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1. Models in Vision

In spite of the large number of intelligent, energetic people engaged in the study of vision, it often
seems that we advance our understanding of this process at an excruciatingly slow pace. Why is this
so? I believe that it is the fault of our models. We have been seduced by the simplicity of explana-
tion available in the physical sciences, and try to describe the vast complexity of vision with models
that would not do justice to a sphere rolling down an inclined plane.

Today I will describe a model which in a small way attempts to remedy this situation. The
principles that underly it are simple, but it attempts to represent more adequately the inherent com-
plexity of vision. Before describing this model in detail, I will emphasize its unusual aspects, and
some of the benefits we may gain from this departure.

First, the model is explicit. No "channels", "mechanisms" or other ill-defined entities appear.
Put another way, the model is computable. It is well enough defined to permit numerical predic-
tions to be made for a given experimental situation. Second, the model adequately represents all the
dimensions that are pertinent to the experimental domain. In the case I consider, these are the two
spatial dimensions of a monochromatic, stationary image. Although this is an inherently two-
dimensional (21)) situation, visual models in this context have almost invariably been one-

- dimensional ( l D). "Third, the model is general within its specified domain. The same model can be
used to predict performance in a wide variety of different of visual tasks on a wide variety of images.
This contrasts with most visual models, which only attempt to explain the data from a very res-
tricted domain. Fourth, the model draws many of its parameters and assumptions directly from phy-
siological results. While this has long been an ambition of psychophysical theories, it has rarely
been realized. Finally, the model attributes intelligence to the observer. It is perhaps understand-
able that this has not been done in the past, since psychophysicists are most often their own
observers. The model assumes that the observer will make optimal use of the available information.
'Phis assumption is of course a commonplace in signal detection theory 1101, but rarely appears in
explicitly visual models.

The price of these amendments is a model that is somewhat more complex, requiring more
assumptions and parameters than average. The benefits, however, are worth i,. It provides a
mechanism with which to integrate information within the field. Since the model can be applied in
diverse contexts, it provides a common repository for results from many different sources. ']'he
model also insures the consistency of interpretation from one experiment to the next. 'Too often a
model is constructed in one context that is quite obviously incompatible with data from another con-
text. 'I'll,- model also provides a natural path along which to specify in ever greater detail the rela-
tion between our visual experience and the physiological mechanisms of the visual brain. Finally, to
the extent that the model is successful, it will permit us to turn our attention from the early,
image-driven stages of vision to the more complex, cognitive processing that must subsequently
occur.

It should be clear that the argument I have advanced is on behalf of any model that meets the
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criteria of explicitness, adequacy, and generality noted above. The model I will describe is just a
candidate, and a green one at that.

2. Domain of the model

What is the domain of my model? It is intended to account for psychophysical responses of an
accommodated, fixating human observer viewing binocularly a 21) stationary achromatic image at a
fixed adapting level of 340 cd m -Z . Specifically, 1 have excluded both color, stereo, and dynamic
imagery since it seems likely that they are analyzed independently of spatial luminance contrast.

3. General properties of the model

Since this model is a first approximation whose parameters and structural details are quite open to
improvement, it is worth giving a brief overview of its essential structure. The heart of the model is
a set of feature sensors which perform different measurements upon the input image. The set of
measurements taken from a particular image make up a feature vector, The sensors are perturbed
by noise, so that from presentation to prescntataon, the same image will give rise to somewhat
different feature vectors. Following each trial of an experiment, the observer processes the feature
vector in an optimal way to arrive at a psychophysical decision.

The model thus divides naturally into two parts: generating the feature vector, and processing
the feature vector.

4. Generating the Feature Vector

haach feature sensor is defined by a spatial weighting function, which is a model or template of the
fcature to be sensed. The measurement is performed by cross-correlating the contrast image and
the weighting function. The features used in the model are typified by the pattern in Fig.l(top). It
is the product of a 21) sinusoid and a 21) Gaussian. Its various parameters, which may differ from
sensor to sensor, are: spatial freyuenq ( the frequency orthogonal to the bars), the orientation ( the
angle of the orthogonal to the bars), the width (the size at half height of the Gaussian defined
orthogonal to the bars), the height (the comparable measure parallel to the bars), and the phase of
the sinusoid (defined relative to the center of the Gaussian). Finally, each function is located at a
particular point in the visual field. Of these seven parameters, we shall see that two can be defined
in terns of the others, leaving five feature dimensions that may vary from sensor to sensor.

This general form of weighting function closely resembles the receptive field profiles of sim-
plc cells, the most numerous class of visual neurons in the striate cortex of cat and monkey [3,13].
Most cortical cells respond only over a modest region of space, a modest band of spatial frequencies,
and a modest range of orientations [3,4,15.24]. Nsychophysical data are also consistent with it

moderate selectivity in space, spatial frequency and orientation [ 1,29,32]. The Fourier transform of
the feature is shown in Fig.l(bottom). where it can be seen that the sensor also responds only over
a small band of spatial frequencies and orientations.

This sort of function is often named after GABOR, who showed that (in the 11) case) it
minimizes the width in both space and frequency [8]. 1)AUGMAN has noted the virtues of the 21)
version of the Gabor function [2].

4.1. Width and Height

The data of DEVAI.OIS el at [3] indicate simple cortical cell receptive fields tend to be slightly
taller than they are wide, but including this subtlety did not seem worth the extra coin putational
effort. Accordingly, I have equated height and width, so the supports of both pattern and transform
arc circular. This also allows us to specify the width of a pattern, or of its transform, by a single
number: the diameter at half height. With this amendment, the weighting function for the sensor
can be written

w(x,y) = e- 410(x2 + y2)'w2 cos[27rf(xcos0 + ysin0) + q)]	 (1)

Where f is the spatial frequency, 0 is the orientation, w is the width, and q) is the phase.

The width of a feature and the bandwidth of its transform are inversely related
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Fig."! Top: an example of a spatial feature consisting of the product of a ,iimm ml and i ( ianssian.
The two axes are hurirontal and vertical visual field position. Width t f the k'atiirr is 1.324 cycles of
the sinusoid. '!''te orientation is 22.5 degree,, and the p ,i,c is 0. B(mo m tht: I*onrrcr transform of
the feature.	 Iic axes arc horiiontal and vertical spatial 1'icyuency. I111, APLI hotifnn figures are to
scale when 1 degree on the top scale equals I cycle/degree oil 	 ht n,mi ,c, Its.

(bandwidth = 41n'/(7rwidth)). I have set the width of each sensor to ahont 1.324 cycles of the
sinusoid. This mk: m, that sensor bandwidth is proportional to sensor " 00M.11 lit qu: ncy (h,nldwidth
= 2/3 fre(uency), or, in logarithmic tcnns, that each sensor has a bandwidth of one octave. It also
means that a low frcqucncy sensor will be large, and a high frequency sensor mil be sm,dl.

Spatial frcqucncy bandwidths for simple striate cells rise approximately in proportion to fre-
quency. 1andwidths appear to range from one half to 2.5 octaves, Nut one ot_r,t\e bandwidths
comprise a large fraction of those recorded [3,151. Psycttophysical dal,i dtt not lead so directly to
estimates of bandwidth, but they are consistent with a proportion, lity lit,quency and
bandwidth. mud with log handwidths of about one octave 129,30,31).

4.2. Frequency

Since each sensor cover's only one octave of frcqucncy, we need a number of ,en,ots to cover the
full range of frequency which the human can sense (about 0 to 60 eych sidk, grcc1. The number
required will also depend upon the density of the sensors in the I'mptency d iii on 'I hk c,mnot be
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less than about one sensor per bandwidth, or information in the image will be lost, and sensitivity
will show dips between sensors 1291. In the model 1 have tried to include as few sensors as possible,
so just one sensor per bandwidth has been used. This yields a set of eight basic sensors, whose fre-
quencies range from 0.25 to 32 cycles/degree in octave steps. This basic set is shown in Fig.2. The
largest sensor, a small part of which is barely visible in the upper left corner, is 128 times larger
than the smallest. The sensors have been arranged in a spiral so as to fit in a square, but should all
be considered to lie at the center of the visual field. This basic set will be present only at this point;
the sensors at other locations will be generated by a rule described below.

'Che transforms of this basic set are shown in Fig.3 For clarity, only one of the two parts of
each spectrum is shown. The positions of the spectra are correctly placed relative to the correspond-
ing features in Fig.2. Note that the smallest feature corresponds to the largest transform. For clar-
ity 1 have shown features with different orientations. If al, the features were similarly oriented, all
the transforms would lie at a single angle, and would overlap considerably. This illustrates that all
of' frequency space is covered.

Fig.2 The basic set of sensors. The sensor frequencies range from 0.25 to 32 cycles/degree in oc-
tave steps. F?ach sensor has a bandwidth of one octave ( width = 1.324 cycles).
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hig.3 Fourier transforms of the set of basic sensors. Of the two Gaussians synimcnically placed
about the origin, only one is shown. Axes are horizontal and vertical spatial frcqucncy.

4.3. Spatial Sampling

To preserve the information in the image the 11) spatial density of the sensors of a particular fre-
quency must be at least twice the frequency extent of the sensor. This extent is not well defined for
a Gaussian spectrum, but if we used the bandwidth, the required sample frcqucncy would be 4/3 the
sensor frequency. I have used the more conservative factor of 1.8. Thus fur the h; ► ,ic sct of eight
frequencies at the fovea, sampling intervals range from 0.0174 degrees for the highc,t frcqucncy to
2.22 degrees for the lowest.

4.4. Orientation

The orientation bandwidth of a sensor (as measured with the spatial frequency to which the sensor
is tuned) is completely determined by the spatial frequency bandwidth. I or our one ocuwc spatial
frequency bandwidth, the orientation bandwidth is about 38 degrees. 'Iris can he seen in Fig.3,
where the orientation bandwidth will be given by the range of angles that mter,cLt the spectrum at
half-height or above. This 38 degree figure agrees well with the 40 degrees rcpotted by DINALOIS
et al. 141 as the median orientation bandwidth for simple cells in monkcv st ► iate cortex. There is a
great deal of psychophysical data related to orientation tuning, but as yet there has hccn no convinc-
ing route from the data to an estimate of the orientation bandwidths of underlying sensors.

r--
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In ;perlltilll g, u..11sur density in the orientation donmin I have again followed the rule of about
one sensor her banLIAldth. 	 Ihis vwld, the set of' fixc olicut,ltionti illusll,1led III 	 ig.4.	 T]ic
tr ansforms of lc,e Icatures arc shown In 	 Successive transforms are mcrlmd, and each is
truncated at ahout one width. illustrating the degree of sensor overlap in the donum of orientation.

4.5. Phase

1 include sc • nsols of two phases, 0 and 90 degrees. At least two phases are required to preserve the
odd and even inf(,im,Ition in the image. Beyond this, NOI.I I : N and IZONNI : k 1191 have found that
adjacent ,illlplc (t- 11, in eat ,mate cortex usually share a colrinlun spatial Iicyuenc^ ;Ind orientation,
but differ in phrlse by 90 degrees. Fasting psychophysical dat;I do not Ir,Id diiccIk to any strong
h^pothesk 1cp 1 ding Sensor phase.

4.6. Spatial \ni,opinnatism

1'crh.Ih; tllc greatc,r dllliL(1lt y in 21) modeling of' human ,h,Itial vision are the large and complex
variation~ in sp.IlLll hroces,ing that occur with distance from the renter of' the 	 licld. III

 contrast ,rrr:illvit) derlincs wish ecrennicity, and does so more rapirlk fol hildl .hati,il FrC(.juCn-
cies than fol low 111-10.271	 II(mc%cr it ha, recently been suggested th;It sjmn.il  hroces,mg in all
portions of 1111, vl,o l field j,' 	 s.ni • fora ^h,nlgc ill 	 21) spali;Il scale [S,II, ZJ.	 This

Fig.4 The five sensor orient,lllrins. They range front 0 to 144 degrees in sups of 30 tkigrecs.
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hig.5 Transforms of the five sensor orienl,Itons. FAch Gaussian ha, heen tuu, jWd ,I[ Iuie wldllt I'ur
clarity. I he ol lei] taton handwidth of each sensor is ahmit 3R degrees.

would be the c&,e it ganglion cells changed in size with eceentnut). but ,III •,uh,e\I,ILIII ploce„ing
were hoi i,mieous Nith respect to eccentricity. though the e\idcnlc Im till ,. h '\putll,',I, is nut
overwhelming, it r< too great a simplification to be resisted. nccoidrligk I I -,,C t,Iken the spatial
scale s to he gi\ en by the .scalmg function

s = I ^ ke	 1 2)

where k is a constant .Ind e is eccent r icity in degrees. For m y own eyes, A I, .ihmil I1.4 1 his agrees
reasonably well with the estimates of other authors, and with the clt:utrc, III plln-llou I, • II density
and cortical nwgnific,Ition factor with eccentricity 15,211. It should be emph,Isi/cd that till, kmclion
is intended only as a first approximation.

This scaling function has been used to scale the sire, Frequency, and ,p,ni II density of the
sensors at e,Ich eccentricity. 'thus if a sensor at the fm ca has a h,ISic frequent ^ ul I \\ Idth it-, and
ID density d, the rcl,Itcd sensor at c^centricity c will h.I\e frequency / /\, width it 	 mid density
d/s. 'These ielmionships are shown ill where I have driven a -,milpling :ur.r1 fur ,I hasic fre-
quency of I cycle/degree. Hach circle in the figure is ., pout 215 the wikith of Ih, • I i,1 ic,pondmg sen-
sor, showing the considerable degree of spatial overlap among senor, of a con iml hequcncy.
Note that as ecceimicity increases, sensor frequency an a l ,patial dcn,6 air ,u,Ilc,l h^ the saint
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-1g.6 I'lhc sampling array far a basic frequency of 1 cycic/degree. The two axes show degrees from
the fovea. 1 = ach circle is about 215 the width of ' the corresponding sensor.

,im(11,111t, so that the sampling requirements continue to be filet. The set of all sensors generated in
this way (ruin a given basic frequency may be considered a Jiumuly. This is the closest we get to a
'Spatial frequency channel°of Uaditiunal %isual theory.

Hie actual po " rlions crf individual sensors h.nc hccn determined by finding, for each fancily at
each cctcnm(ity, th,it rcpilaf polygon centered upon the fovea whose sides are about equal in
length to the difference between the present and next lesser eccentricity. This algorithm is used
only as a sincple way of generating sensor locations with the appropriate properties.

4.7. Sensor Gain

It is well known that contrast sensitivity depends upon spatial frequency. flow du we incorfxcrate
this dependence into the model? I begin by defining se mor gain as the response to a matched target
at unit contras!. If sensor train at the fovea is X(f), where f is the basic frequency. then spatial
processing will be humogcneous irrespective of eccentricity only if sensor gain is adj.istcd to tike
into account the larger sire of eccentric sensors. This can be accomplished by multiplying each
weighting function by X(f) 16 h12/( w 2 n), where w is the actual width and J is the basic frcqucncy
of the family to which the sensor belongs. This scaling of gain would result naturally if each sensor
received contributions from an equal number of receptors. and this would be likely if the receptor
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density followed the same scaling function given by (2).

'I he actual functional form to, x(f) is not simple to estmi.rlc, sinceit is not gix cn diic(I;y
by any simple cntp^rical measurement. A first appioxnnation, nidncctl) cvirr tco Bunt iuntl.r"r
sensitivity to one octave h.indwidlh graultg patches, is shown in 1-^g.7.

4.8. Computing the Feature Vector

I he preceding assumptions permit us to compute a feature vector, r, each cntr y of which is the
response 01'a silivIc featutc scosor. I11c many ;ress-corrclauons Incolccd .ur ^cr,ci.111; rtrurc e.l^tly
computed by way of well-known detours ;irough the frequency domain. 1 milwi sac ntES can he
gained by disregarding sensors (11:.11 arc well outside the space or frequency s.rppuil of tltc im.!ge.
1-:ven so, the :;mount of com putation( required to oht.tin the feature vector p lay he tnI IIIId.Ir11C, espe-
cially for large stimuli %kith high frequency content_ I urtun:Itely the sensors an, ► .III ;h, • Inlagcs col r -
sidercd here have Fourier transforms that can he obtanied analytically, so ;h.it ilnLli Lransfornis ncea
Trot lie !dolled to.

5. Processing the Feature Vector

lie psyehoiogical litermu e is filled with suggestions as to how all chwl-xer might IIIAC use of' the
teatme ccctor to detect and discriminaie among patterns.g pa n, e ntigit look rim the Ltigest single
entry, look for the lelltroid of sonic distribution of xcctor entries, chcA Micthcr .it le,ist on .: entry
is tar er than. a critellon value, and so on. But these procedures arc hugely ad h„r. and r:irrly gel)-
crah/c much bevonc t the cxne r ,rncn(al context they are designed to explain. I • or example. looking
for the largest single entry might work :;i threshc,ld but is not .t reasonable rule• aho%c threshold.
Also. these procedures arc not clerked from basic principles but rather appeal to tic into iliun.
sometimcs not very forcefully.

In contrast, the statistical theory of pattern classiricatron proxides .1 Iogrc.tl hasis fur
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constructing optimal procedures with which to analyze the feature vector 16641. Furthernlore Pat-
tern classification theory is general, and could in Principle be applied to most tasks the human
observer confronts in the psychophysical lah, if not in the world at lar,,e.

5. 1. The 01)( anal llaycsian Classifier

I et isle illustfate flow I apply this theory to the feature vector constructed a moment i r ,o. I-irst
assume that each sensor is perturbed by zero mean, unit variance Gaussian wise. I he feature vec-
toI then h.n a Ili till iv,:riate normal density. I further ass,nne that the covariance matrix of this den-
sity is the identity matrix, which rleans that the scissors are statistically independent.

The job of the classi fier is to examine the feature vector and decide which of several IK)ssihle
"AS In Fact presenic(l. Fach of the ph)ssihle images is associated will it mc,m i-ce • lor nik.

Presentation of one of the images gives rise to it vector t. It' we also know the prior proha-
hllit\ of each ,^I!crnati^c, B,lyes' :-Tile allows us to use the feature vector to c;llculate the posterior
pl(,hahllit) of Cach Ill the ahcrnali\cs. In the ;aces I will consider, all alternatives have e(lu,ll priors.
A reaSmi'lhlc. and In fact optimal rule is to choose th Image with h'ghest posterior ploi,.,r;iiy.
Snick , we e.nr only \\hieh has highest probability, it is suflicient to calcul ialculatc for each alternative any
qu,111tily th it is I11()IIotoilli with posteru,r	 Such functions on the feature rector are called
,h tr, a11111nll.e.

In the case I have developed so far. .I set of optimal discriminants ire

,.',t (t) --	 ('t rn k ) r 0-1114)
	

(3)

n

,	 l

where the superscript T dcnc tcs the tr ispose of a matrix. Note that if t has it Clements, then it
ran he conSl,lc recl ,1 pill,( In n dimcnslon,,l space. I..kewisc for each of the mc,ul .ectols 111 4 . IIlls
101111 of discrnnin,rrli tells us to plek the .d,cmJtne whose mean vector is closCSt to t in this space.
For this reason this is ()lien called a r,litr:mum -/islanceclassilier.

5.2. I'riur Information

()lie „hicetion io this Scheme is that It assumes that (lie ohscc ,_, has perfect prior information
icgardmg cach mean vector In k . Since this \ector is obtained through experience, and each experi-
rneC IS Srlhfcct to \;uiahllll), this assufopti()n is unrealistic. I:Inpiric;ll data Aso clearly shoes Out t„e
ohser\rr n less Ill,ui ()ptinl.Il. as though hc were uncertain reg:uding m 4 17.16,251. I urtunatrly, fur
the deteclr„n task I will consldu. ;111 .ipproximation is av;ulahle for a more realistic uneertaln
ohsrrvei 1 181 In the e,Isc of discrimination, we must be content for the moment to cumine the
hehavior of the 1,1Ca1. IIlls is nnfo;tunatc. Since to the extent that the sensors presui,e the inforntul-
Ilon in the 1111, 1;c, d scrnunalunn pellmillanee tells us more about the ortlwgonality of the altCrn:I
tl\r itnaR.s 011 111 Ibuut the properties of the sensors.

S. t . Uctcction

lv .Ihiht\ of In oh •.enel to de:cct , I 	is often measured by it
	 interval forced-ehoice

1 .'II ( 1 nwili ,l. Ir, will, h flit: t4iserver ()lust )udcc which of two time nl!crv;lls contained it signal.
I Ills niay he Mewed as a disc)ifuin,lUun hclween two images: the test inn,lge and a ,lull i11nage. I-ronl
.I of Vials we can dctcrnlne the pfoportion correct, or X. delined here as \ 12 banes (lie nor-
m,ll dci late of the proportion correct. Since there ;ue only two alternatives ( image in first interval
or in second Inter\al), we can dlllerence f i le two discriminants and Inc the sign of the result to
choose an alternative. Ibis quantity is normally disnihutcd whit it mean , goal to the ,gti.Ircd length
of disc mean \cetor, and a v.mlance of twice the squared length. From this It is easy to show that for
lilt) C!I\l'll p,ll(Clll,

d ' =	 Ill 2 in

	

(4)

n	 'h

As noted above, till- prediction assumes an observer with perfect prior information. For an
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uncertain observer, performancc can be approximated by specifying that for all stimuli at some fixed
d',

tl^^

where /I is it constant of about 3.5 1181. This approximation has been useit :.it 	 following prcdic-
tions of' detection perforr:lanee.

The model gives a good account of sensitivity to a wide variety of different spatial targets.
For cxainple, the model does a re:,sonable job of predicting the contrast sc suno I'llmlion at vari-
ous eccentricities, and the effects of siie of a grating pattern upon sensitivity. Among the carliesr
experiments to suggest that visual mechanisms were selective lot- spatial frequency — ere those \olhich

measured sensitivity to mixtures of two frequencies, 19,211. Data from it recent llcnton of !his
experiment are shown in I :ig.8 1 291. F?ach point show% the sensitivity to a nttxtine of two frequcn-
c,es, relative to the sensiti\ ity to either frequency .clone. If the two I ,requcrctes add linc,rrly, we get
a ratio of' two, if they do not ad. ! at Al, we get it ratio of 1. d,rta show ,r dvolinc in summation
.1s the two frequencies move faiiher apart. Hic prediction of' the model is shown Oy the upper
curve. It does not agree precisely with the data, but given that most sources of' cr^-r r ill data will
tend to lower the ratio it does not do a had job. I have also shoHr the prediction ill case of 0.8
octa%c bandwidth sensors. fhe tit is bitter, and this amendrocnt may havoc to he resorted to in the
future.

5.4. Discrimination

A p:n'ticularly sensitive way of measuring discrinlination performance is by it two-by-two for(.-,-d
choice (2X21 C) method 117,26,311. As in the 211 C method, oil 	 trial the ohscrvcr is presented
,AitIt :ut imagc in just one of two time interttals. lint ill 	 case the nnagc is selected at r;rttk!on1
.:0111 a set of two. Me observer must choose both the interval containing the image, and wlt:ch

Frequency Ratio

hig.8 Summation between two different spatial frequencies. Predictions of the model with 1.0 oc-
tav o: .ind 0.8 octatic ban,Iwidths arc shown. 1)ata are front 1291.
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image it was. The advantage of this technique is that it measures detect ; jn and discrimination con-
currently, so the two sorts of performance can be compzred.

In the case of 2X2FC t!,e observer must choose among fot, r alternatives, so we must deter-
m..e four discriminants. If we call the fe..ture vector from the fir.'t interval z t and that from the
second interval Z2, and the mean feature vectors for the two images a and b, then these discrim-
inants are

d l ,,= zi a	 d2a = z2 a	 (5)

dtb = zi b	 deb = 72 b

where de b for example is the discriminant for image b in the second interval. Here we cannot
reduce these to a single function of z as was possible in the case of 211-C. Furthermore, although
each discriminant is again normally distributed, the four are not independent, so we cannot easily
derive the probability with which any one is the largest and must resort to Monte-Carlo techniques.

5.4.1. Spatial Frequency

Since our model observer discriminates among images on the basis of certain features, it is interest-
ing to ask how well the human observer discriminates betwce.. two images that are members of the
feature set. Fig.9 shows some data collected with a 2X2FC method in which the two images to be
discriminated were Gaussian-windowed sinusoids, like the features of the model 1311. The ordinate
plots the ratio of d' for discrimination and detection, which is a measure of discrimination perfor-
mance relative to detection. I'his method of plotting 2X2FC daa is due to THOMAS, who has
done much of the pioneering work in this area. 'Ihc ratio rises rapidly as the two frequencies are
moved farther apart, so that when they differ by about an octave, we discriminate between them as
well as we detect either one. The model's performance, shown by the solid line, is better than the
human observer. Introduction of uncertainty into the model would reduce this discrepancy. Notice

gratings	 bars

Frequency or Width Ratio

Fig.9 Discrimination bet-ce-t grating patches of different frequencies (circles) and Gaussian hars of
different widths (squares	 _'urves arc predictions of the model. Data are from [311 and [281.
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that, as a rule cf thumb, the model predicts a ratio of one when the two patterns diffe ► by about one
bandwidth.

5.4.2. liar Width

What if we repeat the experiment with images which do not resemble the sensor features? The
square symbols in Fig.9 are comparable data for discriminations between Gaussian bars: patterns
with a Gaussian profile in both horizontal and vertical dimensions and with height always at least
twice the width [281. I)iscrimination performance is vastly poorer, so that a ditYcrence of about 4
octaves is required before discrimination is as good as detection. This poorer performance is very
nicely described by the model, whose predictions are shown by the rightmost line.

5.4.3. Orientation

The last set of data I will show you were collected by THOMAS and GII II :' 1201. 'I hey used a
2X2FC method to discriminate between gratings of different orientations. The gratings were large,
extending 15 cycles in each direction. Their data are shown in Fig.10. Discrimination improves
rapidly as the difference in orientation increases, and is almost as gooc as detection when the
difference is 10 d,-gree- . the model's simulated data arc shown by the eftmost solid line. The
agreement is quite good; perhaps too good considering uncertainty has not ► ,een included.

On the basis of a 11) model, THOMAS and GII.I.F. estimated mechanism orientation
bandwidths of 10.5 to 20.5 degrees, depending on observer. These arc 2 to 4 times nar rower than
the sensor bandwidths used in the prediction in Fig.10. These authors acknowledged that their esti-
mates were much narrower than bandwidths of cortical cells, and speculated that "psychophysically
defined channels represent physiological mechanisms other than single cortical cells".

How can the present model with 38 degree bandwidths perform as well as the THOMAS and

Large grating

Orientation Difference (degrees)

Fig.10 Discrimination between large gratings of different orientations (circles). I)ata arc from 1261.
Curvcs show the predictions of the model for large and small gratings.
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GILLF, model with bandwidths about 3 times narrower? The most likely answer is that the present
model is 21), and can make intelligent use of the pattern of activity across a large number of spa-
tially distributed sensors. When the stimulus is confined to a small area, performance deteriorates
markedly, as shown by the rightmost curve in Fig.10. (though much of this is due to the broadened
orientation bandwidth of the stimulus itself).

These observations illustrate an important point: sensor properties cannot be estimated
without an explicit, computable, 2D model of the sensors and of their distribution over the visual
field. The model must also allow the observer to make intelligent use of the sensor outputs. This
argument applies to any effort to derive sensor parameters from psychophysical data, that is, to
almost all psychophysical research.
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