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"STRESS DISTRIBUTION IN BONDED JOINTS"

by

F. Erdogan and M. Ratwana

SUMMARY

The stress distribution in plates and tubes bonded through
stepped joints is analyzed. The problem is solved under the
assumption of generalized plane stress. Two numerical exam-
ples are worked out on specific plate and tube geometries and
a material combination of aluminum vs. boron-epoxy composite.
The effect of step ends 1s separately studied. As a limiting
case, the solution for bonded plates with smoothly tapered

Joints is also given.

SYMBOLS
a]J, azj, &5 BJ constants defined in the text
Aj, Bj integration constants
d thickness of the adhesive at the
J jth step end
E], vy elastic constants for the isotropic
medium
E,_ , E (E,.)
2x 2z 26 } elastic constants for the ortho-
tropic medium
Vaxe Vaz (Vag)s 6

3> G3, vj elastic constants of the adhesive
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hys By
hys s

hs

K;

L = 254
2,

p(x), q(x)
pO

thicknesses for the isotropic
medium

thicknesses for the orthotropic
medium

thickness of the adhesive

total tensile force acting on the
jth step end

step length

distance of the jth step from the
origin x = 0

contact stresses in smoothly
tapered joint

total load (in tubes, and per unit
width in plates)

total loads in media 1 and 2
cylindrical coordinates (in tubes)

outer and inner radiil in stepped
aluminum tube

outer and inner radii in boron-
epoxy tube

cross-sectional areas of the tubes
displacements in media 1 and 2

rectangular coordinates

components of strain (k
rs6,x)

X,¥,2Z Or

components of stress (k = x,y,z or
rs0,x)
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T, contact shear in stepped joint
o angle of contact in tapered joint

o(x) total tensile load in material 2
for the tapered joint

1. INTRODUCTION

The main purpose of this study is to develop a model for
the calculation in stresses in bonded overlapped joints in
plates and tubes. In a previous study on reinforcing cover
plates bonded to an elastic base plate, it was shown that if
the adhesive layer is not taken into account as a third me-
dium, the load transfer between the two plates takes place
along the boundary of the bond area only [1]. It was also
shown that a more realistic solution of the problem can be
obtained if one considers the adhesive layer as a third elas-
tic medium acting basically as a shear spring between the
two plates. In this study this concept will be used to ana-
lyze the stresses in the stepped joints between aluminum and
boron-epoxy plates and tubes. The particular configurations

studied are shown in Figures 1 and 2.

2. PLATES BONDED THROUGH A STEPPED JOINT

Let an isotropic plate, 1, be bonded to an orthotropic
plate, 2, through a stepped joint as shown in Figure 1. The
problem is that of determining the stresses o1x(x) and 02X(x)

in the plates and the shear stress t(x) on the interface
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under a uniform tensile force Po applied to the plates away
from the joint. The problem will be solved under the follow-

ing approximating assumptions:

a) The thicknesses hqs h]j, h2, h2j and h3 are small
compared to the other dimensions of the composite structure
so that the individual layers and the composite plate may be

considered to be under generalized plane stress (i.e.,

o1y =0 = ozy).

b) The thickness variation of the stresses in the plates
will be neglected under the usual assumption that the surface
shear transmitted through the adhesive layer acts as a body

force.

c) In z direction (see Figure 1), it will be assumed
that either €, T By, T €9, < 0 or o, = 0, a, being the aver-

*
age stress in the composite .

For the ith portion of the stepped joint (i.e.,

Ly < X% < £i+1)’ let hli’ h21 and h3 be the thicknesses,

p]i(x) and pZi(x) be the resuitant forces per unit width act-
ing in x direction, uli(x) and UZi(X) be the displacements

in x direction, and Ti(X) be the adhesive shear stress. Ne-
glecting the adhesive forces acting on the x = 2; parts of

*

The first refers to wide plates under "fixed grip" type of
loading. In the second the loads are applied to the plates
at locations sufficiently far from the joint and the sides
z = constant are traction-free.
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the steps (such as AB in Figure 1), from the equilibrium of

the plate 2 and the adhesive Tayer we obtain

X
p21'(x) = pZ'i-](R"i-'l) + ,Q,j T_i(X)dX, (i = 1,---,n) (1)
i-1
63 .
Ti(x) = 7= (uyy - ugy)s (= 1,---,n) (2)

3
where G3 is the shear modulus of the adhesive. It is assumed
that the materials of plate 1 is isotropic with constants E],
vy and plate 2 is orthotropic with constants E2x’ Vo E

G

x? "2z2°

Voz? Y2

a) €2 7 81z T €2z T 0

Under this assumption Ty = V1%91x® 27 = V004 and

from the stress-strain relations (with o]y =0 = °2y) and
P14 P2i
Pys = P, = Poss O = > O = (3)
11 ) 21 Tx h]i 2X h21
we obtain
l-v%
erx(x) = E{f [Py - ppi(x)]
i
(4)
1-v,. Vv
2X°22
€, (X) = ——=—= p,.:(x)
2x E2xh2i 2i

Noting that



oL duy, .. du,;
1x dx * “2x dx

from (1), (2) and (4) we obtain

2
2 - 3 =
X p2'i = a'lp2'l = B'iPO’ (1 = ]s"'an)

=

where n is the number of steps and

- 2 -
L2 - Ei [1 V3 . 1 VZXvZZ]
T hy "Eyhygy Eaxha;
g 1-v]
By = -
i h3 E]h]i
b) g, = 0

In this case we have

h + h =0

11912 21922 > €12 T €2,

Using (8) and the stress-strain relations with 1y

we obtain

ex(x) = ET%T; [po(1-vq2p4) = (1-vyaq4)pp(x)]

O
oy (X) = PPy [Pgvoxdps + (1-v5,305)p,;(x)]

(5)

(6)

(7)

(8)

(9)



where

E.h,. E.h,.
1714 117
s = (vy + v, 7=—7)/(1 + ———)
11 1 2z E22h2i E22h2i
(10)
E.h,.
114
a,: = vi/(1 + 7=—7—)
21 1 E22h21

From equations (1), (2), (5) and (9) we again obtain the

differential equation (6) for which the constants o and 81

are given by

WP i Mia N i b
T hy P By hy; Eqhyg

(11)

M3 Vaxtei | 1TV1%i
hg “Epxhoj Evhyy

After solving (6) for pZi(X)’ the stresses in x direc-

tion in the plates 1 and 2, and the interface shear may be

obtained from

]

oy (X) = = Do = P (010 055 (x) = = by (x)

(12)

T (x) = $x Py (x)

The solution of the differential equation (6) may be

written as



'(X_ix O.X B.

P21(X) = A1e + B]e 1 - T T = 1,---,") (]3)

The 2n integration constants A1, B1 are determined from the

following 2n conditions*

p21(0) =0, pzn(zn) = Pq
Poi(%5) = Pojpq(25)s 1 = Ty---yn-1 (14)

d d .
Tx Ppi (%) = Gx Ppis1(8y)s 1 = 1,--=n-1

3. REINFORCED TUBE UNDER AXIAL LOAD

The configuration for this axially symmetric problem is
shown in Figure 2. The problem is quite similar to that
discussed in Section 2b. It is solved here under the assump-
tion that the thickness of the composite tube is sufficiently
small compared to its radii to justify the assumptions that
a) the radial stress 0. is negligible, and b) the r-depen-

dence of the stresses may be ignored.

In this case, assuming that Po> p]j, P2,y stand for the
total axial loads in, respectively, the composite, the iso-
tropic (inner) tube, and the orthotropic reinforcing shell,

we find

*The last set of equations in (14) follows from (2), third
equation in (12) and the continuity of the displacements at
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O Py, (x) - adpyi(x) = 8ipg, (5 = 1,m=-an) (15)
where
H \Y] di . Vadq s
of = &2 [p—(s] E2Ld) ¢ (g )]
3 Eox S2j 2 1°31; 13
_M3 o Vex®2i 1,1 V1223
85 = m, L, . - Els T R )
3 Eaxhas  Ep7Sy; 13
AV) AV)
1 26 1 1
a,., = ( + )/ ( +
10 CBySqy5 0 EggSpytt TEqhyy o Epghyg
AV)
1 1 1
a,. = )/ ( +
23 CEySqy7  tEyhy g Egpghyg

In the tube problem x = Rn is a plane of symmetry. Thus,
in solving the differential equations (15), the only change
in the boundary conditions (14) will be to change the condi-
tion at x = ¢ from p2n(2n) = p, to

%7 p2n(£n) =0 (16)

4. EFFECT OF STEP ENDS

In the foregoing analysis the effect of the step ends
(such as AB in Figure 1) was neglected by assuming that these
surfaces x = 21, (i = 0,---,n) are traction-free. However,
these effects can easily be introduced into the analysis by
assuming that the adhesive layer at x = 2, acts as a tension

spring. Defining the total contact loads in x direction
-9-



acting on the steps x = %5 (i = 0,1,---,n) by Kis the equi-

librium equation (1) may be modified as

X
Pai(x) = oy (25 4) ¢+ zf T (x)dx + Ko ¢ (i = 1,---,n)
i-1 (17)

From the derivation of the differential equation (6) it
is easily seen that (6) will remain valid with the same co-

efficients a; and Bi' However, there are n+l new unknown

constants Ki‘ The additional conditions to account for these
constants are obtained by considering the equilibrium of the

adhesive layers at x = £., (i = 0,1,---,n). For example, at

X = zi we may write

c - 1-\)3 K - u2(2;_i)'u-l(2/,l) _ h3 T.(QI )
37 TE; Fipoh; R Gyd; Titt
h
- GE%T % Pai (45) (18)
i

Thus the boundary conditions for this problem in bonded

plates become

(19)
& by (2) = g pps(25)s (i = 1,-2-,n-1)
(1-v,)d
d 3"
ax P2i (%) = ZR Ry, oy Kie (0= 0eTammman)



with h,, = 0. Equations (19) replace (14) in solving (6).

Similar conditions can be derived for the reinforced tube.

5. SMOOTHLY TAPERED JOINT

Let the two plates be bonded through a smoothly tapered
joint as shown in Figure 3. This is the limiting case of
the configuration given in Figure 1 in which n - « while
tano = (h21+] - hZi)/(21+] - zi) remains constant. In this
section the solution of this problem will be given under the
restrictive assumptions that, a) the thicknesses h], h2 are
very small compared to other dimensions of the plate, so that
the generalized plane stress assumption is valid for the

plates as well as their tapered parts, b) =0 =

Oly 02y
throughout the plates, c¢) the contact stresses act on the
tapered parts of the plates as body forces, d) through-the-
thickness distribution of the stresses are negligible, and

e) the adhesive acts as a combination of shear and tension

springs.

Let h3 be the thickness, G3, E3 be the elastic constants
of the adhesive layer, p(x) and g(x) be the normal and shear
components of the contact force, and ¢(x) be the total force
(per unit width) acting on the plate 2 (see Figure 3). From

the equilibrijum of plate 2 we find (Figure 3b)

X . dt
o(x) = | (p(t)sina + q(t)cosa)ziey
0 (20)
X (t (t)sina) dt _ . 0, (0 < < %)
£ (p(t)cosa - q(t)sina)zgoy = 0, X
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Since the second equation of (20) is valid for all x in

0 < x < &, we have
p(t)cosa = g(t)sina (21)
and (20) becomes

X
$(x) = (1 + tan?a) [ q(t)dt (22)

0
Now let the total relative displacement vector (at point
t) be Aﬁ, with normal and tangential components Aun, Aut and
X, y components Au, , Auy (Figure 3c). From the equilibrium

of the adhesive we may write

hs hy
Aup = £ p(x), Auy = E; q(x) (23)

3

Using (21) and (23), from Figure 3c, it follows that

Au_ = h3 (G )g(x)cosa (24)

Upx = Uix © X

Thus, assuming e_ = €1, = €5, = 0, and observing that

z z
p-d(x)
= o(x) _ Yo
oZX(X) " xtana’® le(x) - h]-xtana (25)

from (22), (24) and (25) we find
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%i$ - f(x)e(x) = g(x)

X
T-v,.v 1-v2
_ 1 2x22 1
fx) = c [EZthana * E](h]-xtanoa):I
(26)
(1-vi)p,
g(x) B cE](h]—xtana)
_ hzcosa tan?a
¢ % T¥tanZa Eg + E3 )

Equation (22) is solved subject to the following boundary

conditions
6(0) = 0, ¢(8) = p (27)

From (25) we observe that at x = 0 and (if hy = h

92x 1 2
= gtana) at x = & 014 are not defined which may be expressed

as

o, (0) = 9'(0) (2) = ' (2)

tano ° %1x tana

6. EXAMPLES

In the solution of the problems shown in Figures 1, 2
and 3 it will be assumed that the material 1 is aluminum,
the material 2 is boron-epoxy composite and material 3 (the

adhesive) is epoxy. The following elastic constants will be

-13-



*
used :

Aluminum: E1 = 107 psi, vy = 0.3

Boron-Epoxy: E2x 32.4 x 106 psi, Voy = 0.23,

6 X
E22 = E26 = 3.5 x 10° psi,
= = - 6 .
Vo, = Vo = 0.03, (G2 = 1.23 x 10" psi)
E . -— [ o4 5 O — 5 .
poXxy: G3 = 1.65 x 10° psi, E3 = 4.45 x 107 psi

a) Bonded Plates

The following data were used in the solution of the

plate problem:
h3 = 0.001 in., (0.00075 in.)

L =28, - 'Q"_] = 0.3, 0.4, 0.5 in., (J = ]3"',5)

i 1 2 3 4 5 6

h]i (in.) 0.03 0.0245 0.0190 0.0135 0.008 0

hZi (in.) 0.0055 0.0110 0.0165 0.0220 0.0275 0.033

*The materials and dimensions used in this study correspond
to that used by W. I11g in his experimental work at NASA,
Langley.
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b) Reinforced Tube

The configuration of the reinforced tube is shown in
Figure 2. Here the tapered portion of the aluminum tube is
represented by two steps. The dimensions used in the solu-

tion of the problem are given below:

h, = 0.001 in., n = 6, and

3
J zj r?J rjj rgj r;j
(in.) (in.) (in. (in.)
1 0.5 .7445 .567 .750 .7445
2 1.0 .7390 .567 .750 .7390
3 1.5 .7335 .567 .750 .7335
4a 2.1 .7280 .567 .750 .728
4b (2.0) (.7280) (.567) (.750) (.728)
5a 2.35 .728 .677 .750 .728
5b (2.25) (.7280) (.642) (.750) (.728)
6 3.0 .728 .706 .750 .728

The dimensions in parentheses in the table above refer to an
alternate representation of the tapered section of the alumi-
num tube. The areas Sij and the thicknesses hij’ used in the
analysis are calculated from S]j = n[(r?j)2 - (r;j)z],

(o}

- Y 2 _ -i 2 = 0 - 1 = .
323 = n[(rzj) (rzj) 1, h1j 13 ri and h2j ro;

- Y‘ZJ.
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7. THE RESULTS AND DISCUSSION

The results for the bonded plates, in which the loads Kj
at the step ends are ignored, are shown in Figures 4-11. The
results are obtained for the external tensile load Py = 1,
hence they have to be multiplied by the given value of Po
(the Toad per unit width). Each figure contains four plots
which are a) the shear stress Tj(X) acting on the adhesive,
b) total load pzj(x) acting on the boron-epoxy composite,

c) the tensile stress 0oy in boron-epoxy composite, and

d) the tensile stress in aluminum.

The plate results were obtained for three values of step
length (L = 0.5, 0.4, 0.3 in.) and for the cases Ez = 0 and
Ez = 0. The figures indicate that the difference between the
two extreme assumptions regarding the boundary conditions in
z direction, namely Ez = 0, the fully-constrained case and
Ez = 0, the free boundaries, is not significant. The figures
also show that for the three values of L considered in this
paper, the variation in the results are again negligible.

In Figures 4-9, the thickness of the adhesive was assumed to
be h3 = 0.001 in. In Figures 10 and 11, we have h3 = 0.00075
in. Comparison of the results shown in Figures 4 and 5 with
that of Figures 10 and 11 show that the difference in the
stresses and the load Paj caused by this change in the adhe-

sive thickness is not very significant.
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In general, the figures show that in the plates bonded

through a stepped joint

a) The adhesive shear stress is concentrated around the
step ends x = zj (3 = 0,1,---,n), its maximum is at x = 0
and its next highest peak is at x = - which is approximately

1/3 of the maximum,

b) The load pzj(x) varies between 0 and p, in a stepped

fashion and the height of steps decreases as x increases,

c) The peak stress in boron-epoxy composite is at x = 2]
(at the end of the first step) which is approximately equal
to 2.8 po/h2’ h2 being the full thickness of the boron-epoxy
plate and,

d) The peak stress in the aluminum plate is at x = 0
h P
which is equal to (Fl—)/(ﬁg) = 1.18 p_/hy, hy being the full
11 1 °

thickness of the aluminum plate.

Table I shows a summary of some of the significant re-
sults for the bonded plates. The results given in the table
were obtained from h3 = 0.001 in. except for the first two
rows, in which h3 = 0.00075 in. was used. Note that when the
thickness h3 of the adhesive is reduced, there is some in-
crease in the peak values of the shear stress T(x), whereas
the other quantities of interest remain basically unchanged.
In the table, in all but the last two rows, it was assumed

that Kj =0, (j = 0,1,---,n). The last two rows will be dis-
-17-



TABLE I

Summary of the Plate Results (h3 = 0.001 in.)

(ih ) €52 9, Ponax Tmax % 1max %omax
(x = 2.) (x =0) (x=10) (x=21)
0.5 EZ =0 1.0 0.506 1.18 2.72
(h3 = 0.00075)
(Kj = Q) OZ =0 1.0 0.543 1.18 2.85
0.5 €Z =0 1.0 0.440 1.18 2.72
(KJ = 0) a‘z =0 1.0 0.470 1.18 2.85
0.4 Ez =0 1.0 0.439 1.18 2.72
(Kj = 0) EZ = 0 1.0 0.470 1.18 2.85
0.3 EZ =0 1.0 0.438 1.18 2.72
(KJ = 0) Ez = 0 1.0 0.470 1.18 2.85
0.3 EZ =0 0.994 0.441 1.16 2.87
(d3 = 0.01)
0.3 EZ =0 0.964 0.285 1.01 3.12
(d3 = 0.001)

|
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cussed later in the paper.

The results for the reinforced tube are shown in Figures
12 and 13. The difference between the two figures is in the
representation of the tapered part of the aluminum tube by dif-
ferent steps (see Figure 2). The quantities which seem to be
more sensitive to this difference are the adhesive shear
stress t(x) and the tensile stress in the aluminum tube which
have sharp peaks at the Tocations of assumed discontinuity.
In the actual case, in which there is no discontinuity in the
tube thickness, the shear stress and the stress in the alu-
minum tube are Tikely to be of the form shown by dashed lines

in Figure 12a and Figure 12d.

In this problem the maximum shear acting on the adhesive
is also at x = 0. The stress in boron-epoxy composite has
its maximum at x = &, (that is, the mid-plane) where approx-
imately 77% of the total load Po is carried by this material.
The peak stress in aluminum tube is around x = & _,, which

is roughly the end of the tapered section.

To study the effect of the bonding loads K, (j = 0,---,n)
at the step ends, the problem described in Section 4 was
solved for the plates with L = 0.3 in., h3 = 0.001 in.,

o, = 0, Po = 1 and for two values of d3, d3 = 0.01 in. and
d3 = 0.001 in. The results are shown in Figures 14 and 15.

The values of the end loads Kj were found to be as follows:
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0.01 0.0226 -0.00684 -0.00425 -0.00319 -0.00279 0.00599
0.001 0.1462 -0.0949 -0.0577 -0.0443 -0.0414 0.0363

It is seen that at the two extreme ends K0 and K5 are
tensile and the remaining Kj's are compressive. Also, by
decreasing d3 by one order of magnitude, it is seen that
Kj's are increased also by approximately one order of magni-
tude. Comparison of Figures 9 and 14 shows that for d3 = 0.01
the solutions obtained by assuming Kj = 0 and Kj # 0 are
roughly the same. On the other hand, as d3 decreases the
differences in the calculated stresses may be significant.
This can also be seen from Table I by comparing the values
given in the last three rows where the last two rows show
the results of the analysis with KJ # 0. For the smaller
value of d3, even though there is a slight increase in the
stress concentration factor in boron-epoxy plate, there is

also a significant decrease in 1 In this example d3 was

max "’
assumed to have the same value at all step ends. However,
the analysis is general and d3 may have different values at
different step ends. It is clear that the ends with smaller

adhesive thickness d3 would carry larger loads.

Finally, Figures 16 and 17 show the results for aluminum

and boron-epoxy plates bonded through a smoothly tapered joint

-20-



shown in Figure 3. Here (26) is solved with

= 0.001 in., tano = %955 L =0.3, 0.5 in.

=
}

=
n

1 h2 = 0.033 in., Pg = 1
It is obvious that these results have all the basic
trends of the solution of the stepped joint problem, except
that, as it is expected, all the quantities are smooth func-
tions of x. The main results of this solution can be summa-

rized as follows:

a) In the joint, the greater portion of the load is
carried by the stiffer material (i.e., the boron-epoxy plate).
For 0 < x < & the stress in aluminum is always less than,
and the stress in boron epoxy plate is always greater than

the average stress po/h2 acting outside the joint. In fact
p
0

for h] = h2 we have Oomin. - F; = Olmax.

> 04 and g, being the

*
stresses in aluminum and boron-epoxy, respectively

*
This result is consistent with that found in [2], where it
is shown that in bonded isotropic wedges with h3 = 0, Vi = Vo

and total angle = m, if the modulus E] of the wedge with the
smaller angle is less than E2, the modulus of the wedge with

the greater angle, the stresses at the apex are finite, and
if E] > E2 the stresses at the apex have a singularity. In

the present problem x = & correspond to the former and x = 0
correspond to the latter case. Thus, it is expected that the
stresses in the neighborhood of x = 0 would be much higher
than that around x = 2. As seen from Figures 16 and 17, this
is clearly the case. In this problem too the consideration
of the adhesive as a separate layer removes the singularity
and renders the stresses finite throughout the body.
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b) The contact shear stress q(x) has only one peak
(at x = 0) and is a rather smooth function of x. As a re-
sult, the maximum value of q(x) is much smaller than that
corresponding to the stepped joints, in which the load trans-
fer takes place largely around the end points of the steps
(see Figures 4-15). For h1 = h2 = 0.033 in., the following

*
table shows the extreme values of the stresses

Imax Ymin 9 1max 9min %2max 9omin
(py/hy) (pg/hy)  (pg/hy) (py/hy)  (py/hy) (py/hy)

2
(in.) (x = 0) (x = 2) (x =0) (x = &) (x = 0) (x = &)
1.8 0.053 0.00612 1.0 0.338 2.897 1.0
3.0 0.032 0.00367 1.0 0.338 2.910 1.0

Note that the stress concentration i® boron-epoxy in the
tapered joint is roughly the same as that in the stepped
joint. However, there is an order of magnitude difference

in the maximum values of the adhesive shear stress.
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FIGURE 1. BONDED PLATES WITH A STEPPED JOINT
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FIGURE 3. BONDED PLATES WITH A SMOOTHLY TAPERED JOINT
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