .0821 95.6

07 14 25 .4528 -.1491 .0673 .0847 95.8

07 14 26 .4945 -.1069 .0258 .0511 96.0

07 14 29 .5009 -.1409 .0564 .0758 96.1
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Table 3.1A (Continued)

Sensitivity Testing Summary: M

Worst

GOES Times Output Storage 2

(LST) Value 8M 8M Error r

1 2 3 M-.5 BDTD BDTN M-0.5 Percent

08 11 23 .5596 -.2129 .0733 .1106 95.3

08 12 23 .5090 -.1540 .0533 .0793 94.9

08 13 23 .4951 -.1521 .0295 .0715 89.7

08 14 23 .4972 -.1383 .0135 .0695 90.2

08 15 23 .5021 -.1638 -.0082 .0684 92.9

08 16 23 .4802 -.1875 -.0415 .0911 93.0

08 17 23 .5190 -.2090 -.0435 .1003 91.7

08 18 23 .5230 -.1708 -.0798 .0964 90.9
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:able 3.1B

Sensitivity Testing Summary: P

Worst
GOES Times	 Output	 Storage

(LST)	 Value	 am	 am	 Error	 2r,.
1	 2	 3	 M-.5	 aDTD	 aDTN	 M-0.5 Percent

06 14 23 .06529 .P5589 -.01140 .00700 99.3
07 14 23 .06709 .00469 -.00989 .00584 98.4
08 14 23 .06556 .00472 -.00824 .00523 98.1
09 14 23 .06549 .00807 -.00722 .00723 99.5
10 14 23 .06817 .01034 -.00618 .00666 99.7
11 14 23 .06699 .01326 -.00614 .00781 99.5

07 09 23 .06159 -.00595 -.00453 .00389 99.6
07 10 23 .06131 -.00162 -.00590 .00286 99.5
07 11 23 .06388 .00121 -.00673 .00326 99.5
07 12 23 .06252 .00285 -.00813 .00445 99.4
07 13 23 .06422 .00398 -.00915 .00528 99.1
07 14 23 .06709 .00469 -.00989 .00584 98.4
07 15 23 .06978 .00579 -.00996 .00637 97.1
07 16 23 .06946 .00687 -.01120 .00731 96.5
07 17 23 .06771 .01140 -.01314 .01015 98.4
07 18 23 .06861 .01323 -.01747 .01274 99.0
07 19 23 .06938 .00833 -.03391 .01715 98.5

09 12 23 .06188 .00397 -.00741 .00460 99.4
09 13 23 .05160 .00648 -.00765 .00575 99.4
09 14 23 .06549 .00807 -.00722 .00623 99.5
09 15 23 .06636 .00941 -.00750 .00687 99.6
09 16 23 .06574 .00970 -.00920 .00767 99.3

07 14 16 .05235 -.00054 .02752 .01055 95.7
07 14 17 .05787 .00184 -.01872 .00863 96.5
07 14 18 .05510 .00290 -.01473 .00729 97.2
07 14 19 .06200 .00303 -.01133 .00586 97.8
07 14 20 .06125 .00311 -.00966 .00581 98.1
07 14 21 .06503 .00340 -.00983 .00535 98.0
07 14 22 .06685 .00423 -.00992 .00569 98.3
07 14 23 .06709 .00469 -.00989 .00584 98.4
07 14 24 .06770 .00499 -.00958 _120583 98.4
07 14 25 .06805 .00523 -.00930 .00581 98.5
07 14 26 .06835 .00539 -.00904 .00576 98.6
07 14 29 .06791 .00574 -.00869 .00575 98.8



r	 8

RAGE 19

QUALrN	
28

Table 3.1B (Continued)

Sensitivity Testing Summary: P

Worst
GOES Times Output Storage

(LST) Value aM aM Error r2

1 2 3 M-.5 3DTD MN M-.05 Percent

08 11 23 .06359 .00166 -.00676 .00348 99.4
08 12 23 .06320 .00289 - .007154 .00421 99.4
08 13 23 .06574 .00408 -.00765 .00475 98.9
08 14 23 .06556 .00472 -.00824 .00523 98.1

08 15 23 .06648 .00841 -.00865 .00698 98.9
08 16 23 .06537 .01008 -.00978 .00812 99.3

08 17 23 .06845 .01071 -.01189 .00922 99.1
08 18 23 .06667 .00512 -.01612 .00883 97.6

i
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less-acurate GOES imagery is used. Since the preferred testing

strategy cannot be used, another strategy must be devised.

Previous work (Carlson and Boland, 1978, Dodd, 1979) indicates

that the numerical boundary layer model used in CD and the GOES

method provides acceptable surface temperature values for a wide

range of soil parameters. It was decided to use the numerical

model to simulate temperature data for GOES method testing. Since

M and P are input parameters of the model, GOES method testing was

restricted to diagnosing M and P. A master run of the numerical

model was executed to provide surface temperatures at 48 GOES times

for 63 ordered pairs of (M, P) values. Meteorological and geographi-

cal initializations were obtained from a St. Louis case studied by

Carlson et al. (1981) and Kocin (1979). The output from the master

run was used to represent GOES imagery of a fictitious target area

exhibiting considerable variability in M and P. A test run was then

executed, using the 16 (M, P) pairs to be used in the subsequent GOES

method case studies (Section 4). The M and P values in the test

run differed from those used in the master run. GOES time triplets

were selected, and DTD and DTN were computed from the output of the

test run. Bicubic regression equations were produced for M and P

from the output of the test run. These regression equations were

applied to appropriate DTD and DTN values obtained from the master

run output. The resulting M and P values were then compared to the

M and P inputs used to generate the master run output.



F

3.6.2 Sensitivity Studies Results

The results of the sensitivity and accuracy studies are p

in Table 3.1.

Actual values of M and P from the test-data regression eq

and master-data temperatures are presented in Column 4 of Tabl

Relatively little importance is attached to these figures. Tb

temperatures passed to the regression-evaluation routine were

observed temperatures; they were model-output simulated temper

from the master run. Actual data could produce different ;=,esu

due to differing amounts and types of error in model output an

GOES imagery. If the results tabulated in Column 4 were perfe

all one could conclude is that the regression routine represer

the model perfectly at (M, P) _ (0.5, 0.065). Although the ab

of the GOES method to represent itself is highly desirable, th

ability is w;, r essential to the work at hand. The quantities

tabulated in Column 5 and 6 are more important to the current study

than the values tabulated in Column 4.

Columns 5 and 6 contain the partial derivatives of the regres-

sion equation with respect to the predictands OTD and DTN respectively.

These partials were evaluated with simulated temperatures from the

(M, P) _ (0.5, 0.065) master model run. They represent the sensi-

tivity of the GOES method to small perturbations (or errors) in

model output and/or data. In a typical model run, when (M, P) varies

from (0.05, 0.0125) to (0.95, 0.125), DTD and DTN vary by about 20 K.

A value of 
3DTD 

of 0.05/K or 
BDTh 

of 0.005/K is sufficient to account

ih:



for the real. variation of M and P as fuss,ctiuns of DTD and DTN. The

tabulated values are generally larger, ttiidicat ng possible numerical

difficulties.

Column 7, labeled 'worst storage error,' contains

0.4I
3DTD I + I 3DTNI or 0.4 1

3DTD
1
 + I 3D,TNI	

This quantity is

,ae maximum error incurred by storing GOES temperatures in single

bytes of computer stor e. The GOES imagery used in this thesis was

obtained from th,, McIDAS fAcility at the University of Wisconsin

in Madison, WI. Each pixel of the satellite image was allocated

one byte of magnetic tape storage. The raw intensity levels are

converted Into Kelvin temperatures by a preprocessing routine. The

temperatures generally fall into a 100 K range: from 243 to 343 K.

If the mapping from raw intensities to temperatures is nearly

linear and nearly the entire domain of intensities is mapped into

nearly the entire 243-343 K range, the temperatures can be no more

accurate than + 0.2 K. The subtraction step to form DTD and DTN

doubles this error range. If the numerical model and the satellite

data were completely error-free, the GOES method could still have

errors as large as the values in Column 7, due to the method of

storing data on the McIDAS input tapes.

Column 8 displays the multiple regression coefficient, r`,

a statistic generated by the MINITAB statistical package (Ryan,

Joiner, and Ryan, 1976). It is a measure of the quality of the

regression equation. r ` is the square of the correlation coefficient

between the M (o- ") values in the input to MINITAB and the M (P)
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values obtained by substituting the DTD and DTN values in the MINITAB

input into the egression equation for M (P) produced by MINITAB.
t,

r` is the fraction of variance explained by the regression equation..

A value of r ` close to 100 percent indicates that the regression

equation can be used to invert the model, without appreciable error.

The results of the GOES times screening study were evaluated

subjectively. Three objective criteria were applied, but these

criteria were selected subjectively:

-avoid timta triplets wehrte r 2 for M is leer than 90 percent

-avoid worst-storage-errors for M exceeding 0.10

-avoid worst--storage errors for P exceeding 0.010
,,

GOES time triplets were rejected when r ` began to decrease signifi-

cantly as one of the times was varied away from its optimum.

Triplets were rejected when sensitivities (Column 5, 6, and 7)

began to increase*. rapidly as one GOES time was changed. Also con-

sidered, but not shown in Table 3.1 was the performance of the

method at extreme values of (M, P). Pronounced difficulties were

oQeasionally encountered for (M ? 0.8; P ? 0.10). where the inversion

of the model is numerically least stable.

The results of the sensitivity study are summarized below:

1) The preferred midday GOES time is aiter local noon,

prmferably between 1300 and 1500 but no later than 1600

local standard time (LST). The time of surface tempera-

ture maximum is optimum.

1) Acceptable morning TOES times are after sunrise, but before

1,000 L4'1 .̀. The or, ';i:mum is about 1 1/2 It 	 sunrise.
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Times after 0900 will provide marginally acceptible results,

if afternoon and evening times are optimal.

3) The night GOES time should be at least 2 h after sunset.

Performance of the method improves slowly as the night GOES

time is made later than 2300 LST. Model execution time

(hence, cost) also increases as the night time is made later.

The marginal improvement in performance probably does not

justify the expense of selecting night images after local

midnight in an operational setting.

4) Tf the midday image time deviates more than 30 minutes

from optimum, flexibility in the choice of morning image

time is reduced.

These results were obtained from model simulations performed

on the St. Louis case used in Carlson et al. (1981) and Kocin (1979).

They may not have general applicability. Rose (1982, personal

communication) reports poor results with the Kansas case study

(Section 4), using GOES times of 0830, 1400, and 0100 LST. The

sensitivity studies of the St. Louis simulation indicate that (0830,

1400, 0100) should be suboptimal but acceptible. This failure

may be related to the choice of M and P values used in the model.

Rose is using a smaller P range and a more sophisticated algorithm

for generating (M, P) pairs for model initialization. Additional

experimentation with the GOES method should lead to refinements in

the criteria cited above.



Another restriction on the choice of GOES times was discovered

during the processing of the Kansas case study (Section 4):

5) If possible, the model should be initialized to start after

effective sunrise, about 1 h after astronomical sunrise.

The morning GOES time should be at least 30 minutes after

model-initialization time. If this is impossible (due to

limited imagery or adverse cloud conditions), then:

a. Initialize the model to start at the selected GOES

time

b. Use the model initial conditions (the initial surface

temperature, etc.) as the model output for the first

GOES time

Effective sunrise of radiation sunrise is defined as the time at

which the surface first receives an excess of input energy (incident

radiation plus Go) over emitted radiation. At effective sunrise,

Ho becomes positive. If the model is initialzed to start before

effective sunrise, the model enters the nocturnal mode and produces

a very shallow, spurious nocturnal inversion. Modeled surface

temperatures are unreliable until this inversion is destroyed by

heating. Use of model initial conditions as model output is not

desirable, but it is better than the use of purely erroneous data

resulting from the nocturnal-mode computations encountered if the

model is started before effective sunrise.

For a few GOES time triplets in the sensitivity study, MINITAB

produced the diagnostic message: VARIABLE . . . OMITTED FROM
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REGRESSION EQUATION. This message implies that the model output

for that GOES time triplet is overfit by a bicubic- One of the

cubic terms is discarded by MINITAB. When this occurs, r2 decreases

and the sensitivity measures (Column 5, 6, 7) increase. There is no

a rp iori way of determining which GOES time triplets will suffer

from this overfitting. It has not been observed to happen in an

optimal GOES time triplet; it occurs infrequently in suboptimal but

acceptable triplets. The problem is almost certainly situation-

dependent: different geographical and/or meteorological

initializations imply different GOES time triplets having this

property. MINITAB is most likely not in error. By coincidence,

the model output has essentially no cubic component in one of the

predictors, DTD or DTN. To eliminate this ca-,se of impaired per-

formance, possible GOES triplets could be prescreened by the routine

used in the sensitivity study:

1) Initialize the model with the appropriate geographical

and meteorological parameters, including the M and P

values to be used in the actual operational run.

.") Prepare a test dataset spanning all GOES times which are

available for use.

3) Select a GOES time triplet from the available GOES times,

subject to the constraints mentioned above in this

section. Select the most nearly-optimal first.



4) Compute regression equations for any predictand, for th

GOES triplet in question.

5) If the 'VARIABLE . . . OMITTED . . .' message appears,

return to Step 3. Otherwise, accept the GOES time trip
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4.0 RESULTS OF TEST CASES

4.1 INTRODUCTORY REMARKS

This thesis is an attempt to answer two major questions:

1) Can M, P. Ho , and/or E be diagnosed on the regional scale

via satellite imagery?

2) Can GOES imagery be incorporated into the CD method?

Preliminary work (Section 3) indicates that both questions can

be answered in the affirmative. It is necessary, however, to

demonstrate the GOES method on actual regional data before making

any meaningful claims.

Two test cases were considered:

1) Indiana/Illinois/Kentucky, 22 August 1978

2) Eastern Kansas, 27 July 1978

These cases were selected because both GOES and HCMM data were

available. The Kansas case was also selected as a pilot for a

future study of time-variability of M and P anomalies (Rose, 1983).

Since none of the diagnosed variables could be measured on the

regional scale, verification of the results of the test cases is

difficult. The output of the two competing methods, CD and the

GOES method, will be presented, along with crop-moisture-index and

the preceding three week's rainfall. To the extent that both methods

agree and are consistent with the available ground measurements,

the GOES method can be judged a useful method..

x:



The Indiana/Illinois/Kentucky case (henceforth called the

Indiana case) is discussed in Section 4.2; the Kansas case, in

Section 4.3. Figures 4.1 through 4.25, illustrating the Indiana

and Kansas cases, are collected in Section 4.4 for convenience.

General conclusions are presented in Section 5.1.

4.2 THE INDIANA CASE: 22 AUGUST 1978

So many things I could have done/But clouds got in my way

Judy Collins

Showers and thunderstorms left many bands and patches of

cloud over the Indiana study area. At four of the five image times

used in the study, there were clouds obscuring significant portions

of the study area. The only clear image was the HCMM night image,

0748 Z, 21 August 1978, 48 hours before the modeled image time.

Under these circumstances, the extra image used in the GOES method

is a disadvantage. Whenever clouds appear on any image used, output

values are meaningless. The third GOES image introduces a third

set of clouds into the diagnostic method, obscuring more of the

region. Only about 25 percent of the GOES/Indiana domain was not

obscured by heavy clouds; thin clouds may affect about 10 percent

more of the domain. About 50 percent of the HCMM/Indiana domain is

usable.

Data results for the Indiana case are presented in Figures 4.1

through 4.11. There is evidence that both methods successfully

diagnosed large-scale moisture-availability patterns, despite the

interference by clouds. The three-week rainfall charts (Figures 4.2

38
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and 4.7) show a marked antecedent precipitation minimum near the

intersection of the Wabash and Ohio Rivers. Three-week precipita-

tion and crop-moisture index  both indicate greater moisture to the

north and east; the variation in crop moisture index values is

less dramatic than that of the antecedent precipitation. Figures

4.4 and 4.9 show M as diagnosed from HCMM and GOES data, respec-

tively. Both have dry values in the southwest quadrant. Neither

is quantitatively accurate: M of 0.25 would indicate wilting

vegetation, while M of 1.00 represents a wet surface or open water.

The pattern of values correlates with the antecedent precipitation

adequately, considering the masking due to clouds.

The diagnosis of P, H o , and E in the Indiana case will not be

discussed. The reader may discern for himself the degree of cor-

relation between HCMM and GOES fields, and their relationship to

three-week precipitation, crop moisture, and/or land-use patterns.

P, Ho , and E will be discussed in the Kansas case (Section 4.3),

where interference by cloudiness is markedly less evident.

The HCMM E field (Figure 4.6) contains a curious and counter-

intuitive feature which will be discussed. A band of minimum E

almost exactly parallels the Ohio River. One might expect high

evaporation rates over bodies of water, all other conditions

being equal. A definitive explanation for this minimum in E is

not available. The river was probably cooler than the surrounding

lOperational product of NOAA MSDA Joint Agricultural Research
Facility; broadcast as NAFAX map N118 and DIFAX map D262.
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land during the daylight hours, although the satellite imagery

failed to resolve a temperature anomaly. Evaporation from cool

water could be lower than evaporation from warm land. The night

HCMM image indicates a temperature maximum in the Ohio River Valley.

This temperature maximum apparently was transformed into the E

minimum by the regression routine. If total evaporation was actually

lower over the river than over the land due to cool daytime water

temperatures, the model has obtained a correct result for the wrong

reason. If the evaporation minimum actually did not exist, the

model has generated a spurious feature.

4.3 THE KANSAS CASE: 27 JULY 1978

The Kansas data are much better than the Indiana data. Clouds

obscured less than 25 percent of the image area. As a result,

all output fields could be obtained and compared. Data and results

for the Kansas case are presented in Figures 4.12 to 4.25.

Meteorological conditions over the eastern Kansas study area

were favorable. At 2100 Z, 27 July 1978, winds were generally

5-10 knots from the north to northeast. The pressure gradient was

weak. By 0900 Z, 28 July 1978, winds had shifted to southerly,

but had decreased to 0-5 knots over the area of interest. The

temperature and wind patterns shown in Figure 4.13 are consistent

with an approximate nonadvective assumption. Cloud conditions are

not plotted in Figure 4.13 but satellite imagery shows relatively

few patches of clouds over the study area. The three-week antecedent

precipitation maps (Figures 4.14 and 4.20) indicate a dry region in
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the southwest quadrant of the study area. Crop moisture index shows

a similar dry area, displaced a bit eastward. A region of high

crop moisture is found in the northwest quadrant of the region,

consistent with the three-week precipitation but not entirely

explained by it.

Several differences between HCMM and GOES temperature fields

are evident in Kansas case imagery. The superior resolution of the

HCMM satellite is clearly demonstrated. None of the GOES images

(Figure 4.21A-C) displays any temperature feature which can be

identified with any of the lakes in the study area. Both HCMM

images (Figure 4.15A-B) show one or more lakes. Note in particular

Perry Reservoir, the lake in the northeast quadrant of both the

HCMM and the GOES domains. It appears as a distinct temperature

minimum on the 1934 Z HCMM image and as a distinct maximum on the

0823 Z HCMM image. The high effective P of open water implies that

lakes should be cooler than the surrounding land during the day

and warmer than the land at night. For small bodies of water HCMM

is able to observe this distinction; GOES is not. The 8 km resolution

of GOES may explain its inability to see the lakes; Perry Reservoir,

however, is larger than 8 km in dimension.

The temperature patterns displayed on the 1934 Z HCMM image

(Figure 4.15A) and the 2000 Z GOES image (Figure 4.21B) are similar,

but the HCMM image is about 10 C (10 K) warmer than the GOES image.

The HCMM image was collected on 28 July 1978; the GOES., on 27 July

1978. A 10 C change in surface temperature between the two image



times seems excessive, considering the fairly stable weather pat-

tern over the region. Both images are considerably warmer than the

surface air temperatures displayed in Figure 4.13A. This is to be

expected: the actual surface of the earth, exposed to direct sun-

light, should be considerably warmer than the air inside an

instrument shelter 1.3 m above the heated surface. A difference

of about 25 C, as implied by the HCMM imagery, is possible;

intuitively, 25 C seems extreme.

The land-use patterns (Figure 4.12) are not well correlated

with the temperature fields. Most of the region consists of some

mix of unirrigated cropland and rangeland. The principal crop in

eastern Kansas is wheat. Wheat is a grass. The distinction between

wheat and range grass is obvious to the farmer and the cartographer;

the distinction may be much less obvious to the longwave-IR sensor

of a weather satellite. Unfortunately, there was no significant

area of irrigated cropland in the study area. Irrigated cropland

would be expected to differ in surface temperature from unirrigated

land.

The four output fields show good agreement between HCMM and

GOES methods, good consistency among field types, and good agreement

with three-week antecedent precipitation. The agreement with crop

moisture index is adequate, but not as good as the relationship

with antecedent rainfall. The output fields are not to be inter-

preted as exact values, though. The range of M displayed in

L__
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Figures 4.16 and 4.22 is unrealistically large, for example. This

qualitative accuracy and quantitative inadequacy also occurred

in the Indiana case (4.1).

Both M fields clearly show the dry region in the southwest

of the HCMM domain and in the west of the GOES domain. Clouds

unfortunately obscure the region of highest M gradient in the HCMM

domain. The HCMM M field (Figure 4.16) resolves the Perry Reservoir

as an M maximum; the lake on the northwest edge of the domain may

be resolved.

The P fields show low values of P in the dry region, as would

be expected. The HCMM P field (Figure 4.17) resolves two lakes as

P maxima; the GOES field (Figure 4.23) does not resolve the lakes.

The Ho fields (Figures 4.18 and 4.24) show high head flux over

dry terrain.

The E fields (Figures 4.19 and 4.25) show the expected result:

low evaporation in the dry region. Neither HCMM nor GOES E field

resolves either lake. The E fields correlate better with previous

three-week rainfall than with crop moisture index.

The reader is encouraged to study the output fields; the input

fields, and the meteorological and physiographic data and reach

his own conclusions about the relative merits of the GOES method

and the CD method for diagnosing M, P, Ho and/or E.

f.
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4.4 FIGURES DEPICTING ;ASE STUDY RESULTS 	 A
S	 i

Figures 4.1 through 4.25 uepict initial conditions and results

of the two case studies described in Sections 4.2 and 4.3. The

figures are presented in the following order:

Indiana case: Figures 4.1 through 4.11

4.1: Base map and land-us* data	 t

4.2 through 4.6: Indiana-case HCMM:

4.2: Three.-week rainfall and crop moisture index

9
4.3: Satellite images (temperature fields) 	 i

4.4 through 4.6: Output fields (M, P, E)

4.7 through 4.11: Indiana-case GOES:

4.7: Three-week rainfall and crop moisture index

4.8: Satellite images

4.9 through 4.11: Output fields (M, P, E)

Kansas case: Figures 4.12 through 4.25

4.12: Base map and land-use data

4.13: Surface weather analyses

4.14 through 4.19: Kansas-case HCMM:

4.14: Three-week rainfall and crop moisture index

4.15: Satellite images

4.16 through 4.19: Output fields (M, P, H o , E)

4.20 through 4.25: Kansas-case GOES:

4.20: Three-week rainfall and crop moisture index

4.21: Satellite images

4.22 through 4.25: Output fields (M, P, H o , E)



on all satellite imagery and output fields, areas Affected

by cloud cover are indicated by scalloped lines; contours are

omitted in cloudy areas.
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Figure 4.1A: Geographical location of GOES and HCMM domains for
the Indiana test case.

Heavy solid lines:	 GOES domain
Heavy dashed lines: HCMNi domain

	

Light solid lines:	 Rivers and	 lake shores
Light dashed lines: Mate boundaries

A



0"
V 
INAt; PA ^r Ts'

200 KM

R	 C	 - GOES
-- - HCmmB 0

Figure 4.1B: Land use map for the Indiana case.

A: Cropland and woodland	 C: Forest woodland

B: Cropland	 D: Urban
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Figure 4.3A: Indiana-cas e HCMM image, 1858Z 9 22 August, 1978.

Contours are satellite-derived surface temperatures,
in °C, corrected for atmospheric water vapor.
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Figure 4.5: Indiana-case thermal inertia (P) diagnosed from HCMM

data. Contour interval: 0.02 cal cm-1 K-1 sec-1/2.
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Figure 4.8A: Indiana-case GOES image, 1230Z, 22 August 1978.
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Figure 4.8B: Indiana-case GOES image, 19002, 22 August 1978.
Contours as in Fig. 4.3A.
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Figure 4.9: Indiana-case moisture availability (M) diagnosed from
GOES data. Contours as in Fig. 4.4.
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Figure 4.10: Indiana-case thermal inertia (P) diagnosed from GOES

data. Contours as in Fig. 4.5.
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GOES data. Contours as in Fig. 4.6.
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Figure 4.14: Three-week antecedent rainfall and crop moisture
index for the Kansas case HCMM domain. Contours
as in Fig. 4.2.
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Figure 4.15A: Kansas-case HCMM image, 1934Z, 28 July 1978.
Contours as in Fig. 4.3A.
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Figure 4.15B: Kansas-case HCMM image, 0823Z, 27 July 1978.
Contours as in Fig. 4.3A.
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Figure 4.16: Kansas-case moisture availability (M) diagnosed from
HCMM data. Contours as in Fig. 4.4.
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Figure 4.18: Kansas-case heat flux (H) diagnosed from HCMM data.
Contours in W m-2. 	
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Figure 4.19: Kansas-case total evaporation (E) diagnosed from
HCMM data. A special model run using 32 (M, P)
pairs was used to produce this diagnosis.
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Figure 4.20: Three-week antecedent rainfall and crop moisture index
for the Kansas case GOES domain. Contours as in
Fig. 4.2.
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Figure 4.21B: Kansas-case GOES image, '1, 900Z, 27 July 1978.
Contours as in Fig. 4.3A.
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Note that contour 1 of Fig. 4.18 corresponds to contour 1 of this
figure: contour 7 of Fig. 4.18 corresponds to contour 4 of this
figure.
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5.0 CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

5.1 CONCLUSIONS

The following conclusions can be drawn:

1) Both the GOES method and CD can be used for regional-scale

studies

2) Three GOES images are required for the GOES method. The

optimal image times are:

a) about 90 min after sunrise

b) the time of maximum surface temperature

c) around midnight

There is some flexibility in the choice of image times,

particularly in the choice of the third image time.

3) The superior resolution of HCMM is important, even on the

regional scale. Significant features can be resovled via

CD which are invisible to the GOES method.

4) The superior resolution of HCMM enables CD with only two

images to equal or exceed the performance of the GOES

method with three images.

5) Relative diagnoses of M, P, and H o can be obtained from

either method. The ability to diagnose E has not been

satisfactorally demonstrated. Although the E fields

produced by both methods appear qualitatively reasonable

in most areas and are probably adequate, there are some

inconsistencies that need to be explained.
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6) Neither method may produce quantitatively correct output

fields. The diagnosed M fields exaggerate naturally-

occurring contrasts. The same type of error probably

occurs in the E and Ho fields. Analysis of error in the

P fields is complicated by the difficulty of defining P

in a vegetative canopy. Negative and near-zero values

of P are certainly incorrect.

7) The present work must be considered a preliminary study.

The development of the GOES method is far from complete.

5.2 LIMITATIONS OF THE METHOD: DISCUSSION AND SUGGESTIONS FOR
FUTURE RESEARCH

Considerable research is needed in defining and measuring

surface parameters in vegetative canopies. Diagnoses of these

parameters must remain tentative until more is known about them.

The difficulties encountered in defining and measuring surface

temperature have been discussed (Section 3.4). Several other

questions involving vegetative canopies must be addressed:

1; How is P defined in a vegetative canopy where the radiating

surface is a significant distance above the solid ground

surface? How is the temperature of the radiating surface

influenced by heat transport to and from the region below?

2) To what extent is the temperature of the effective radiating

surface affected by ventilation, when the radiating surface

is at some distance above the ground in a zanopy?

3) Does M vary significantly during the day as plant stomata

open and close in response to a variety of stresses?
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4) Does E vary significantly as plant stomata open and close?

Is any significant part of such variation independent of

the variation of M?

These and similar questions need to be answered through further

observations in vegetated areas. Significant input into the

research effort must be irovided by plant physiologists. The

research will be neither easy nor inexpensive.

To date, neither CD nor the GOES method has been attempted on

an autumn or winter case. The numerical considerations cited in Sec-

tion 3.4 suggest that some difficulty may be encountered in diagnosing

the surface parameters from autumn or winter imagery, even if the

question of the thermal and radiative properties of snow is ignored.

The daily range of surface temperature may be reduced to the point

that the errors inherent in the model overwhelm the information in

the satellite images. The numerical model has been demonstrated

successfully on simulated autu= initial conditions. The question

of whether regression equations obtained from such initializations

are adequately stable to permit the mapping of satellite images

into M, P, Ho , and/or E fields has not yet been addressed.

The superior resolution of HCMM proved to be of value even

in the regional-scale studies (Section 4). The ability to resolve

a feature like the Ohio River is certainly worthwhile. HCMM is no

longer operating, however, and there is no likelihood that a

similar mission will be launched in the near future. The CD

algorithm could be tested on TIROS-N imagery or on other thermal-IR
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imagery from polar-orbiting platforms. Although TIROS-N has poorer

resolution than HCMM, its resolution (1 km) is distinctly superior

to the resolution of GOES. The question of whether the superior

resolution adequately compensates for the paucity of overpass

times is one that can only be answered by experiment.

H;brid methods could also be attempted to take advantage of

the availability of GOES imagery while retaining the superior

resolution of polar-orbiter imagery. On a day when a polar-orbiter

image pair is available, for example, one GUMS image could be used --

probably the early-morning image -- to provide. the three images

needed for the GOES method. On a day with a single polar-orbiter

overpass, two GOES images could be combined with the single polar-

orbiter image. It is not known whether differences in image quality

or calibration are large enough to prevent the mixing'of image

sources in the GOES method, nor is it known whether the difference

in resolution between GOES and polar-orbiter imagery will make the

two types incompatible.

The image differencing done in the GOES method has a theoretical

deficiency which was not realized until after the completion of the

case studies presented in Section 4. Image subtraction is a valid

technique only under the conditions cited in Section 3.5. The

assumption of similar soundings at all points m the domain is

crucial. If clear skies and light winds prevail during the night,

this assumption is likely to fail. Cold-air drainage will produce

local pockets of anomalously cold air at the surface; just above

these shallow cold layers, there will be no horizontal contra3t.

84
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These shallow cold pockets are definitely large enough to be

resolved by HCMM; some are resolvable by GOES. I This error in

the subtraction procedure is maximized by selecting a morning image

time near sunrise; the error decreases as the morning image time

is made later. Unfortunately, a later morning image time increases

the numerical difficulties cited in Section 3.4. The trade-off

between inaccuracies and numerical difficulties could be investi-

gated, but only if some form of ground truth is available.

Preliminary evidence indicates that the numerical difficulties are

the more serious. There is no evidence of degradation of performance

attributable to cold pockets in either of the case studies in

Section 4.

The subtraction step could be bypassed, and "ll three temp," a-

tures could be used as predictors in a modified GOES procedure. If

this were done; the number of coefficients in the regression

equations would increase, increasing the r^.sk of overf itting the

data (Section 3 . 4 and Appendix 1) . Alao, the, utWt w>>- ::in& j^roblem

would not be addressed. The .iodtil would still be initialized with

only one sounding. The method would implicitly assume that the

1 A extreme example of this phenomenon is presented by Schlegel and
Butch (1980). They found that the nocturnal temperature drop is
greatly exaggerated in the Barrens, a notorious cold-air drainage
location near State College, PA. Minimum temperatures in the
Barrens are much lower than minima at Penn State University on
clear, calm nights. Daytime maxima in the two locations are com-
parable. Much of this anomaly is explained by cold-air drainage
into the bowl-shaped valley. The thermal properties of the sandy
soil and stunted vegetation cannot alone account for an effect of
the magnitude of the cold anomaly of the Barrens.

a



sounding was ideritical at all points in the region: a more str

assumption than the assumption of similar-shaped soundings. However,

the quality of the output might but improved. A test of a three-

temperature GOES method is desirable, but should not be given high

priority. Unless a new idea is forthcoming, the error in the sub-

traction algorithm will probably have to be accepted.

The one-dimensional boundary-layer model used.in CD and the

GOES method has proved to be adequate in diagnosing M, P, H o , and E

from HCMM and GOES imagery in several different studies. Work is

presently in progress to add several improvements to the model:

1) constant temperature advection,

2) improved daytime boundary-lays winds,

3) better subsurface heat storage and flux parameterization.

These improvements should be documented by Rose in 1983.

Both CD and the GOES method use a simple polynomial regression

equation in two variables to invert the model. Results have been

qualitatively satisfying but quantitatively dubious. This

inadequacy may be related to the physical response of surface

temperature to M and P -- a response which is apparently modeled

quite well.	 a

Diurnal surface temperature rise and fall are extremely sensi-

tive to small changes of M and P when M and P both have relatively

	

	 !
a

low values. For high values of M and P, diurnal temperature rise

and fall are rather insensitive to changes in M and P. Note the

data. inn Table 5.1, taken from a model simulation of the Kansas case

9
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Table 5.1

Model surfac, temperatures generated for the Kansas case
(27 july 1978) for selected initial values of M and P

SIMULATED SFC TE TERATURES (K)
AT SIMULATED GOES TIMES LST

M P 0800 1,400 2300 DTD DTN

0.05 0.0125 303.21 332.37 292.89 29.16 39.50

0.35 0.0125 299.61 317.39 289.45 17.78 27.94

0.05 0.0500 296.62 322;52 300.18 25.90 22.34

0.35 0.0500 295.75 313.87 296.57 18.12 17.3

0.65 0.0875 294.10 308.74 296.91 14.64 11.83

0.95 0.0875 293.75 307.59 296.66 13.84 10.93

0.65 0.1250 293.89 307.07 297.50 13.18 9.57

0.95 0.1250 293.59 306.16 297.28 12.60 8.91

(4.2). When the model is inverted, the sensitivities are also

inverted. Let AT be an appropriate measure of diurnal temperature

rise or fall. Then, a- and ap 
are very small for large AT, and

rather large for small values of AT. It is difficult to obtain a

single polynomial in temperature or temperature-change which matches

the behavior of M or P at both ends of the temperature or temperature-

change range. A piecewise-polynomial interpolating function may fit

the data more successfully than a global least-squares approximating

polynomial. The piecewise interpolant need not match the model-

output globally. For example, a cubic spline interpolant can fit

data very well, providing only a single predictor is used. If M

were to be diagnosed from morning temperature change only, with

r



as

11 -depe ndence suppressed in the model, a cubic spline could be used

in place of a regression equation in the single. predictand UTD, The

extension of the concept of cubic splines to two dimensions is

beyond the competence of the present author. However, it might be

possible to .fit an augmented model-output data set by p:iecewi.se-

linevr functions (see Appendix 11). M( ,re than 16 (M, P) pairs would

probably have to be used in the model, simulation. , rhe problem of

replacing the regression routine by piecewise-polynomial interpolants

is worth pursuing. Seep Appendix 11, Section 3 for a possible

pie:cowise-linear, interpolation method.

The chief impediment to tl ►e operational use of CD or tile; GOES

method is the acquisition and ;alignment of satellite subimuges. ro

obtain one aligned subimages of a target area, it technician must

: pend one! half to one full working day searching for recognizable

geographic features on the y satellite image. They tusk 
is 

excep-

tionally difficult on night imagery, where the contrast between

land and ocean is minimal.. Unti l- the, procedure for obtaining

aligned subimage3s is expedited, real.-time applications will be

nearly impossible. and ongoing studies of several regions will, he

economically infeasible. High priority should be placed on

developing a fully-automated procedure for selectini and aligning

aubimages for GOES and other infrared satellite imagery.

Although this GOES method is not yet ready for real-time

operational use, work is currently being done oil the time evolu-

tion of ttae historical M anomaly in tlae Kansas case (Section 4.3)

(t o ,4e, 1983) . Other poteilt:i.al, tappl,ir-ait:ions of tlae GOES method
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:include the preparation of M, P, and possibly It and E fields for

use by mesoocale numuric:al weather prediction model-4.. If the sub-

image acquisition problem call be solved, the GOES method could

provide surface parameters for operational NWY; a pilot study should

be done.

5.3 FUTURE, RESEARCH: A PLAN OF ACTION

Remote sensing of soil and surface parameters is potentially

Very valuable, The GOES method has been shovin to diagnose several

;ao,ii and :surface parameters with some ;4kill, using weather-satel:lit

i ina g erY. The ;future* us:efulness of this technique depends can tileA

results of 'further research. This author, recommends pursui,nK the

fo'llow'ing cout-se s

As tiae tole priority, solve the subimage acvlisitio)l and align-

ment problem. Operational work cannot proceed as honk as acquisition

elf i ►srablo daataa is extremely tedious and difficult.

If funding and outside expertise, can be found, the study of

the mioromcetcorology of plant c,atwipicts should also be given high

priority. It is hard to model as quantity which is poorly understood.

using data o unknown quality and as method designed for condit.,wns

diffetreeat from rhea ones which actually prev.,lil.

Appl,ieaat.'iogw of ttaee t` ES' method and pilot studies of its ust4

should be 'Vivell intermediate priority.

Inte*rmediaate:! priority also 4hottld be given to improving the

regression algorithm or roplaQing ;Lt w:itle pick.?w.i:,ee-pc^l,^tiom:i +.L

f title t:ion:..



udies of TIROS-N and hybrid methods should receive high

- when the image acquisition problem is solved. The use

QO

of TIROS-N data in the CD method should be attempted as soon as

data become available. Large-scale evaluation of TIROS-N and

hybrid methods must wait for the solution to the image acquisition

and alignment problem, for economic reasons.

Low priority should be given to the incorporation of improve-

ments into the model and the systematic evaluation of the image-

differencing technique. Until the micrometeorology of plant

canopies is understood, it will be difficult to evaluate the

results of "improving" the model or to evaluate image-differencing.

Preliminary experiments with "improvements" in the model indicate

that uncertainties in the GOES method overwhelm any improvements

resulting from added sophistication in the numerical'Wca-^1. The

time for major improvements in the model is after ground-truth

becomes available, not before.

There is little doubt that surface parameters will eventually

be diagnosed via some form of remote sensing. Whether operational

diagnoses can be achieved by the GOES method, using geostationary

observation platforms, remains to be seen. :Whether the GOES method

or one of its successors is eventually adopted, the experience gained

in the development of CD and the GOES method will be variable.

a

i
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APPENDIX I: NUMERICAL ANALYSIS

Much of the work in this thesis invol: -s approximations. The

satellite data and model output are approximate; they contain error.

This appendix discusses:

1) theoretical implications of approximation

2) the role of approximation in the GOES method

3) possible effects of approximation

A formal numerical analysis of the GOES method is not attempted.

Basic principles of numerical analysis will be presented and

applied to the GOES method. Awareness of these principles can

suggest ways of reducing numerical errors in the GOES method.

The important topic of floating-point arithmetic will not be

discussed, since the numerical model used in the GOES method is

relatively simple and stable. The interested reader is referred

to Chapter 2 of Forsythe, Malcolm, and Moler (1977). Section 1.1

considers the problem of approximating derivatives, and applies its

results to the problem of approximating temperature derivatives

with GOES data. Section 1.2 deals with regression: approximating

one .function by a simpler one, when only limil.ed data of uncertain

quality are available.

I.1 NUMERICAL APPROXIMATION OF DERIVATIVES

Assume that it is desirable to estimate the time derivative

of temperature at a specific time: 0945 local time, for example.

+a
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The simplest and best approach would be to use the centered-

difference approximation to the derivative:

3T	
T2 - T1	

(I.1)
3T	 t 2 - t 

where T 1 and T2 are temperatures measured at times t  and t2,

respectively. Times t  and t 2 are selected such that:

2 ( tl + t2 )	 0945 .	 (I.2)

This approximation is equivalent to approximating the graph of

T(t) from t  to t 2 by a straight line.

Assume that the actual temperatures are as follows:

Time Temperature

0930 300.0 K	 (I.3)
1000 301.0 K

The actual value of the derivative:

t = 2.00 K/hr	 (1.4)
at

Now, assume that satellite imagery or computer output is

available, but that either contain .random error of up to 0.3 K.

This corresponds to a 0.1 percent error in absolute temperature, not

unreasonable for a temperature computed from narrow-band IR reception

by a satellite. The available data are:

Time	 Temperature Range

0930	 299.7 K < T1 < 300.3 K	 (I.5)

1000	 300.7 K < T 2 < 301.3 K

.3

L.---
9
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The derivative compnti^d from this data could fall anywhere in the

range: 0.8 K/hr to 3.2 K/Ihr. An estimate that crude would have

little or no practical value.

Consider the following data, containing the same uncertainty:

Time	 Temperature Flange (K)

0730	 295.7 < T, < 296.3 	 (I.6)

1200	 204.7 ` T2 < 305.3

The computed value of
atat

in the range: 1.87 K/hr to 2.31 K/hr.

This estimate is useful.

The above is an example of the problem of subtraction of

nearly-equal approximate quantities. The relative error in the

quantities can be greatly magnified. Finite-difference approxi-

mation of derivatives is a numerically sensitive process because

of this property of subtraction.

An implicit assumption was made in the discussion of the second

set of data: we assumed that the time derivative of temperature

remained essentially constant for several hours. There is no

ar̂ iori justification for that assumption; in fact, it is unlikely

to be strictly true. Conte and De. Boor (1972) demonstrate that the

centered-difference approximation to 
at 

has an error:

2	 3

E = (- h ) (a Ti
	

)	 (I.7)
6	

at3 t=t*

where

It 2 - 
t 1 I = 2h	 (I.8)

x
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t* is some (unknown) time in the interval (ti, t2), and T(t)

must have three time derivatives throughout the interval. The

error increases as the square of the time interval between observa-

tions.

There is a trade-off between the accuracy of the centered-

difference formulation and the numerical error introduced by sub-

traction of nearly-equal approximate quantities. In the situation

encountered in this thesis, the errors from the subtraction are

the more serious.

I.2 REGRESSION, CURVE-FU TING, AND APPROXIMATE DATA`.

Curve-fitting is a common problem in science. An experiment

or simulation provides data, and the investigator wishes to express

the data as a mathematical function. However:

1) The data are not available for all possible experimental

conditions.

2) The data invariably contain some error or uncertainty.

The investigator would like to obtain a mathematical result

of general applicability which is consistent with the experimental

or simuluated data. She is willing to accept a function which

merely approximates the data collected from one series of experi-
i

ments or simulations if that function will provide a good fit to

data from similar experiments or simulations.
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The one-dimensional case will be considered here: Given

a set of ordered pairs i(x i , yi)), determine a function y : f(x)

that corresponds to these ordered pairs in some fashion which can

be called a `best fib:.' The description is intentionally vague,

at this point. Similar results caa be obtained for n-dimensional

spaces. The interested reader should consult intermediate to

advanced numerical analysis or approximation theory texts (example:

Davis, 1965). The n-dimensional case can be proved using the

techniques of Hilbert space.

There exists a polynomial y - p(x) of degree at most n, which

passes through any n + 1 points (x 
09 yo) ' (xi' yl) " '' NO yn)

where x0 < x  < ... < xn . It is not clear that p(x) is the best

polynomial representation of the data. Consider Figure I.1

(Figure 4.8 from Conte and De Boor (1972)). It is exceedingly

unlikely that any investigator would use a tenth-degree polynomial

to fit this data, even though there is a tenth degree polynomial

that interpolates it perfectly. Instead, a linear function was

selected in Conte and de Boor. The investigator would assume that

the small, seemingly random deviations from the straight line in

Figure I.1 represent error; siA3 would discount the possibility that

the universe incorporates tenth-degree corrections to linear

relationships.

Linear regression and least-squares curve fitting are formal

techniques for defining and obtaining a 'best fit' to data. Both

methods attempt to fit data by minimizing the sum of the squares
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of the 'error,' or distance from a data point to the best-fit curve.

Multi-variable linear regression approximates the data via a linear

equation in many unknowns. Curve-fitting approximates the data via

a function, generally nonlinear, selected from a family of simple

;functions. A commonly-used family of functions is the polynomials;

trigonometric functions or exponentials are sometimes used. Since

the polynomials form a linear space, curve-fitting by polynomials

is mathematically equivalent to multi-variable linear regression.

One hardly needs mathematical formalism to deal with Figure I.1.

Consider, however, example 4.21 from Conte and de Boor (1972),

presented in Table I.1. Twenty-one data points are available.

These data are to be fit by a polynomial. A 20th-degree polynomial

can, in principle, be found to interpolate the data. The interpolating

polynomial,,, once obtained, would have a least-squares error of zero.

However, the 20th-degree polynomial could not be found using simple

algorithms on a computer. Computer truncation error would contaminate

the result. Even if the 20th-degree polynomial could be obtained,

it would be a poor choice as an approximant. The data in Table I.1

happens to by the values of ex , rounded to the nearest 0.01. If

this data were the ,result of numerical simulation and the approxi-

mating polynomial were to be used as a mathematical model of this

growth, the approximant would be expected to resemble ex as closely

as possible. ex is a very smooth function. The twentieth degree

interpolant to the rounded values of e x is unlikely to be as smooth.

Without computing the interpolating polynomial, it is not even

possible to determine if it is monotonic on the interval (-1.0, 1.0).



s
0

E+

N0
O

41
A

a

a0
U

H

d

Id

N

ea
k
w
N
0

W

a

N

a

OROGNAL
Of-,P00 

too

00 N M M M N N MV r` O ^O N N N v1 q't Q 0000 V1 M v1 00 v1

	

"'D OM 00 f^ 00	 ^+ d' 00 00 f` ^+ P^ V1 ADD N

	

o 00	 v1 •-r O^ .-^ 00 N M W% ON w
e^ dp 0 N V	 N v1 ^-+

M e^ et vl ^ ^O r` oO O^ •-^ (4 fnV 00 0 C4 V
0 0 0 0 0 0 0 0 0 0 ^-» ^-+ ^ *^ ^* ^-+ ^-+ tV cV cV eV

e^1 M M M M M eM 
G 0^ 0 M M M M M

^► 0 0 0 0 0 0 0 0	 0 00000 3
v	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 I , I	 1	 1	 1!	 1	 1
4 WWWWWWWWWWWWWWWLLIWWWWW

et M M-V V 00 h N M O 00 a\ v1 et C^ N '40 ^O r- O -•

	

I in ^0 -"	 M O 1̂ 0 er1 N r` on O\	 0% ON v1 f- r% m N
^» N f` m -" h 00 O 0 en V O N M 0 00 •-. M p

t •-+ .;	 •-+ t'i e V	 ^6 v1 fV v1	 -4	 N .4 	 en .•.

4n w

`'^	 I	 !	 I	 I	 I	 I	 I	 I	 1	 1	 I

^ —.N O0 v100 et O t-	 t^ 01 00 ^0 0 M
^ r` © v1 F r	

_	 et f0 '%0 D\
*,@ M et et q1t Vi1	 t- 00 M N M	 00 Q N V N
R' 00000000000^-^+-+--+--+^^-+c"iriCq(i

M M e^1 M M M M M M M M M M M en M S M M
i OOOC^O O 0000000000 00

!!	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1
w^ WWWWWWWWWWWWWWLtyWWWWWW
C4, O M %0 00 "0 ^O N vl t— n GO O N t- Q 01 f l- 000 Q
1 M %0 O V e+1 e+1 et'	 as	 O %n 01 N •" 8 01 00 ^O N v^

4"w  -" w v v1 a V O t- v1 V v r- v N en 0 00

	

1	 1	 1	 1	 1	 1	 I	 1	 1	 1	 1	 1	 1

r`V--+hdV,VOO O --+ 00N O0% C-4
s 00 r- 00 -+00	 in f- v) O (n	 to %n fl O %n N	 O --^en 00 'et en et 8 N p ^O •-+ %n	 t` t` - " ••. k-0 01	 — N. i %0 O %n C) wl "" f- et -+ pp as 	 --^ V 0% W% N -. M AD •-^
Q

en ef^ V v1 v1 %0 %0 t- 00 00	 rn	 ^O 00 O N V n,
OOOOOOCCOOO --i.-+--	 -+r-ic^i(geV tV

0 0 0 O d O O Q 0 0 0 0 0 0 0$ O
V'1 .-^ f` N YY^^ ^. N v1 v1 N --. M N

M 	 v1 v1 ^0 %Q f- 00	 ^-+ N M v ^O 00 0 N V r-
CCOGOOOOC>CO	 - _; ; . 4C4C4CV cV

O	 O
--+C?OOOOOOOOOOOOOOOCCC •-:

	

1	 1	 1	 1	 1	 1	 1	 1

9
{



ORIG'NAL PAGE IS	
101

OF POOR (QUALITY

The interpolant would be a very poor choice of function for

extrapolation outside the interval (-1, 1). It would probably not

represent the derivative of ex well. The twentieth degree inter-

polating polynomial overfits the data; it faithfully reproduces

the noise in the data so well that the signal tends to be obscured.

What degree of polynomial best fits the data? The pragmatist

would examine Figure 1.2, after Conti and d,? Boor (1972), Figure 4.9.

Graphs (a), (b), and (c) are relatively smooth. Graph (a) certainly

has a linear component, although it does exhibit some curvature.

Graphs (b) and (c) resemble a quadratic and a cubic, respectively.

In each case, the error graph resembles a polynomial of degree one

higher than the degree of least-squares approximating polynomial

whose error is being graphed. Graph (d) displays considerable

oscillation, but the relative maxima at -1, 0.1, and 1 suggest a

quartic c..omponent. Graphs (e) and (f) show virtually no regular

pattern; they are pure noise. The fourth-degree polynomial (error

graph (e)) fits the data as well as it can be fit. Note that 21

data points were used to obtain a fourth-degree polynomial. Five

points uniquely determine a quartic.

The threshold at which overfitting begins depends on:

1) the quality of the data

2) The underlying function or physical law governing the

data

The more error the data contains, th y- more likely that over-

fitting will occur. To minimize the squaws 	 the distance between
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the data points and the apprax*!,mating curve, the curve will be

adjusted toward the data points. If the data points are scattered

due to random errors, the curve may tend to oscillate away from the

underlying function in order to approach the error-laden data points.

By using a lower-degree polynomial as the least-squares approximant,

this oscillatory behavior is suppressed. The number of local maxima,

local minima, and inflection points of a polynomial is limited by

the degree of the polynomial. The data is fit less well in this

case, but the underlying .function and its derivatives are fit

better.

Sensitivity studies on the original (Carlson and Boland, 1978)

model indicate that M and F vary smoothly as functions of day and

night temperature. Model output probably contains errors on the

order of 1 K. Overfitting the model output by a polynomial is a

real. possibli.lity. Regression equations of high degree or regres-

sions using many temperatures as predictors should be avoided.

Another possible course of action, piecewise-linear interpolation

in two variables, is presented in Appendix 11.

103
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II: PIECEWISE LINEAR INTERPOLATION IN TWO DIMENSIONS

,ORETICAL OVERVIEW

:ewise-polynomial interpolation is an alternative to global

cares regression for mathematically inverting the numerical

the GOES method. The simplest case of piecewise-

polynomial interpolation is piecewise-linear interpolation.

Piecewise-linear interpolation has the advantage of simplicity

over higher-order methods. However, to obtain an equivalent degree

of fit to the data, additional data points will be needed. Thus,

more than 16 (M, P) pairs may be needed in a piecewise-linear

interpolation scheme. Model computation time is proportional to

the number of (M, P) pairs.

Consider a piecewise-linear interpolation scheme for diagnosing

M from the two variables (predictors) DTD and DTN. M can be con-

sidered to be a function of the two variables DTD and DTN. If

M(DTD, DTN) is multi-valued, this scheme and the regression scheme

will fail. Therefore, assume that M(DTD, DTN) is single-valued.

M(DTD, DTN) is a surface in (DTD, DTN, M) space. A piecewise-

linear approximation to this surface consists of a number of

planar segments lying "close" to the surface.. A piecewise-linear

interpolant to the surface at n specified (DTD, DTN) pairs is a
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set of planar segments intersecting the M(DTD, DTN) surface at each

of the n specified (DTD, DTN) values. If M(DTD, DTN) is not multi-

valued, each planar segment can be expressed as an equation of the

form:

M = aiDTD + b iDTN + c 	 (II.1)

The ith equation will be valid over the ith planar segment.

Piecewise-linear interpolation in two dimensions, unlike

global polynomial interpolation in one dimension, is not unique.

Given a set of n (DTD, DTN, M) ordered triplets, where n > 3,

there are, in general, several sets of planar segments interpolating

the set of points. 1 A reasonable set of linear functions must be

selected. Consie.er Figure II-1. Assume that the 16 points graphed

in the (DTD, DTN) plane represented 16 data points from a model

run. 2 Each point is associated with an M value, which is not plotted.

I now address the problem of selecting the linear functions.

Note that three points determine a plane. To find a piecewise-

linear interpolant to the function M(DTD, DTN) over the domain

defined by the points shown in Figure II.lA, it is sufficient to

1Global polynomial interpolation in higher-dimensional spaces is
unique, if the correct number of points is chosen. Linear inter-
polation with two predictors is unique if three data points are
chosen.

2Sixteen data points from an actual model run are presented in
Figure II-2. Note that the data points are close together at low
values of DTD and DTN. The M and P values used in the model run
were M and P values appropriate for the regression routine. To
obtain a more uniform distribution of data points in the (DTD, DTN)
plane for a piecewise-linear interpolation routine, different M
and P values should be selected.
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A: A set of points

B: A poor triangulation

C: A better triangulation

•

•
•

•
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C

Figure II.1: An example of triangulation.
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break up that domain into triangles and find planar functions

over each triangle. Two ways of triangulating the region are

presented in Figures II.1B and II.1C. The pattern shown in

Figure II.1C is preferred, since the largest angle in each trianj

is as small as possible. Once the region has been triangulated,

the functions are relatively easy to find. At each vertex,

(DTD, DTN, M) are known. Combine the three ordered triplets to

obtain an equation of the form of Eq. II.1.

When this is done for all the triangles in the region, a

piecewise-linear interpolant for M(DTD, DTN) over the domain will

have been generated. Note that the interpolant is continuous at

all points in the domain, but its derivatives fail to exist at the

intersection of triangles. Since we have little interest in the

derivatives of M with respect to DTD or DTN, we can accept the

result.

II.2 PRACTICAL CONSIDERATIONS

In the example of 11.1, the domain contained 16 (DTD, DTN)

points. These points determined 18 triangles. The number of

triangles needed to triangulate the domain increases faster than

the number of data points included in the domain. We will assume

that a fast algorithm for obtaining the coefficients a i , b  and c 

in Eq. II.1 is available. The main practical problems are:

1) triangulating the region efficiently

2) given a (DT.D, DTN) pair from satellite data, selecting

the triangle containing the (DTD, DTN) pair quickly



The second problem cannot be finessed via lookup tables as was done

in the GOES method and CD. Lookup tables could be used in those

methods because:

1) a global regression equation was used

2) the variables DTD and DTN never appeared together in a

term in the global equation

The piecewise-linear method meets the second criterion, but fails

to meet the first. Since the domain is divided into irregular

triangles and not rectangles, there is no hope of developing a

simple lookup-table algorithm.

The region could be triangulated interactively, if desired.

After the model has completed execution, the (DTD, DTN) data points

could be displayed graphically. The operator could then enter

triplets of points, defining triangles. The resulting triangles

could then be displayed on the graphics terminal for verification.

An option to delete points from the domain should be provided,

since the model may generate several nearly coincident (DTD, DTN)

pairs at high values of M and P. Another alternative would be

automated selection of triangles. The automated selection could be

preceded by an interactive opportunity to delete points from the

domain, and followed by an interactive opportunity to revise the

computer's choices. If a sufficiently robust triangulation routine

can be developed, the entire triangulation procedure could be

automated.

i
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The efficiency of selecting the proper triangle (and thus the

proper coefficients a i , bi , and c i) will depend on the data structure

used to store the triangles, and the amount of storage space that

can be used for redundant information. Since 16384 (DTD, DTN)

pairs must be processed per image, storage should be sacrificed to

improve efficiency. The triangle-selector and output-field builder

should be combined: they should be in the same job , step. All

desired output fields should be built concurrently, to avoid the

necessity for searchinZ more than once for the triangle containing

a particular (DTD, DTN) value. For four output variables, 2K

(2048 bytes) of storage will be needed to hold output fields.

Storage requirements for the piecewise-linear approximant should

be modest: 12 coefficients plus four output variables, or 64 bytes

per triangle. The data structure used to select the proper triangle

can occupy most of the remaining core, if needed.

The piecewise-linear inversion method should run considerably

slower than the global regression-equation inversion method. No

estimate is possible until the details of the triangle: selection

method are specified. Since the current inversion method takes on

the order of 1-2 minutes per output field, a factor of five loss

in efficiency is barely tolerable. There is reason to hope that

the loss in efficiency will be less than a factor of five.

Higher-degree piecewise-polynomial interpolants can be defined

over a two-dimensional domain, but they have little or no

t
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applicability to the problem at hand. Higher-order interpolants

would produce better approximations to the output variables with

fewer (DTD, DTN) pairs from the model. However, higher-order

methods suffer from two flaws:

1) One must be very careful to obtain a piecewise-

polynomial approximation which is continuous at all

points in the domain, and one which is never multi-

valued

2) The computation time required per (DTD, DTN) pair from

the satellite data rises rapidly with increasing degree

of polynomial approximant

The first flaw probably can be overcome by careful programming.

The second flaw appears be unremovable. Piecewise-polynomial

interpolants of degree higher than one may be practical on main-

frame computers or vector-processors, but they are not practical

on minicomputers.

II A A PIECEWISE-LINEAR INTERPOLATION ALGCRITI-flK

The problem of selecting the triangle containing a particular

(DTD, DTN) pair from satellite data is the key problem in the

practical piecewise-linear algorithm. It may be possible to side-

step this problem though the use of a very large lookup table,

which would be built during interactive selection of triangles.

The large amount of time needed to initialize the lookup table can

be hidden from the user if asynchronous I/O or multitasking is

used.



Under most circumstances, DTD and DTN will have ranges of

less than 50 K. Since DTD and DTN have inherent uncertainties of

+ 0.4 K due to the method of storing satellite images on tape

(Section 3.6), little additional uncertainty would be introduced

into the method by mapping DTD and DTN into the integers from 1

to 128. This mapping can be done by utility program MYCONR2,

already part of the GOES wethod library. Alternatively, a

specialized version of MYC0NR2 could be written to map DTD and DTN

into the integers with a minimum of additional error, using informa-

tion about the original range of temperatures on the input (magnetic-

tape) satellite images. The output from the specialized version

of MYCONR2 could be two-byte integers instead of one-byte integers,

to facilitate the use of the integer values as indices into an

array. The integer -DTD and integer -DTN fields would be written

to disk as DEFINE FILE files, using the same record-numbering as

is used to store the DTD and DTN fields (the record sizes would

differ) .

(DTD, DTN) pairs generated by the numerical.. model would be

displayed on the graphics terminal. Each (DTD, DTN) point would

be represented by a distinguishing character and would be shown on

the screen in its proper position in the DTD-DTN plane. While this

display is being constructed, an auxiliary task would be clearing

(setting to zero) a 128 by 128 array (16 K bytes) for use as the

triangle-finding lookup table. This array will represent the

region of DTD-DTN space of relevance to C-he GOES method.

112



113

After the array is cleared and all data points have been dis-

played, the interactive selection of triangles would begin. At

this point, asynchronous I10 or multitasking becomes essential.

The following description assumes multitasking. Task A, the main

task, will interact with the user and accept the triangulation of

the region. Task B, the subtask, will incorporate the selected

triangulation into the lookup table.1

Task A requests the user to input the first triangle by typing

the distinguishing characters of the three vertices. Task A then

plots the triangle on the graphics terminal, and asks the user to

accept or reject it. When the first triangle is accepted, the

multitasking begins. Task A attaches Task-, B, and passes Task B

the coordinates of the vertices of the first triangle. Task B,

being able to count, knows that the vertices it has received are

the vertices of the first triangle. Task B begins to fill all

locations in the array corresponding to points on the edges and

interior of this triangle with the integer 1 (one-byte integer, to

save storage). When Task B has completed its work on triangle 1, it

increments its triangle-counter, signals Task A, and goes to sleep.

lIf asynchronous I/O were used, the actions performed by Task R would
be interleaved with the terminal I/O in Task A. Task B actions
would begin when the START I/O instruction to READ the terminal was
issued. The terminal I/O event flags would be checked (and WAIT
state entered, if necessary) on completion of Task B's work. Multi-
tasking is preferred over asynchronous I/0, since multitasking
simplifies the coding of efficiently-overlapping routines.

i



Meanwhile, Task A is asking the user to input the vertices of the

second triangle. When the vertices are input, displayed, and

accepted, Task A will:

1) wait for Task B's signal, if it has not beer, received

2) wake-up Task B and pass it the new set of vertices

3) ask the user for the next triangle

This procedure will continue until the region is completely

triangulated. The user will inform Task A that the last triangle

has been entered. Task A will then wait for Task B to finish

setting the array locations representing the last triangle. When

Task B signals, Task A will detach Task B. At this point.; the 128

by 128 array could be written to disk if it is to be caved. The

array is now ready to be used to locate triangles.

The linear equations for M, P, H o, and E can be computed by

Task A or by Task B during the above procedure (let the faster

routine do the extra work), or they can be computed and stored

after the triangulation has been completed (if storage is severaly

limited). The index-numbers of the coefficients must match the

index-numbers of the triangles used by Task B.

The output fields can now be generated. Under the current

image-storing convention, all, imagery used in the GOES method is

stored in 128 by _6 arrays on disk. Each horizontal line of the

image is stored in one logical record of a disk file; an image

file consists of 128 data records and a control record. DTD, DTN,

M, P, Ho , and E are stored as REAL*4 variables: four bytes of

storage per pixel. The integer-DTD and integer-DTN fields will be
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INTEGER*2 fields: two bytes per pixel. All eight fields plus

the lookup table must be simultaneously resident in core. The

storage requirements are:

Lookup table:	 16 K	 16 K

REAL*4 record:	 1/2 K each	 3 K

INTEGER record:	 1/4 K each	 1/'Z K

Total storage for these fields: 19 1/2 K.

(Note that only one record of each disk file must be resident at

any one time, butthat the entire lookup table must be resident at

all times.) Additional storage for the piecewise-linear coefficients

will depend on the number of triangles used. Assume that 64 triangles

are used -- probably more than will ever be used in an actual case.

For each triangle, assume that three coefficients are stored for

each of the four output variables. These coefficients must be

REAL*4 variables. The storage requirement for the coefficients is

3*4*4*64 - 3072, or 3 K bytes. If the vertices of the triangles

are to be stored, they will occupy under 1 K if stored as REAL*4,

or under 1/2 K if stored as integers (coded as the integer-DTD

and integer-DTN fields are coded). This additional storage require-

ment brings the total storage for all arrays to 23 K or 23 1/2 K

of the vertices are kept; 22 1/2 K if they are discarded. The

code required to perform the piecewise-linear approximation should

easily fit in 4 K, allowing the job to run in a 28 K partition.

(If the partition size is 32 K, an additional margin of safety

exists) .

I
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The output fields are produced by a simple algorithm. A

(DTD, DTN) pair is selected from the temperature-difference input

files. The corresponding integer-DTD, integer-DTN pair is also

selected. The (integer-DTD, integer-DTN) pair is used as an index

into the lookup table. The single byte returned from the lookup

table is expanded into a two-byte integer via an EQUIVALENCE state-

ment. If this integer is zero, the (DTD, DTN) pair represents

out-of-range values and is treated accordingly. If the integer

is nonzero, it is the sequence number'of the triangle containing

the (DTD, DTN) pair. The proper coefficients are obtained for each

output variable from the tables of coefficients. The output values

for the four output variables are obtained by substituting the

(DTD, DTN) values into the appropriate equations of the form of

Eq. II-1.

Considerable care in coding will be necessary if this peicewise-

linear interpolation and evaluation routine is to be implemented

on a minicomputer with 32 K of storage available. The total

storage requirement for the entire procedure is likely to exceed

32 K. Assume that the routine is to be implemented on the PSU

Meteorology Department PDP 11/34 system. During the triangulation

phase, the Grinnell driver and graphics routines will have to be

resident. The DTD, DTN, M, P, Ho , and E fields will not be needed.

During the output-field generation phase, the various yields will

have to be resident, but the graphics package will not be needed.

The lookup table and the coefficient tables will be needed at all
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times. An overlay structure will have to be devised to meet

these requirements; appropriate sections of code must also be over-

laid. It may also be necessary to force the system to allocate the

absolute minimum input and output buffer space. In particular,

it may be necessary to output the four computed fields without

buffer.'.ng, even at the cost of extra L/0 time. Unbuffered I/O

probably will not be needed if the available region size is 32 K

(no system overhead).

If the piecewise-linear algorithm is implemented as described

above, the execution time will not seem to be much longer than the

execution time for the current regression algorithm. The evaluation

step (done for each output variable) entails three table lookups

(to get the coefficients), two multiply instructions, and two

.additions. One two-dimensional table-lookup is needed (to find the

triangle) for each pixel; one fourth of this overhead can be assigned

to the computation of each of the four output fields. The regression

routine presently uses two table lookups and one addition per pixel

per output field. The computation time for the piecewise-linear

routine would be approximately three times that of the regression

routine. There would, however, be a savings of 512 disk reads.

The DTD and DTN fields will have to be read only once each, not

four times (saving 768 reads), and the new integer fields will

have to be read (costing 256 reads). The initialization of the

triangulation lookup table will be lengthy. However, the subjective

computation time will be negligible. Most of the computation time

i
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required for the initialization of the table will be concealed in the

time spent in the interactive inputting of the triangles. The

initialization will be done while the computer is waiting for the

user to respond to requests for vertices. The user, busy thinking

about vertices and typing on the keyboard, will be unaware of the

time required for initialization of the large array. An automated

procedure could be devised to select the triangles; however, if

this were done, the user would become painfully aware of the length

of time required to initialize the large array. The user would also

lose the option to delete points and the ability to select

triangles of nonoptimal shape that are desirable for other reasons.
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