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1. Models in Vision

In spitc of the large number of intelligent, cnergetic people cngaged in the study of vision, it often
sccms that we advance our understanding of this process at an excruciatingly slow pace. Why is this
so? 1 believe that it is the fault of our models. We have been seduced by the simplicity of explana-
tion available in the physical scicnces, and try to describe the vast complexity of vision with models
that would not do justice to a sphere rolling down an inclined plane.

Today I will describe a model which in a small way attempts to remedy this situation. ‘The
principles that underly it are simple, but it attempts to represent more adequately the inherent com-
plexity of vision. Before describing this model in detail, I will cmphasize its unusual aspects, and
some of the bencfits we may gain from this departure.

First, the model is explicit. No "channels”, "mechanisms” or other ill-defined entitics appear.
Put another way, the model is computable. It is well cnough defined to permit numerical predic-
tions to be made for a given cxperimental situation.  Second, the model adequately represents all the
dimensions that are pertinent to the experimental domain. In the casce | consider, these are the two
spatial dimensions of a monochromatic, stationary image. Although this is an inhcrently two-
dimensional (2D)) situation, visual models in this context have almost invariably been one-
dimensional {(113). Third, the model is general within its specified domain. The same model can be
uscd to predict performance in a wide varicty of different of visual tasks on a wide varicty of images.
‘This contrasts with most visual models, which only attempt to cxplain the data from a very res-
tricted domain. Fourth, the model draws many of its parameters and assumptions directly from phy-
siological results. While this has long been an ambition of psychophysical theories, it has rarcly
been realized. Finally, the model attributes intelligence to the obscerver. It is perhaps understand-
able that this has not been donc in the past, since psychophysicists arc most often their own
observers. The model assumes that the observer will make optimal use of the available information.
This assumption is of coursc a commonplace in signal detection theory [10], but rarcly appcars in
explicitly visual models.

The price of these amendments is a model that is somewhat more complex, requiring more
assumptions and paramecters than average. The benefits, however, arc worth ii. 1t provides a
mechanism with which to integrate information within the field. Since the model can be applied in
diverse contexts, it provides a common repository for results from many different sources. The
model also insurcs the consistency of interpretation from onc experiment to the next. ‘Too often a
model is constructed in one context that is quite obviously incompatible with data from another con-
text. The model also provides a natural path along which to specify in ever greater detail the rela-
tion between our visual expericnce and the physiological mechanisms of the visual brain. Finally, to
the extent that the model is successful, it will permit us to turn our atiention from the carly,
image-driven stages of vision to the more complex, cognitive processing that must subsequently
occuf.

It should be clear that the argument T have advanced is on behalf of any model that meets the
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criteria of explicitness, adequacy, and gencrality noted above. The model 1 will describe is just a
candidate, and a grecn one at that,

2. Domain of the model

What is the domain -of my model? It is intended to account for psychophysical responses of an
accommodated, fixating human observer viewing binocularly a 2D stationary achromatic image at a
fixed adapting level of 340 cd m~2. Specifically, 1 have excluded both color, sterco, and dynamic
imagery since it sccms likely that they are analyzed independently of spatial luminance contrast.

3. General propertics of the model

Since this modecl is a first approximation whosc parameters and structural details are quite open to
improvement, it is worth giving a bricf overview of its essential structure. Thc heart of the model is
a sct of feawre sensors, which perform different mcasurements upon the input image. The sct of
measurements taken from a particular image make up a feature vector. 'The sensors arce perturbed
by noise, so that from presentation to presentation, the same image will give risc to somewhat
diffcrent feature vectors. Following each trial of an experiment, the observer processes the feature
vector in an optimal way to arrive at a psychophysical decision.

The model thus divides naturally into two parts: gencrating the feature vector, and processing
the feature vector.

4. Generating the Feature Vector

Each feature sensor is defined by a spatial weighting function, which is a model or template of the
fcature to be sensed. The measurement is performed by cross-correlating the contrast image and
the weighting function. The features used in the model are typified by the pattern in Fig.1(top). It
is the product of a 2D sinusoid and a 2D Gaussian. Its various paramecters, which may differ from
scnsor to sensor, arc: spatial frequency (the frequency orthogonal to the bars), the orientation (the
angle of the orthogonal to the bars), the widih (the size at half height of the Gaussian defined
orthogonal to the bars), the height (the comparable measure parallel to the bars), and the phase of
the sinusoid (defined relative to the center of the Gaussian). Finally, cach function is located at a
particular point in the visual ficld.” Of these scven parameters, we shall sce that two can be defined
in terms of the others, leaving five feature dimensions that may vary from sensor to scnsor.

This general form of weighting function closcly resembles the receptive ficld profiles of sim-
ple cells, the most numecrous class of visual ncurons in the striate cortex of cat and monkey [3,13].
Most cortical cells respond only over a modest region of space, a modest band of spatial frequencics,
and a modcst range of oricntations [3,4,15,24]. Psychophysical data arc also consistent with a
moderate sclectivity in space, spatial frequency and orientation [1,29,32). The Fourier transform of
the feature is shown in Fig.1(bottom). where it can be seen that the sensor also responds only over
a small band of spatial frequencics and oricntations.

This sort of function is often named after GABOR, who showed that (in the 1D case) it
minimizes the width in both space and frequency [8]. DAUGMAN has noted the virtues of the 2D
version of the Gabor function [2].

4.1. Width and Height

The data of DEVALOIS et al [3] indicate simple cortical ccll receptive ficlds tend to be slightly
taller than they arc wide, but including this subtlety did not sccm worth the cxtra computational
cffort. Accordingly, I have equated height and width, so the supports of both pattern and transform
arc circular. This also allows us to specify the width of a pattern, or of its transform, by a single
number: the diamcter at half height. With this amendment, the weighting function for the sensor
can be written

w(x,p) = e M2+ 0w o520 f(xcosd + ysind) + g (D
Where f is the spatial frequency, @ is the oricntation, w is the width, and ¢ is the phase.

The width of a featurc and the bandwidth of its transform are inversely related
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Fig.1 Top: an example of a spatial feature consisting of the product ot a sinusord and a Gaussian,
The two axes are horizontal and vertical visual field positon. Width of the featare is 1324 cycles of
the sinusoid. "T™e orientation is 22.5 degrees. and the phase is 0. Botiom: the Founer transform of
the feature. The axes arc horizontal and vertical spatial frequency.  Top and bottom figures are to
scalc when 1 degree on the top scale equals 1 cycle/degree on the bottom scele

(bandwidth = 41n2/(awidth)). I have sct the width of cach sensor to about 1.324 cycles of the
sinusoid. This mcans that sensor bandwidth is proportional to sensor snatial freguency (bandwidth
= 2/3 frequency), or, in logarithmic terms, that cach sensor has a bandwidth of one octave. It also
mcans that a low frequency sensor will be large, and a high frequency sensor will be small,

Spatial frequency bandwidths for simple striate cells rise approximately in proportion to fre-
quency. Bandwidths appear to range from onc half to 2.5 octaves, but one octave bandwidths
comprise a large fraction of those recorded [3,15]. Psycnophysical data do not lead so directly to
estimates of bandwidth, but they are consistent with a proportionality between frequency and
bandwidth, and with log bandwidths of about onc octave [29,30,31).

4.2. Frequency

Since cach sensor covers only one octave of frequency, we need a number of sensors to cover the
full range of frequency which the human can sense (about 0 to 60 cycleszdegree)  The number
requircd will also depend upon the density of the sensors in the frequency doncan. This cannot be
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less than about onc sensor per bandwidth, or information in thc image will be lost, and sensitivity
will show dips between sensors [29]. In the model I have tried to include as few sensors as possible,
so just one scnsor per bandwidth has been used. This yiclds a set of eight basic sensors, whosc fre-
quencices range from 0.25 to 32 cycles/degree in octave steps. This basic set is shown in Fig.2. The
largest scnsor, a small part of which is barely visible in the upper left corner, is 128 times larger
than the smallest. ‘I'he sensors have been arranged in a spiral so as to fit in a square, but should all
be considered to lic at the center of the visual ficld. This basic sct will be present on'y at this point;
the sensors at other locations will be generated by a rule described below.

The transforms of this basic set arec shown in Fig.3 For clarity, only one of the two parts of
cach spectrum is shown. The positions of the spectra are correctly placed relative to the correspond-
ing features in Fig.2. Note that the smallest feature corresponds to the largest transform. For clar-
ity 1 have shown fcatures with different oricntations. If ali the features were similarly oriented, all
the transforms would lic at a single angle, and would overlap considerably. 'This illustrates that all
of frequency space is covered.

MQ;_«pv_ o ¥ ety <8 v_.,.,_,—w 85 N i T

Fig.2 The basic sct of sensors. The sensor frequencics range from 0.25 to 32 cycles/degree in oc-
tave steps. Each scnsor has a bandwidth of one octave (width = 1.324 cycles).
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Fig.3 Fouricr transforms of the set of basic sensors. Of the two Gaussians symmectrically placed
about the origin, only onc is shown. Axes arc horizontal and vertical spatial frequency.

4.3. Spatial Sampling

To preserve the information in the image the 1D spatial density of the sensors of a particular fre-
quency must be at least twice the frequency cxtent of the sensor. ‘This cxtent is not well defined for
a Gaussian spectrum, but if we used the bandwidth, the required sample frequency would be 4/3 the
sensor frequency. | have used the more conservative factor of 1.8. Thus for the hasic sct of cight
frequencics at the fovea, sampling intervals range from 0.0174 degrees for the highest frequency to
2.22 degrecs for the lowest.

4.4. Orientation

The oricntation bandwidth of a sensor (as mecasured with the spatial frequency to which the sensor
is tuncd) is completely determined by the spatial frequency bandwidth. Ior our onc octave spatial
frequency bandwidth, the orientation bandwidth is about 38 degrees. 'T'nis can be scen in Fig.J,
where the orientation bandwidth will be given by the range of angles that intersect the spectrum at
half-hcight or above. This 38 degree figure agrees well with the 40 degrees reported by DEVALOIS
et al. [4) as the median orientation bandwidth for simple cells in monkcey striate cortex. ‘There is a
great deal of psychophysical data rclated to orientation tuning, but as yet there has been no convine-
ing route from the data to an cstimate of the orientation bandwidths of underlying sensors.



ORIGINAL PACE (3
6 OF POOR QUALITY

In specifying sensor density in the orientation domain | have again followed the rule of about
onc scnsor per bandwidth.  This yields the set of five orientations illustrated in Fig4. The
transforms ot ese features are shown in Fig.5. Successive transforms arc overlaid, and cach is
truncated at about one width, illustrating the degree of sensor overlap in the demain of orientation.

4.5. Phase

I include sensors of two phases, 0 and 90 degrees. At least two phases are required to preserve the
odd and c¢ven infermation in the image. Beyond this, POLLEN and RONNER [19] have found that
adjacent simple cells in cat striate cortex usually share a common spatial frequency and orientation,
but differ in phase by 90 degrees.  Existing psychophysical data do not lead directly to any strong
hypothesis regarding sensor phase.

4.6. Spatial Anisoplanatism

Perhaps the grcatest difhiculty in 2D modeling of human spatial vision arc the large and complex
variations in spatial processing that occur with distance from the center of the visual field. In gen-
eral, contrast sensitvity declines with eccentricity, and does so more rapidly for high spatial frequen-
cies than for low [11.20.27]. However it has recently been suggested that spatial processing in all
portions of the visial field is identical save for a change in the 2D spatal scale [5,11,22]. "T'his

Fig.4 The five sensor orientations. They range from 0 to 144 degrees in steps of 36 degrees.
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Fig.5 T'ransforms of the five sensor orientations. ach Gaussian has been truncated at ane width for
clarity. The onentation bandwidth of cach sensor is about 38 degrees

would be the case if ganglion cells changed in size with cceentricity, but all subscquont processing
were homogencous with respect to cccentricity.  Though the cvidence tor this Tivpothesis is not
overwhelming, it is too great a simplification to be resisted.  Accordingly | have waken the spatial
scale s to be given by the scaling function

s =1+ ke (2)

where & is a constant and e is cccentricity in degrees. For my own cyces, A s about 0.4 This agrees
rcasonably well with the estimates of other authors, and with the changes 1 ganchon cell density
and cortical magnification factor with eccentricity [5,21]. It should be empliasized that this function
is intended only as a first approximation.

This scaling function has been used to scale the size, frequency, and spal density of the
sensors at cach eccentricity. Thus if a sensor at the fovea has a basic frequency ot 7 width w, and
1) density . the related sensor at cceentricity e will have frequency /s, width wy . and density
d/s. 'These relationships are shown in Fig.6, where | have drawn a samipling airay for a basic fre-
quency of 1 cycle/degree. Each circle in the figure is about 2/5 the width of the corresponding sen-
sor, showing the considerable degree of spatial overlap among sensors of 4 common frequency.
Note that as cccentricity increases, sensor frequency and spatial density aie scaled by the same
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Iig.6 The sampling array for a basic frequency of 1 cycle/degree. ‘The two axes show degrees from
the fovea. Each circle is about 2/5 the width of the corresponding sensor.

amount, so that the sampling requirements continue to be met. The set of all sensors generated in
this way from a given basic frequency may be considered a family. This is the closest we get to a
“spatial frequency channel” of traditional visual theory.

‘The actual positions of individual sensors have been determined by finding, for cach family at
cach cccentricity, that regular polygon centered upon the fovea whose sides are about cqual in
length o the difference between the present and next lesser eccentricity.  ‘This algorithm is used
only as a simple way of gencrating sensor locations with the appropriate propertics.

4.7. Scnsor Gain

It is well known that contrast sensitivity depends upon spatial frequency. Tow do we incorporate
this dependence into the model? | begin by defining sensor gain as the responsc to a matched target
at unit contrast. If sensor gain at the fovea is x(f), where f is the basic frequency, then spatial
processing will be homogencous irrespective of cccentricity cnly if sensor gain is adjusted to take
into account the larger size of cccentric sensors. ‘This can be accomplished by multiplying cach
weighting function by x( f) 16 n2/(w? @), where w is the actual width and f is the basic frequency
of the family to which the sensor belongs. ‘This scaling of gain would result naturally if cach sensor
reccived contributions from an cqual number of receptors, and this would be likely if the receptor
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density followed the same scaling function given by (2).

The actual functional form tor ¥ f) is not simple to estimate, since it is not given directly
by any simple empirical measurement. A first approximation, indirectly estimated from contras!
sensitivity to one octave bandwidth grating patches, is shown in Fig.7.

4.8 Computing the Feature Vector

The preceding assumptions permit us to compute a feature vector, z, cach entry of which is the
response of a single feature sensor. ‘The many cress-correlations involved are generally more casily
computed by way of well-knewn detours through the frequency domain.  FFurther savings can be
gained by disregarding sensors that are well outside the space or frequency sapport of the image.
Even so, the amount of computation required to obtain the feature vector may be formidable, espe-
cially for large stimuli with high frequency content. Fortunately the sensors and all the images con-
sidered here have Fourier transforms that can be obtained analytically, so ithat finite transforms need
not be resorted to.

5. Processing the Feature Vector

The psychoiogical literature is filled with suggestions as to how an chserver might make use of the
tfeature vector to detect and discriminaic among patterns.  One might look for the largest single
entry, look for the centroid of some distribution of vector entries, clicck whether at least on2 entry
is larger than a criterion value, and so on. But these procedures are Targely ad hoe, and rarcly gen-
cralize much beyond the exnerimental context they are designed to explain.  For example, looking
for the largest single entry might work ai threshold but 1s not a reasonable rule above threshold.
Also. these procedures are not derived from basic principles but rather appeal to the intuition,
sometimes not very forcefully.

In contrast, the statistical theory of pattern classification provides a logical basis  for

gain (dB]

0.25 32

Fig.7 Sersor gain, x(f).
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constructing optimal precedures with which to analyze the feature vector [6,14]. Yurthermore pat-
tern classification theory is general, and could in principle be applied to most tasks the human
obscrver confronts in the psychophysical lab, if not in the world at large.

5.1. The Optimal Bayesian Classifier

I et me illustrate how | apply this theory to the feature vector constructed a moment 230, First |
assume that cach sensor is perturbed by zero mean, unit variance Gaussian ioise.  The feature vec-
tor then has a multivariate normal density. | further assume that the covariance matrix of this den-
sity is the identity matrix, which means that the scasors are statistically independent.

The job of the classifier is to examine the feature vector and decide which of several possible
images was in fact presented. Each of the possible images is associated with a mean vector my.
Presentation of one of the images gives risc to a feature vector z. If we also know the prior proba-
bilitv of cach alternative, Bayes' rule allows us to use the feature vector to calculate the posterior
probability of cach of the alternatives. In the cases | will consider, all alternatives have equal priors.
A reasonable, and in fact optimal rule is to choose th image with highest posterior probability.
Since we care only which has highest probability, it is suflicient to calculate for cach alternative any
quantity that is monotonic with posterior prohability. Such functions on the feature vector are called
discrintinants.

In the case I'have developed se far, a set of optimal discriminants are
i(2) (7-my)" (2-my) (3)

= - i:( z,—my,;)?
i=1

where the supersernipt 77 denotes the transpose of a matrix. Note that if z has n clements, then it
can be considered a point in n-dimensional space. 1.kewisc for cach of the mean vectors my. ‘This
form of discriminant tells us to pick the alternative whose mean vector is closest to 7 in this space.
lor this reason this s often called a mininum distance classificr.

5.2. Prior Information

Ounc objection o this scheme is that it assumes that the observer has perfect prior information
regarding cach mean vector my. Since this vector is obtamed through experience, and cach experi-
ence 1s subject to variability, this assumption is unrealistic.  Empirical data also clearly show that tiie
observer is Tess than optimal, as though he were uncertain regarding my [7,16,25]. Fortunately, for
the detection task | will consider, an approximation is available for a morc realistic uncertain
observer [18]. In the case o1 discrimination, we must be content for the moment to examine the
behavior of the ideal. This is unfortunate, since to the extent that the sensors prescrve the informa-
tion in the image, discnimination performance tells us more about the orthogonality of the alterna-
tve images than about the propertics of the sensors.

5.1 Detection

I'he ability of an observer to detect a pattern is often measured by a two-interval forced-choice
1) method, e which the observer must judge which of two time intervals contained a signal.
[his may be viewed as a discrimination between two images: the test image and a null image.  From
a number of trals we can determine the proportion correct, or d’, defined here as v2 times the nor-
mal deviate of the proportion correct. Since there are only two alternatives (image in first interval
or in sccond interval), we can difference the two discriminants and use the sign of the result to
choose an alternative.  This quantity is normally distributed with a mean cqual to the squared length
of the mean vector, and a variance of twice the squared length. From this 1t is casy to show that for
any given pattern,

d'=vVm'm (4)

n %
= [ E '"12]

As noted above, this prediction assumes an observer with perfect prior information. For an
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unceitain observer, performance can be approximated by specifying that for all stimuli at some fixed

d’,
= [ S ]

where B is a constant of about 3.5 [18]. This approximation has been used in the following predic-
tions of detection performance.

178

The model gives a good acccuat of sensitivity to a wide variety of different spatial targets.
For example, the model does a reasonable job of predicting the contrast sensitivity function at vari-
ous cccentricities, and the cffccts of size of a grating pattern upon sensitivity.  Among the carliest
experiments to suggest that visual mechanisms were sclective tor spatiai frequency were those which
measured sensitivity to mixtures of two fiequencies [9,23]. Data from a more recent version of this
cxperiment are shown in Fig.8 129]. Each point shows the sensitivity to a mixture of two frequen-
cies, relative to the sensitivity to cither frequency alone. If the two frequercies add lincarly, we get
a ratio of two, if they do not ad:! at all, we get a ratio of . “ilhe data show a decline in summation
35 the two frequencies move faither apart. The prediction of the model is shown vy the upper
curve. It does not agree precisely with the data, but given that most sources of ¢rvor in the data will
tend to lower the ratio it does not do a bad job. 1 have also shown the prediction in the case of 0.8
octave bandwidth sensors. The fit is better, and this amendrment may have to be resorted to in the
future.

5.4. Discrimination

A particularly sensitive way of mecasuring discrimination performance is by a two-by-two forced
choice (2X2FC) method [17,26.31]. As in the 21FC method, on cach trial the observer is presented
with an image in just onc of two timc intervals. But in this casc the image is selected at random
om a sct of two. ‘The observer must chivose both the interval containing the image, and which

2.0
Thresho'd
Ratio

1.5

\\
O
1 lave
O oclav
~ O0Coclave
@
1.0

1.0 1.19 1.41 1.68 2.0 238

Frequency Ratio

Fig.8 Summation between two different spatial frequencies. Predictions of the model with 1.0 oc-
tave and 0.8 octave bandwidths arc shown. Data are from [29).
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image it was. The advantage of this technique is that it measures detection and discrimination con-
currently, so the two sorts of performance can be compared.

In the casc of 2X2FC tiic observer must choose among four alternatives, so we must deter-
m.cie four discriminants. If we call the feature vector from the fir:t interval z; and that from the
sccond interval z;, and the mean feature vectors for the two images a and b, then these discrim-
inants are

dy, =zfa dy, =127 a (5)
dyy = 7-11"’ dy = z{b

where d,, for example is the discriminant for image b in the second interval. Here we cannot
reduce these to a single function of z as was possible in the case of 2IFC. Furthermore, although
cach discriminant is again normally distributed, the four are not independent, so we cannot casily
derive the probability with which any onc is the largest and must resort to Monte-Carlo techniques.

5.4.1. Spatial Frequency

Since our model observer discriminates among images on the basis of certain features, it is intercst-
ing to ask how well the human observer discriminates betwee.. two images that are members of the
feature set. Fig.9 shows some data collected with a 2X2FC method in which the two images to be
discriminated were Gaussian-windowed sinusoids, like the features of the model [31]. 'The ordinate
plots the ratio of d' for discrimination and detection, which is a measure of discrimination perfor-
mance relative to detection. This method of plotting 2X2FC data is duc to THOMAS, who has
done much of the pionecering work in this area. The ratio rises rapidly as the two frequencies are
moved farther apart, so chat when they differ by about an octave, we discriminate between them as
well as we detect cither one. The model's performance, shown by the solid line, is better than the
human observer. Introduction of uncertainty into the modecl would reduce this discrepancy. Notice

gratings bars

1.0 @) D

Ratio

0.5

0.0

1 2 a 8 16
Frequency or Width Ratio

Fig.9 Discrimination between grating patches of different frequencics (circles) and Gaussian bars of
different widths (squares ~ Curves are predictions of the model. Data are from [31] and [28].



that, as a rule ¢f thumb, the model predicts a ratio of one when the two patterns differ by about one
bandwidth.

5.4.2. Bar Width

What if we repeat the experiment with images which do not resemble the scnsor features? The
square symbols in Fig.9 arc comparable data for discriminations between Gaussian bars: patterns
with a Gaussian profile in both horizontal and vertical dimensions and with height always at least
twice the width [28]. Discrimination performance is vastly poorer, so that a difference of about 4
octaves is required before discrimination is as good as detection. This poorer performance is very
nicely described by the model, whose predictions are shown by the rightmost line.

5.4.3. Orientation

The last sct of data I will show you were collected by THOMAS and GILLE [26]. They used a
2X2FC method to discriminate between gratings of different oricntations. ‘I'he gratings were large,
cxtending 15 cycles in each direction. ‘Their data are shown in Fig.10. Discrimination improves
rapidly as the difference in oricntation increases, and is almost as gooc as detection when the
difference is 10 degree:. The modcl’s simulated data arc shown by the cftmost solid line. The
agreement is quite good; perhaps too good considering uncertainty has not heen included.

On the basis of a 1D modecl, THOMAS and GILLE ecstimated mcchanism oricntation
bandwidths of 10.5 to 20.5 degrces, depending on observer. These arc 2 to 4 times narrower than
the scnsor bandwidths used in the prediction in Fig.10. These authors acknowledged that their esti-
mates were much narrower than bandwidths of cortical cells, and speculated that “psychophysically
defined channels represent physiological mechanisms other than single cortical cells”,

How can the present model with 38 degree bandwidths perform as well as the THOMAS and

Large grating
1i0pbo — — — »4—/m— — — — — — — —_— — — —
Small grating
d’ i
Ratio
0.0
0 20 40 60 80

Orientation Difference (degrees)

Fig.10 Discrimination between large gratings of different orientations (circles). Data are from [26].
Curves show the predictions of the model for large and small gratings. .
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GILLE model with bandwidths about 3 times narrower? The most likely answer is that the present
model is 2D, and can make intclligent use of the pattern of activity across a large number of spa-
tially distributed sensors. When the stimulus is confined to a small arca, performarce deteriorates
markedly, as shown by the rightmost curve in Fig.10. (though much of this is duc to the broadencd
orientation bandwidth of the stimulus itsclf).

These observations illustrate an important point: scnsor properties cannot be estimated
without an explicit, computable, 2D model of the sensors and of their distribution over the visual
ficld. The model must also allow the observer to make intelligent use of the sensor outputs. This
argument applies to any cffort to derive sensor paramecters from psychophysical data, that is, to
almost all psychophysical rcsearch.
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