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ABSTRACT

MODELS FOR EVALUATING THE PERFORMABILITY
OF DEGRADABLE COMPUTING SYSTEMS
by

Liang Tai Wu

Chairman: John F. Meyer

Recent advances in multiprocessor technology have established the
need for unified methods to evaluate computing systems performance and
reliability. In response to this modeling need, this dissertation considers a
general modeling framework that permits the modeling, analysis and evaluation
of degradable computing systems. Within this framework, several user-
oriented performance variables are identified and shown to be proper
generalizations of the traditional notions of system performance and reliability.
Furthermore, a time-varying version of the model is developed to generalize

the traditional fault-tree reliability evaluation methods of phased missions.

The modeling and evaluation methods considered in this dissertation
provide a relatively straightforward approach to integrate reliability and
availability measures with performance measures. The hierarchical
decomposition approach permits the modeling and evaluation of a computing
system’s subsystems- (e.g., hardware, software, peripherals, interfaces, user
demand systems) as a whole rather than the traditional methods of evaluating

these subsystems independently. Accordingly, it becomes possible to evaluate
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the performance of the system software and the reliability of the cystem
hardware simultaneously in order to measure the effectiveness of the system
design. Moreover, since the performance variables considered in this study
permit the characterization of system performance according to the application
needs of a system, the results obtained represent more accurate assessments of
the system’s ability to perform than the existing performance or reliability

measures.

-ii-



TABLE OF CONTENTS
LBTOFILLUSTRATIONS e 9 0 0 ¢ 8 0 0 5O SO SS ee ® &6 6 ¢ 9 080 8 0 0
CHAPTER

1. INTRODUCTION +cccsecevscsoescasssosannes
,,1 BaCRground LRI B A R A R S I R I A LRI I A A A A A N R Y
1.2 Research Objectives <cccccvecces csesvone cescccns coe

2. PERFORMABILITY EVALUATION OF COMPUTING SYSTEMS

2.1 Introduction esce+s-« teseas esse s ovesssrscsscnsesaes
22 SystemModcls see s es e s e e sas s ceeses escsnsee
3. OPERATIONAL MODELS +¢ceccccccee esseccse seceseces
3.1 Introduction eccccececcescccnccs teesssesssrsesseena

3.2 Recoverability s+>vervveeveerectesecsestarcorasnne
3.3 Evaluation of Computing Systems Using

Functionals of a Markov Process c-ccsccsecccsscccccns
3.4 Performability of a Triplicated Fault-Tolerant

Computingsystem ® 00 0000088000200 00 00000000t

4. MODELING AND EVALUATION OF DEGRADABLE

MULTIPROCESSOR SYSTEMS cccceccccccccnncnccccses

-iiji-

11

22
22

24
38

62

75



4.1 IntrOduction 00 0 8 P00 EO TP OORRNIOELOIOEOOOICIEOIEOPDROIOEOSOOETONTN 75
4‘2 SystemMOdel 9 0 000000 RN PLCLINPRIPNIOIOISIOEREOEOOOETODN 78

4.3 Evaluation of Two Degradable Multiprocessor

Systems ® © 00 000 2 90 0000 0 OO OO0 O OPE NSNS 00PN SO 96

5. PHASED MODELS -cccosececccsoscssscccssssscsssssee 109
5.1 Phased-MiSSions ccsccccosscsscecencssassasssssee 109
5.2 Structural Properties of Phased Models s+cccececescecss 115
5.3 Probability Computation of Cartesian

Trajectory Sets «eeveeeesnnnessesirecceniaeeeeanss 135

5.4 Operational Models as Intrap”ase Processes eeesceeesee. 148
6. CONCLUSION AND FURTHER RESEARCH +:++sccceces. 164
APPENDIX ¢ccccovcessccsssccssccccs ees-cscsssssnseccss 168

REFERENCB © 00 00 00 0000 IO LIOINNGLONIRPIENINOIEEOTOIOLOLOERETNITTTOEES 185

-ity=-



2.1

3.1

3.2
33

4.1

4.2

43

44

4.5
4.6
5.1
5.2

Al

LIST OF ILLUSTRATIONS

AModelHiemchy o ¢ 9 0 @0 0 80V OO POO O S, o0 Pe S e OSSN

Markov Model of a TMR System with
Software Error Recovery .....cveecieeccccccens

Performability of S . .......iiieirenneenncenenes
Performability of S . c.vvveveecceccnsceccccncses

Single Resource Model for Systems
with Sife Faults and Unsafe Faults .....c0c00c0eeee

Single Resource Model for Systems with
Instantaneous Detections and Recoveries ..........

HC&d-Of'the-Linc Pfiority Queue e e e et st

State-Transition Diagram
of the Base Model forS; andS; «ccevceveecccnness

Performability of S; ..cceeeeeeersrseeccasnss
Performability of Sy o cvevveececceceenecenconnns

An Order-Preserving Mapping ococceeececcconconne
Underlying Markov Process of a Phased Model .......

Markov Model of a Multicomputer .eecececcecnness

-y -

64

73
74

85

87

92

99

107

108

133

159

174



Table

4.1

4.2

4.3

5.1

5.2

State Transition Rates

of a General Resource Model ......ccc0ceeenceees 82
BaseMOdelParameters essscsesnrecsenrse EEEEEEEREE 84

Transition Rates for Systems with
Instantaneous Detections and Recoveries «.ccceeeee. 86

AnorganiZingSthture 800000 s0s 0000t 000000 156

Operational Structures of a Phased Model .....cc..0.. 160

-yi=



-

CHAPIER 1
INTRODUCTION

1.1 Background

The recent developments in multiprocessor systems have stimulated
a growing interest in degradable computing svstems that are designed to
provide a high degree of performance and reliability by reallocating the
computer’s resources when faults are detected. To assess the effectiveness of
these computing systems, it has been found that the traditional way of
evaluating the performance and the reliability as distinct attributes of a
computer is no longer adequate [1], [2]). Traditional performance evaluation
methods generally assume that ths computer to be evaluated is fault free and
are concerned with the quantification of the effectiveness in which the
computer’s resources handle a specific application (see [3] and [4], for
example). Traditional reliability evaluation methods, on the other hand, deal
with the measurement of a computer’s ability to remain operational in the
event of physical failures (see [3] through [8]). Since the level of performance
of a degradable computing system may decrease 'vith successive failures, the
performance and thc‘reliability of the system must de dealt with simultaneously
to measure the extent to which the user can benefit from the tasks

accomplished by the computer.



In response to the above modeling need of degradable computing
systemis, some recent investigations have attempted to formulate new modeling
and evaluation methods that combine both the performance and the reliability
characteristics of computing systems. Particularly, Beaudry [9] has considered
performance-reliability measures that reflect the computational capacity of a
system, defined as the amount of useful computations acailable per unit of
time, and has shown that these measures can be evaluated in terms of a
transformed i.arkov process. By examining the set of jobs executed by a
computing system, Mine and Hatayama [10] have considered the reliability of
the system with respect to a specific job, called job-related reliability. Although
the above models have shown the feasibility of combining the performance and
reliability measures into a single measure, their efforts have focused mainly on
the maximum capacity at which a computer can handle its computation. The
effect of interactions between the demand for computation (by the user) and its

supply (by the computer) has not been considered explicitly.

Arnother approach to quantifying the unified performance and
reliability of computing systems is based on Markov rewa-1 processes [11]. By
assigning a throughput rate to each state of a Markov process that describes the
resource availability of a computing system, Gay [12] has consideied the
expected system throughput and the throughput availability of a system. A
similar model has also been used in [13] by De Souza to estimate the reduction
in operating cost when fault-toierance features are incorporated in commercial

systems. More recently, based on renewal process models, Castillo and



Siewiorek [14] have considered the apparent capacity 2nd expected clapsed time

required to execute a program correctly.

In contrast to the above efforts to formulate specific performance
measures for degradable computing systems, Meyer [1] has developed a general
modeling framework that permits the definition, formulation and evaluation of
user-oriented performance measures. A hierarchical model is defined 1] which
assumes that the probabilistic nature of the total system S (the computer and
its environment) is modeled by a stochastic process Xg. It is further assumed
that the process Xg can be used to determine the probability distribution
function of a random variable Yg which describes the user’s view of how well
the system performs. The prohability distribution function of Yg is shown to
induce a useful performance measure, referrid to as the performability of S, in

the context of degradable computing systei performance.
1.2 Research Objectives

In this investigation, among other things, we wish to extend the
modeling framework in [1] to provide a more concrete basis for studying the
evaluation of degradable computing systems. By introducing extra ingredients
to the modeling framework, we wish to develop a general stochastic process

model of degradablz computing systems that satisfies the following objectives:

(1) The model should be general enough to permit uniform formulation of

different performance measures.



(2) The model should be specific enough to permit derivations of

. corhputational algorithms and formulas.

(3) The model shouid be flexible enough o be related to traditional
perforraance and reliability models so that it may serve as a basis for

unifying traditional computing system evaluation methods.

(4) The model should be able to reflect the information processing needs of
the user as well as internal structural changes of the system caused by

component failures.

In addition to the above efforts of model development, we also wish
to apply the results obtained to evaluate a large class of fault-tolerant
computing systems known as "degradable multiprocessor systems." By
comparing the effectiveness of various design strategies, we wish to illustrate
the tradeoffs between different techniques of incorporating fault-tolerance in

the design of a multiprocessor system.

Chapter 2 puts this work in context with respect to the general
modeling framework considered in [1]. It describes the components of a
performability model and formalizes the relationships among these components.
The major results of this chapter include the precise formulation of the notion
of system performance in a broad context and the clarification of the nation of
supporting the evaluation of system performance using a stochastic process

model.



Chapter 3 introduces = general notion of recoverability and
establiphes: necessary and sufficient conditions for an operational model to be
recoverable. For both the recoveruble and the uonrecoverable models, it
examines tiie solution methods of a generally defined performance variable
where the crformance is identified with the minimum value of a functional.
The modeling approach and the evaluation methods are then illustrated through
the evaluations of a multiprocessor system. The results obtained indicate that
the performance variable is, indeed, a proper gencraiization of the traditional
notions of the system performance und reliability. The modeling and the
evaluation methods proposed thus represent a unifying approach for integrating

the performance and the reliability measures of computing systems.

Chapter 4 presents a specific operationa! model for evaluating the
performability of degradable multiprocessor systems. The model is constructed
according to a hierarchical i ~mposition of a system’s behavior. A Markovian
base model is developed 1o represent the resource availability of the system,
and priority queueing models are used to determine the operationai rates of the
resource states. The model not only demonstrates the generality of an
operational model but also illustrates the feasibility of modeling and evaluating
the system performance via a step-by-step hierarchical approach. The methods
developed in this chapter thus represent a straightforwa:d approach to produce

a composite picture of a computer’s ability to meet overall throughput goals.

Chapter § extends the concept of an ope atioral model to phased
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missions where the environment of a system can vary in time. Both the
combix_xatoﬁal and the probabilistic properties of the extended model are
examined in detail. In addition, an example is constructed to illustrate the
performability evaluation of a phased mission with multiple accomplishment
levels. The results obtained in this chapter represent an important step toward
the understanding and the development of a more general time-varying

operational model.

Chapter 6 summarizes the results of this study and suggests topics

for further research.



CHAPTER 2
PERFORMABILITY EVALUATION OF COMPUTING SYSTEMS

2.1 Introduction

The concept of hierarchical organization has become an important
tool in the Jesizn of computing systems. Hardware components are typically
formed by putting together some basic modules or building blocks, and
software components are often structured into subroutines in a top-down
manner. By carefully organizing the structure of a computer into a hierarchy of
components, it becomes possible to increase greatly the capability and the
functional features of the computer. Although this concept of hierarchical
organization has been used extensively in the design of computing systems
since the invention of the first electronic computer, its implication in computing

systems performance evaluation has only been exploited recently.

As suggested in [2], a computing system can be described by a
hierarchy of system models that vary in "scope” and "level of abstraction® (see
Figure 2.1 for an example of what we call a model hierarchy). In this
representation, a higher level model has a larger scope and a higher level of
abstraction i.e., it describes a larger portion of the computer and its
environment, but possibly in less amount of detail. In particular, the top model
has a scope that includes all the subsystems that can influence the

computational process of the system (e.g., hardware and software, peripherals,
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interfaces, mainte- ince systems, user demand system, etc., collectively referred
to as the total system). The level of abstraction at the top level is expressed in a
form easily usable by the system user. On the other hand, the bottom model
may involve low level representations of the computer’s hardware and

operating system structure.

Based on the above model hierarchy of the total system, various
performance and reliability measures can then be associated with models at
each level of the hierarchy. The part of the total system that one is interested
in evaluating must be identified first with a specific level in the hierarchy
(referred to as the object system). The part of the total system outside the
object system is then regarded as the emviromment of the object system. The
choice of an object system is, to a large extent, determined by the particular
problem one is interested in solving. For example, if the performance or
reliability of a data-base system is to be evaluated, the object system will not
only include the hardware and operating system but also the data bases and

their supporting programs.

Once a specific object system is selected, the performance of the
system can then be defined as how well the object system satisfies the
computational demands (also referred to as the workload) imposed by its

environment [4]. The performance is typically considered as a random variable
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referred to as a performance variable or performance index. Thus we can talk
about the mean, variance, distribution function, and the like of a performance

variable.

If we regard computer performance measures to be the
measurements of the quality of a computer according to the above broad
definition, some observations about the relationships among different
performance measures can now be made. First, we note that there are no
essential differences between what are traditionally cailed performance
measures (e.g., throughput rate, response time or utilization rate) and what are
traditionally called reliability measures (e.g., reliability, availability or
maintainability). They differ only in the way performance criteria are formed.
Any performance or reliability measﬁrcs, viewed in the broadest context, must
account for both the workload and the probabilistic nature of the object system.
Accordingly, in the discussion that follows, the term performance measure will
be used to include both the performance and the reliability aspects of a system.
Second, we also note that different performance measures can be associated
with different levels of the model hierarchy. Thus, for each level of the
hierarchy, it is possible to formulate various performance measures according
to the application needs as well as the modeling requirements of the object

system.

In the following section, we first define more precisely the basic

elements of a performance study by considering the basic components of a
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performability model. The relationships among those components are then
formal.ized via the concept of capability functions. Finaily, the notion of
supporting the evaluation of system performance using a stochastic process is
made precise by relating the probabilistic nature of the performance variable to

the known properties of the underlying stochastic process.
2.2 System Models

A major objective of this section is to formulate precisely what we
mean by a "stochastic model” for system performability. It is assumed that the
total system S=(C,E) contains a computer C operating in an environment E.
The computer C is composed of several processors, memory modules,
input/output devices, buses, etc., and the environment E includes man-made
components (e.g., interface circuits and peripheral subsystems), operational
rules (e.g., job submitting policies and maintenance procedures) and other
conditions (e.g., weather) that can influence the computer’s effectiveness. At
this level of abstraction, it is appropriate to view S as a network of
interconnected subsystems with simultaneous information flow among
subsystems. Accordingly, S can be described as an autonomous state transition

system that changes state due to events occurring in time.

Given the above characterization of the total system, the behavior

of S can be viewed as a stochastic process
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Xs = {X,lteT} 2.1)

where T is the time range involved (called the wilization period) and, for each

teT,

X:2—-Q

is a random variable defined on a common probability space (Q,E,P) and
taking values in the state space Q of the total system. In the following
discussions, it will be assumed that T is a set of real numbers and Q is a
discrete set. Thus, without los of generality, the states of Xg will often be

named by positive integers, viz.

Q=1{1,23,.}

or, when Q is finite,

Q=1{1,2,.,n}.

The stochastic process Xg will be referred to as the base model of S and is

denoted simply as X when the system context is clear.

Although the base model X provides a detailed description of the

system’s state behavior, the description is generally invisible to the users. It is

assumed that the users are concerned only with distinguishing different "levels
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of accomplishment” when judging how well the system has performed.
Accordingly, the user’s view of the system’s behavior can be formulated as a

random variable with respect to the underlying probability space (Q .E,P), i.e.,

Y:Q —A (2.2)

where, for each weQ, Y(w) takes a value in the accomplishment set A.
Depending on the application, the accomplishment set A can be any set of real
numbers where the elements of A are taken to be the various degrees of user
satisfaction such that a>b if a is preferred over b (i.c., the ordering relation >
as implied by the user preference coincides with the natural ordering of real
numbers). For example, to evaluate the reliability of a nondegradable system,
the accomplishment set can be taken to be A={0,1} where 1 = "system
success” and 0 = "system failure.” On the other hand, if the user is interested
in evaluating the system throughput, A can be taken to be an interval of real
numbers. The random variable Y will be referred to as a performance variable

of S.

As generally defined above, the performance variable Y clearly can
be used to characterize either the performance or the reliability aspects of a
system. Thus a natural measure that can be used in the evaluation of
computing systems is the probability measure induced by Y (e.g., see [15]
p.97)'. This unified performance-reliability measure is referred to as the
performability of S which, in terms of our modeling framework, can be defined

as the function perfg where, for each measurable set BCA (i.e.,
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{wlY(w)eB}eE) of accomplishment levels,

perfg(B) = P({w|Y(w)eB}), (2.3)

i.e., perfg(B) is the probability that S performs at a level in B. The requirement

that B be measurable insures the existence of the probability on the right side

of (2.3).

In theory, it is possible to determine the performability of S from
the underlying probability space (Q,E,P) of the performance variable Y.
However, in practice, the ‘undcrlying probability space is generally unknown
and, consequently, the performability must be determined from known
properties of the base model X. Hence an important step to determine the
performability of S is to establish relations between the base model X and the

performance variable Y based on the given properties of X.

Following a common practice in probability theory, we assume that
the base model X is specified by its finite-dimensional distributions or by
information that determines these distributions (e.g., Markov assumptions
together with a transition function and an initial distribution). Based on these
finite-dimensional distributions, we thien construct a "coordinate probability
space” (see [16] or [17] for the details of this construction) and express the
performance variable Y in terms of an equivalent random variable defined on

the new probability space. The advantage of this approach is that the resulting
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probability space is considerably structured and, hence, questions about the
probab_ilisti"c nature of X and Y can be addressed more ecasily by cealing with
the coordinate probability space. The construction of this probability space

described in [16] is summarized as follows.

Suppose that the base model X is described by a family of finite

dimensional distributions

&={F, .. It,....ta¢TandneN} (2.4)

where T is the utilization period and N is the set of all natural numbers. Then

the coordinate probability space is a probability space (U,F,Pr) where

1. The coordinate sample space U is the set of all functions u:T — Q where
Q is the state space of X. In other words, U is the [TFdimensional direct

product of the state space Q.

2. To construct the event space F, let B" be the smallest o-algebra
generated by the relative topology of Q" (also referred to as the topology
of Q" induced by the n-dimensional Euclidean space). For each set B in

B" and given ty,...,t, in T, let

C={ueU | [u(ty),...,u(t,)leB }, (2.5)
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i.e., C is the set of all functions u in U such that the values of u at t;
(.1 <i=<n), when regarded as an n-tuple, is an clement in B. If we let F,
be the set of all C such that C is obtained from (2.5) for all neN, all
BeB®, and all t,,...,t,¢T, then Fy is a field. Finally, the event space F is

taken to be the completion of the smallest o-algebra containing F,.

3. To construct the probability measure Pr, we first define a measure u on

F such that for each CeF,

pC) = [ . JdFy, . (11 -ma) (2.6)

where C is generated by the set B with indices t;, . . . ,t, (see (2.5)} and

F....., is a multivariate distribution in & (see (2.4)). Then the

probability measure Pr is the completed version of the above measure .

Given the coordinate probability space (U,F,Pr) of X, we can
construct an equivalent process of X defined on (U,F,Pr) such that both
processes have the same multivariate distributions ®. More precisely, let us

define

X = {X,|teT}

where, for all t¢T and all ueU,
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X, (u) = u(t). (2.9)

Furthermore, for all B in B" and all t,,...,t, in T, let us assign (see (2.6))

f ’ L) SRR ¢ TR )

to be the probability of the event

{ueU | [it|(u). - ,)-(‘.(u)leB }.

Then, for each teT, )-(t is a function from the set U to the set Q and the family
of functions X is a stochastic process defined on (U,F,Pr) having the
multivariate distributions & (see [17], pp. 10-11). Since, for each ueU, u(t)
specifies the state of X at t (see (2.7)), each element in U will be referred to as

a state trajectory and the set U will be referred to as the trajectory space.

The notion of a coordinate probability space permit us to answer
questions about the probabilistic nature of X by relating the questions to the
state behavior of X. In particular, for each fixed weQ of the underlying
probability space (2 ,E,P) let us define a function u,: T — Q such that, for all

teT,

u,(t) = Xy(w). (2.8)
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Moreover, given an event V in F, let

W= {wlu,eV) (2.9)

be a subset of Q. Then, it is known (see [17], pp. 621-622) that W is an event
in E and that

P(W) = Pr[V]. (2.10)

On the other hand, given a subset "V of @ measurable with respect to the
induced probability space of X, there exists an event V in F such that (2.10) is

satisfied.

In the following discussions, we consider the question of what we
need to know about X in order to determine the distribution functicn of tne
performance variable Y. Formally, we says that X supports Y if there oxists a

random variable

7U— A (2.11)

defined with respect to the coordinate probability space (U,F,Pr) such that for

each we

Y(w) = v(u,) . (2.12)
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where u, is the state trajectory associated with the outcome w. Since v can be
regarded as the user’s performance criteria for judging the "capability” of the

tota! system, it ig refecred to as the capability function of S.

Whea X supports Y, the capability function permits us to determine
the performroility of S using the finite-dimensicnal distributions of X. To

substantiate this claim, let us define a function

h:Q —-U

such that, for all ¢*- @, h(w)=u_, where u, is the state trajectory associaied with

the out .'me w. Then, by (2.12), X supports V implies

Y=+h,

i.e., Y is the functional composition of vy and h, applying h first. Accordingly,

taking the preimage on both side, we have

Y-l - h-i“)'-l.

Hence, for any measurable set BC A, if we let
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V = {uly(u)eB}CU
and
W= {ulY(w)eBlC O,
then
W= {wlu eV} =h"1(V).

Accordingly, by (2.10), P(W) = Pr[V], which, in turn, implies

pe.1s(B) A P({w|Y(w)eB})
= Prly7'(B)] . (2.13)

Since the probability Pr[y~!(B)] can be determined directly from the finite-
dimensional distributions of X, we have shown that X together with + suffice to

support an evaluation of the performability perfs.

In view of what has been observed, if X supports Y, then the pair
().(,7) is said to constitute a performability model of S. If B is a measurable set
of accomplishment levels, the inverse image y~!(B) is referred to as the
trajectory set of B where its determination requires an analysis of how levels in

B relate back down via ! to trajectories of the base model. In the following
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discussions, since we will be dealing with X instead of X, the induced process X

will be called the base model and denoted simply as X.

Given a performability model (X,y), equation (2.13) permits us to
evaluate the performability of S for a set B of accomplishment levels by i)
determining the trajectory set 4~1(B) and ii) calculating Pr{y~!(B)]. In general,
the trajectory set y~!(B) is difficult to obtain because the "distance” between the
base model X and the performance variable Y may be considerable. The
difficulty can be alleviated by introducing intermediate models between X and
Y based on the concept of a model hierarchy discussed in Section 2.1. The use
of a model hierarchy allows the capability function or, more accurately, the
trajectory set y !(B) to be derived step-by-step in a top-down manner from
more clementary components in a clearly conceived way. In particular, by.
introducing an intermediate model called an "operational model,” we show in
the following chapter that the performability of S can be determined by

evaluating the intermediate model.

Finally, we note that the role of a capability function in
performability evaluation is similar to that of a structure function [18] in
reliability evaluation. However, even when performability is restricted to
reliability, the concepi of a capability function is still more general because a
capability function must take into account the behavior of S throughout the
utilization period while a structure function is restricted to modeling the

instantancous behavior of S at a given moment in time [2]. /



CHAPTER 3
OPERATIONAL MODELS

3.1 Introduction

When modeling degradable computing systems by stochastic
processes for system performance or reliability evaluation, the models used are
typically Markov processes (see [8], for example) or models which can be
analyzed in terms of embedded Markov processes (for example, certain
queueing models such as M/G/1 or GI/M/m queues; see [21]). However, to
ensure the validity of the Markov assumption, it is usually necessary to model
the structure and behavior of the system at a low level, e.g., a level describing
the system’s physical resources (processing units, memory units, input buffers,
etc.). Performance and reliability measures, on the other hand, often quantify
the system’s behavior in terms of high-level, user-oriented variables
(throughput, response time, operationzi status, etc.) which, if viewed as
stochastic processes, are seldom Markovian. In such cases, an essential part of
the modeling effort is to establish a "connection® between the low and high

levels to resolve the probabilistic nature of the measure in question.

Historically, in the context of reliability modeling, this connection
has taken a form that lies at one of two extremes. At one extreme, System

"success” is defined in terms of the underlying\ structural resources (at least so

-22-
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many fault-free processors, at least so many fault-free memory units, etc.), in
which case the connection between structure (available fault-free resources)
and pe;formance (success or failure) is immediate. At the other extreme, the
object of the modeling effort is the connection, per se, and the resulting model

is typically some form of event-tree or fault-tree (see (18], for example).

In general, as discussed in the previous chapter, the general nature
of this connection can be formalized as a capability function of the system. In
this setting, a total system S, comprising a computing system and its
computational environment, is modeled at a low level by a stochastic process X
(the base model of S). Then, relative to a high level variable Y (the
performance of S), the capability function of S is a function 4 which translates
state trajectories (sample paths) of the process X into corresponding values of
the performance variable Y. Knowing X and v, it is possible to solve for the
probability distribution function of Y and, hence, determine the performability

of S.

When the performance variable Y is far removed from the base
model X, solution procedures can be simplified by introducing intermediate
model at levels between X and Y. One use of such a model hierarchy is a
step-by-step formulation of the preimage of v beginning at Y and terminating
at the base model X. If Y is discrete, the performability of S can then be
evaluated by determining the probabilities of certain trajectory sets that

correspond (under 471) to performance values of Y. Another role that <2n be
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played by an intermediate model, and the one we explore ih this chapter, is to
represent the probabilistic nature of S at a level that is higher than the base

model and thus "closer” to the performance variable.

To characterize the behavior of an intermediate model, Section 3.2
introduces a general notion of recoverability and shows that a performance
process is nonrecoverable if and only if the state behavior of the process can be
determined by taking a "snapshot" at the end of the utilization period. For both
the recoverable and nonrecoverable models, Section 3.3 examines the solution
methods of a generally defined performance variable where the performance is
identified with the minimum value of a functional. The modeling ana the
solution methods are then illustrated in Section 3.4 through the evaluation of a
degradable computing system. The results of the evaluation indicate that the
performance variable considered in this chapter is a proper generalization of the
traditional notions of the system performance and reliability. The modeling and
the evaluation methods considered thus provide a unifying approach for
evaluating the integrated performance and the reliability of degradable

computing systems.
3.2 Recoverability

Generally, in reliabiiity modeling, a system is said to be repairable or
nonrepairable according to whether maintenance actions are permitted during
its utilizetion to reduce the incidence of system failure or to return a failed

system to an operating state. The classification is useful because, when a
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system is nonrepairable, the computation of system reliability at a time t
amounts to calculating the probability that the system functions at that moment
in time (see [18], for example). On the other hand, when a system is
repairable, the computation requires a more complete knowledge of the

system’s behavior during the eatire utilization period T.

The above classification and properties of reliability models can be
extended to models of degradable computing systems by considering the way in
which system performance may change in time. The generalization not only
permits us to obtain a better understanding of the performance degradation of a
degradable computing system, but also provides us with a common basis for

unifying traditional performance and reliability methods.

To begin, let us define an operational model to be a stochastic process

Z = {Z,|teT)

with Z,: Q@ — Q such that the state space Q of Z is partially ordered by some
partial ordering <. The partial ordering =< can be interpreted as the ranking of
system states according to the degree of user satisfaction with the system
operating in a given state (hence the term "operational”). Although operational
models are introduced here to characterize intermediate-level models, it should
be noted that operational models can often be defined at the base model level

with some natural ordering of states. For instance, consider a system S
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containing m subsystems where each of them can be in one of two operational

conditions; functioning or failed. Then, one natural way to define a state space

for S is by taking *

Q={o,1j™ 3.1)

and, assuming no compensating effects of successive failures, the state space
can be ordered by taking the Cartesian product of the component ordering

relations, i.e., for all (a,,a,, . . .,ay) and (b;,b,,...,by) in Q, let

(al’azo cte oam) = (blobz'r-"'bm)
(3.2)
if and only if a;<b, for all 1<i<m .

The above ordering of component states is a standard practice in reiiability
theory and plays an important role in fault-tree analysis (see [18], for example).
The applicability of operational models in modeling degradable computing

systems will be discussed in more detail in the next section.

Given an operational model Z, the concept of repairability can be
extended as follows. We say Z is nonrecoverable if, for all s,teT(s=t) and all

ijeQ,

Pr{Z,=i, Z;=j] > O impliesi =j .
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In less formal terms, an operational model is nonrecoverable iff its operational
status can only degrade monotonically in time. Moreover, by considering the
contrapositive form of the above condition, it follows that Z is nonrecoverable

iff for all s,teT (s=<t) and all i,jeQ,

i2j implies Pr[Z,=i, Z;=j] = 0. (3.3)

Similarly, we say Z is recoverable if it is not nonrecoverable, i.c., if there exist

s,teT (s=t) and i,jeQ, such that

i 2> jand Pr(Z=i, Z=j] > 0. (3.4)

In other words, Z is recoverable if there is a nonzero probability that the state
of the system may "recover” from a degraded state i to a higher level state j (j

> i) or to a noncomparable state j (j 2> i and j & i).

The notion of nonrecoverability can be characterized in a number of

useful ways, as indicated by the following theorem.

Theorem 3.1:

Let Z be an operational model with staic space Q. Then the

following statements are equivalent:
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(1) Zis nonrecoverable.
(2) EFor all s,teT (s=<t) and all keQ

PrlZ 2k, Z=k] = 0.

(3) For all s,teT (s=<t) and all keQ
PriZ >k, Z=k]l =0 .

(4) For all s,teT (s=<t) and all keQ
PriZ,=k, Z,>k] = Pr[Z,>k] .

Proof:

(1) implies (2):

Suppose that Z is nonrecoverable. By (3.3), for all s,teT (s<t) and

all i,jeQ,

i 2 j implies Prl(Z,=i, Z=j} = 0 .

Since Q is denumerable, we then have, for all keQ,

PriZ, >k, Z=k]

= 3 Prlz=i, Z=~k] =0.
il.
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(2) implies (3):

Suppose that, for all s,te¢T (s=st) and all jeQ,

Pr(Z,2j, Zy=jl = 0.

Then, since Q is denumerable,

PrlZ, >k, Z,=k]

= ¥ Pr(Z, 2>k, Z,=j]

j=k

< Y Pr(Z2j, Z=jl =0.

j=k

(3) implies (4):

Note first that, for all s,teT (s=<t) and all keQ,

Pr(Z,=k] = Pr(Z,=k, Z,=k] + PrlZ, 2k, Z,>k].

Hence, for all s,teT (s<t) and all keQ,

PriZ 3k, Z=k] =0

if and only if

(3.5)
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Pr(Z,=k, Z=k] = Pr(Z,;=k] .

Thus (Ei) and (4) are equivalent and, in particular, (3) implies (4).

(4) implies (1):

From (3.5), when condition (4) is satisfied, we have, for all

s,teT (s=<t) and all jeQ,

PZ 3}, Z,=jl = 0.

Thus, i2j implies

Pr(Z,=i, Z=j] < PrlZ,2j, Z=jl =0,

in particular, it implies Pr[Z=i, Z;=~j] = 0, i.c., as characterized in (3.3), Z is

nonrecoverable.
This circle of implications thus completes the proof of Theorem 3.1.

An alternative way to characterize the recoverability of an
operational model is by examining the state behavior of the model over the
entire utilization period. In this regard, let us restrict our attention to

operational models that are separable in the sense as defined in [17], i.c., there

exists a denumerable subset R of T and an event A of probability 0 such that,
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for any closed interval B and any open interval I in (—oc0,+00), we have

N(ZB} - N{ZeB} C A (3.6)

sedR sdT
where IR = IR and IT = IMT. The set R is referred to as a separability

set.

When Z is separable, we are able to show that Z is nonrecoverable if
and only if its state behavior over any time interval can be summarized by

observing the state of Z at the end of the interval.

Theorem 3.2:

Suppose Z is a separable operational model. Then Z is

nonrecoverable if and only if,

for all r,teT (r<t) and all keQ
3.7
Pr{Z,>k, rss<t] = Pr{Z,>k] .

Proof:

Suppose Z is noarecoverable and, given a state keQ, let

E, = {wlZ(w)=k} (s¢T).

Then, in terms of this notation, (3.7) says

S
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Prl N EJ=PrlE]. 3.7y

selr.t]

F -thermore, let us denote the intersection »f two sets A and B by AB. Since
Z is scparable, there exists a denumerable sukset R of T and a null event A

such that, for all r,teT,

NE- NECA.

se(r, )R se(r,t)

Accordingly,

EE| N E- NE|ca

se(r,t)R se(r,t)
and, hence,
NE- NECA (3.8)
selrijR’ selr.t)

where R=R | {r,t}.

Clearly, the first set in (3.8) is measurable because [r,t]JR’ is
denumerable. Thus, under the separability hypothesis, the second set (which is
contained in the first) is likewise measurable and has the same probability

(assuming the probability measure Pr is complete; see Chapter 2, p. 16). More
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precisely, for al r,teT (r<t),

PPl El=Pl N E].

selr,t) selr.t]R’

(3.9)

Hence, if we can show that the probability on the right side of (3.9) equals

Pr(E,], we establish the desired result, i.c., (3.7)".

If we denote

D= N E,

ser t]lR’

then, since te[r,t]JR’, we have D==DE,. Thus it suffices to show that

Pr[DE;} = Pt[E,)

or equivalently,

Pr[DE,] = o.

Next, note that

(3.10)
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U E[E

selr.t]R’

DE, =

- U EE,.

se[rt]R’

Accordingly, we have

PrDE] < 3 PrlEE]

selr tjR’

or equivalently (in our original notation),

PrlDE] < 3 Prlz»k, Z=K] .

se[r,t]R’

Since Z is nonrecoverable, by Theorem 3.1 (condition 4), each term on the

right side of the above equation is zero whence

Pr[DE] =0.

This proves (3.10) and ihus establishes the necessity of (3.7).

To prove that (3.7) is sufficient, suppose (3.7) holds. Then, if we

let s,teT 2nd let keQ; by Theorem 3.1, it suffices to show that

PrlZ, >k, Z,;=k] = Pr[Z,=k]
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or, equivalently, using the notations introduced above
Pr(E,E,] = PrlE,] . (3.11)

The above equality is trivially true when s=t, so let us suppose s<t. By (3.7),

it follows that

Prl N EJ=Pr[E].

uels.t)

Then, since

Pr[EE,] < Pr[E|]

and

PrlEE] = Pr[ () E,] = PrlE],

uels,t]

it follows thai
Pr(E,E,] = Pr(E,]

which establishes the sufficiency of (3.7).
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Using Theorem 3.2 and the fact that Q is denumerable,
recovc_rabifity can also be characterized by each of the following alternative

conditions (the proofs are immediate and are omitted):

(1) For all r,teT (r<t) and all keQ
(3.12)
PrlZ,>k, r<s=<t] = Pr[Z,>k] .

(2) For all rteT (r<t) and keQ
(3.13)
PrlZ,>k, r=s<t, Z;=k] = Pr[Z=k] .

Theorem 3.2 provides us with a convenient way for relating the
concept of recoverability to the traditional notion of repairability. To see this,

let us define the level-k reliability of Z at time t to be

R, (t) = Pr[Z, >k, 0<s=<t] (3.19)

and define the level-k availability of Z at time t to be

A (t) = Pr(Z,=k] . (3.15)

Clearly, when Q={0,1} where O=failure and 1==success, R,(t) and A,(t)
reduce to the usual notions of system reliability and system availability,

respectively. Moreover, when Z is nonrecoverable, Theorem 3.2 implies that,
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for all teT and all keQ

(3.16)
Ak‘:() - Rk(t).

In other words, when Z is ncn.ecoverable, its level-k reliability is reduced to
the level-k availability for all keQ. The significance of this observation is that,
when Z is nonrecoverable, the ca':ulation of the level-k reliability at a time t
amounts to calculating the probabi'ity that the system operates at a level greater
than or equal to k at that particular 1noment in time. On the other hand, let
T=[0,h] and suppose (3."6) holds. Then, since, for all r,teT (r<t) and all
keQ,

Pr[Z, =k, 0=s=<t] < Pr[Z,=k, r<s=<t] < Pr[Z=k] ,
we have A (t)=R,(t) impﬁcs
Pr[Z,=k, r=s=<t] = Pr[Z;>k] ,

i.e., condition (3.16) is necessary and sufficient for nonrecoverability. Thus, by
taking the negation of the above condition, we also have the following

alternative characterization of recoverability:

Theorem 3.3:

Let Z be a separable operational model with a state space Q. Then Z
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is recoverable if and only if, there exist teT and keQ, such that

Ay (t) > Ry(t). (3.17)

Roughly speaking, the above theorem says that Z is recoverable if and only if,
for some keQ, the level-k availability is subject to improvement by

maintenance actions.

Theorems 3.2 and 3.3 not only provide us with a useful tool for
characterizing the behavior of operational models, they also provide us with a
basis for evaluating the performability of degradable computing systems. Each
of equations (3.14) and (3.15) defines an important class of performance
measures that are proper generalizations of the traditional notions of system
reliability and system availability., When the operational model is
nonrecoverable, both classes convey the same information and the behavior of
the system can be determined by taking a "snapshot' at the end of the
utilization period. Motivated by the above properties of an operational model,
we consider in the following section a single user-oriented performance variable

that integrates these notions of system reliability and availability.
3.3 Evaluation of Computing Systems Using Functionals of a Markov Process

When describing system behavior in user-oriented terms, it is often
possible to identify various operational "modes" for the system (including a

failure mode) which result in different degrees of user satisfaction. Moreover,
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for a given mode of operation, the extent of user satisfaction can often be
quantified as a real number "rate” at which that operation benefits or penalizes
the us.er. Depending on the application, these rates can have a variety of
interpretations relating to the system’s productivity, responsiveness, etc., or at a
higher level, to such things as economic benefit (e.g., the worth rate measured,

say, in dollars/unit time) associated with a given mode of operation.

Under the above conditions, a user-oriented model can be
constructed in a natural way. As in th.e previous discussions, let S denote the
total system in question and suppose that we have already determined a base
model X and a capability function v relative to some specified performance
variable Y. Suppose further that the base model process X is defined relative

to a continuous time interval T (the utilization period), that is,

X = {X,|teT} (3.18)

where the random variables X, take values in a denumerable state space Q (see
(2.1) for the definition of a base model). Finally, we presume that at the base
level, the system model is Markovian with a time-invariant structure, that is, X
is a continuous-time time-homogeneous Markov process. Unless otherwise
specified, it will be assumed that Q is countably infinite throughout the

following discussions.

Within this framework, let us now consider the situation discussed



above where, at a higher level, one is able to identify various operational
modes for S, each having an associated operational rate. If, further, each state
of the base model can be classified according to some mode of operation, then

there is a naturally defined real-valued function

fQ—R (3.19)

where, for each i¢Q, f(i) is the operational rate associated with the mode
containing i. Moreover, if we let Q denote the range of f (i.e., Q={f(i)lieQ})

and, for each variable X, of X (see (3.18)), we let

Z, = f(X,) . (3.20)

It follows that

Z={Z]teT} (3.21)

is a stochastic process with state space Q referred to generally as a functional of

the underlying Markov process X (see [22], for example).

When f is not 1-1 (i.e., some different states have the same mode of
operation), the derived process Z will typically represent a simpler, higher level
view of the system and is generally non-Markovian unless certain stringent

conditions are satisfied. (Conditions under which the derived processes become
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Markovian are discussed in the Appendix.) To qualify Z as an intermediate
model, we must also require that Z be compatible with the performance
variable Y to the extent that the probability distribution function of Y can be
determined from Z. More precisely, letting « denote the translation of
trajectories of X to trajectories of Z (i.e., x(u)=0 where u(t)=f(u(t)), for all

teT), there must exist a capability function ¥ for Z such that

Y= (3.22)

where - denotes functional composition, first applying x. Although the above
condition appears somewhat formidable, it says simply that the higher level
model Z must remain detailed enough to permit solution of the system’s
performability. This condition can be typically satisfied in practice if the
definition of performance (i.e., Y) is taken into account when identifying the

various modes of operation and assigning rates to these modes.

If f, as defined in (3.19), satisfies condition (3.22) then we refer to f
as an operational structure of S and, since states inherit the rates assigned to
r..odes, the value f(i) is referred to as the operational rate of i or, when context
permits, simply the "rate of i." Likewise, the corresponding functional Z is
referred to as an operational model of S or, alternatively, a model of S at the

operational level.

In reliability modeling where, at the operational level, a system is
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typically viewed as either operating or not operating, the concept of an
operational structure reduces to the familiar notion of a structure function [18].
Technically, a function f:Q — R is a structure function if Q has binary
coordinates, i.c., Q={0,1}™, and f(i) is 1 or 0 according as S is operating or not
operating in state i. More recently, operational structures have been employed
at least implicitly in the context of performance-reliability modeling where the
operational rates are referred to as computational capacities (9], [12]. Although
capacity (which typically refers to the maximum: rate at which a computer can
"supply” computations) is a legitimate interpretation of operational rate, it
should be emphasized that, in general, such rates can represent an interaction
of supply (by the computer) and demand (from the environment); this is
because that, as generally conceived, a state i of the base model represents a
particular status of both the computer and its environment; hence, both supply
and demand can be accounted for when translating i, via f, to its corresponding

operational rate f(i).

In various special forms, then, the concept of an operational
structure is no stranger to performance and reliability modeling. On the other
hand, the general nature of associated functional Z, how it relates to the base
model, how it can be exploited in solution procedures, etc., appear to be

subjects that deserve further investigation.

In the following discussions, we focus our investigation on the

evaluation of performability with respect to a generally defined performance
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variable. This variable is defined in terms of an arbitrary operational model
which is generally non-Markovian. However, by relating this variable to the
underl;ing Markov process, it is shown that system performability can still be
evaluated using traditional Markov process methods. The performance variable

is motivated by the level-q reliability

R, (t)=Prlf(X,)=q, 0=sxt]

(where qeQ) discussed in Section 3.2.

Recall that, by (3.16), the operational model Z={Z|teT} is
nonrecoverable if and only if, for all teT, Z, is the "worst case" rate experienced
by Z during [0,t]. On the other hand, if Z is recoverable, it was shown in
Theorem 3.3 that the operational rate at the end of the utilization (i.c., the
value Z,) will generally not convey the worst case rate. Motivated by the above
considerations, a performance variable Y,, indicating the worst case operational

rate during [0,t], can be defined on Z as follows:

Y, = min{Z,|0<s=<t} . (3.23)

As defined above, we note first that Y, is a discrete performance
variable since the base model X has a denumerable number of states and,

hence, there are a denumerable number of operaticnal rates. Therefore the



performability perfg of S (see (2.3)) is simply the probability distribution of Y,,

i.e.,

perfg(q) = Pr(Y,=q] . (3.29)

Before attempting to solve the performability of S, let us consider
the recoverability of Z in more detail. Since the underlying base model is a
time-homogeneous Markov process, signiﬁcan_t insight; can be obtained
regarding the relationship between Z and X by expressing the recoverability of

Z in terms of the probabilistic nature of X.

In this regard, let us restrict our attention to Markov processes X
which are regular in the sense that their transition probabilities are uniquely
determined by a gznerator matrix or, equivalently, a state-transition-diagram
(see [23], for exampie). Mcreover, borrowing the terminology from [22], we
say that i leads to j (where i,jeQ) and write i-—j if and only if there exists a t>0

in T such that

Pr(X,=j|X,=i] > 0.

Then, it can be shown that
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Theorem 3.4:

Let Z be an operational model associated with the base model X and
the operational structure f. Furthermore, let X be a time-homogeneous
Markov process. Then, Z is recoverable if and only if, for some s¢T and some

i,)eQ, both of the following conditions are satisfied

(1) Pr[X,=i] >0
(3.25)
(2) i=—jand (i) < ().

Proof:

By (3.4), Z is recoverable if and only if there exist s,teT (s=<t) and

q.reQ, such that

i <jand PrlZ,=q, Z=r] > 0. (3.26)

(Here, since Q is a totally ordered set, we are able to replace > with < in

(3.4).) Now, since Q is denumerable,

PrlZ,=q, Z,~r]

- 3 PrlX= Xl

{
=

and, hence, equation (3.26) holds if and only if, for some i,jeQ,
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f(i)=q, f(j)=r and Pr[X,=i, X,=~j] > 0. (3.27)
Moreo-ver. since

Pr(X,=~i, X,=j] > 0 if and only if
(3.28)
PrX,=i] > 0andi—j,

it follows that the conditions stated in (3.25) are necessary and sufficient for Z

to be recoverable.

By taking the negation of (3.25), similar result can alsc o ved

to characterize the nonrecoverability of Z as follows:

Corollary:

Let Z be an operational model associated with the base mcdel X and
the operational structure f. Moreover, let X be a time-homogeneous Markov
process. Then, Z is nonrecoverable if and only if, for all i,jeQ and all s¢T, at

least one of the following conditions is satisfied:

(1) Pr{X;=i]=0
(3.29)
(2) i— jimnlies £(i) > £() .

Note that if we assume Q is the minimal state space of X in the sense

as defined in (22], i.e., for ali ieQ, there exists an s in T such that Pr{X =i]>0,
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then the first conditions in (3.25) and (3.29) cun botbh be eliminated. To show

this, we first observe that

PriX, =) > 0 if and culy if

Pr(X,—k] > 0 and Pr[X,=i|X,=k! > 0

for some keQ. Now since X is regular, the transition probabilily
Pr[X,=i|Xy=k]>0 as a function of t vanishes either everywhere or nowhere in
T (see [23], p. 240). Thus, it must be the case that Pr[X,~i|Xy=k]>0 for all

teT. Clearly, it then follows that

PriX=1] = Pr{Xg=k]-Pr{X~ilX¢=k] > 0

for all teT.

The recoverability of Z can also be characterized in terms of
partitions induced by f on the state space Q. Note first that the binary relation
— induces an equivalence relation on Q as follows (see [22], for example): ve
say i communicates with j (denoted i ~— j) if and only if i — jand j — i. Let [i],
be the communicating class containiug i. Then the partition of Q induced by

the communication relation can be denoted as a set

x. = {lil.lieQ} . (3.30)
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Note also that the operational structure f:Q — R induces another partition on Q

xp= {(ilflieQ} (3.31)

such that i,j belong to the same equivalence class if f(i)=f(j). In terms of the
above partitions and assuming that X is a time-homogeneous Markov process

with minimal state space Q, we can then show that

Lemma:

If Z is nonrecoverable, then = is finer than »; (denoted » <=y).

Proof:

Suppose that i and j belong to the same block in =.. It must be the
case that i—j, which in turn, implies that f(i)=f(j) and f(j)=f(i) because Z is
nonrecoverable. Thus, it foiiows that f(i)=f(j), i.c., i and j belong to the same

block in .

The converse of the above lemma is generally not true. For

example, let X be a Markov process with transition graph
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and initial distribution Pr[Xy=1]=1. Suppose the operational structure f:Q — R

is given by f(1)=0 and f(2)=f(3)=1. Then

wo = {{1},{2,3}} = =;.

However, Z is recoverable, because 1 — 2 but f(1) <f(2).

The above example also suggests a necessary and sufficient condition
for Z to be a nonrecoverable model. Under the same assumptions as those for
the above lemma, we first define a partial ordering of the set = For all [il,

and [jl. in =, let

file— Gl if i—j. (3.32)

Clearly, the partial ordering as a relation is reflexive, transitive and

antisymmetric. Furthermore, let us define a mapping



-50-

h:"c —Q (3.33)

such that h([il.)=f(i). Then,

Theorem 3.5:

Z is nonrecoverable if and only if h is well-defined and order-

preserving.

Proof:

Suppose Z is nonrecoverable. Then, by the above lemma, = <.
In other words, for all i and j in Q, i ~ j implies f(i)=f(j) and, hence,
h(lil;)=f(i) is well-defined. Moreover, suppose [i]. — (. Then, by (3.30),

we have i — j and, hence,

h(lile) = f(i) = £G) = h(flo) .

i.e., h is order-preserving.

Conversely, let us suppose that h is well-defined and order-

preserving. Then, for all i,jeQ,

i—j implies [i], — [jl..
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Now since h is well-defined, we have
h([il,) = f(i) and h([jl.) = £() .

Applying the order-preserving assumption of h, it then follows that
f(i) = h([il) = h(Gl) = £()
i.e., Z is nonrecoverable.

Corollary:

If Z is nonrecoverable, then the following diagram commutes
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Theorem 3.5 permits us to determine whether an operational model
is nonrecoverable by comparing the state diagram of the underlying Markov
process with the operational structure. To illustrate, let us consider a base

model X with the following state diagram

(=)
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and initial distribution Pr[X,=2]=1. Suppose the operational structure is given
by f(2)=f(1)=1 and f(0)=0. Then, x~{{0},{1,2}}=x¢ { 1,2 } — {0} and

h({1,2})=1 > h({0})=0. Thus, by Theorem 3.5, Z is nonrecoverable.

It should also be noted that a Markov process X may induce a
nonrecoverable model with respect to an operational structure but a recoverable
model with respect to other operational structures. For example, using the
same base model as above and the operational structure g(2)=2, g(1)=1 and
g(0)=0, then it is clear that x &=, ( = is not finer than x,). Hence, by the

lemma of Theorem 3.5, Z induced by g is a recoverable model.

Returning now to the problem of evaluating the performability of S
(with respect to the performance variable Y, as defined by (3.23)), we consider
the problem in two cases based on the recoverability of the operational model
Z. If the operational model Z is nonrecoverable, Theorem 3.2 shows that the
behavior of Z during [0,t] can be determined by the state of Z at the time

instant t. In particular, we have

- Pr[Z,=q, 0<s=<t] = Pr[Z,>q] (3.34)
and
Pr{Z,>q, 0=s=<t] = Pr[Z,>q] . (3.35)

Hence the performability of S (see (3.24)) can be obtained by evaluating the
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finite dimensional distribution Pr{Z,=q]. More precisely, we have

perfs(q) = PrlY,=q]
= Pr{min{Z, |0=ss=t}=q)
= Pr{Z,=>q, 0=s<t] — Pr[Z,>q, 0=s=t]
= Pr(Z,>q] — Pr(Z,>q]

= Pr(Z=q] . (3.36)

Thus, in this case, evaluating performability (i.e., to determine the probability
distribution function of Y,) is tantamount to evaluating the transition function

of X, i.e.,

perfs(q) = ¥ Pr(X;=j]
fG)=q

= 3 PrlX,=j|Xy=il PriXy=i] . (3.37)
Qs
On the other hand, if Z is recoverable, more elaborate solution methods are

required since (3.36) is no longer satisfied.

When the operational model is recoverable, the performability perfg

of S can be obtained by calculating the conditional probabilities
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(1) = PrlY,=q, X =j|Xo=i] (3.38)

where i,jeQ, qeQ and t=0. Note that, when where t=0, the minimum
operational rate is just the operational rate associated with the initial state; in

short

1 if i=j and f(i)=q,
mg(0) = | (3.39)

0 otherwise.

Then, by summing over some of the indices of m(t), we have

perfg(q) = “ZQ md(t)-p; (3.40)
ije

where p;=Pr[X,=il.

There are several ways of expressing the conditional probabilities
m(t) in terms of the state transition probabilities of the underlying Markovian
base model X [24). First, let us introduce another stochastic process based on

X and the performance variable Y, as

X = {(X,,Y)|teT} . (3.41)

Then, since
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Y, = min| inf {Z,Y
: mxn[.éx:st{Z, ol

and since X is a Markov process, it can be shown that X is a Markov process.

Clearly, the generator matrix of X can be expressed in terms of the
state transition rates of the underlying Markov process X. For all i,jeQ (i#j),
let Ajj denote the transition rate of X from state i to state j. Then the generator

matrix of X is the |QIX|Q| matrix

A = [a)
where, for all i,jeQ,
i if i#j,
a; = (3.42)
-3 M if i=j.
k#i

If, further, we let the generator matrix of X be denoted by

A= [a,]

where y=(k,r) and z=(j,q) belong to QXQ, then
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8j if 1) f(k)=r, f(j)=q and r~q, or

~ 2) f(k)=r, f(j)=q and r>q, (3.43)

0 otherwise.

Accordingly, if we denote the transition function of X by

5;1(0 e Pr[i‘-zlio-x]
where x,z2¢QXQ, then the transition functions of X can be expressed as the

system of differential equations (see [23]; PP. 254-255, Theorem 4.5)

d _ — =
T P = T Py (t)a,. (3.44)
dt yeQxQ ’

Furthermore, notice that when x=(i,f(i)) and z=(j,q),
Prz = PriX;=(j,q) | Xg=(i,f(0))]

= PrX,=j, Y,=q|X¢=i, Yo=f(i)]

- mi‘,l(t) .

Hence, by varying the value of y over QXQ and replaying &,, by (3.43), the

above system of differential cquations (3.44) can be expressed more
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conveniently as LR QL

3 mi(t)ay if fi)=q, fG)>q
if(k)2q
L of =12 miray I G)=q, G, (3.45)
o
l0 otherwise.

It was suggested [24] that the above equations can also be obtained by relating

(3.38) to the notion of taboo probabilities [22].

Another approach for determining the probability distribution of the
random variable Y, is to modify the underlying Markov process X by making
some of the states in Q abscrbing [24]. More preciseiy, iet us rename and
rearrange the elements in Q into an increasing sequence Q={1,2,...}. For each

qeQ, 1=t B, be a subset of Q such that

B, = {ilf(i)<q}

where f:Q — R is the operational structure of Z. We then replace the state
space of X by a reduced one in which a single state b, replaces the states B, and

denote the transformed process by
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X% = {X3]teT) .

Moreover, let us denote the corresponding generator matrix of X9 by

Al = [ii,] .

then, for all i je{kl|f(k)=q} | (b},

1

% iff{i)=q, f()=q,

iy = ﬁ, a  if iy, j=by, (3.46)

if i=b,.
° ’

If, further, we let the transition functions of X be denoted by

pJ(t) = PriX d=j| X§=i) (3.47)

where i,je{klf(k)Zq}U {by). Then the conditional probabilities md(t) can be

expressed as follows: For all i,jeQ and all qeQ, where f(i)=q and f(j)=q,
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m(t) = PrlY,=q,X,=j|Xo=i] — PrlY,2q+1,X=i|Xo=i]
= Pr(Z,>q,0=ss5t,X,=j| Xo=i]
- PrlZ,2q+1,0=s5t,X,=j| Xy=i]
w Pr{X8m=j|Xq=i] — Pr[X3*!=j| X =i
= pd(t) — p§*i (1) . (3.48)

Hence, if we solve the transition probahilities pd(t) for all qe6. the

performability of S can be computed by

prfs@= 3 pf)p — T pFHOP
f}Za fQ=at!

- 3 O-pWlp— T [O-pF O]

f(i)=q f(i)=q+1
(3.49)

where p;=Pr[Xy=i] are the initial probabilities of X.

When the total system is modeled by a recoverable operational
model, either (3.45) or (3.49) can be used to evaluate the performability of the
system. The solution method described in (3.45) requires cvaluating a large
sy«iz~, of differential equations. On the other hand, the solution method
described in (3.49) decomposes the system of differential equations of (3.45)

into smaller subsystems. Thus, evaluating (3.49) amounts to a step-by-step
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iterative solution to (3.45). Finally, we also note that, in addition to the
spplications illustrated in the following example and the next chapter, (3.45)
and (3.49) can also be used to compute the "intraphase transition probabilities”

considered in the contex. of phased model: (see Section 5.4).
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3.4 Performability of a Triplicated Fault-Tolerant Computing System

:To illustrate the solution methods for the evaluation of system
performabilities, let us consider a degradable fault-tolerant computing system
wherein resources are triplicated and voted (triple modular redundance). This
type of resource redundancy has been employed in a variety of hardvare
architectures (see [25] for an example of current usage) and, in a more general
form (N modular redundancy), has been investigated as a means for
implementing fault-tolerant software (see [26], for example). Although such a
system will generally possess a number of triplicated resources (e.g., the various
"triads" of the FTMP architecture [25]), let us restrict our attention to a single
resource, say, a triplicatsd processor consisting of three identical processor
modules and a voter. With respect to hardware faults, we assume that the
processor modules fail independently and that each fails permanently with a
constant failure rate A (failures/hr.). The system’s ability to recover from a
hardware fault in a processing module is accounted for by a coverage parameter

c (see [27]).

When the system is free of hardware faults, we further assume that
it has some capability of recovering from errors due to design faults in the
software. Such errors are presumed to occur at a constant rate o (errors/hr.).
Transitions from the error state, with or without recovery, occur at a constant
rate u (transitions/hr.) which we ussume to be much larger than the processor

module failure rate A\. The probability of software error recovery, given a
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software error, is a constant d (the software error coverage parameter); error
recovery thus occurs at a rate du. Lack of recovery from a software error is
presumed to cause a crash (system failure). If a processor module becomes
faulty and the fault is tolerated via successful voting, the input-output behavior
of the system remains the same. With this loss of a processing resource,
however, we assume that the system is no longer capable of software error
recovery. Hence any further errors, due to a software fault or a second faulty

processor module, result in failure of the system.

Under the above assumptions, the system can be conveniently
represented by a 4-state Markovian base model, where the states are

interpreted as follows:

Processor Software
State Fault Error
1 No No
2 Yes No
3 No Yes
4 System failure




-64 -

Figure 3.1

Markov Model of a TMR System

with Software Error Recovery
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The state-transition-rate diagram of the model is depicted in Figure 3.1. Note
that when :the system is attempting recovery from a software error (state 2),
there are no transitions representing the occurrence of a hardware fault. This is
a consequence of our assumption that x4 >> A, in which case such occurrences

are negligible.

As for performance, let us suppose the user is interested in three
levels of aocomplishmcnt: full performance (as would be exhibited by a fault-
free version of the system), degraded performance (at least one software error
during utilization but successful recovery in each case), and system failure. To
obtain an appropriate operational model that can support this view of
performance, we sec that states 1 and 2 can be identified with one mode of
operation while states 3 and 4 must be distinguished. Moreover, because the
mode {1,2} is preferred over {3} and {3} is preferred over {4}, we find that the

following function will suffice as an operational structure:

i f@)
1] 1

2| 1

3| 1/2

4] 0
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To establish that the performance variable in question can indeed be
supported by the functional Z of X (Fig. 3.1) induced by this choice of f,
suppose that Y, is formulated as in (3.23), i.e., Y, is the minimum operational

rate experienced during the utilization period [0,t]. Then it is easily verified

that Y, conveys the desired information, i.e.,

Value of Y, | Interpretation

1 Full performance
1/2 Degraded performance
0 Failure

Note also that the operational model Z is recoverable in the sense defined in
(3.4) due to the error/recovery cycle from rate 1 to 1/2 and then back to rate

1. The performability of the system can thus be evaluated using either of the

methods discussed in Section 3.3.

To illustrate the solution method described in (3.49), note that the

generator matrix of X is

~(3A+e) A o (1—<)3A

A=| 0 —(Ate) 0 22+te
du 0 —u (1=d)u
0 0 0 O



-67-
ORIGINAI. LT 13
OF POCH UALITY

Thus, with respect to each operational rate q=1, 1/2 or 0, the generator

matrices of the corresponding transformed Markov processes are given by

(3.46), viz.,
—(3A\+0) 3\ o+(1—<)3X
Al = 0 —(2A\+0)  2\+o
0 0 0
and
A2 = A0 = 4 |

Hence, if we denote the transition functions of each transformed process by a

matrix

Pt = [pd()]  (ijelklf(k)=q} U {bgh)

where pd(t) is defined by (3.47), then PY(t) is determined by A% uniquely by

the well known formula

PA(t) = eAY

In particular, we have
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L—(3k+¢ n 3c[e"(2H-c)t_e—(3A+c)t] o .
pl(t) =|:0 e~ (2A+e)t cs
0 0 1 J

where

cp =1~ e~ (Aol _ 30[6-(2X+0)t - e—(3k+c)l]

and

d, dy  dy 1—(d;+d,+d;)]

0 e (@Ato) 0 J—e—(@Ateol
Pl/2(t)_,

dy ds  dg 1—(d4H+dstdg)
o o o 1

where if we let

2=\VOA2+ 42+ 624 6rg — 6Au —20u + 4duo

IAt+u+o+2z
X = 3

At ut+to—2z
2

y

then
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d = 3A-u+a-ze_”+ 3A—u+a+ze_“
! 2z 2z

- 3Xc!! E! e-yt - 3AC(X-[‘) _~-xt

2 2y=2:—0) z(x—2\—q)

3Ac(u—2\—0) e—(Atet
(x=2A\=0)(y—2\—0)

dy=ZL en—ZL ot
z

6Acdu e — 6Acdu Xt
(AMro—pu+z)z (Ato—u—z)z

ds-

12Acdu e—(2A+o)t
(AMto—u+z)(A\+o—p—z2)

N—u+o+z N—u+o-—z _
d6- “22 e-yt_ “22 ext

Accordingly, applying (3.40), the performability of S can be expressed as
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perfs(1) = py*(1—¢;) + py'(1—cy)
perfs(1/2) = py(dy+dy+dy) + pye™(BFeNt
+ Py (dytdst+dg) — perfg(1)
perfg(0) = 1 — perfg(1/2) — perfg(1) (3.50)

where p;=Pr[Xy=il.

By expressing the performability of the system in terms of the above
closed form solution (3.49), various design tradeoffs can then be investigated
by varying the parameter values. To illustrate, let us fix the following base

model parameters to be

A=5X10"*
c = 99999
u =103

d=.9

and assume that the system initially has ail three modules operational, i.e.,

p=1[1000].

Then, depending on the choice of the software failure rate o, the
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performability of the system exhibits various kinds of relationships between
different levels of accomplishment. In particular, Figure 3.2 and 3.3 display the
performability of S as a function of t (the duration of the utilizaticn) for

o=10"2 and o=1073, respectively.

In both figures, the performability of S is represented by three
curves: I, II and III. Curve I is the prblwaility of fault-free operation
throughout the utilization. The probability decreases from 1 to 0 as t goes to
infinity. Curve II is the probability that the system suffered from performance
degradation due to software faults while remaining operational throughout the
utilization period. Finally, we note that curve III is the familiar S-shape

function for system unreliability.

When we compare Figure 3.2 with Figure 3.3, we find that
substantial performance improvement is obtained by reducing the number of
design faults in the software. For example, consider the case when the
duration of the utilization is 400 hours. With the reduction in software failure
rate by a factor of 10, the probability of degraded performance and the
probability of system failure are reduced, respectively, to 1/2 and 1/3 of their
original values; more significantly, the probability of full performance is

increased by a factor of 37.

Although the above example has established the feasibility of the
hierarchical modeling approach for the evaluation of system performabilities,

the operational model constructed in the example is based on a specific state
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transition diagram (Figure 3.1). Thus, to extend the generality of the model,
we considér in the next chapter a systematic approach for describing the
underlying Markov process together with a general methou for determining the
operational structures of degradable computing systems. Moreover, we also
note that the results developed in this chapter are further extended in Chapter
5 to permit the modeling and evaluation of systems with a time-varying

environment.
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CHAPTER 4
MODELING AND EVALUATION OF DEGRADABLE
MULTIPROCESSOR $%STEMS

4.1 Iatroduction

The design of a distributed multiprocessor system (see [28])-[30], for
example) is generally approachgd in a sequential manner beginning with the
identification of the computing system’s application. The problem identification
phase is followed by a functional breakdown of the application into major
subtasks to be performed by the system. Following these phases, the designer
then specifies the performance and reliability requirements in terms of the
resource requirements for each task, the time relationship between asks, the
exccutive software overhead for system control, etc. Finally, based on the
performance and reliability requirements of the system, alternative hardw..e
and software architectures are then considered to optimize cost, performance

and other trade-off criteria.

Moreover, in the design of multiprocessor systems for real-time
control applications, tasks to be performed are often partitioned into several
priority groups and priority interrupt mechanisms are used to meet the stringent

constraints of fast response time (see [29] and [30], for example). Normally,

~75«
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all tasks are executed iteratively to generate sample-time updates of control
variabl_es. However, when the computer’s resources decrease due to fauits to a
point that only some of the tasks can be completed in time, tasks from the
higher priority groups are given preferential treatment over tasks from the
lower priority groups. Computing systems capable of performance degradation
as above are often referred to as gracefully degradable computing systems or

simply degradable computing systems.

Performance degradation of degradable multiprocessor systems are

typically realized through the following steps {31]:

1) Error detection: Basic techniques for error detection include error
detecting/correcting codes, time-out counter, memory protection, majority

voting, periodic testing, etc.

2) Fault location and hardware reconfiguration: Once an error is
detected, diagnostic programs and testing strategies are used to localiz- the
faulty components. The hardware reconfiguration program is then c2i'ed upon

to establish an operational configuration.

3) Computation recovery: Computation recovery concerns the
restoration of a valid system state from which the system can resume its
operation. The restoration of a valid system state can be achieved by rollback

and retry, uses of traces, program roll-aheads, etc.

4) Scftware reconfiguration: Fault-tolerant software permits the

replacement of suspected software modules with their alternative versions at
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run time. Current approaches include N-version programming [26] and the use

of recovery blocks [32].

There are many different designs of degradable multiprocessor
systems that are potential candidates for real-time control applications. In
general, these designs can be characterized in terms of the degree of
redundancies built into their basic components (e.g., simplex, duplex and
triple-modular-redundancy). The characterization is useful because each class
of systems can be attributed with certain specific performance and reliability

trade-offs.

Replicated components are often used in a degradable
multiprocessor systems to enhance the system reliability. For example, when
triple-modular-redundancy (TMR) is used, not only all single faults can be
tolerated, but procedures for error detection, fault-location and system
reconfiguration are also simplified considerably. However, since there is no
parallel-prccessing within TMR, the configuration represents a substantial loss
of computing power. Systems using triplicated components in their design

include C.vmp [33], SIFT [30] and FTMP [25].

When the application of a degradable multiprocessor system requires
not so much reliability (i.e. uninterrupted operation throughout the utilization
period) as the ability- to recover from failures, simplex components are often
used to improve the performance/cost ratio of the system (e.g., PRIME [34]

and PLURIBUS [29]). Since such systems rely mostly on complicateC self-
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testing logic for error detection and location, the reliability of these systems is
general!y lower than that of systems using replicated components. This is
because single faults may cause such systems to crash and the detection latency
[35] (the time period between the first error and the first detected error) of

these systems are generally longer.

In this chapter, a comprehensive model for degradable
multiprocessor systems is presented for studying the trade-offs between systems
with different degrees of component redundancy. The model is based on the
approach considered in the previous chapter; a Markovian base model is
described to represent the physical resources of the system and priority queuing
models are used to determine the operaticnal structure associated with the base
model. Since our model supports the evaluation of system performability, it
differs substantially from those considered by Borgerson [36] and Losq [37]

which stress hardware-oriented measures such as reliability or availability.
4.2 System Model

As compared with existing Markov models for degradable
multiprocessor systems (see [36] and [37], for example), the model presented
here has tie advantages that (i) the partitioning of the system is }2« : on the
system’s available resources as well as computational requirements of the user’s
application, (ii) the hicrarchicnl representation (i.e., the base model together
with the operational structure) perniits the formulation and evaluation cf user-

oriented performance variables.
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4.2.1 Base Model for System Resources

:Degradable multiprocessor systems typically can be divided into
several physical resources each of which is made up of one or more identical
components. These resources generally form a pool shared by tasks to be
peiformed by the system. For example, as described in [25], the FTMP
computer includes 15 processors, 9 memory units, 5 busses and 48 bus
guardian units to be shared by aircraft functional tasks. Generally, the amount
of rescurces *ha: a system can provide varies from time to time depending on
the intrinsic hardware failure rates, the effectiveness of fault tolerance
mechanisms and the repair procedures. Hence, if we assume that (i) the
occurrences of failures and repairs are independent among different
components, (ii) each component has constant failure and repair rates, and (iii)
fault tolerance mechanisms are "memoryless’ in the sense that they are
determined by the current state of the system, then the resource availability of

the system can be represented as a Markov process.

Before attempting t- Aescribe a general Markov model for system
resources, let us consider first the effects of failures on the system resources.
As suggested in [37], two classes of hardware faults can be distinguished
according to the characteristics of fault tclerance mechanisms. The first class
corresponds to “ardware faults that are detected and recovered from as soon as
they occur. Hardware faults of the first class are referred to as safe faults

because failed components are removed instantaneously from the resource pool
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to avoid data contamination or faulty control. The second class of hardware
faults, referred to as unsafe faults, contains thpsc that are cither latent faults or
those that are in the process of fault recovery. Depending on the degree of
component redundancy, failure to tolerate unsafe faults may cause the system

to crash because of the loss or the corruption of important information.

Since the performance of a system is determined by the amount of
fault-free resources, the state of the resource model can be defined to be the
number of safe faults and unsafe faults. More precisely, suppose that the
multiprocessor system contains N re-. -=. - where the it resource contains n;
identical components. Suppose further v component of the it? resource has
failure rate A; and repair rate u;. If we assume that the occurrence of more
than one event such as failure or repair completion has negligible probability,

then the system can be represented as a Markov process

X = {X,|teT} (4.1

where, for each teT, X, is random variable taking values in the state set

Q = {(a;,b;,25,b3,...,an,bn) [0=a-+b;<n; for all 1<i<N}.

For each state (a;,b;,a,,b,,...,an,bN) in Q, 3; denotes the number of safe fauts

of the it* resource and b; denotes the number of unsafe faults of the itb
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resource.

Four types of state transitions can be distinguished: repair, safe
fault, unsafe fault and fault recovery (see Table 4.1). On the completion of a
repair, the number o/ safe faults is decreased by one. Once a hardware fault
has occurred, either the number of the safe faults or the number of unsafe
faults is increased by one depending on whether the fault is safe or unsafe.
Finally, the successful recovery of an unsafe fault will decrease the number of

unsafe faults by one and increase the number of safe faults by one.

To derive the transition rates of the above state transitions, the
system’s ability to recover from a hardware fault is modeled by a single
parameter c defined to be the conditional probability that a system will be able
to recover once a hardware fault has occurred (referred to as the coverage of
the system, see Section 3.6). It is further assumed that the probability of a
failure being transient is represented by another parameter a. Based on the
above assumptions about the railure and repair characteristics of the system,
the transition rates of the above Markov process can be expressed as in Table

4.1 (where the parameters are summarized in Table 4.2).
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Type of
Next state Transition Rate
Transition
repair (aj,by,..a;-7,
bi’"-oaNth) ai'“i
safe (a,,bl,...,aﬁ'l,
fault b;, . . . ,aN,bN) (nj—a;—b)-(1—a)-cA;
unsafe (apby, ...y a5
fault b+1,...,an,byN) (nj—a;—b;) (1))
recovery I (a;,by, ...,a7+1,
bi—l,...,aN,bN) bi"’i

Present State = (al,bl,...,ai,bi,...,aN,bN)

Table 4.1
State Transition Rates

of a General Resource Model
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When the system contains only one type of resource (i.e., N=1),
the model .ean be represented more conveniently using transition graphs as in
Figure 4.1. This single resource model, as a special case to the above model, is
the same as the one considered in [37] by Losq except that states are named

differently here to simplify the formulation of operational rates.

Another special case of tke above general model can be obtained
when all unsafe faults result in system failure. In this case, since unsafe faults
cause system resources to vanish, the state of the system can be taken to be the
number of fault-free components at each moment in time. In other words, the

state set Q defined in (4.1) can be represented as

Q = {(a,,a;,...,ax)|0=<a;<n, for all 1 <i<N} (4.2)

where, for each (a;,a;, ...,aN) in Q, a; is the number of fault-free
components of the i resource. The simplification on the corresponding
transition rates is described in Table 4.3. Again, as a special case, the single

resource model can be represented by a transition graph as in Figure 4.2.
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Parameter Interpretation
N Component failure rate of the it? resource
B; Component repair rate of the ith resource
v; Component recovery rate of the i'® resource
following unsafe faults
a Probability of a fault being transient
c Probability of a fault being safe

Table 4.2

Base Model Parameters
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Type of
Next state Transition Rate
Transition

repair (815e-08i—1,8;+1,8i4140--,2N) (n;—2;) k;

hardware || (aj,...,8;-1,8;—1,8;41:---,2N) a;(1—a)-c);
fault

recovery | (a5, .. .,8—1,0,8;41s-.8N) a; (1—c)' )\
failure I

Present State = (a,,...,a;, . . . ,ayN)

Table 4.3
Trausition Rates for Systems with

Instantaneous Detections and Recoveries
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Figure 4.2

Single Resource Model for Systems with

Insfantaneous Detections and Recoveries



4.2.2 Performance Variable

The performance and reliability requirements of a real-time system
oﬁen differ from those of a general purpose . mputer because of the stringent
constraints of fast response time. Thus, to characterize the performance and
the reliability of a real-time system by a single performance variable, the
performance variable must take into account both the resource availability as

well as the promptness of the system responie.

As an example, let us consider first a typical real-time environment
encounted by a control computer. In a study concerning the design of fault-
tolerant computers for aircraft, Ratner et al. [39] have identified 26
computational tasks most likely to be performed by the control computer of an
advanced commercial aircraft. These computation tasks conceptually can be
regarded as short programs stored in a common memory of a multiprocessor
system and each task is scheduled to be executed periodically according to a
predetermined frequency. However, the actual execution of a task may be
delayed from its scheduled execution time because of the resource sharing,
interface between tasks and the overhead for running system software. Since a
prolonged starting-time delay may cause dangerous conditions to develop, the
computational tasks are grouped into 5 priority classes and priority interrupt

mechanisms are used to reduce the d=lay times of more critical tasks.

The above example clearly shows that the concept of the starting

time delay is a useful tool for specifying the performance criteria of a real-time
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control application: A task is regarded as failing to satisfy the real-time
constraint :if its starting-time delay, on a regular basis, exceeds a certain
predetermined value. More precisely, let d be the estimated length of time that
would have to eclapse before an undesirable condition is noticed. Then the
real-time constraints can typically be stai= as: either the average starting-time
delay or the percentile starting-time delay must be less than d. For example,
the percentile starting-time delay can be stated as that the starting-time delay
should not exceed d for 99% of the time when a task is scheduled to be
executed. For simplicity, it will be assumud in the following discussions that

the average starting-time delay is used to specify the real-time constraints.

To generalize the above.notion of the starting-time delay, a user-
oriented performance variable can be formulated as follows. First, let us
assume that the tasks to be performed by the computer belong to one of a set
of x different priority classes. Then, relative to the utilization period T=[0,¢},
the p2rformance variable can be defined as a random variable Y taking value in

the set {0,1,...,x} such that
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Y=k iff

k is the largest nonnegative integer less than or
equal to « such that all tasks from the first
k priority groups are executed within the real-time

constraints throughout T.

In other words, if we adopt the convention that the priority groups are
numbered in reverse order (i.c., the smaller the number, the higher the
priority), then the performance variable Y can be regarded as the degree of
user satisfaction relative to how weil the more critical tasks are executed by the
computer to satisfy the real-time constraints. In particular, Y = 0 can be
interpreted as a system crash, since, in this case. the computer does not even
have enough resources to meet the de..and of the most critical tasks (i.e.,
those from priority group 1). On the other hand, Y=« represents nondegraded
performance, since all tasks are executed properly within their real-time

constraints.
4.2.3 Operational Structure

To ease the evaluation of system performability, the connection
between the performance variable Y and the base model X can be established
more easily by introducing intermediate models to account for the internal
structure of the computer. Under the assumptions described in Sections 4.2.1

and 4.2.2, a natural representation of the system’s behavior at the operational

2
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level is the behavior of the computer’s control programs. Typically, to resolve
conﬂic{ing demands on system resources, the control software of a
multiprocessor system must provide a scheduler (also called a supervisor or
executive) that allocates system resources to application tasks and handles
interfaces between tasks. When the computer is degradable, the control
software must also provide a mechanism (called a reconfiguration mechanism)
which, upon detection of faults, appropriately changes the scheduler to facilitate
error recoveries. In other words, given a general resource model as described
in Figure 4.1, it is possible to associate each state of the model with a
scheduler. Accordingly, depending on how well the application tasks are
performed within each resource state according to a given scheduler, various
operational rates can be identified to reflect different degrees of user

satisfaction.

To measure the effectiveness of the scheduling algorithms associated
with the resource states, it is assumed that each scheduler is modeled by a
resource sharing priority queuing model (see [21], for example). For each
resource state of a resource model, it is further assumed that arriving tasks
form a single queue according to the "head-of-the-line" (HOL) queuing
discipline (see Figure 4.3), that is, an arrival from priority class k joins the
queue behind all "customers" from priority class k (and higher) and in froat of

all "customers” from priority class k+1 (and lower). Moreover, the valuve of
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one’s priority remains constant in time. Thus, while the customers with the
highest priorities are selected for service ahead of those with lowe: priorities,
customers from the same priority class are served on a ﬁrst-cqme, first-served
(FCFS) basis. Finally, we also note that two possible refinements in priority
mechanism can be distinguished depending on whether the execution of a low-

priority task is interrupted when a task of higher priority arrives.

Since we are concerned with the ability of a system in satisfying the
real-time constraints, the effectiveness of each scheduler can be messured in
terms of the "expected waiting times" of the corresponding queuing model.
More precisely, for each state q of a general resource model and for each
priority class k, let 7 be a random variable denoting the time spent waiting in
the queue of a priority k "customer” with respect to the queuing model of
resource state q (see [40], p. 189). Then the expected value of 7J is a close
approximation of the average starting-time delay when i) the communication
delays batween tasks are negligible, and ii) the transition rates of the given
resource model are much lower than the arrival and the sgrvice rates of the
computational tasks. The first condition can typically be satisfied by treating
cach task as an atomic unit for resource allocation. The second condition is
usually satisfied automatically because failures and repairs of a computer occur
much less frequently than the iteration rates of the computational tasks (thus
th;: expected waiting times rapidly approach steady-states once the system

enters a particular state).
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The above relationships between the average starting-time delays
aad the eipected waiting times provide us with a basis for partitioning the
resource states into operational modes. First, we note that the ability of a
resource state q i satisfying the real-time constraints of a priority k task can be

expressed as

Elr8]l < d (4.4)

where d is the predetermined time length as described in the previous
subsection. The use of average starting-time delays to specify the real-time
constraints is reasonable because, in general, the effect of a starting-time delay

on the behavior of the system is proportional to the duration of the delay.

In addition to the real-time constraints, the partitioning of system
states into operational modes must also take into account the effects of unsafe
faults. For example, consider a multiprocessor system with triplicated
components. The occurrence of a undetected double fault in a triad will cause
the system to fail regardless of the duration of starting-time delays.
Accordingly, if we assume that the probabilistic nature of the system resources
is specified as a Markov process X with state space Q (see (4.1)), then an

operationai structure can be given as a function

f:Q — {0,i,...,x}
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g if unsafe faults in q are tolerated and,

for some 1 <k=<«, E[r§]<d and E[r§*1]=d,
f(q) = (4.5)

0 otherwise.

Note that, in the above formulation, we dave assumed that tasks of higher

priorities have shorter expected waiting times, i.e.,

k <k’ implies Elrg] < E[+3].

The assumption is satisfied when the scheduling algorithm (associated with q)
uses the usual priority queuing disciplines in resource allocation. Having
established the operational structure, the performance variable describeu in

Section 4.2.2 can now be expressed as

Y =« min{f(X,)|teT} .

Finally, to conclude the construction of the operational model, we
note that the analysis of a priority queuing system is generally more difficult
than that of a nonpriority system. In particular, for the multiple channel

(multiple server) case, it is usually required to assume no service-time
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distinctions between priorities or else the mathematics becomes intractable.
However, as illustrated in the fullowing section, even under the above stringent
conditions, the scheduling algorithms of a single resource model can still be

modeled satisfactorily using a priority M/M/m queue (sce [40], pp. 193-194).

For multiple resource models, the scheduler associated with each
resource state can be modeled by an open or a closed queuing network (also
called network of queue; see [4] and 121], for example). In addition to the
basic assumptions governing the arrival and service rates of each "service
station" (see [4], pp. 161-163), it is also required to assume that the priority
queuing discipline at each service station is work conserving in the sense that
the priority interrupts will not impose extra work on the server. Solutions tor
the expected waiting times at each service station can be obtained by
incorporating solutions for priority M/M/m queues in the multiple resource

models.
4.3 Evaluation of Two Degradable Multiprocessor Systems

In this section, the pcrformances of two degradable multiprocessor
systems are evaluated and compared to determine the tradeoffs between two
design approaches. Both of the computers to be evaluated are assumed to be
multiprocessor systems containing 4 identical processors and a common
memory module. They differ in the way that the system resources are allocated
to perform computations. One computer (S,) is assumed to operate in simplex

mode, i.e., the processors are allowed to operate independently. The other
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computer (S.) is assumed to operate i. duplex mode, i.c., the processors are
paired ,into: duplex subsystems to enhance the system reliability. While the
simplex mode of operation generally can improve the performance/cost ratio of
the system, the duplex mode of operation provides better detection and fault

coverage relative to the simplex mode of operation.

With respect to hardware faults, we assume that the processor
modules fail independently and permanently with a constant failure rate A,
(failures per hour). The memory module is assumed to have a constant failure
rate A; and fails independently with respect to other subsystems. We further
assume that the system’s ability to recover from a failure is accounted for by
the coverage factors c; and c,, respectively, for S; and S,. Since simplex
subsystems rely on error detecting codes and self-checking logic for error
detection and location, the coverage of S, is generally lower than that of S,.
This is because, in the simplex mode of operation, undetected single faults may
cause the system to crash and the detection latency (i.e., the time duration
between the first error and the first detected error) of a simplex subsystem is
generally longer than that of a replicated subsystem. Accordingly, it will be

assumed that

¢ < ¢, (4.6)

Under the above assumptions, both S, and S, can be represented as
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a Markov process according to the gener~' resource model as described in (4.1).
However, s:ince neither the simplex mode of operation nor the duplex mode of
operation can tolerate unsafe faults, the model can be reduced to the special
case whose state space is given by (4.2). In particular, each of S, and S, can be
conveniently represented by a 10-state Markovian base model X; (i=1 or 2),

where the state space Q; (i=1 or 2) can be represented as

Q= { (k,j) | k=0,1 and j=0,1,2,3,4 }. 4.7

For each state (k,j) in Q;, k denotes the operational status of the shared
memory module (0=failed and 1=working) and j denotes the number of
working processor units. Thus, for instance, a fault-free configuration is
encoded as state (1,4). The state-transition diagram of the model is depicted in

Figure 4.4.
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To provide a useful comparison between S; and S,, their
perforx_nance must be evaluated with respect to the same work environment. In
this regard, let us consider a typical real-time control application where its
control computer uses priority interrupt mechanisms to mecet the stringent
constraints of fast response time. For simplicity, let us assume that each
computational task of the system is assigned a priority of 1 or 2 denoting,
respectively, high or low-priority. Normally, all tasks are executed iteratively to
generate sample-time updates of control variables. However, when the
computer’s resources decrease, because of failures, to a point that only some of
the tasks can be completed in time, tasks from high-priority group are given
preferential treatment over tasks from low-priority group. Based on the above
assumptions of the work environment, a user-oriented performance variabl

can then be formulated as

2 if the system is operating
as prescribed,

1 if only high priority tasks meet
Y; =1 the average response time requirement, (4.8)

0 if high priority tasks can not meet
the average response time requirement.

In other words, the performance of S; conveys the following

information:
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Value of Y; | Interpretation
w
2 normal
1 degraded
0 failure

On closer examination of the relationship between Y; and X;, we
find it is necessary to introduce an intermediate model between them because
X; is not detailed enough to support the user’s view of system performance Y;.
One way to introduce such an intermediate model is to identify an operational
model by taking into account the workload environment of the computer. In
this regard, let us assume that tasks from priority group i (i=1 or 2) arrive in a
Poisson stream at 1 task per millisecond. We also assume that each task,
regardless of its priority, requires a service time exponentially distributed with
mean service time 1/3 milliseconds. Furthermore, we assume that the HOL
queuing discipline is used, but there is no preemption [5]. Then, if the behavior
of the system in a state q is modeled as a queuing system with m servers, the
average starting-time delay of tasks from priority group i can be approximated

by the expected waiting time of the M/M/m priority queue.

As for the operational structure, the states of the base model X; can

now be partitioned into three operational modes according to their average
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starting-time delay. In particular, suppose that the average starting-time delays
oi both pri:ority groups shall not exceed d milliseconds. Then, the operational

structure of S; (i= 1 or 2) can be exprzssed as a function

f;Q;— R
such that, for each qeQ;,

2 if E[rf]=<d and E(-§]=d,
f(q) =11 if E[r§]l=<d and E[r§]>d, (4.9)
0 otherwise.

If d = 1/2 millisecond, the operational structures of S; and S, can be tzbulated

as follow:

State q of §;
i=0orl

Operational rate
f of S

Operational rate
f of S

OO0 OCOO=NNN
OCOO0O0OO0OOm=MNN
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The operational rate assignments in the table are determined by the
degree of subsystem redundancies. For instance, suppose that the system if in
state (1,2), i.e., the memory module is operatiznal and two processors are
working. Then, since in the duplex mode of operation both processors must
perform the same function in parallel, the behavior of S, in state (!,2) can be
modeled as a M/M/1 priority queue. Thus, using the existing formula for
computing tke expected queueing times (see [40], for example), the average

starting-time delays can be approximated by

T = 1/3 milliseconds and T# = 1 milliseconds
where q=(1.2). Since, in this case,
Tf <d and T7 > d,

we have f;(q)=1 by equation (4.9). On the other hand, since the behavior of
S, in state (1,2) can be modeled as a M/M/2 priority queue, the average

starting-time delays can be estimated as

T{ = 1/30 milliseconds and T$ = 1/20 milliseconds

where q=(1,2). Accordingly, it followz by (4.9) that f,(q)=2.
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Given the above performance variables Y; and the operational

structures f;, it can casily be verified that, for each X; (i= 1 or 2),

Y; = min { f;(X,) | teT }

where T is the utilization period. Thus the solution methods described in the
previous chapter can now be used to solve the system per.orm.ability (i.e., the

probability distribution function of Y;).

Suppose that the system is initially fault-free, i.e., Pr[Xy=(1,4)]=1.
Then, relative to the utilization period T=[0,t], the performability of S, is

given by

perf;(2) = Pr[ Y;=2]

- c~(4k;+k.)t + 4°1 [c—(JArI'M)t - e—(JXﬁ'A,)t]

+ 6cl2[c—(2h+x|)t — ze—(3x:+kl)t + c-(4k;+k.)t],

perfy(1) = Pr[ Y;=1]

= 4c3[e~ AN _ 3o~ (ArhA

- 3e

+ 3e-(3kr+x.)t - e—m,-n.)tL

and
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perf,(0) = Pr[ Y,=0 ]

= ] — perf,(2) — perf,(1).
Similarly, the performability of S, is given by

perfy(2) = Pr[ Y,=2]

- e—(lkfiﬁh)t + 402[ e-(3k;+h)t - e—(‘lﬂ-k.)tl’

perfa(1) = Pr[ Y,=11
- 46230-0’-”')‘ + 6((:22_2023)‘-(231‘*'*1)!

+1 2(‘.13_022)c‘(”‘z"‘h)t + (6022—4023)6-(“1-“')‘,
and

perf;(0) = Pr[ Y,=0 ]

= ]| — perf,(2) — perfy(1).

When expressed as functions of the duration of the utilization, the
above equations can be represented, respectively, as in Figures 4.5 and 4.6 for
the indicated parameter values of S; and S,. When we compare Figure 4.5 with

Figure 4.6, S, clearly results in better system reliability than S, in the sense that

perf,(0) < perf;(0).
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Moreover, .Sz also has a much higher degraded performance even though its
nondegraded performance is slightly lower than that of S;. In general, we may
conclude that, if the system’s ability to recover from faults is low, then the
performance of the system can be made to degrade more gracefully by allowing

the subsystems to operates in duplex mode.
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CHAPTER 5
PHASED MODELS

5.1 Phased-Missions
5.1.1 Introduction

The performability models considered in the previous chapters
assume that the environment of the system is invariant in time in the sense
that the underlying processes are time-homogenecous and tic operational
structures of the system remain the same throighout the utilization period.
Although this assumption is appropriate for certain applications, there are many
cases where the user’s demands on the computing system can change
appreciably during different phases of its utilization. This is particularly true for
real-time control applications in which the computing system is required to
execute different sets of computational tasks during different phases of a

control process.

One approach to dealing with a time-varying environment is to
decompose the system’s utilization period into consecutive time periods
(uéually referred to as a decomposition of the system’s "mission” into "phases”;
see [42]-[45]). Demands on the system are then allowed to vary from phase to

phase; within a given phase, however, they are assumed to be time invariant.

-109-
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This permits intraphase behaviors to be evaluated in terms of conventional
ﬁme-hpmobeneous models, but raises the interesting question of how the
intraphase results are combined. This is the essential question addressed in
investigations of phased-mission reliability evaluation methods (e.g., [42]-[45])
where the problem has been constrained as follows. It is assumed, first, that a
success criterion (formulated, say, by a structure function; see (18] for
example) can be established for each phase, where the criterion is independent
of what occurs during other phases. It is required further that successful
performance of the system be ideniified with success during all phases, that is,
the system performs successfully if and only if, for each phase, the

corresponding success criterion is satisfied throughout that phase.

Although the above constraints are reasonable for certain types of
systems, they exclude systems where successful performance involves
nontrivial interactions among the phases of the mission. In more exact terms,
it has been shown (see [46] Theorem 6) that "structure-based” formulations of
success are possible if and only if the phases are functionally independent in a
precisely defined manner. What we wish to do, therefore, is to examine the

utility of phased-inission evaluation methods in a less restrictive context.

In addition to removing the above constraints, we extend the
domain of application to include evaluation of computing system performability.
Moreover, by representing intraphase models in terms of operational models,

we are able to obtain useful results even without the typical no-repair
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assumption of the traditional phased-mission reliability methods.

:Finally, unlike the models used in phased-mission reliability
evaluation methods, we permit the intraphase models to differ from phase to
phase. Thus, the modeling of a pariicular phase can be tailored not only to the
computational demands of each phase but also to the relevant properties of the

total system that influence performance during the phase.
5.1.2 Formulation

Intuitively, phased-missions are real-time control processes whose
utilization period can be decomposed into phases. During each phase, the
system is required to execute a predetermined set of computational tasks. A
typical example of a phased-mission is an "unmanned space mission" during
which the spacecraft’s on-board computer must complete different phases of
the mission. The analysis of such a system is usually complicated because of

the time-varying nature of the system’s performance criteria.

To generalize the notion of a phased-mission in the context of
performability modeling, we assume that (i) the behavior of each single phase
can be characterized by a single performance variable regardless of the
interactions among phases, and (ii) interactions among phases can be
characterized without reference to the detailed behavior of each phase. More
precisely, let us suppose that the utilization period T is the continuous interval
T = [0,h]. Suppose further that T is divided into a finite number of

consecutive phases (time intervals) Ty = [to,t,], T3 = [t;,ta),..., Ty = [tp—)ste]
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where 0 = t)<t;< - - <t, = h. During each phase T,, we assume that the

system_can be modeled by a performability model (X¥,v) where

L)

Xk = {XX|teT,}

is a continuous-time stochastic process such that, for each t in T,, XX is a

random variable taking values in the phase k state space Q, (X*:2—Q,), and

‘Yki Uk - Ak

is a function that maps the phase k trajectory space U, to the phase k
accomplishment set A,. XY is referred to as the intraphase process (of phase k)
and vk is called the phase k capability function. When each phase can be
represented by an intraphase performability model, a performability model
(X,y) of S is referred to as a phased model if it can be constructed by the

following steps:

()X = {J Xt= | {XklteTy} (5.1)
k=1

k=1

(ii) there exists a function (referred to as an organizing

Structure )
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VAXAX - XA, — A (5.2)
such that, for all ueU,
v(u) = ¥ (v (u)),s Y™ (ug))

where u, is the restriction of u to Ty (k= 1,2,...,m).

On examining X we sec that it is similar to a base model except
that, for each time instant ty (1<k=m), the state of the system is represented
by two random variables X and X&*! whose values, respectively, are the final

state of the k'™ phase and the initial state of the k+1t phase. Since we permit
the state sets of the intraphase models to differ from phase to phase,

X,': and X}*! can also be different. However, if we consider an augmented

utilization period

T=TY {t,/1k=1,2,....m~1}

(where ¢’ can be interpreted as the initial time of phase k+1), then X can be

expressed as

X = {X,]teT}

where
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X ift=0
X, = XX if te(ty—y.ty) (5.3)
k+1
{ ift= tk"

If, further, we regard the state space of X as the union

Q- U Qk ’
=1
then X is a base model in the sense defined in Chapter 2. When X is so

constructed from intraphase processes, we will refer to it as a phased base

model.

Generally, there are two types of dependencies among phases that
can affect th- performability evaluation of phased models. The first type,
encountered when computing intraphase performabilities, are caused by
statistical dependencies among phases. For example, if we assume that the k'®
intraphase process Xk is a Markov process with a given trahsition probability
function, then the performability of the system during phase k can be
computed once the initial distribution of X¥ is known. However, in general,
the initial distribution of X¥ is determined by that of the first phase together
with the behavicr of the previous phases in realizing a specific level of

performance of the total system.
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The second type of dependence accurs when combining intraphase
performabiiiﬁes to determine system performability. This type of dependence
is determined by the algebraic relationship among phases, i.c., those
relationships which do not involve probability concepts. In other words, the
relationship is analogous to structure functions that are concerned with the
structural representation of multicomponent systems (see [47], for example).
Clearly, a complete analysis of phased models will require a detailed knowledge
of both types of dependencies and their effects on the performability of the

sysiem.

In the following section, we first study the above algebraic
relationship among phases via an extended definition of structure functions. In
Section 5.3, we then consider the probabilistic aspects of the dcpendencies
among phases. In both cases, we only assume that the behavior of the system
during each phase can be summarized by a performance variable Y, defined by
the phase k performability model (X%,¥). Finally, in Section 5.4,
computational methods and formulas are derived, when Y, can be defined as

the minimum value assumed by a functional of Xk.
5.2 Structural Properties of Phased Models

In system theory, the structure of a system is generally taken to be
the interactions among subsystems to perform certain specific tasks. The
interaction may involve the physical interconnection of the subsystems or,

more generally, "functional dependence® among subsystems [46). Thus, if we
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regard the phases of a phased model as subsystems, then the structure of a
phased _modtei zan be effectively regarded as the interaction among phases in

the realization of various degrees of system performance.

Since the relationship among phases can be represented as an
organizing structure, and since the accomplishment sets of the phases are
totally ordered sets (see (2.2)), thee is a natural conaection between the
structure of a phased model and the mappings of partially ordered sets. More

precisely, for each phase k, let us denote the phase k performance variable as

Yk:ﬂ - Ak

defined by the phase k performability model (X*,4¥) according to (2.12).
Then, by (5.2), the performance variable >f the total system S can be

represented as a random variable

Y:Q—A

where, for ecach we 2,

Y(w) = ¥ (Y (@), Y (@) -

Thus, the structural relationship between Y,;,Y;,..,Y, can be characterized in

terms of the properties of the mapping W:A X - - - XAy —A. The product of
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sets A X - - - XA, is a partially ordered set because, by extending the ordering
relation of the individual phases, an ordering relation for A;X - - - XAy can be

defined as, for all (a;,a,,...,a5) and (b;,b,,....bg) in A X - - - XA,

(a,,az. . e ,a,,,) = (bl’bZ""’bm)

iff ay<b, forallk=1,2,...m. (5.4)

Our interest will be restricted to the case when W:A ;X - - - XA —A
is order-preserving in the sense that, for all (a;,a,, ... ,ay,) and (b;,b,,...,by) in

AIX e XAm,

(al,az, e ,am) = (bl,bz, PN ,bm)

implies ¥(a,,a,,...,ay) < ¥(b;,b,,...,by) .

(C-l=r-preserving mappings as defined above can be used to characterize
.¥4.-ms whose performance do not deteriorate due to the performance
improvements of the subsystems. Thus, thke notion of an order-preserving
mapping is a proper generalization of the notion of a coherent structure
function [18] because the coordinates of A;X - - - XA, are not restricted to

binary valued sets.

Our investigation efforts will be focused on the properties of W
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which permit us to simplify the evaluation of system performability. In
particular, :given a subset B of A, we wish to consider methods for representing
the set ¥~!(B) without enumerating its elements. The representation methods
are important because, as shown in the following discussions, such

representations are amenable to iterative methods of evaluation.

We note first that the effects of ¥ on A;X - - XA, is that it
imposes an order structure on the equivalence kernal of the order-preserving

mapping. First, let us define, for all aeA,

C(a) = {qlqeA;X - - - XA, and ¥(q)>a} (5.5)
and
D(a) = {qlqeA,X : - - XA, and ¥(q)=a} . (5.6)

In words, D(a) is the set of elements in A;X - - - XA, that result in at least

level a accomplishment. Clearly, when ¥ is an order-preserving mapping, for

all a,beA,

a=<>b implies

C(@a)2C(b) and D(a)2D(b). (5.7)

Accordingly, if we let
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C = {C(a)lacA} (5.8)
and

D = {D(a)laeA} , (5.9)

then, because A is a totally ordered set, it follows that C and D are totally
ordered sets with respect to set inclusion. Moreover, if the elements in A are

expressed as a sequence

---<al<a2<.-.<ai<--o

where, for all i, a4, covers a; in the sense that a,;>a; and for no
acA, a;.>>a>>a;, then the corresponding elements in C and D can be expressed

in a like manner, i.e.,

e 20 2C(@) 2 - - - 2C(@@)2 - -

and

-+» 2D(a;) 2D(a)2 -+ - 2D(g))2 - -

Hence, if we denote the difference between two sets X and Y by X-Y, then it

can easily be shown that
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Let A be a totally ordered and countable set and let
¥:A,X - -+ XA,—A be an order-preserving mapping. Then, for all a,beA, a

covers b implies, for all q,reA; X - - - XAp,

(1) ¥(q) = ¥(r) = aif and only if
both q and r belong to C(b)-C(a),

(2) ¥(q) = ¥(r) = b if and only if
both q and r belong to D(b)-D(a).

The above results imply that, when evaluating system performability
based on a phased model, the sets C(a) and D(a) where aecA can be used as
building blocks for describing events that characterize system performance. In
particular, given an order-preserving mapping W:A;X - - - XAp,—A and a closed
interval B=[a,b]C A, we show in the following theorems that ¥~!(B) can be
specified by D(a) and C(b). The set ¥~}(B) has practical significance in
performability modeling because its probability quantifies the ability of S to

perform within the specified limits a and b.

First, we note that Cartesian subsets of A;X - - - XA are amenable
to iterative methods of evaluation. A subset VCA;X - XA, is called a
Cartesian subset if V=§,(V)X - -« X¢, (V) where §,(V) is the projection of V
onto its k'® coordinate. To illustrate the use of Cartesian sets in the evaluation

of performabilities, let us consider the evaluation of a specific Cartesian subset
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By = {qeA;X - - - XAl £,(Q) et (V)]

be the set of elements in A;X - - - XA, that assume values in £, (V) at the k*®
coordinate. Then, the probability of B, can be expressed as a one-dimensional

distribution of the phase k performance variables Yy, i.e.,

Pr(B,] & Prl(Y,.Y;, ....Y,) € B,

A Pr[Ykefk(V)] .

Accordingly, when V is a Cartesian set, V clearly can be represented as the

intersection of those elementary sets B,, i.e.,

V= §(V)X - XEn(V)

=N B;.

k=1

By iteratively applying the definition of conditional probability, then
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Pr[V] = Pr[BmI"ﬁ' B,] - PrB,, I"ﬁ2 B,)
_ k=1 k=1
-+ Pr[B,|B,] - Pr[B,]
= Pr{Y et (VY orebmi(V), . .., Y e£1 (V)]

+ <+ PrlY,e£5(V)Y e8,(V)] - PriY e, (V)] .
(5.10)

Since each term in the product involves only elementary sets By, we show in
the following section that Pr[V] can be determined iteratively using matrix

multiplications.

An important class of Cartesian subsets of A;X - - - XA, is the sets
of "intervals.” For all q,reA|X - - - XA, where q=(a,,a;,...,ap), =(b;,b,,...,bn)

and q=<r, a closed interval [q,r] is defined to be

[q.r] = {q’eA;X - - - XA lq=q'=r} .
It follows that

lq,r] = ¢,([q.,rD)X - - - X¢n(Iq,r])

- [a,,b,]X . X[am,bm] ’

hence [q,r] is Cartesian. The open interval(q,r), half-open intervals (q,r] and
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[q,r) can be defined in a like manner. Moreover, if we assume that

A;X -+ - XA, has greatest and least elements I and 0, satisfying

q=0 and I=q

for all q in A X - - XAy, then A;X - --XA, can be expressed as a closed

interval [0,I].

Given an interval B of A, an important problem then is to find the
"representation” of ¥~!(B) in terms of intervals of A;X::-XA,. The
problem is interesting not only because the representation permits us to
evaluate Pr[¥~!(B)] using the iterative algorithm described above but also
because the representation reduces the number of elements needed to describe

the set ¥~1(B).

To express ¥~!(B) as intervals, we note first that since ¥ is order-

preserving, for all q,reA;X - - - XA, we have

q=x=<r implies ¥(q) < ¥(x) < ¥(r) - (5.11)

(for all xeA;X - +-XA_). Thus, if B is an interval of A and q,re¥~!(B), it

follows that

[q./]C¥~!(B) .
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Moreover, for each acA, let C(a) and D(a) be the sets as defined in (5.5) and

(5.6), and denote the set complement of C(a) by ~C(a). If we define

M(a) & {qeA|X - - - XAm|q is a maximal element of ~C(a)} ,

(5.12)
and
m(a) & {qeA;X - - - XA_lq is a minimal element of D(a)} ,
(5.13)
then, applying (5.11), it follows that
Lemma:
If W:A;X - - - XAp—A is order-preserving, then
¥v7([a,bD2 U lar]. (5.14)

qem(a)

In general, the relation D in (5.14) can not be replaced by an
equality. However, we found that the equality holds when A;X:--XA,
satisfies the chain conditions [48]; A partially ordered set L is said to satisfy the
ascending chain condition when every nonempty subset of L has a maximal
clement. Similarly, L is said to satisfy the descending chain condition when every

nonempty subset of L has a minimal element. L is said to satisfy the chain
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conditions when it satisfies both chain conditions. When the chain conditions

are imposea on the abeve lemma, we then have the following result:
Theorem 5.2:

If W:AX::-XAn—A is order-preserving and A;X--:XAp

satisfies the chain conditions, then for all a,beA,

vI([a,bl) = U lq.r]. (5.15)

qgm(s)

Proof:
We only need to show that

\I'—'([a,b])C U [qor]v

qf.ﬁ(‘.)

i.e., for all xeA;X - - - XA, we have to show that a<¥(x)=<b implies q=<x=<r,

for some qem(a) and reM(b). First, for each fixed xeA X - - - XA, let

K, = {yeA;X - - - XA, |¥(y)=<b and x=<y]}
and

K, = {yeA;X « - - XAy la<¥(y) and y=x} .



- 126 -

Then K, and k, are clearly nonempty since xeK, and xeK;. Moreover, since
A X -+ - XA, satisfies the chain conditions, K; must satisfy the ascending
chain condition and K, must satisfy the descending chain condition. Hence K,
contains a maximal element, say r, and K, contains a minimal element, say q,
that is g=<x=<r, for some qeK, and reK,. Finally, we note that r is a maximal
element of K; implies reM(b) and q is a minimal element of K, implies

qem(a), i.c., xelq,r] for some gem(a) and reM(b).

Note that, for each acA, the set M(a) is an unordered set in the
sense that, for all q; and q, in M(a), neither q;<q, .1or q;=q, unless q;™q,.
Hence, the number of elements in M(a) is bounded by the width of
A;X -+ XA, defined to be a natural number n if and only if there is an
unordered subset K of A;X - - XA, of n elements such that all unordered
subsets of A)X - - - XA, have no more than n clements [48]. Similarly, for all

aeA, the cardinality of m(a) is no larger than the width of A X - - - XA,

Since a finite partially ordered set always satisfy the chain conditions
and the width of a finite partially ordered set is finite, we alsc obtain the

following result:
Corollary:

If W:AX---XAp—A is order-preserving and A;X: ‘- XA, is
ﬁnftc. then for all intervals B in A, ¥~!(B) can be expressed as the union of a

finite number of intervals in A;X -+ + XA,
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In addition to the conditions of Theorem 5.2, Equation (5.15) also
holds when W:A;X:--XA_,—A is a iattice homomorphism. A partially
ordered set L is called a /attice when any two of whose elements x and y have a

least upper bound denoted by x Vy, and a greatest lower bound denoted by

x Ay [48]. Clearly, every totally ordered set L is a lattice because, for any

q,rel,
q if q=<r
qVr=
r otherwise,
Morcover, since A,A,, . . ., Ap, are totaily ordered sets, the least upper bound

and the greatest lower bound of any two elements (a,.a,,...,a;) and

(by,bs,....,by) in AX - - - XA, can be defined as

(31,82,...,am) Vv (bl'bZ’ o0 .bm)

2 (a)Ab,a)Ab,,....apAb,,) (5.16)

and

(al ,82,...,am) A (bl ,bz,...,bm)

2 (a;Aby,a5Ab,....,a0Ab,) . (5.17)
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Now, since A, X -+ - XA, is a partially ordered set, it follows immediately from

(5.16) and (5.17) that A;X - - - XA, is also a lattice.

When the mapping ¥:A ;X - - - XA —A is a lattice homomorphism in

the sense that, for all q,reA X - - - XA,

W¥(qVr) = ¥(q) V ¥(r)

and

W (qAr) = ¥(q) A ¥(r) ,

we are able to show that
Theorem 5.3:

If W¥AX---XAp,—A is a lattice homomorphism and
A X -+ - XA, satisfies the chain conditions, tken, for any interval B in A,
¥~!(B) can be expressed as an interval of A;X - - - XA, in one and only one

way.
Proof:

We note first that a lattice homomorphism i3 order-preserving

because, when q=r,
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Y(q/\r) = ¥(q) A ¥(r) = ¥(r)

and

V(qVr) = ¥(q) V ¥(r) = ¥(q) .

Moreover, given an interval B in A, ¥~!(B) contains at most one maximal
element. To provide this statement, let us suppose that ¥~!(B) contains two
maximal elements q and r. Since A is a totally ordered set, we have either

¥(q)=W r) or ¥(q)<V¥(r). If we assume ¥(q)=¥(r), then

W(qVr) = ¥(q) V ¥(r) = ¥(q) -

But this implies q can not be a maximal element of ¥~!(B) unless qVr=gq or,
equivalently, q=r. However, since r is also a maximal element of ¥~!(B),
q=r implies q=r. In other words, ¥~!(B) contains at most one maximal
clement. By similar argument, we can also show that ¥~!(B) contains at most

one minimal element.

If we assume that ¥~!(B) is nonempty then, since A;X -+ XA,
satisfies the chain conditions, ¥~!(B) contains a unique maximal element, say
q;, and a unique minimal element, say q;. Now since ¥ is order-preserving,

we have
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w_l(B) : [Ch.Qz) .

Thus, it remains 1o be shown that

w-‘(B) c [‘h.ﬂzl ’

i.e., xe¥~!(B) implies q,=<x=<q,. This follows immediately since g, is also a
maximal element of the set {ye\I'"(B)ly?.x} and q; is 8 minimal element of

the set {ye¥~!(B)ly=x]}.

Theorem 5.2 and 5.3, in our opinior:, have established a feasible
method for the evaluation of system performability based on the notion of a
phased model. To illustrate the application of the method, let us consider the
following hypothetical two-phase model. During each phase, it is assumed that

the phase k performance variable is given by

Y Q — A, (k=1 or 2)

where A, = {0,1,2} and
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2 if the syvtem operates in the nondegraded
mode th-o:ghout phase k,

1 if the syse::: <nters degraded mode during

Y, =1 phase k v ri~ remains operational throughout

the phase,

[0 otherwise.

It is further assumed that the performance variable of the total system S is

given by

Y: 0 —- A

where A={0,1,2} and

2 if the system operates in the nondegraded
mode throughout all phases,
Y = {1 if the system remains operational for at
least one phase
0 otherwise.

Then, the organizing structure can be expressed as an order-preserving

mapping

¥:{0,1,2}%{0,1,2} — {0,1,2}

as illustrated in Figure 5.1. Note that in the figure the domain and the

T
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codomain of the mapping are both represented by diagrams where two nodes q

and r are connected by a downward line when q covers r.

Suppc:e that the user is interested in evaluating the probability of
the event Y =1 or 0, i.., the probability of encountering degraded
performance or system failure. Applying Theorem 5.2, the event ¥~1([0,1])

can be expressed as

¥1([0,1]) = [0,0,2.)] U [(0,0),01,2)]

where [(0,0),(2,1)] and [(0,0),(1,2)] are intervals of the partially ordered set
{0,1,2}X{0,1,2}. Note that the intersection of [(0,0),(2,1)] and [(0,0),(1,2)] is
also an interval [(0,0),(1,1)]. AccorZingly, the probability of ¥~!([0,1]) can be

expressed as

Prl¥ ! ([0,1])]
= Pr([0,0),(2,1)] U [(0,0),(1,2)]]

- Pr[[(()’o)v(l ’1)]] .

Since an interval of {0,1,2}%{0,1,2} is a Cartesian subset, each of the last three

terms of the above equality can be evaluated iteratively using the solution

method described in Section 5.3 for Cartesian subsets.
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Figure 5.1
An Order-Preserving Mapping

v:{0,1,2}2 — {0,1,2}
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In general, given an order-preserving mapping W:A ;X - - - XAp—A
and an interval B of A, let us suppose ¥~!(B) can be expressed as the set

union of a finite number of intervals I,,I,, . . ., Iy, i.e.,

vIB)=LULU - UIn-

To generalize the above evaluation method, let us define

S; = 2 Pr(L]
Sz - 2 Pl'[I, n lJ]
1)

S3 - z Pr[li n IJ n Ik]

ij.k

Sn=PhbNLN - NI

where 1<i<j<k<...<N so that in the sums each combination appears once

and only once; hence § has [;'] terms. Then, since the intersection of

intervals is an interval, each of the sums can be evaluated by repeatedly

applying the computational algorithms described in the following section.




-135-
ORIGY., & gyt

el o BB

OF POOR QUALITY
Hence, by the method of inclusion and exclusion (see [51], p. 89), the

probability of ¥~1(B) can be computed by the well-known formula

Pr{¥~!(B)) =S, =S, +S3 =S+ -+ * Sy. (5.18)

5.3 Probability Computation of Cartesian Trajectory Sets

Given a phased model (X,y) satisfying assumptions (5.1) and (5.2)
the performability model can be simplified as follows. The simplified base

model is taken to be the imbedded discrete-time process

Xs = {Y;[k=1,2,..,m}

where, for each k=1,2,....m, Y, is the phase k performance variable. The

trajectory space of X can be effectively regarded as the product space

U=AXAX: - XAy

where A, is the accomplishment set of phase k. The corresponding

simplification of v is the organizing structure
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as defined in (5.2). Then, it follows that, for all a in A, the probability that S

performs at level a is

perf(a) = Pr[y~!(a)] = Pr[¥~!(a)]

and hence the performability model ()-(s.\ll) can be used to evaluate the
performability of S. We will thus refer to (X,¥) as being equivalent to the

model (X,v).

Generally, given an equivalent performability model ().(s,'lf), the
evaluation of Pr[¥~!(a)] requires a detailed knowledge of how intraphase
processes cooperate to accomplish level a, i.e., a thorough understanding of
their functional dependencies (see {46]). The difficulties are further aggravated
by statistical dependencies between phases. However, we show in the following
discussions that when a trajectory set VC U is Cartesian in the sense that, for
cvery phase k, there exists R, C A, such that V=R;XR,X - - - XRy, then Pr[V]
can be determined iteratively using matrix multiplications. Moreover, given
this ability to compute the probabilities of Cartesian sets, the probabilities of
more general sets can be determined by decomposing them into Cartesian
components (see (5.18)). Hence, the problem reduces to that of computing

th~ probabilities of Cartesian trajectory sets.

If, for each phase k, let n, be the number of states in Q. Then, for

a Cartesian trajectory set V=R;XR,X:--:-XR,, the conditional
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intraphase transition matrix of the k'® phase is the n Xn, matrix Py x where,

for all i,jeQ,,

»

Pyy(ij) = PrlY eRy XE=jIXE =Y, 1R,y ..., Y eR)]  (5.19)

where X,‘:_. and X": respectively are the initial and the final states of phase k
intraphase process (see (5.1)). In other words, Py ,(i,j) is the probability of
baving performance levels R, during phase k while the intraphase process
initiates in state i and ends up in state j, conditional by the first k-1 components
of V. Similarly, for all but the first phase, the conditional interphase transition

matrix is the n,_Xn; matrix Hy , where, for all ieQ,—, and all jeQ,,

Hy (i) = PrIXE =j|X&1=i,Y,_ eRy,.... Y €Ry] . (5.20)

In other words, Hy y(i,j) is the probability that the k'® phase initiates in state j
given that the final state of the k—1'® phase is i, conditioned by the first k-1
components of V. Finally, for consistency, we let Hy ; be the n;Xn, identity
matrix. In terms of the above matrices, we are able to establish the following
matrix formula for computing the probability of a Cartesian trajectory set V.
Given X, let p denotes the initial state distribution, i.e., p=[p; P *** P,
where p; = Pr[X{=i], and let F, denote the n X1 column matrix with "1" in

cach entry. Then, by induction on k, it can be established that



Theorem 5.4:

IfVa R,X s XRkXQk.HX e me then

k
Pr(V] = P’[’I_Ile.er.ql'Fk

Proof:

For k=1,

PHy, Py, =pPy,=a --- a c - a,]

where
8= 3 PrXJ=i]-PrlY; R, X} =j| X} =i]
ieQ

= 3 PrlY;eR; X,\mj, XJ=i]
ieQ

- Pr[Y, GRI ,X,’l-J] .

Multiplied by F,,

(5.21)
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m‘ l"\- ‘ *.;\_‘.i"“-L';T;;

pHy, Py 'F,

- E Pr[YleR,,X,'l-j] - Pl'[YlCRl]
jeQ

= PrlY;eR,Y,¢Q,, . .., YpqeQ,]

= Pr[v].
Suppose that the formula holds for k<m, then
k+1
P‘[!I_ll Hy Py )-Fy,

k
- P'[,l_ll Hy gPyJH, 441 Py t1 - Feny
= A;'Hy 41 Py 141 Fit

where

and

bj - Pr[X,t-j.YkeRk, e e lele]

by applying the equation for k.
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When we iteratively compute the matrix product, beginning from

the left, th\:'. first two terms become

A=A Hypyy=I[c --- G Gl
where
¢ = 2 brHy (i)
ieQy
= 3 Pr{X{=i,Y,eR,,...,Y,eR|]
ieQy
Pr{X =i X =i, Y Ry, . . ., Y eR,)

= Pr{XEH =Y, ek, . .., Y eR,] .

The next partial product is the result of multiplying A, by the

transition matrix Py ;4 which yields:

A3 - AZ.PV.Hl - [dl e o dj “ e e dﬂ..n]

where
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d; = ¢'Py k1 (1)
: Qu+i

- z Pf[xrl-i,yktkk,...,ylfkl]
ieQyyy

“PrlYyy Ry X mj X EH i Y, R, L. LY R
= PrIX&H =Y, 11 eRyt e Y eR ) .

The product is completed by multiplying A; by the summing vector

Fk‘H’ that is,

k+1
P‘[,I_Il HV,Q'PVJ].FHI

= AyFy

- ‘ QE Pr[Xf.:’-j,YH,eRH, ,...,Ylékll
Jern

- Pr[Yk‘H‘Rk'H'YkCRk ....YlCRl]
- Pl'[Yl CRI""'Yk'H6Rk+l’Yk+2‘Qk+2""'Ym¢Qm]

= Pr[RyX -+ - XRypyXQuepX - + - XQu] .

Accordingly, the equation holds for all k<m, which completes the proof of

Theorem $5.4.
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In particular, .or k=m, we have

Corollary:

For any Cartesian set Ve XR,X - - - XRp,

m
Pr{V] = p[kl—ll HV.k'PV.k]'Fm . (5.22)

Although Equation (5.22) provides us with a general formula for
computing the probability of a Cartesian set, its disadvantageﬁ derive from the
fact that the Hy, and Py, matrices may be difficult to obtain in practical
applications. In particular, these matrices will generaily depend on V as well as
X and, moreover, will generally depend on the history of X before phase k.
However, the latter objections disappear when the transition probabilities are
"memoryless." More precisely, let the (unconditional) intraphuse transition

matrix of the k't phase be the n,Xn, matrix Fv,k where, for all i,jeQ,,

Py k(i) = PrIX{=j, YyeR,IXE i (5.23)

i.c., the probability of having performance levels Ry during phase k while the
intraphase process initiates in state i and ends up in state j. Similarly, let the
(unconditionai) interphase transition matrix be the ny,_;Xn, matrix Hy where,

for all ieQ,—; and jeQ,,
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Hy(ij) = F.IXE =j|X}=1=i] {5.24)

t-1

i.c., the probability that the k' intraphase process initiates in state j given that
the k—1'® intraphase process ends up in state i. Then the intraphase transitions

of (X,v) are memoryless for V at phase k if

Py, >Py,.

Similarly, the interphase trausitions of (X,y) are memoryless for V at phase k if

HV,k o Hk .

Accordingly, when transitions are memoryless through phase k, by the

definitions and Theorem 5.4, we obtain
Theorem §5.5:

If V=R XR,X""* - XRXQu4;X*"*XQp and the intraphase and

interphase transitions of X are memoryless for V through phase k, then

V] = pLL BBy )Py (5.29)

Corollary:
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For any Cartesia: et V, if the intraphase and interphase transitions

of X are mémoryless for V for all phases, then

ko
PriV) = p (1 HyPyy)Fe- (5.26)

When V is a Cartesian set anG Ry = Q,, for g = 1,2,....,k—1, then the intraphase
and interphase transitions of X are memocyless for V through phase k.
A~cordingly, applying Theorem 5.5, we obtain the following formula for the
- sbability of the trajectory set V = Q;X - - XQu-XRXQy+1XQq Wwhich,

alternatively, is the probability of the event Y, eR,.
Theorem 5.6:

IfVe= le cre XQk_IXRkXQk.HX s me' then

ko
Pr(V] = pL 11 K By Fe. (5.27)

By Theorems 5.5 and 5.6, when certain intraphase and interphase
transitions are memoryless for V, the probability uf a Cartesian set V is easily
obtainatle. However, such results may still be difficult to use because, even
though the transitions are memoryless for V, they may not be memoryless for
other Cartesian sets. Accordingly, we have sought to identify stronger

conditions under which the formulas will hold for aii Cartesian trajectory sets.
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First, by extending previous definitions, the intraphase (1uterphase) transitions
of (X,y) are memoryless at phase k if they are memoryless for all Cartesian sets
V at phase k; the intraphase (interphase) transitions of (X,y) are memoryless if
they are memoryless at all phases. The advantages of memoryless transitions

are obvious, for by their definitions and the corollary to Theorem 5.4, we have
Theorem 5.7:

If (X,y) is a phased model and the intraphase and interphase

transitions of X are memoryless, then, for all Cartesian sets V,

Pr(V] = p [T HPy,)Fy . (5.28)

Moreover, we find that the memoryless property is relatively easy to
characterize, that is, we are able to show the following characterization
conditions for the memoryless property. Note that the conditions do not

involve any specific Cartesian sets.
Theorem 5.8:

(1) The intraphase transitions of X are memoryless at phase k if and only

if, for all i,jeQy and all ag in Ay (¢ = 1,2,...,k),
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Pr{Xf=j,Y,=a,|XE =i,Y, =2, _,,....Y,=2,]
= Pr(XX=j,Y,=a, |XE =i . (5-29)

(2) The interphase transitions of X are memoryless at phase k if and only

if, for all ieQy—;, jeQy and all ageAy (¢ = 1,2,...,.k—1),

PrIXE =j|XE =i, Yy =ty g, Y =2 ]
= Pr[X} =X} 1=i] . (5.30)

te-1

Proof:

Suppose Py, is memoryless for all Cartesian sets

V=R XRyX: ‘- XRy. By taking Ry to be the singleton set {aj} (¢ = 1,2,...,k),

Py (i) = PrlXX=j,Y,=a,|X& =i,Y, j=a)_),....Y,=2,]
= Pr[X{=j,Y\=a, X & =i]

= Py (i) .

Now, suppose that, for all ageAq (0 = 1,2,...,k),



- 147 - ORIGINAL PAGEZ 19
OF POOR QUALITY

PrXt=j,Y,=a, XX =i,Y\— =a,_j,...,Y =2,]

= PriX =, Y =g, IXE =il .

Then, for any Cartesian set V. = R XR,X - - - XRy,

Py (i) = PriXX=),Y R IXE =i, Y} eRy—p,.... Y €R)]

z cﬁ(ah tee ,ak)’dik(al,...,ak)
- I|!R|.....Ig(k|

Pr[x‘f_l ., Yk—l‘Rk—l’ “e e le‘Rl]

where
Cj(a)emnidy) = PrXE=, Y, =a, XK =i, =2y, ..., Y =3]
and

dik(al,...,ak) - Pr[X,"H"i,Yk_l"ak, . e ,Yl-al] .

Thus, by the assumption, Py ;(i,j) is equal to

> PriXkej, Y, =a, IXE =i
l|¢R|. o ,l.GRg .
'Pr[xtk._'-lQYk_l-ak—lg P ,Yl-al]

PriXX =i,Y, Ry, ..., Y eR}]
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Factoring out the term PrlX=j,Y,=a,|X%_=i], we have

Py (i) = PriX=, Y, =2, IX £ =i]-1
= Py (i)

which completes the proof for part (1) of the theorem. Part(2) is proven in a

like manner.
5.4 Upeiaticnal Models as Intraphase Processes

To illustrate the application of the above general results, we consider
in this section performability evaluation methods assuming that the phased base
model of a phased model (see (5.3)) is Markovian and that the intraphase
performance variable are defined as the minimum operational rates experienced
by the system during a particular phase (see (3.23)). The representation of
intraphase processes as operational models permits us to calculate the
intraphase transition probabilities using Equations (3.45) and (3.49). By
formulating the intraphase performance variables in terms of functionals, we
also obtain a considerable gain in expressive power of a phased model,
particularly in representing the effects of intraphase "repair.” Moreover, since
the operational models are allowed to vary from phase to phase, the modeling
of a particular phase can be tailored to the computational requirements of the
phase. In other words, this special class of phased models can be regarded as

the time varying versions of the models introduced in Chapter 3.
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5.4.1 Derivation of Intraphase Transition Probabilities

Recall that, in order to represent the phased base model as a one-

parameter family of random variables

X = {X,|teT} ,
the augmented utilization period is taken to be
T=T U {t/lk=1,2,..,m—1}

where t={0,h] is the original utilization period. Hence, to describe X as a
Markov process, T must be specified as a totally ordered set by inheriting the
ordering relation of T and by assuming t,<t/, t;/<x, y<t,’ for all
k=1,2,...,m-1, and all x,yeT such that t, <x and y<t,. By Theorem 5.8, the
Markov assumptions imply that the intraphase transition and the interphase
transitions of X are memoryless. Hence, applying (5.28), for all Cartesian sets

VCAX: - XAp,

PrlV] = p [l HyPy,lFp . (5.31)

In other words, the probability of V can be expressed in terms of the initial

distribution of the first phase, p=Ip, p, - *+ p, ), the interphase transition
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H, (i) = PrXk_ =j|Xk~1=i]

where k=1,2,....m, i¢Q,—_, and jeQy, and the intraphase transition probabilities

Py (i) = PriXy=j,YyeRy X =i]

Tt

where k=1,2,...,m and i,jeQ,. Assuming p and H,(i,j) can be determined from
the known properties of the system, then the problem of computing Pr[V] is

reduced to that of computing the intraphase transition probabilities.

To compute the intraphase transition probabilities, we assume that
ecach phase of the mission is represented by an operational model. More

precisely, for each phase k, the intraphase process

Xk = {XX|teT,}

is a time-homogeneous Markov process and the phase k performance variable

Y, is given by

Y, = min{f, (X)) |teT,}

e L e e



- 151 -

L0t

OF &7 g% a0t ven

where f, is an operational structure defined on the state space of X*. Clearly,

the intraphase transition probability Fv'k(i,j) can be determined by

PriX =Y, =qIXE =]  (qeQy)

which, in turn, can be determined by the conditional probabilities mi‘,l(t)
described in Section 3.2 More precisely, for cach

1<k<m and qeQ={1,2,...,n,} let us define a n,Xn, dimensional matrix

Mk,q _— [mg]
where for all i,jeQ,,
m = PrX=j,Y,=q|X,; =il .

Then, since XX is a time-homogeneous Markov process, my can be computed
by applying either (3.45) or (3.49). Moreover, it follows that the intraphase

transition probabilities can then be obtained from M; , by matrix additions, i.e.,

PyiGi) = 3 Mg
QR
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5.4.2 Evaluation of a Two-Phase Mission

In constructing a phased model that can support an evaluation of
system performability, we must specify the intraphase processes and an
organizing structure with respect to a specific computer and its computational
environment. The intraphase processes together with the organizing structure
determine an equivalent performability model that can be evaluated using

solution methods developed in Section 5.3.

To illustrate these modeling and evaluation methods, a
comprehensive phased model has been examined in [49], involving the SIFT
computer with an environment taken to be the control of a transoceanic air
transport mission. The model represents the internal structure of the SIFT
computer as well as conditions of its environment in terms of Markov
processes (see [49], Figure 3 and Table IIT). State trajectories of the equivalent
base model are then related to accomplishment levels of the mission via a
capability function (i.e., an organizing structure) which is formulated in terms
of a three-level model hierarchy (see [49], Figure 2). After the capability
function is formulated, solution methods are then applied to determine the

performability of the total system.

Although the performability modeling and evaluation effort of the
SIFT computer has shown the essential aspects of the phase model method, it
has emphasized the construction of realistic higher level models. Simple

Markovian models for nonrepairable systems are used to reduce the complexity
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of the performability calculation. Hence, to show the solution algorithms in
more detail, we consider in this subsection a phased modcl that uses

operational models as intraphase processes.

We consider a total system S=(C,E) comprised of a control
computer C operated in the environment E of a two-phase mission. The
computer initially operates as a multiprocessor system with three identical
components. However, system reconfiguration can occur in the computer due
to phase change, hardware faults, or software faults. During the first phase
T,=l[ty.t;], all three subsystems are required to perform all computational tasks
successfully. But, when less than three subsystems are available, the system
can still survive by executing a reduced set of computational tasks. Depending
on the amount of resources available, the system exhibits the following levels

of accomplishment during phase 1:

Phase 1
accomplishment | Interpretation
levels

3 Full performance

2 Noncritical performance
degradation

1 Critical performance
degradation

0 Failure

During the second phase T,=[t;.t,], the system is reconfigured into a TMR
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system with software recovery to obtain a high degree of reliability (see Section

3.4). Henéc. the system exlibits the following three accomplishment levels:

Phase 2
accomplishment | Interpretation
levels
2 Full performance
1 Degraded performance
0 Failure

To describe aspects of the system performance that the users

consider important, we assume that users are interested in distinguishing only

three levels of mission performance A={2,1,0}, where the accomplishment

levels convey the following information:

Mission
accomplishment | Interpretation
levels
2 Full performance
1 Degraded performance
0 Failure

We further assume the following characteristics of the mission:

1) To achieve level 2 mission accomplishment, if the

performance
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degraded noncritically during the first phase, then performance
degradation is not permitted during the second phase. If phase 1
performance is not degraded, then phase 2 performance is allowed to

degrade.

2) Mission performance is degraded if phase 1 performance is noncritically
degraded and pbase 2 performance is degraded. A critically-degraded
performance in phase 1 will result in level 1 mission accomplishment

only if phase 2 performance is not degraded.

3) Mission accomplishment level is 0 if the system enters the failure mode

during any phase.

Under the above assumptions, the organizing structure of the phased model
(i.e., the capability function of the equivalent performability model) can be
tabulated as in Table S5.1. Clearly, the organizing structure ¥:A;XA; —A is

order-preserving and satisfies the conditions of Theorem 5.2.
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Accomplishment Leveis

Mission
Phase 1 Phase 2 (W)
3 2 2
3 1 2
3 0 0
2 2 2
2 1 1
2 0 0
1 2 1
1 1 n
1 0 0
0 2 0
0 1 0
0 0 0

Table 5.1

An Organizing S*rr.ture
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Hence, for each mission accomplishment level acA, ¥~!(a) can be expressed as
a finite union of Cartesian subsets of A;XA,. In particular, one such

representation is

v1(2) = {3]x{1,2} U {2}x{2} (5.32)
YU = {21x{1} U {1}x{2} (5.33)

w=l(0) = {0x{0,1,2} (U {0,1}x{0,1} U {0}x{0,1,2,3}  (5.34)

Note that each Cartesian set in the above equalities is an interval as defined in

Section §.2.

To specify the equivalent base model. it is necessary that the state
spaces of the intraphase processes be refined enough to support the evaluation
of system performability. This condition can be satisfied if the phased base
model (5.3) is chosen to be a time-homogeneous Markov process with a state
space detailed enough to distinguish different operational modes of the
intraphase processes. In other words, even though the operational models vary
from phase to phase, they share the same underlying Markov process

throughout the whole mission.

Assume that the computer has the same failvre characteristics as the

one considered in Section 3.4. Then, if we denote the model parameters by
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A = component failure rate
¢ = software failure rate

¢ =  hardware error coverage
d = software error coverage

du = rate of software recovery,

a common time-homogeneous Markov process for both phases can be specified
as in Figure 5.2. Each state of the graph (except state 0) represents 2 specific
number of subsysiems that are free from hardware fauits; a prime () is
appended to the numbes if the system is attempiing recovery from a s.ftware
error. State 0 represents any other configurations. Using this Markov process,
the probabilistic nature of phase 1 and phase 2 can Le represented, respectively,
by operational models induced by the operational structures as illustrated in
Table 5.2. Note that the operational rates are chosen to convey the same
information as the accomplishment levels of each phase so that the intraphase

performance variables Y, (k=1 or 2) can be defined as

Y, = min{f,(X,)|teT,}

where fy is the operational structure of the k'® phase.

To compute the performabi’ity of the total systems, note also that
the use of a common Markov process for all phases implies that each

interphase transition matrix is an identity matrix. Accordingly, once the initial
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Operational Structures

of a Phased Model

C‘n’;, Ve
OF PCLit
Phase | State | Operational
rate
3 3
¥ 2
1 b4 1
1 1
0 0
3 2
¥ 1
2 2 2
2 0
1 0
0 0
Table 5.2

Vg
J:vl-i’x\/
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distribution of the first phase model is known, the probabilities of Cartesian

sets can be determined by repeatedly applying (5.31).

following parameter values:

Parameter | Value
A 51074
a 1072
m 103
c .99999
d 9

First, let us assurae the

Then, if we assume that the duration of the two phases are both 10 hours, we

have, by (5.31),

(89137 0 0 0 0 O]
0 00000
M.=| 0 00000
1.3 0 0000O0O|
0 00000
| 0 0000 O]

08393 .01402 .00001 0
0 89583 0 O
M. ., = |-87777 .01262 .00001 O
1.2 0 0 0 o0
0 0 0 O
) 0 0 0
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0 .00065 0 .00001 .00005 0

0 .08436 0 .00001 .00005 0

M. . = [0 00058 0 0 .00846 0

1.1 |0 .§8218 0 .00001 .00846 0| °
0 0 0 0 .900320

0 0 0 o0 0 O

89137 01338 000 O
0 89583 0000
M, ., = 0 0 0000O
2,2 0 0 00GO]
0 0 0000
L 0 0 000 0]
and

.08393 .00065 .00001 0 0 O

0 0 0 000

M. , = |-87777 .01262 .00001 0 0 O
2,1 0 0 0O 000
0 0 0 000

0 0 0O 009

Accordingly, the trajectory sets in (5.32) and (5.33) can be

evaluated by applying (5.28) and (5.18), i.e,,

Pr[¥~1(2)] = Prl{3}1x{1,2}] + Prl{2}Xx{2}]

= p-M (M, +M;5)F + pM, M, »'F

and
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Pr(¥~1(1)] = Prl{2}x{1}] + Prl{1}x{2}]

= p'M; M ;'F + pM, ‘M, »-F

where p is the initial distribution of the first phase and F is a 6X1 dimensional
matrix with a "1" on every entry. In particular, if the computer is fault-free at
the beginning, i.c., p=[1 00 0 0 0], the performability of the phased mission is

as follows:

perf(2) = Pr[¥~1(2)] = .97036
perf(1) = Pr[¥~!(1)] = .00769

perf(0) = Pr[¥~1(0)] = .02195



CHAPTER 6
CONCLUSION AND FURTHER RESEARCH

The objective of this research has been to develop a general
stochastic process model for evaluating the performability of degradable
computing systems. This objective was established to fulfill the need of
evaluating the unified performance and reliability of distributed multiprocessor
systems. To accomplish the objective, a precise formulation of system
performance is developed in a broad context and the concept is then applied to
analyze the performance of degradable computing systems. Furthermore, a
simple and useful user-oriented performance variable is identified and shown to
be a proper generalization of the traditional notions of system performance and

reliability.

In addition to the above modeling framework, a specific two-level
hierarchical model is developed. The model is constructed according to a
hierarchical decomposition of a system’s behavior: Priority queueing models are
used to analyze the system’s detailed program behavior and the results are
combined via a Markov reward process to characterize the overall system
performance. Although the modeling approach resembles the top-down

structured approach of software development, the decomposition considered

-164-
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here is based on a more precise classification of a system’s short term and long
term equilil;rium behavior. Accoraingly, the modeling approach permits the
evaluation of a computing system’s hardware and software as a whole, and it
becomes possible to deal with the performance and the reliability of a
computing system simultanecously to measure the extent to which the user can

benefit from tasks accomplished by the computer.

Finally, a time-varying version of the model is considered to analyze
the performance of phased missions. By representing intraphase models in
terms of operational models, we are able to obtain useful results even without
the typical no-repair assumption of the traditional phased-mission reliability
methods. Moreover, since the model considered does not require the structure
function representation of system success, the approach thus represents an

important generalization of traditional fault-tree analysis.

Although the investigation efforts documented in this thesis were
carried to the point where the research objectives described in Section 1.2 were
satisfactorily accomplished, there remain several problems that must be
resolved before the performability modeling techniques can become a major

tool in the design and analysis of computing systems.

First, to extend the usefulness of operational models, more efforts
can be made to formulate various user-oriented performance variables that are
suitable for a wide variety of computer applications. Since solution methods for

these performance variables may differ considerably from those obtained in this
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study, new solution techniques should also be explored.

Several generalizations of the phased model are possible depending
on how the notion of phasing is relaxed. For example, by allowing the duration
of eack phase to vary, the model can be extended to a larger class of systems
with time-varying environments. One may also extend the phased model by
allowing the decision on selecting a succeeding phase to be made at the time of

a phase change to improve the mission performance.

Another important problem that may have significant influence on
the modeling of degradable computing systems is the modeling of software
faults. The problem becomes even more interesting when both software and
hardware faults are considered simultaneously. Note that the model considered
in Chapter 4 measures the effect of hardware faults while taking into account
the behavior of the system software. On the other hand, software reliability
models (see [55]-[56], for example) are typically concerned with the effect of
software faults on the system performance assuming that the hardware is fault-
free. Clearly, useful performance measures can be obtained by combining

performability with the results of software reliability analysis.

Finally, we note that the hierarchical decomposition method
considered in Chapter 4 may also be extended to the performance modeling of
computing systems in general in addition to the performance modeling of
degradable computing systems. By classifying the physical and logical resources

of a computing system according to their frequency of accesses, various models
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can be constructed to facilitate the step-by-step approximation of system
performancé. To make the approach useful, however, it then becomes
necessary to have a better understanding of the error bound of the

approximation.



APPENDIX
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MARKOVIAN FUNCTIONALS OF
MARKOY PROCESSES

This appendix is reference material for Chapter 3. Conditions under
which operational models become Markovian are stated in terms of slightly
modified forms of what can be found in the literature. The utilization of such

conditions together with their limitations are illustrated through examples.

When modeling computing systems as operational models, there are
many situations in which the state space of the underlying base model may be
much larger than needed to distingvish operational rates via the opcrational
structure. Accordingly, to simplify the evaluation of system performability, one
question that arises naturally is whether the operational models can be
described as Markov processes and, if so, whether they are time-homogeneous.
More precisely, let us suppose the total system is modeled by a time-

homogeneous Markov process

X = {X,|0=<s=<t}

with a denumerable state space Q and, relative to an operational structure

f:Q—R,
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Z={f(X,)|0=s=t}.

Since the above question does not involve the actual values of f, 7Z may be
regarded here as a "lumped” [52] version of X, where states i and j sre in the
same lump if and only if f(i)={(j). In other words, lumps coincide with the
operational modes of S. If f is 1-1 then Z is obviously both Markovian and
time-homogeneous since, in this case the lumping is trivial. If i is properly a
many-to-one function, the answer is no longer obvious, ard indeed the

question needs further clarification.

To begin, let us suppose that the underlying process X is specified
by its generator matrix A and an initial distribution p. Then our original

inquiry can be reduced to the following questions:
Q1) Given A, pand f, is Z Markovian?

In many applications, however, one wants the freedom to alter the initial

distribution p without losing the Markov property. In this case we are asking:
Q2) Given A and f, is Z Markovian for arbitrary p?
Finally, we can raise our sights even higher and ask:

Q3) Given A and f, is Z Markovian for arbitrary » and,
moreover, is the transition function of Z

independent of p?



Adopting the terminology of [52] (which investigates the discrete-time versions
of Q1 and 63). if the answer to QI is "yes" then the process X specified by A
and p is weakly lumpable (with respect to f). A 'yes" answer to Q2 is stronger
but, generally, these Markov processes will not be time-homogeneous. If the
answer to Q3 is "yes" then, for all initial distributions p, the Markov processes
Z have the same transition function and, by the homogeneity of X, it follows
that this function is invariant under time shifts, i.e., the processes are time-

homogeneous. In this case we say that the processes X specified by A are

strongly lumpable (with respect to f).

Addressing first the question of weak lumpability (Q1), if Z is to be
a Markov process, we must insure it has the "memoryless® property, that is, any
sequence of past observations of Z provides the same information as the last of
those observations. To formalize this requirement, if 0t <t; < --- <t is a
sequence of observation times and qieﬁ-f(Q) is the state of Z observed at time

t;, for each underlying state jeQ, let

M(tys - -« oty - - - o Qy) = PriX =ilZ,=qy, . . ., Zy=qy] (A.1)

then tae 1X|Q| matrix

M(t), - . . teiGpeeG) = [M;( )]
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is the probability distribution of the states of X at time t,, ns conditioned by
these observations of Z. In particular, since Z, =q,, it follows that M;( ; ) is
nonzero only if f(j)=qy, where {M;(; )IfG)=q,} gives the probability
distribution of states inside the lump f~'(q;). Moreover, since X is a Markov
process, M;( ; ) permits us to represent conditional probabilities in terms of the
transition function of X, ie., it can be shown that, for all

OStl <‘2< e <tk-t and 320,

Mj(tl' e otk“ll'----Qk)'P(’)

=[x, xy ---] (A2)
where, for each ieQ,
= PriXp,=ilZy =g, . . . . Z=q,]) .
To translate distributions of X back up into distributions of Z

relative to some specified ordering of the lumps, let Q; denote the ¢'® lump,

i.e., the collection of sets

Qll =¢ = I1Ql}

is the partition of Q induced by f. Accordingly, if =[x, x; ---] is a
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probability distribution over the states of X, we let ¥ denote the corresponding

distribution, that is

F=[7 7 -] (A3)

where

=3 (sj=lQ).
ieQy

In terms of the above notation, weak lumpability can then be characterized
similar to its discrete time analog.
Theorem A.l1:

Let X be a time-homogeneous Markov process with transition
function P and a fixed initial state probability distribution p. Let Z he a

functional of X and, for all t=0, define

A1) = {M(t),...t5qy, - - - a0t < - - <t =tand q;, ...,q¢Q} .

Then, Z is a Markov process if and only if, for all s=0 and for all x,x"eAp(t),

¥=75x implies ='P(s)= x"P(s). (A4)
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Theorem A.l can be proved in a way similar to that of its discrete-
time analog:(sec (52]; pp. 132-134). To illustrate its application, let us suppose
that the system in que‘stion is a multicomputer comprised oi three identical
computer modules. Suppose further that modules fail independently and that
each fails permanently with a constant failure rate A. Then we can take the
base model X to be the Markov process depicted by the state-transition-rate

diagram of Figure A.l.

° >—-° N° u°
> >

Figure A.l

Markov Model of a Multicomputer

As for operational rates, let us assume they are normalized so that, at full
capacity the rate is 1, and with the loss of one or two modules the rate is 1/2;
loss of a third module results in total failure. Accordingly, the operational

structure here is the function
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i | fG)
1| 1
2| 172
3|12
4l o

and hence the functional Z takes values in the state set Q={1,1/2,0}. On taking

the inverse of f, these states correspond as follows to lumps ¢f Q:

1~ {1}
1/2 — {2,3}

0 — {4}.

If we now examine the probabilistic nature of Z, we find that the conditional
probability Pr[Z,,,=0|Z,=1/2) depends on the time that Z enters state 1/2 from
state 1 if the latter event is possible (i.e., if the probability of initially teing in
state 1 is nonzero). Thus, for example, if X is initiaily in state 1 with
probability 1, i.e., p=[1 0 0 0] is the initial state probability distribution, then
we have such a dependence (on the past history of Z) and therefore Z is not a
Markcv process. On the other hand, let us suppose the initial distribution is
p=[0 0 1 0], which i< not a likely choice from a functional point of view, but it
serves to illustrate the role of p. In this case A,(t) (as defined in the statement

o1 Theorem A.1) is the same for any time t in T, i.c., it is the set
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A,(t) = {[0010],[0001]} .

Accordi'ngly, the conditions of Theorem A.l are vacuously satisfied, and
therefore Z is a Markov process for this choice of p. Moreover, it should be
obvious that Z, is this case, is time-homogeneous. Other distributions, such as
p=[0 1 0 0] can be shown to result in Markov processes that are not time-

homogeneous.

Regarding the second question (Q2), a necessary and sufficient
condition can be obtained by extending the previous theore:r: to artitrary initial
distributions. More precisely, it can be shown that Z is a Markov process
whatever the initial distribution if and only if, for all t,s=0 and any initial
distribution p, condition (A.4) holds for all =, ’ in Ap(t). Although the
characterization is useful from a conceptual point of view, it is difficult to use in
practical applications. A more desirable form of this result can be found in [53]
(pp. 1113-1114, Theorem 4) which assumes that X has a nite state space.
(The theorem was generalized later in [54] to allow for arbiirary state space.)
Stating the desired form of this result in terms of the notation defined above

we have:
Theorem A.2:

Let X be a time-homogenecous Markov process with generator
raatrix A=[a;] and let Z be a functional of X determined by f. Then Z is a

Markov process, whatever the initial distribution of X, if and only if for each
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q¢Q taken separately either

(i) For all i,jeQ such that f(i)#q and f(j)=q,

au-O

or

(ii) For all reQ such that r#q, the sum

Eaij

()=t

is the same for all ieQ such that f(i) =q.

Although the conditions of Theorem A.2 guarantee that Z is a
Markov process relative to any initial distribution p for X, note that the specific
nature of Z (as specified by its transition function) will generally depend on p.

Moreover, the process Z need not be time-homogeneous.

To illustrate Theorem A.2 and the above observaﬁons, let us again
consider the Markov process X having the state-tiansition-rate diagram given

by Figure A.1. Then, the generator matrix of X is the 4X4 matrix

-3\ 32 0 0
A=|0 22x 20
0 0 =N\

O 0 00



-178 -
Creo,. o - o 3
OF POC &
Suppose, however, that the operational structure here is one that corresponds

to triplimtio‘n with voting (TMR), i.e., the function

i f(i)
1 1
2 1
3 0
4 0

Then Q={1,0} and, applying Thecrem A.2, we see that state 1 (i.c., lump {1,2})
satisfies condition (i) and state 0 (i.e., lump {3,4}) satisfies condition {ii).
Hence, the functional Z is a Markov process. To determine the probabilistic
nature of Z, let us rename state 0 (in Q) as state 2 (psrmitting the use of
standard matrix notation) and let ﬁ(s,t) denote the transition function of Z,

.
1.C.,

P(s,t) = [F(s.)] (=)

where

Bi(s.t® = PrlZ=j|Z,=i] .
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Then, relative to an initial distribution p=[p, p, p; p,] for X, if we let

P1
pitpy

it can be shown that the matrix P(s,t) has the following entries:

e~ AW (142d(1—e~MY)
(1=-2d(1—e™))

31(s,t) =

612(5’0 -] ﬁll(s’t) ’
Pa(sit) =0, (A.5)

ﬁzz(s,t) -],

From the above equations, we see that the transition function I7(s,t)
depends on d and, hence, on the initial distribution p=[p, p. p; p,]. Moreover,
we observe that Z is time-homogeneous (i.c., the values of P(s,t) depend only

“on the time difference t-s) only when d=0. In other words, by the dennition
of d, Z is time-homogeneous if and only if p;=0, i.c., there is a zero probability
that the underlying process X is initially in state 1 (all three modules fault-
free). However, with our interpretation of Z as a TMR model, this special case
is pathological, and hence for most practical purposes Z will not be time-

homogeneous.
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Finally, turning to the question of strong lumpability (see Q3
above),-the answer can be characterized by removing condition (i) of Theorem
A.2 and modifying the proof to accommodate this change. More precisely, we

have
Theorem A.3:

Let X be a time-homogeneous Markov process with generator
matrix A=[a;] and let Z be a functional of X determined by f. Then Z is a
Markov process, whatever the initial distribution p of X and with a transition
function that is independent of p, if and only if for each qeQ the following is

satisfied:

For all reQ such that r#q, the sum

f(j)=r

is the same for all ieQ such that f(i)=q. To illustrate Theorem A.3, suppose X

is specified by the generator matrix

=3, A A A 00 O]
0 =20 0 0 AXO
0 0 =2 0 A0
A=|0 0 0 —-2A0 X A (A.7)
0 0 O O0 00O
0 0 O O0 00O
0 0 0 0 00 O]
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and f is the function ‘ R .’
CF Ot (Ll

q | f(q)
—

1] 1
2] 2
3] 3
4| 3
51 4
6| 4
71 4

Testing condition (A.6) for states 1 and 2 in Q, we see that it holds trivially
since thesc states correspond to singleton lumps. As for state 3¢Q
(corresponding to lump {3,4}), with respect to states 1,2¢Q the sums are zero
for both i=3 and i=4; with respect to state 4¢Q the sum is 2\ for both i=3
and i=4. Thus condition (A.6) holds for state 3. Finally, (A.6) is likewise
satisfied for state 4¢Q and we conclude that Z is a Markov process with a

transition function that is independent of p.

In general, if X is strongly lumpable (as characterized by Theorem
A.3) it is ecasily shown that Z must inherit the time-homogeneity of X. In
other words, a strongly lumped processes will always be time-homogeneous

and, accordingly, it can be specified by a constant generator matrix. More
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precisely, let us rename the states in Q (if not already so named) with the
integers from 1 to |Ql, the generator matrix A=[T,] of Z can be constructed
directly from A, where entry i, (q#r) is given by the invariant sum of
condition (A.6) for any i such that f(i)=q. (The diagonal entries Bgq are then
determined by the condition that rows must sum to zero.) Thus, for the
example just considered (see (A.7) and (A.8)), the generator matrix of Z is the

4X4 matrix

—3. A 2 0
A=|0 =22 0 2
0 0 —2x 2\
0 0 0 0

As illustrated through the above examples, a strongly lumped
process is clearly the most desirable type of operational model. On the other
hand, by Theorem A.3, it is evident that such models require a relatively
restricted "match” between the probabilistic nature of the base moael (as

specified by A) and the operational structure f.

The conditions of Theorem A.2 are somewhat . aker although,
when satisfied, the transition rates of the resulting Markov functional are
generally time-varying and dependent on the initial distribution of the
underlying process. Of significance here is that even without strong lumpability
one can obtain operational models that are Markovian and admit to feasible,

closed-form analytic solutions (see Equations A.S, for example). What must be
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used here, then, are solution techniques for arbitrary (discrete-state) Markov
processes, as opposed to more special (and much more familiar) techniques

that apply only to time-homogeneous Markov processes.

Finally, regarding weak lumpability (Theorem A.1), the requirement
here is even less restrictive. However, depending on A, p, and f, it may be
difficult to decide whether the condition of Theorem A.l is satisfied.
Moreover, we currently know of no general means of solving such models
without resorting to detailed computations at the base model lcvel. The utility
of weak lumpability is also curtailed by the fact that the initial state distribution
of the base model is fixed. This may be satisfactory in certain applications but
one often wishes to examine the influsnce of Jifferent initial distributions. In
such cases, one must derive a solution for each of the given distributions

provided, of course, that each admits to weak lumpability.

Theorems A.1-A.3 thus provide formal support of what we and
others in the field have observed through experience: at higher, more user-
oriented levels of abstraction, it is difficult to maintain a Markovian
representation of system behavior. As a consequence, we should seck means
for accommodating operational mcdels (functionals) that are not Markovian.
The latter task is less formidable than it might appear if we bear in mind that,
when evaluating a system S, an operational model Z plays an intermediate role
in support of a specific performance variable Y. Thus, our knowledge of Z can

be restricted to that required to solve the probability distribution of Y, i.e., the
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performability of S. The latter observation serves as the guiding principle for

the work described! in Chapter 3.
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