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ABSTRACT

MODELS FOR EVALUATING THE PERFORMABILTTY
OF D 21GRADABLE COMPUTING SYSTEMS

by

Liang Tai Wu

Chairman: John F. Meyer

Recent advances in multiprocessor technology have established the

need for unified methods to evaluate computing systems performance and

reliability. In response to this modeling need, this dissertation considers a

general modeling framework that permits the modeling, analysis and evaluation

of degradable computing systems. Within this framework, several user-

oriented performance variables are identified and shown to be proper

generalizations of the traditional notions of system performance and reliability.

I •

	

	 Furthermore, a time-varying version of the model is developed to generalize

the traditional fault-tree reliability evaluation methods of phased missions.

The modeling and evaluation methods considered in this dissertation

provide a relatively straightforward approach to integrate reliability and

availability measures with performance measures. The hierarchical

decomposition approach permits the modeling and evaluation of a computing

system's subsystems (e.g., Hardware, software, peripherals, interfaces, user

demand systems) as a whole rather than the traditional methods of evaluating

these subsystems independently. Accordingly, it becomes possible to evaluate

-i-



the performance of the system software and the reliability of the system

hardware simultaneously in order to measure the effectiveness of the system

design. Moreover, since the performance variables considered in this study

permit the characterization of system performance according to the application

needs of a system, the results obtained represent more accurate assessments of

the system's ability to perform than the existing performance or reliability

measures.
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CHAPTER 1

INTRODUCTION

1.1 Backgroand

The recent developments in multiprocessor systems have stimulated

a growing interest in degradable computing systems that are designed to

provide a high degree of performance and reliability by reallocating the

computer's resources when faults are detected. To assess the effectiveness of

these computing systems, it has been found that the traditional way of

evaluating the performance and the reliability as distinct attributes of a

computer is no longer adequate [1], [2]. Traditional performance evaluation

methods generally assume that the computer to be evaluated is fault free and

are concerned with the quantification of the effectiveness in which the

computer's resources handle a specific application (see [3] and [4], for

example). Traditional reliability evaluation methods, on the other hand, deal

with the measurement of a computer's ability to remain operational in the

event of physical failures (see [5] through [81). Since the level of performance

of a degradable computing system may decrease •vith successive failures, the

performance and the reliability of the system must be dealt with simultaneously

to measure the extent to which the user can benefit from the tasks

accomplished by the computer.

-1-
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In response to the above modeling need of degradable computing

systems, some recent investigations have attempted to formulate new modeling

and evaluation methods that combine both the performance and the reliability

characteristics of computing systems. Particularly, Beaudry [91 has considered

performance-reliability measures that reflect the computational capacity of a

system, defined as the amount of useful computations available per unit of

time, and has shown that these measures can be evaluated in terms of a

transformed Liarkov process. By examining the set of jobs executed by a

computing system, Mine and Hatayama [ 101 have considered the reliability of

thn system with respect to a specific job, called job-related reliability. Although

the above models have shown the feasibility of combining the performance and

reliability measures into a single measure, their efforts have focused mainly on

the maximum capacity at which a computer can handle its computation. The

effect of interactions between the demand for computation (by the user) and its

supply (by the computer) has not been considered explicitly.

Another approach to quantifying the unified performance and

reliability of computing systems is based on Markov rewa-j processes [111. By

assigning a throughput rate to each state of a Markov process that describes the

resource availability of a computing system, Gay [121 has considered the

expected system throughput and the throughput availability of a system. A

similar model has also been used in 1131 by De Souza to estimate the reduction

in operating cost when fault-tolerance features are incorporated in commercial

systems. More recently, based on renewal process models, Castillo and

E
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Siewiorek [14) have considered the apparent capacity and expected elapsed time

requirod to execute a program correctly.

In contrast to the above efforts to formulate specific performance

measures for degradable :;omputing systems, Meyer [1] has developed a general

modeling framework that permits the definition, formulation and evaluation of

user-oriented performance measures. A hierarchical model is defined [1] which

assumes that the probabilistic nature of the total system S (the computer and

its environment) is modeled by a stochastic process XS. It is further assumed

that thr process XS can be used to determine the probability distribution

function of a random variable YS which describes the user's view of how well

the system performs. The probability distribution function of YS is shown to

induce a useful performance measure, referred to as the performability of S, in

the context of degradable computing system performance.

1.2 Researe` Objectives

In this investigation, among other things, we wish to extend the

modeling framework in [11 to provide a more concrete basis for studying the

evaluation of degradable computing systems. By introducing extra ingredients

to the modeling framework, we wish to develop a general stochastic process

model of degradablr. computing systems that satisfies the following objectives:

(1) The model should be general enough to permit uniform formulation of

different performance measures.

E
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(2) The model should be specific enough to permit derivations of

computational Algorithms and formulas.

(3) The model should be flexible enough ;n be related to traditional

performance and reliability models so that it may serve as a basis for

unifying traditional computing system evaluation methods.

(4) The model should be able to reflect the information processing needs of

the user as well as internal structural changes of the system caused by

component failures.

In addition to the above efforts of model development, we also wish

to apply the results obtained to evaluate a large class of fault-tolerant

computing systems known as "degradable multiprocessor systems! By

comparing the effectiveness of various design. strategies, we wish to illustrate

the tradeoffs between different techniques of incorporating fault-tolerance in

the design of a multiprocessor system.

Chapter 2 puts this work in context with respect to the general

modeling framework considered in [1]. It describes the components of a

1+erformability model and formalizes the relationships among these components.

The major results of this chapter include the precise formulation of the notion

of system performance in a broad context and the clarification of the notion of

supporting the evaluation of aystem performance using a stochastic process

model.
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Chapter 3 introduces a general notion of recoverability and

establiphes necessary and sufficient conditions for an operational model to be

recoverable. For both the recoverable and the nonrecoverable models, it

examines the solution methods of a generally defined performance variable

where the ecrformance is identified with the minimum value of a functional.

The modeling approach and the evaluation methods are then illustrated through

the evaluations of a multiprocessor system. The results obtained indicate that

the performance variable is, indeed, a proper gent;miization of the traditional

notions of the system performance and reliability. The, modeling and the

evaluation methods pro posed thus represent a unifying approach for integrating

the performance and the reliability measures of computing systems.

Chapter 4 presents a specific operational model for Evaluating the

performability of degradable multiprocessor systems. The model is constructed

according to a hierarchical i - -imposition of a system's behavior. A Markovian

base model is developed to represent the resource availability of the system,

and priority queueing models are used to determine, the operational rates of the

resource states. The model not only demonstrates the generality of an

operational model but also illustrates the feasibility of modeling and evaluating

the system performance via a step-by-step hierarchical approach. The methods

developed in this chapter thus represent a straightforward approach to produce

a composite picture of a computer's ability to meet overall throughput goals.

Chapter 5 extends the concept of an ope -atioral model to phased
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missions where the environment of a system can vary in time. Both the

combinatorial and the probabilistic properties of the extended model are

examined in detail. In addition, an example is constructed to illustrate the

performability ei aluation of a phased mission with multiple accomplishment

levels. The results obtained in this chapter represent an important step toward

the understanding and the development of a more general time-varying

operational model.

Chapter 6 summarizes the results of this study and suggests topics

for further research.



CHAPTER 2

PERFORMABILITY EVALUATION OF COMPUTING SYSTEMS

2.1 Introduction

The concept of hierarchical organization has become an important

tool in the Jesign of computing systems. Hardware components are typically

formed by putting together some basic modules or building blocks, and

software components are often structured into subroutines in a top-down

manner. By carefully organizing the structure of a computer into a hierarchy of

components, it becomes possible to increase greatly the capability and the

functional features of the computer. Although this concept of hierarchical

organization has been used extensively in the design of computing systems

since the invention of the first electronic computer, its implication in computing

systems performance evaluation has only been exploited recently.

As suggested in [21, a computing system can be described by a

hierarchy of system models that vary in "scope" and "level of abstraction" (see

Figure 2.1 for an example of what we call a model hierarchy). In this

representation, a higher level model has a larger scope and a higher level of

abstraction i.e., it describes a larger portion of the computer and its

environment, but possibly in less amount of detail. In particular, the top model

has a scope that includes all the subsystems that can influence the

computational process of the system (e.g., hardware and software, peripherals,

-7-
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interfaces, mainte- .nce systems, user demand system, etc., collectively referred

to as the total system). The level of abstraction at the top level is expressed in a

form easily usable by the system user. On the other hand, the bottom model

may involve low level representations of the computer's hardware and

operating system structure.

Based on the above model hierarchy of the total system, various

performance and reliability measures can then be associated with models at

each level of the hierarchy. The part of the total system that one is interested

in evaluating must be identified first with a specific level in the hierarchy

(referred to as the object system). The part of the total system outside the

object system is then regarded as the environment of the abject system. The

choice of an object system is, to a large extent, determined by the particular

problem one is interested in solving. For example, if the performance or

reliability of a data-base system is to be evaluated, the object system will not

only include the hardware and operating system but also the data bases and

their supporting programs.

Once a specific object system is selected, the performance of the

system can then be defined as how well the object system satisfies the

computational demands (also referred to as the workload) imposed by its

environment [4]. The performance is typically considered as a random variable
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referred to as a performance variable or performance index. Thus we can talk

about the mean, variance, distribution function, and the like of a performance

variable.

If we regard computer performance measures to be the

measurements of the quality of a computer according to the above broad

definition, some observations about the relationships among different

performance measures can now be made. First, we note that there are no

essential differences between what are traditionally called performance

measures (e.g., throughput rate, response time or utilization rate) and what are

traditionally called reliability measures (e.g., reliability, availability or

maintainability). They differ only in the way performance criteria are formed.

Any performance or reliability measures, viewed in the broadest context, must

account for both the workload and the probabilistic nature of the object system.

Accordingly, in the discussion that follows, the term performance measure will

be used to include both the performance and the reliability aspects of a system.

Second, we also note that different performance measures can be associated

with different levels of the model hierarchy. Thus, for each level of the

hierarchy, it is possible to formulate various performance measures according

to the application needs as well as the modeling requirements of the object

system.

In the following section, we first define more precisely the basic

elements of a performance study by considering the basic components of a
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performability model. The relationships among those components are then

formalized via the concept of capability functions. Finally, the notion of

supporting the evaluation of system performance using a stochastic process is

made precise by relating the probabilistic nature of the performance variable to

the known properties of the underlying stochastic process.

2.2 System Models

A major objective of this section is to formulate precisely what we

mean by a "stochastic model" for system performability. It is assumed that the

total system S — (C,E) contains a computer C operating in an environment E.

The computer C is composed of several processors, memory modules,

input/output devices, buses, etc., and the environment E includes man-made

components (e.g., interface circuits and peripheral subsystems), operational

rules (e.g., job submitting policies and maintenance procedures) and other

conditions (e.g., weather) that can influence the computer's effectiveness. At

this level of abstraction, it is appropriate to view S as a network of

interconnected subsystems with simultaneous information flow among

subsystems. Accordingly, S can be described as an autonomous state transition

system that changes state due to events occurring in time.

Given the above characterization of the total system, the behavior

of S can be viewed as a stochastic process
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XS = {Xt 1teT}	 (2.1)

where T is the time range involved (called the utilization period) and, for each

teT,

Xt: Q Q

is a random variable defined on a common probability space (n ,E,P) and

taking valuts in the state space Q of the total system. In the following

discussions, it will be assumed that T is a set of real numbers and Q is a

discrete set. Thus, without los of generality, the states of X S will often be

named by positive integers, viz.

Q = {1,2,3,...}

or, when Q is finite,

Q1,2,...,n} .

The stochastic process XS will be referred to as the base model of S and is

denoted simply as X when the system context is clear.

Although the base model X provides a detailed description of the

system's state behavior, the description is generally invisible to the users. It is

assumed that the users are concerned only with distinguishing different "levels
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of accomplishment" when judging how well the system has performed.

Accordingly, the user's view of the system's behavior can be formulated as a

random variable with respect to the underlying probability space (0 ,E,P), i.e.,

Y:Q	 A
	

(2.2)

where, for each wt g ,, Y(w) takes a value in the acconep&hment set A.

Depending on the application, the accomplishment set A can be any set of real

numbers where the elements of A are taken to be the various degrees of user

satisfaction such that a>b if a is preferred over b (i.e., the ordering relation >

as implied by the user preference coincides with the natural ordering of real

numbers). For example, to evaluate the reliability of a nondegradable system,

the accomplishment set can be taken to be A=10,1} where 1 — "system

success" and 0 — "system failure." On the other hand, if the user is interested

in evaluating the system throughput, A can be taken to be an interval of real

numbers. The random variable Y will be referred to as a performance variable

of S.

As generally defined above, the performance variable Y clearly can

be used to characterize either the performance or the reliability aspects of a

system. Thus a natural measure that can be used in the evaluation of

computing systems is the probability measure induced by Y (e.g., see [151

p.97). This unified performance-reliability measure is referred to as the

performab&ty of S which, in terms of our modeling framework, can be defined

as the function perfs where, for each measurable set BCA (i.e.,
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JWjY(W)EB1EE) of accomplishment levels,

perfs(B) — P(jwjY(w)EB}),	 (2.3)

i.e., perfs(B) is the probability that S performs at a level in B. The requirement

that B be measurable insures the existence of the probability on the right side

of (2.3).

In theory, it is possible to determine the performability of S from

the underlying probability space (0 ,E,P) of the performance variable Y.

However, in practice, the underlying probability space is generally unknown

and, consequently, the performability must be determined from known

properties of the base model X. Hence an important step to determine the

performability of S is to establish relations between the base model X and the

performance variable Y based on the given properties of X.

Following a common practice in probability theory, we assume that

the base model X is specified by its finite-dimensional distributions or by

information that determines these distributions (e.g., Markov assumptions

together with a transition function and an initial distribution). Based on these

finite-dimensional distributions, we then construct a "coordinate probability

space" (see [161 or [171 for the details of this construction) and express the

performance variable Y in terms of an equivalent random variable defined on

the new probability space. The advantage of this approach is that the resulting
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probability space is considerably structured and, hence, questions about the

probabilistic nature of X and Y can be addressed more easily by dealing with

the coordinate probability space. The construction of this probability space

described in (161 is summarized as follows.

Suppose that the base model X is described by a family of finite

dimensional distributions

0 — { Ft,, ... ,t, I t l , ... , tn eT and neN )	 (2.4)

where T is the utilization period and N is the set of all natural numbers. Then

the coordinate probability space is a probability space (U,F,Pr) where

1. The coordinate sample space U is the set of all functions u:T - y Q where

Q is the state space of X. In other words, U is the dimensional direct

product of the state space Q.

2. To construct the event space F, let B° be the smallest or-algebra

generated by the relative topology of Q° (also referred to as the topology

of Q" induced by the n-dimensional Euclidean space). For each set B in

B" and given t l ,...,t, in T, let

C — { ueU I Iu(tl),...,u(%)1eB ),	 (2.5)
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i.e., C is the set of all functions u in U such that the values of u at %

(1<i<_n), when regarded as an n-tuple, is an element in B. If we let F0

be the set of all C such that C is obtained from (2.5) for all neN, 
all

BEB", and all t1,...,tneT, then F0 is a field. Finally, the event space F is

taken to be the completion of the smallest or-algebra containing F0.

I To construct the probability measure Pr, we first define a measure µ on

F0 such that for each CeFo,

µ(C) — f ... f dFt I ....,t.011, ....,In)	 (2.6)
B

where C is generated by the set B with indices t l , ... , to (see (2.5) and

FtIf ....t, is a multivariate distribution in 0 (see (2.4)). Then the

probability measure Pr is the completed version of the above measure µ.

Given the coordinate probability space (U,F,Pr) of X, we can

construct an equivalent process of X defined on (U,F,Pr) such that both

processes have the same multivariate distributions 0. More precisely, let us

define;

* — JRJUT)

where, for all teT and all ueU,
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Xt(u) — u(t).	 (2.7)

Furthermore, for all B in B" and aU t l ,...,t in T, let us assign (see (2.6))

f
... f dFt i.... 940110 ... ,'In)

B

to be the probability of the event

[ ueU I [;Qu), ... , Xt.(u)]eB ).

Then, for each teT, Xt is a function from the set U to the set Q and the family

of functions X is a stochastic process defined on (U,F,Pr) having the

multivariate distributions 0 (see [17], pp. 10-11). Since, for each ueU, u(t)

specifies the state of K at t (see (2.7)), each element in U will be referred to as

a state trajectory and the set U will be referred to as the trajectory space.

The notion of a coordinate probability space permit us to answer

questions about the probabilistic nature of X by relating the questions to the

state behavior of X. In particular, for each fixed we 0 of the underlying

probab lity space (0 ,E,P) let us define a function uw: T Q such that, for all

teT,

u'(t) - Xt(w)•
	 (2.8)
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Moreover, given an event V in F. let

W s {w1uw eV)	 (2.9)

be a subset of 0. Then, it is known (see (171, pp. 621-622) that W is an event

in E and that

P(W) r- Pr[V] .	 (2.10)

On the other hand, given a subset :Y of 0 measurable with respect to the

induced probability space of X, there exists an event V in F such that (2.10) is

satisfied.

In the following discussions, we consider the question of what we

need to know about X in order to determine the distribution function of the

performance variable Y. Formally, we says that X supports Y if there .xists a

random variable

7:U — A	 (2.11)

defined with respect to the coordinate probability space (U,F,Pr) such that for

each we 0

Y(w) — y(u„)	 (2.12)
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Ut.

where u. is the state trajectory associated with the outcome w. Since y can be

regarded as the user's performance criteria for judging the "capability" of the

tote: system, it is referred to as the cgpab0* fiincdon of S.

When X supports Y, the capability function permits us to determine

the performnbility of S using the finite-dimensional distributions of X. To

substantiate tkis claim, let us define a function

h:Q —U

such that, for all rr! 0, h(w) —u. where u 4, is the state trajectory associated with

the out - .ome w. Then, by (2.12). X supports implies

Y — 7 • h ,

i.e., Y is the functional composition of 7 and h, applying h first. Accordingly,

tsking the preimage on both side, we have

Y-1 — h— ' •ti I .

Hence, for any measurable set BSA, if we let
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V = (u1Y(u)EB}CU

W = (wJY(w)EB)C Q ,

W = (wIu W eV) = h-1 (V) .

Accordingly, by (2.10), P(W) = Pr[V), which, in turn,-implies

pt•js(B) A P((mJY((j)EB))

= Pr[y ' (B)] .	 (2.13)

Since the probability Pr[y' (B)] can be determined directly from the finite-

dimensional distributions of X, we have shown that X together with ry suffice to

support an evaluation of the performability perfs.

In view of what has been observed, if X supports Y, then the pair

(X,Y) is said to constitute a per

	

ormability model of S. If B is a measurable set 	 l

of accomplishment levels, the inverse image y'(B) is referred to as the

trajectory set of B where its determination requires an analysis of how levels in

B relate back down via -y-1  to trajectories of the base model. In the following

and

then
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discussions, since we will be dealing with X instead of X, the induced process X

will be called the base model and denoted simply as X.

Given a performability model (X, ,y), equation (2.13) permits us to

evaluate the performability of S for a set B of accomplishment levels by i)

determining the trajectory set -f—I (B)  and ii) calculating Pr[ ,y i (B)). In general,

the trajectory set 7-1 (B) is difficult to obtain because the "distance" between the

base model X and the performance variable Y may be considerable. The

difficulty can be alleviated by introducing intermediate models between X and

Y based on the concept of a model hierarchy discussed in Section 2.1. The use

of a model hierarchy allows the capability function or, more accurately, the

trajectory set Y i (B) to be derived step-by-step in a top-down manner from

more elementary components in a clearly conceived way. In particular, by.

introducing an intermediate model called an "operational model," we show in

the following chapter that the performability of S can be determined by

evaluating the intermediate model.

Finally, we note that the role of a capability function in

performability evaluation is similar to that of a structure function [181 in

reliability evaluation. However, even when performability is restricted to

reliability, the concept of a capability function is still more general because a

capability function must take into account the behavior of S throughout the

utilization period while a structure function is restricted to modeling the

instantaneous behavior of S at a given moment in time [2].



CHAPTER 3

OPERATIONAL MODELS

3.1 Iotrodocction

When modeling degradable computing systems by stochastic

processes for system performance or reliability evaluation, the models used are

typically Markov processes (see [8), for example) or models which can be

analyzed in terms of embedded Markov processes (for example, certain

queueing models such as M/G/1 or GI/M/m queues; see [211). However, to

ensure the validity of the Markov assumption, it is usually necessary to model

the structure and behavior of the system at a low level, e.g., a level describing

the system's physical resources (processing units, memory units, input buffers,

etc.). Performance and reliability measures, on the other hand, often quantify

the system's behavior in terms of high-level, user-oriented variables

(throughput, response time, operation+: status, etc.) which, if viewed as

stochastic processes, are seldom Markovian. In such cases, an essential part of

the modeling effort is to establish a "connection" between the low and high

levels to resolve the probabilistic nature of the me4 sure in question.

Historically, in the context of reliability modeling, this connection

has taken a form that lies at one of two extremes. At one extreme, system

"success" is defined in terms of the underlying structural resources (at least so

-22-
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many fault-free processors, at least so many fault -free memory units, etc.), in

which case the connection between structure (available fault-free resources)

and performance (success or failure) is immediate. At the other extreme, the

object of the modeling effort is the connection, per se, and the resulting model

is typically some form of event-tree or fault-tree (see (181, for example).

In general, as discussed in the previous chapter, the general nature

of this connection can be formalized as a capability function of the system. In

this setting, a total system S, comprising a computing system and its

computational environment, is modeled at a low level by a stochastic process X

(the base model of S). Then, relative to a high level variable Y (the

performance of S), the capability function of S is a function Y which translates

state trajectories (sample paths) of the process X into corresponding values of

the performance variable Y. Knowing X and y, it is possible to solve for the

probability distribution function of Y and, hence, determine the performability

of S.

When the performance variable Y is far removed from the base

model X, solution procedures can be simplified by introducing intermediate

model at levels between X and Y. One use of such a model hierarchy is a

step-by-step formulation of the preimage of 7 beginning at Y and terminating

at the base model X. If Y is discrate, the performability of S can then be

evaluated by determining the probabilities of certain trajectory sets that

correspond (under 1 ) to performance values of Y. Another role that ^ ,̂ n be
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played by an intermediate model, and the one we explore in this chapter, is to

represent the probabilistic nature of S at a level that is higher than the base

model and thus "closer" to the performance variable.

To characterize the behavior of an intermediate model, Section 3.2

introduces a general notion of recoverability and shows that a performance

process is nonrecoverable if and only if the state behavior of the process can be

determined by taking a "snapshot" at the end of the utilization period. For both

the recoverable and nonrecoverable models, Section 3.3 examines the solution

methods of a generally defined performance variable where the performance is

identified with the minimum value of a functional. The modeling anci the

solution methods are then illustrated in Section 3.4 through the evaluation of a

degradable computing system. The results of the evaluation indicate that the

performance variable considered in this chapter is a proper generalization of the

traditional notions of the system performance and reliability. The modeling and

the evaluation methods considered thus provide a unifying approach for

evaluating the integrated performance and the reliability of degradable

computing systems.

3.2 Recoverability

Generally, in reliability modeling, a system is said to be repairable or

nonrepairable according to whether maintenance actions are permitted during

its utilintion to reduce the incidence of system failure or to return a failed

system to an operating state. The classification is useful because, when a
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system is nonrepairable, the computation of system reliability at a time t

amounts to calculating the probability that the system functions at that moment

in time (see [18], for example). On the other hand, when a system is

repairable, the computation requires a more complete knowledge of the

system's behavior during the entire utilization period T.

The above classification and properties of reliability models can be

extended to models of degradable computing systems by considering the way in

which system performance may change in time. The generalization not only

permits us to obtain a better understanding of the performance degradation of a

degradable computing system, but also provides us with a common basis for

unifying traditional performance and reliability methods.

To begin, let us define an operational model to be a stochastic process

Z — [ZtiteT)

with Zt:0 Q such that the state space Q of Z is partially ordered by some

partial ordering <. The partial ordering 5 can be interpreted as the ranking of

system states according to the degree of user satisfaction with the system

operating in a given state (hence the term "operational"). Although operational

models are introduced here to characterize intermediate-level models, it should

be noted that operational models can often be defined at the base model level

with some natural ordering of states. For instance, consider a system S
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containing m subsystems where each of them can be in one of two operational

conditions; functioning or failed. Then, one natural way to define a state space

for S is by taking

Q s {0. 1 1 m

and, assuming no compensating effects of successive failures, the state space

can be ordered by taking the Cartesian product of the component ordering

relations, i.e., for all (a l ,a2, ... , am) and (bl,b2,...,bm) in Q, let

(al,a2, ... ,am) < (bl,b2,...,bm)
(3.2)

if and only if a;<b; for all 1:gi5m .

The above ordering of component states is a standard practice in reliability

theory and plays an important role in fault -tree analysis (see [181, for example).

The applicability of operational models in modeling degradable computing

systems will be discussed in more detail in the next section.

Given an operational model Z, the concept of repairability can be

extended as follows. We say Z is nonrecoverable if, for all s,teT(s5t) and all

ijtQ,

Pr[4—i, 4—il > 0 implies i z j .
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In less formal terms, an operational model is nonrecoverable iff its operational

status can only degrade monotonically in time. Moreover, by considering the

contrapositive form of the above condition, it follows that Z is nonrecoverable

iff for all s,teT (s--St) and all i jeQ,

i>j implies Pr[4—i' ?tom] — 0.	 (3.3)

Similarly, we say Z is recoverable if it is not nonrecoverable, i.e., if there exist

s,teT 4:50 and i jeQ, such that

i ^, j and Pr[4--i, Zz--jj > 0 .	 (3.4)

In other words, Z is recoverable if there is a nonzero probability that the state

of the system may "recover" from a degraded state i to a higher level state j (j

> i) or to a noncomparable state j (j) i and j --!L i).

The notion of nonrecoverability can be characterized in a number of

useful ways, as indicated by the following theorem.

Theorem 33:

Let Z be an operational model with stage space Q. Then the

following statements are equivalent:
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(1) Z is nonrecoverable.

(2) For all s,teT (sst) and all keQ

Pr[Z,,2^-k, 4—k] — 0 .

(3) For all s,teT (s<t) and all keQ

Pr[Z,2--k, Zzzk] — 0 .

(4) For all s,teT (s--St) and all keQ

Pr[Z,?--k, Zak] — Pr[Z t;--k] .

Proof

(1) implies (2):

Suppose that Z is nonrecoverable. By (3.3), for all s,teT (s<t) and

all izjeQ,

i .;t_- j implies Pr[4—i, 7.,-j] — 0 .

Since Q is denumerable, we then have, for all keQ,

Pr[Z.;J^-k, 7.,=k]

7 PrM—i, Zt—k] — 0 .
U.
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(2) implies (3):

Suppose that, for all s,teT (s5t) and all jeQ,

Pr[Z,,jj, Z.,.-j] — 0 .

Then, since Q is denumerable,

Pr[Z,,-)--k, 7,Z--k]

I Pr[Z,,-,%--k, Z,7j]
jZk

j;--k

(3) implies (4):

Note first that, for all s,teT (s5t) and all keQ,

Pr[Ztatk] — Pr(4 k, Z,zk] + Pr[Z,,-k-k, 4;—tk].	 (3.5)

Hence, for all s,teT (sSt) and all keQ,

Pr[Z,2 -̂k, 7.,>k] — 0

if and only if
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Pr[Z,?--k, Z,;—:--kl — Pr[Z,zk) .

Thus (3) and (4) are equivalent and, in particular, (3) implies (4).

(4) implies (1):

From (3.5), when condition (4) is satisfied, we have, for all

s,teT (s--St) and all jeQ,

Pi [4,1-j, Z,;—̂--jl — 0.

Thus, i,-#-,j implies

Pr[4—i, Zt-j) < Pr[Z,;W, Z,?--jl — 0 ,

in particular, it implies Pr[4—i, Z,--jl — 0, i.e., as characterized in (3.3), Z is

nonrecoverable.

This circle of implications thus completes the proof of Theorem 3.1.

An alternative way to characterize the recoverability of an

operational model is by examining the state behavior of the model over the

entire utilization period. In this regard, let us restrict our attention to

operational models that are separable in the sense as defined in [171, i .e., there

exists a denumerable subset R of T and an event A of probability 0 such that,
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for any closed interval B and any open interval I in ( —oo,+oo), we have

n {Z,eB} — n mew C A	 (3.6)
sent	 se1T

where IR — I n R and IT — I n T. The set R is referred to as a seoasabiby

set.

When Z is separable, we are able to show that Z is nonrecoverable if

and only if its state behavior over any time interval can be summarized by

observing the state of Z at the end of the interval.

Theorem 3.2:

Suppose Z is a separable operational model. Then Z is

nonrecoverable if and only if,

for all r,teT (r<t) and all keQ
(3.7)

Pr(4 :k, r<s<tl — Pr[Zt?--kl .

Proof.

Suppose Z is nonrecoverable and, given a state keQ, let

Then, in terms of this notation, (3.7) says
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Pr[ n Es] s Pr[Et]
84 (r,t)

F►--thermore, let us denote the intersection of two sets A and B by AB. Since

Z is separable, there exists a denumerable ru Nset R of T and a null event A

such that, for all r,teT,

n Es — n E_ C A.
•f(r,t)R	 •.(r,t)

Accordingly,

EA
 I

n E. — n Es	 A
:r(r,t)R	 •e(r,t)

and, hence,

n Es — n Es Q A	 (3.8)
Ie[r,tiR'	 •e[r,tl

where R'—R U {r,t).

Clearly, the first set in (3.8) is measurable because [r,t]R' is

denumerable. Thus, under the separability hypothesis, the second set (which is

contained in the first) is likewise measurable and has the same probability

(assuming the probability measure Pr is complete; see Chapter 2, p. 16). More
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precisely, for aL' r,teT (r<t),

Pr[ n E,] - Pr[ n F,] . 	 (3.9)
u[r,t]	 &e( AR'

Hence, if we can show that the probability on the right side of (3.9) equals

Pr[E.t], we establish the desired result, i.e., (3.7).

If we denote

Dm n F,
It	 1R'

then, since te[r,t]R', we have D — DF,t. Thus it suffices to show that

Pr[])F.t] — ME,]

or equivalently,

Pr[DFt] — 0.	 (3.10)

Next, note that
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DEt = U EsIF,
184[m).,

U kEt
se[r,t1R'

Accordingly, we have

Pr[DEJ :5 2; Pr[E,Etl
te[rAw

or equivalently (in our original notation),

Pr[DEt] < T. Pr[Z,,-^--k, 7.t?k] .
se[r,t]R'

Since Z is nonrecoverable, by Theorem 3.1 (condition 4), each term on the

right side of the above equation is zero whence

Pr[DEJ — 0 .

This proves (3.10) and thus establishes the necessity of (3.7).

To prove that (3.7) is sufficient, suppose (3.7) holds. Then, if we

let s,teT and let keQ, by Theorem 3.1, it suffices to show that

Pr[4 k, Zt>k] — Pr[Zt>_kl
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or, equivalently, using the notations introduced above

Pr[E,F,l — Pr[Et] .	 (3.11)

The above equality is trivially true when s =t, so let us suppose s<t. By (3.7),

it follows that

Pr[ n Eu) — Pr[F.ti .
U48.4

Then, since

Pr[E,Et] < Pr[Ej

and

Pr[E,Et] ? Pri n Eu] - Pr[Eti
ue[t.d

it follows that

Pr[E,E,] — Pr[Ej

which establishes the sufficiency of (3.7).
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Using Theorem 3.2 and the fact that Q is denumerable,

recoverability can also be characterized by each of the following alternative

conditions (the proofs are immediate and are omitted):

(1) For all r,teT (r<t) and all keQ
(3.12)

Pr[4>k, r:5s5tl — Pr[Zt>kl .

(2) For all r,teT (r<t) and keQ
(3.13)

Pr[42:k, r5s<t, Zt—kl — Pr[Z.,—kl .

Theorem 3.2 provides us with a convenient way for relating the

concept of recoverability to the traditional notion of repairability. To see this,

let us define the level-k reliability of Z at time t to be

Rk(t) — Pr[4a:k, 05s5t1	 (3.14)

and define the level-k w ailabtlity of Z at time t to be

Ak (t) — Pr[Zt>_kl .	 (3.15)

Clearly, when Q-10,1} where 0 — failure and 1 — success, R 1 (t) and A1(t)

reduce to the usual notions of system reliability and system availability,

respectively. Moreover, when Z is nonrecoverable, Theorem 3.2 implies that,
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for all teT and all kEQ
(3.16)

Ak;c) Rr(t).

In other words, when Z is non.ecoverable, its level-k reliability is reduced to

the level-k availability for all kFQ. The significance of this observation is that,

when Z is nonrecoverable, the ca' .ulation of the level-k reliability at a time t

amounts to calculating the prob3b;`ity that the system operates at a level greater

than or equal to k at that particular moment in time. On the other hand, let

T— [O,h] and suppose (3.' 6! holds. Then, since, for all r,teT (r<t) and all

kEQ,

Pr[4 :k, Ohs<t] < Pr[Z;?k, r<s<t] < Pr[Zt>k] ,

we have Ak(t)—Rk(t) implies

Pr[42tk, r<s:st] — Pr[Z,c -k] ,

i.e., condition (3.16) is necessary and sufficient for nonrecoverability. Thus, by

taking the negation of the above condition, we also have the following

alternative characterization of recoverability:

Theorem 3.3:

Let Z be a separable operational model with a state space Q. Then Z
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is recoverable if and only if, there exist teT and keQ, such that

Ak(t) > Rk(t).	 (3.17)

Roughly speaking, the above theorem says that Z is recoverable if and only if,

for some keQ, the level-k availability is subject to improvement by

maintenance actions.

Theorems 3.2 and 3.3 not only provide us with a useful tool for

characterizing the behavior of operational models, they also provide us with a

basis for evaluating the performability of degradable computing systems. Each

of equations (3.14) and (3.15) defines an important class of performance

measures that are proper generalizations of the traditional notions of system

reliability and system availability. When the operational model is

nonrecoverable, both classes convey the same information and the behavior of

the system can be determined by taking a "snapshot" at the end of the

utilization period. Motivated by the above properties of an operational model,

we consider in the following section a single user-oriented performance variable

that integrates these notions of system reliability and availability.

3.3 Evaluation of Computing Systems Using Functionals of a Marko• Process

When describing system behavior in user-oriented terms, it is often

possible to identify various operational "modes" for the system (including a

failure mode) which result in different degrees of user satisfaction. Moreover,
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for a given mode of operation, the extent of user satisfaction can often be

quantified as a real number "rate" at which that operation benefits or penalizes

the user. Depending on the application, these rates can have a variety of

interpretations relating to the system's productivity, responsiveness, etc., or at a

higher level, to such things as economic benefit (e.g., the worth rate measured,

say, in dollars/unit time) associated with a given mode of operation.

Under the above conditions, a user-oriented model can be

constructed in a natural way. As in the previous discussions, let S denote the

total system in question and suppose that we have already determined a base

model X and a capability function 7 relative to some specified performance

variable Y. Suppose further that the base model process X is defined relative

to a continuous time interval T (the utilization period), that is,

X — {Xt {teT)
	

(3.18)

where the random variables Xt take values in a denumerable state space. Q (see

(2.1) for the definition of a base model). Finally, we presume that at the base

level, the system model is Markovian with a time-invariant structure, that is, X

is a continuous-time time-homogeneous Markov process. Unless otherwise

specified, it will be assumed that Q is countably infinite throughout the

following discussions.

Within this framework, let us now consider the situation discussed
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above where, at a higher level, one is able to identify various operational

modes for S, each having an associated operational rate. If, further, each state

of the base model can be classified according to some mode of operation, then

there is a naturally defined real-valued function

f:Q —» R
	

(3.19)

where, for each iEQ, f(i) is the operational rate associated with the mode

containing i. Moreover, if we let Q denote the range of f (i.e., Q—(f(i)IiEQ))

and, for each variable Xt of X (see (3.18)), we let

Zt — f(Xt) .	 (3.20)

It follows that

Z — (41tET}	 (3.21)

is a stochastic process with state space Q referred to generally as a functidnW of

the underlying Markov process X (see [221, for example).

When f is not 1-1 (i.e., some different states have the same mode of

operation), the derived process Z will typically represent a simpler, higher level

view of the system and is generally non-Markovian unless certain stringent

conditions are satisfied. (Conditions under which the derived processes become
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Markovian are discussed in the Appendix.) To qualify Z as an intermediate

model, we must also require that Z be compatible with the performance

variable Y to the extent that the probability distribution function of Y can be

determined from Z. More precisely, letting a denote the translation of

trajectories of X to trajectories of Z (i.e., Y(u)=u where ii:(t)sf(u(t)), for all

teT), there must exist a capability function 7 for Z such that

Y• K — 7
	 (3.22)

where • denotes functional composition, first applying ir. Although the above

condition appears somewhat formidable, it says simply that the higher level

model Z must remain detailed enough to permit solution of the system's

performability. This condition can be typically satisfied in practice if the

definition of performance (i.e., Y) is taken into account when identifying the

various modes of operation and assigning rates to these modes.

If f, as defined in (3.19), satisfies condition (3.22) then we refer to f

as an operational structure of S and, since states inherit the rates assigned to

r. odes, the value f(i) is referred to as the operational rate of i or, when context

permits, simply the "rate of i." Likewise, the corresponding functional Z is

referred to as an operational model of S or, alternatively, a model of S at the

operational level.

In reliability modeling where, at the operational level, a system is
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typically viewed as either operating or not operating, the concept of an

operational structure reduces to the familiar notion of a structure function [18].

Technically, a function EQ — R is a structure function if Q has binary

coordinates, i.e., Q—{0,1 }m, and f(i) is 1 or 0 according as S is operating or not

operating in state i. More recently, operational structures have been employed

at least implicitly in the context of performance-reliability modeling where the

operational rates are referred to as computational capacities [91, [12]. Although

capacity (which typically refers to the maximum rate at which a computer can

"supply" computations) is a legitimate interpretation of operational rate, it

should be emphasized that, in general, such rates can represent an interaction

of supply (by the computer) and demand (from the environment); this is

because that, as generally conceived, a state i of the base model represents a

particular status of both the computer and its environment; hence, both supply

and demand can be accounted for when translating i, via f, to its corresponding

operational rate f(i).

In various special forms, then, the concept of an operational

structure is no stranger to performance and reliability modeling. On the other

hand, the general nature of associated functional Z, how it relates to the base

model, how it can be exploited in solution procedures, etc., appear to be

subjects that deserve further investigation.

In the following discussions, we focus our investigation on the

evaluation of performability with respect to a generally defined performance
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variable. This variable is defined in terms of an arbitrary operational model

which is generally non-Markovian. However, by relating this variable to the

underlying Markov process, it is shown that system performability can still be

eval,tated using traditional Markov process methods. The performance variable

is motivated by the level-q reliability

Rq(t)—Pr[f(X,)>q, 0---s--St]

(where q05) discussed in Section 3.2.

Recall that, by (3.16), the operational model Z —(ZtlteT} is

nonrecoverable if and only if, for all teT, Zt is the "worst case" rate experienced

by Z during [O,t]. On the other hand, if Z is recoverable, it was shown in

Theorem 3.3 that the operational rate at the end of the utilization (i.e., the

value 4) will generally not convey the worst case rate. Motivated by the above

considerations, a performance variable Y t, indicating the worst case operational

rate during [O,t], can be defined on Z as follows:

Yt — min[410SsSt} .	 (3.23)

As defined above, we note first that Yt is a discrete performance

variable since the base model X has a denumerable number of stated and,

hence, there are a denumerable number of operational rates. Therefore the
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performability perfs of S (see (2.3)) is simply the probability distribution of Yt,

i.e.,

perfs(q) — Pr(Yt—q1 .	 (3.24)

Before attempting to solve the performability of S, let us consider

the recoverability of Z in more detail. Since the underlying base model is a

time-homogeneous Markov process, significant insights can be obtained

regarding the relationship between Z and X by expressing the recoverability of

Z in terms of the probabilistic nature of X.

In this regard, let us restrict our attention to Markov processes X

which are regular in the sense that their transition probabilities are uniquely

determined by a generator matrix or, equivalently, a state-transition-diagram

(see (231, for exampe). Moreover, borrowing the terminology from (221, we

say that i leads to j (where i,jEQ) and write i—j if and only if there exists a t>0

in T such that

Pr[Xt—j1Xo—i1 > 0 .

Then, it can be shown that
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Theorem 3.4:

Let Z be an operational model associated with the ba;;e model X and

the operational structure f. Furthermore, let X be a time-homogeneous

Markov process. Then, Z is recoverable if and only if, for some seT and some

i jeQ, both of the following conditions are satisfied

(1) Pr[X,lil > 0
(3.25)

(2) i -» j and f(i) < fa) .

Proof

By (3.4), Z is recoverable if and only if there exist s,teT (s<t) and

q,reQ, such that

i < j and Pr[4—q, 7.,-ter] > 0 .	 (3.26)

(Here, since Q is a totally ordered set, we are able to replace -I-_ with < in

(3.4).) Now, since Q is denumerable,

Pr[4—q, 7,—r]

7 Pr[X,—., Xt-^]
rU)"q

and, hence, equation (3.26) holds if and only if, for some i jeQ,
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f(i)—q, f(j)—r and Pr[X,—i, Y,,--jl > 0 .	 (3.27)

Moreover, since

Pr[X,—i, X,-jl > 0 if and only if
(3.28)

Pr[X,—il > 0 and i j ,

it follows that the conditions stated in (3.25) are necessary and sufficient for Z

to be recoverable.

By taking the negation of (3.25), similar result can alsc	 ved

to characterize the nonreeoverability of Z as follows:

Corollary:

Let Z be an operational model associated with the base model X and

the operational structure f. Moreover, let X be a time-homogeneous Markov

process. Then, Z is nonrecoverable if and only if, for all i,jeQ and all seT, at

least one of the following conditions is satisfied:

(1) Pr[X,_i1 — 0
(3.29)

(2) i	 j implies f(i) > fa) .

Note that if we assume Q is the ndi imal state space of X in the sense

as defined in [221, i.e., for all ieQ, there exists an s in T such that Pr[X,—i]>O,
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then the first conditions in (3.25) and (3.2)) ain both be eliminated. To show

this, we first observe that

Pr[X, ,-il > 0 if and culy if

Pr[Xo--kl > 0 and Pr[X, —ilXo—k; > 0

for some keQ. Now since X is regular, the transition probability

Pr[Xt—i{Xo-k]>0 as a function of t vanishes either everywhere or nowhere in

T (see 1231, p. 240). Thus, it must be the case that Pr[X t-•ilXo—k]>0 for all

teT. Clearly, it then follows that

Pr[X,- it > Pr[Xo—k]-Pr[Xt—ilXo—kl > 0

for all teT.

The recoverability of Z can also be characterized in terms of

partitions induced by f on the state space Q. Note first that the binary relation

--» induces an equivalence relation on Q as follows (see [221, for example): Nv e

say i convnunicates with j (denoted i — j) if and only if a — j and j — i. Let [il,

be the communicating class containhig i. Then the partition of Q induced by

the communication relation can be denoted as a set

F —

VC — 1604Q) .	 (3.30)
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Note also that the operational structure f:Q —» R induces another partition on Q

rf — {[ij f(iEQ} `	 (3.31)

such that i,j belong to the same equivalence class if f(i) — f(j). In terms of the

above partitions and assuming that X is a time-homogeneous Markov process

with minimal state space Q, we can then show that

Lemma:

If Z is nonrecoverable, then r c is finer than r f (denoted rc:!Srf)-

Proof:

Suppose that i and j belong to the same block in r c. It must be the

case that i—j, which in turn, implies that f(i)>fa) and fa)>f(i) because Z is

nonrecoverable. Thus, it f:,iiows that f(i)—fo), i.e., i and j belong to the same

block in r f.

The converse of the above lemma is generally not true. For

example, let X be a Markov process with transition graph
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and initial distribution Pr[Xa = 11=1. Suppose the operational structure f:Q 	 R

is given by f(1) =0 and f(2)=f(3) = 1. Then

However, Z is recoverable, because i	 2 but f(1) <f(2).

The above example also suggests a necessary and sufficient condition

for Z to be a nonrecoverable model. Under the same assumptions as those for

the above lemma, we first define a partial ordering of the set -rc: For all [i]c

and b1c in rc, let

[i]c -y UIC if i — j .	 (3.32)

Clearly, the partial ordering as a relation is reflexive, transitive and

antisymmetric. Furthermore, let us define a mapping
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h: TC Q (3.33)

such that h([i],)—f(i). Then,

Theorem 3.5.

Z is nonrecoverable if and only if h is well-defined and order-

preserving.

Proof

Suppose Z is nonrecoverable. Then, by the above lemma, TC<rf•

In other words, for all i and j in Q, i j implies f(i) — fa) and, hence,

h([i]c)—f(i) is well-defined. Moreover, suppose [i], ---- U1, Then, by (3.30),

we have i j and, hence,

Wild - f(i) ? fG) - h(Uld

i.e., h is order-preserving.

Conversely, let us suppose that h is well-defined and order-

preserving. Then, for all ijeQ,

i --» j implies [i] C — U]o .
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Now since h is well-defined, we have

h([il,,) — f(i) and h(U],,) — fo) .

Applying the order-preserving assumption of h, it then follows that

f(i) — h([i] c) > h(U]) — fG)

i.e., Z is nonrecoverable.

Corollary:

If Z is nonrecoverable, then the following diagram commutes

f
Q

^k

lic
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Theorem 3.5 permits us to determine whether an operational model

is nonrecoverable by comparing the state diagram of the underlying Markov

process with the operational structure. To illustrate, let us consider a base

model X with the following state diagram

V

a
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and initial distribution Pr[Xa=2}=1. Suppose the operational structure is given

by f(2) =f(1) =1 and f(0)=0. Then, ^^={{p},{1,2}}=^j, { 1,2 } —+ (0) and

h({1,2})=1 > h({0})=0. Thus, by Theorem 3.5, Z is nonrecoverable.

It should also be noted that a Markov process X may induce a

nonrecoverable model with respect to an operational structure but a recoverable

model with respect to other operational structures. For example, using the

same base model as above and the operational structure S(2)-2, g(1) =1 and

S(0) -0, then it is clear that v4irs ( vc is not finer than ors). Hence, by the

lemma of Theorem 3.5, Z induced by g is a recoverable model.

Returning now to the problem of evaluating the performability of S

(with respect to the performance variable Yt as defined by (3.23)), we consider

the problem in two cases based on the recoverability of the operational model

Z. If the operational model Z is nonrecoverable, Theorem 3.2 shows that the

behavior of Z during [O,t] can be determined by the state of Z at the time

instant t. In particular, we have

Pr[4a:q, 05sSt] = Pr[Zt>_gl	 (3.34)

and

Pr[4>q, OSsSt} = Pr[4>q] .	 (3.35)

Hence the performability of S (see (3.24)) can be obtained by evaluating the
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finite dimensional distribution Pr[Z t—ql. More precisely, we have

perfs(q) — Pr[Yt—ql

— Pr[min[Z, jOSs<tl—gl

— Pr[4>-q, OSsStl — Pr[4>q, OSsStl

— Pr[Z t?gl — Pr[Zt>ql

— Pr[Ze-q) .	 (3.36)

Thus, in this case, evaluating performability (i.e., to determine the probability

distribution function of Y t) is tantamount to evaluating the transition function

of X, i.e.,

perfs(q) — 2; Pr[Xt-jl
ru)-q

Pr[Xt—jjXa—il-Pr[Xo—il.	 (3.37)
r(^-q

On the other hand, if Z is recoverable, more elaborate solution methods are

required since (3.36) is no longer satisfied.

When the operational model is recoverable, the performability perfs

of S can be obtained by calculating the conditional probabilities
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rri- (t) — Pr[Yt—q, Xt—jIXo—i1	 (3.38)

where i,jeQ, qeI5 and t>0. Note that, when where t-0, the minimum

operational rate is just the operational rate associated with the initial state; in

short

1 if i-j and f(i)—q,
M (0) —	 (3.39)

0	 otherwise.

Then, by summing over some of the indices of m U (t), we have

	

perfS(q) — I mu (t)-pi	(3.40)
ijfQ

where pi—Pr[Xo—i}.

There are several ways of expressing the conditional probabilities

mi9(t) in terms of the state transition probabilities of the underlying Markovian

base model X [24]. First, let us introduce another stochastic process based on

X and the performance variable Y t as

X — I(Xt,YJIteT) .	 (3.41)

Then, since
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Yt — min[ inf 14,Y,)]

s<rst

and since X is a Markov process, it can be shown that X is a Markov process.

Clearly, the generator matrix of X can be expressed in terms of the

state transition rates of the underlying Markov process X. For all i,jeQ (i#j),

let aQ denote the transition rate of X from state i to state j. Then the generator

matrix of X is the IQIXIQI matrix

A= [a1

where, for all i,jEQ,

^u	 if i *j,
au =

— ^ A ;k	 if ice.	
(3.42)

kfi

If, further, we let the generator matrix of X be denoted by

A = [a'nl

where y=(k,r) and z= (j,q) belong to QXQ, then
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aki if 1) f(k)ar, fU) >q and r=q, or

EYZ	

2) f(k),--*-r, f(j)—q and r>q,s

0 otherwise.
(3.43)

Accordingly, if we denote the transition function of X by

Fuz(t) — Pr[Xt—ZlXo=x]

where x,zEQXQ, then the transition functions of X can be expressed as the

system of differential equations (see [23); pp. 254-255, Theorem 4.5)

dt Pxz(t) _ 7  Fay( t ) 'i^z •	 (3.44)
Y4Qxq

Furthermore, notice that when x = (i,f(i)) and z=(j,q),

Fxz = Pr[Xt'(j,q)j&—(i,f(i))l

Pr[Xt^, Yt-wqlXo—i, Yo=f(i)]

= mU (t) .

Hence, by varying the value of y over QXQ and replaying Fyz by (3.43), the

above system of differential equations (3.44) can be expressed more
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T, m&(t)-aki if f(i) ?q, fG)>q
f(k)Zq

m. (t)	 I m&(t)-aw
dt 

aMa"

0

if f(i) zq, fa)—q,

otherwise.

(3.45)

It was suggested [24] that the above equations can also be obtained by relating

(3.38) to the notion of taboo probabilities [22].

Another approach for determining the probability distribution of the

random variable Yt is to modify the underlying Markov process X by making

some of the states in Q absor bins "'. more precisely, iet us rename and

rearrange the elements in Q into an increasing sequence Q—{1,2,...}. For each

qEQ, l-tt Bq be a subset of Q such that

Bq — (iIf(i)<q)

where PQ — R is the operational structure of Z. We then replace the state

space of X by a reduced one in which a single state b q replaces the states Bq and

denote the transformed process by
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Xq — (Xtg ltET) .

Moreover, let us denote the corresponding generator matrix of Xq by

Aq — [q.

then, for all i je (klf(k)2tq} U (bq),

if fl'i)?q, fa);:---q,

—	 a4 if i * bq, j—bq ,	 (3.46)
.er

0
	 if i—bq.

If, further, we let the transition functions of X q be denoted by

pu (t) — Pr[X;q—jlXi—il	 (3.47)

where i jejklf(k)>q) ^I (bq) . Then the conditional probabilities mu(t) can be

expressed as follows: For all i jeQ and all qEQ, where f(i)>q and f(j)>-q,
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mu(t) — Pr[YtzgA--jIX0—i] — Pr[Ytzgtl ,Xt— (Xo-si)

Pr[4zq ,05s5t,Xt--j I Xa—i1

— Pr[4zq+1,05s5tAt IXo—i1

Pr[Xtq_jlXa—i] — Pr[Xtq+l_jlXa—i]

Hence, if we solve the transition proba l)ilities pi(t) for all qeI , the

performability of S can be computed by

P ;rfs(q)— 7 Pu (t) 'Pi —	 ^i P-+l( t)'Pi
r^zq	 r(^z^+l

1 1-P& (t) I 'Pi - 2; [1_Pij
*;

'(t))'Pi
r(i)Zq	 r(i)Zq+l

(3.49)

where pi—Pr[Xo—i] are the initial probabilities of X.

When the total system is modeled by a recoverable operational

model, either (3.45) or (3.49) can be used to evaluate the performability of the

system. The solution method described in (3.45) requires evaluating a largc

sy. t ::M: of differential equations. On the other hand, thy- solution method

described in (3.49) decomposes the system of differential equations of (3.45)

into smaller subsystems. Thus, evaluating (3.49) amounts to a step-by-step
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iterative solution to (3.45). Finally, we also note that, in addition to the

applications illustrated in the following example and the next chapter, (3.45)

and (3.49) can also be used to compute the Intraphase transition probabilities"

considered in the context of phased model : (see Section 5.4).
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3.4 Performability of a Triplicated Fault-Tolerant Computing System

To illustrate the solution methods for the evaluation of system

performabilities, let us consider a degradable fault-tolerant computing system

wherein resources are triplicated and voted (triple modular redundanc y). This

type of resource redundancy has been employed in a variety of hardy are

architectures (see [25] for an example of current usage) and, in a more general

form (N modular redundancy), has been investigated as a means for

implementing fault-tolerant software (see [26], for example). Although such a

system will generally possess a number of triplicated resources (e.g., the various

"triads" of the FTMP architecture [251), let us restrict our attention to a single

resource, say, a triplicat-d processor consisting of three identical processor

modules and a voter. With respect to hardware faults, we assume that the

processor modules fail independently and that each fails permanently with a

constant failure rate A (failures/hr.). The system's ability to recover from a

hardware fault in a processing module is accounted for by a coverage parameter

c (see [271).

When the system is free of hardware faults, we further assume that

it has some capability of recovering from errors due to design faults in the

software. Such errors are presumed to occur at a constant rate or (errors/hr.).

Transitions from the error state, with or without recovery, occur at a constant

rate ;& (transitions/hr.) which we assume to be much larger than the processor

module failure rate A. The probability of software error recovery, given a

I
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software error, is a constant d (the software error coverage parameter); error

recovery thus occurs at a rate dµ. Lack of recovery from a software error is

presumed to cause a crash (system failure). If a processor module becomes

faulty and the fault is tolerated via successful voting, the input-output behavior

of the system remains the same. With this loss of a processing resource,

however, we assume that the system is no longer capable of software error

recovery. Hence any further errors, due to a software fault or a second faulty

processor module, result in failure of the system.

Under the above assumptions, the system can be conveniently

represented by a 4-state Markovian base model, where the states are

interpreted as follows:

Processor	 Software
State I	 Fault	 Error

1 I	 No	 No

2	 Yes	 No

3	 No	 Yes

4	 System failure
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Figure 3.1

Markov Model of a TMR System

with Software Error Recovery
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The state-transition-rate diagram of the model is depicted in Figure 3.1. Note

that when the system is attempting recovery from a software error (state 2),

there are no transitions representing the occurrence of a hardware fault. This is

a consequence of our assumption that µ >> a, in which case such occurrences

are negligible.

As for performance, let us suppose the user is interested in three

levels of accomplishment: full performance (as would be exhibited by a fault-

free version of the system), degraded performance (at least one software error

during utilization but successful recovery in each case), and system failure. To

obtain an appropriate operational model that can support this view of

performance, we see that states 1 and 2 can be identified with one mode of

operation while states 3 and 4 must be distinguished. Moreover, because the

mode 11,2} is preferred over (3) and (3) is preferred over (4), we find that the

following function will suffice as an operational structure:

1	 1

2	 1

3	 1/2

4 0
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To establish that the performance variable in question can indeed be

supported by the functional Z of X (Fig. 3.1) induced by this choice of f,

suppose that Yt is formulated as in (3.23), i.e., Yt is the minimum operational

rate experienced during the utilization period [O,t]. Then it is easily verified

that Yt conveys the desired information, i.e.,

Value of Y

1	 Full performance

1/2	 Degraded performance

0	 Failure

Note also that the operational model Z is recoverable in the sense defined in

(3.4) due to the error/recovery cycle from rate 1 to 1/2 and then back to rate

1. The performability of the system can thus be evaluated using, either of the

methods discussed in Section 3.3.

To illustrate the solution method described in (3.49), note that the

generator matrix of X is

—(3a+a )

A = 0dµ
0

c3X or	 (1---c)U
—(2,\+0) 0	 2,\+Q

0 —µ (1—d)µ
0 0	 0

F
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Thus, with respect to each operational rate q-1, 1/2 or 0, the generator

matrices of the corresponding transformed Markov processes are given by

(3.46), viz.,

(30+0	 o)	 c30)	 c3AA	 +(1—c)3,\

0	 0	 0

and

AI/2—Ac—A.

Hence, if we denote the transition functions of each transformed process by a

matrix

PI(t) — [pig(t)]	 (ijejk I f(k)>q) U {bq))

where p- (t) is defined by (3.47), then P9(t) is determined by Aq uniquely by

the well known formula

P4 (t) — e"N .

In particular, we have
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(3A+e)t 3c[e—(2A+e)t—e— (3A+e)t] Cl

Pl (t) —	 0	 (2A+e)t

0	 0	 1

where

c, = 1 _ (3A+e)t _ 3c[e (2A+e)t — (3A+e)t]

c2 = 1 — (2A+e )t,

and

dl	 d2 	 d3 1—(dl+d2+d3)

p112 (t) _ 0 C (2A+e)t 0 1—C (2A+e)t

d4	 ds	 d6 1—(d4+d5+d6)

0	 0	 0	 1

where if we let

Z= 9a2+µ2+a2+6Aa-6a14 -2oµ+4dµo

X, 3X+µ+o+z
2

Ys _3A+µ +a—z
2

then
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d,= 3X-µ +e -z 
ems+ 3a-µ +e +z Itt

	

2z	 2z

d = 3Ac(y-µ) n _ MO X-10 -.t
2 z(y-2,\-c z(x-2,\-e )

+	 3ac(µ-2,\—e) 	 -(2A+e)t
(x_"2X-e)(y-'2a-e) e

d3 = ° e-yt _ ? e xt
z	 z

d4 = — _ e-yt _ A e—it
z	 z

d =	 6,\cdµ	
a -.r _	 6acdµ	 —xts (X+e—µ+z)z	 (^+e—µ—z)z e

+	 12Acdµ	 a (2A+e)t
(X+e—µ+z) (X+(r—µ—z)

d6= 3a — µ +e +z ems_ 3X — µ+ e — z e-Xt
2z	 2z

Accordingly, applying (3.40), the performability of S can be expressed as
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perfS(1) — Pi'( I-ci) + P2-(1--c2)

perfs(1/2) — pl -(d l+d2+d3) + P2•e (2a+s)t

+ P3 • (d4+d5+d6) — Perfs(1)

perfs(0) — 1 — perfs(1/2) — perfs(1)	 (3.50)

where p,—Pr(Xo—il.

By expressing the performability of the system in terms of the above

closed form solution (3.49), various design tradeoffs can then be investigated

by varying the Parameter values. To illustrate, let us fix the following base

model parameters to be

X-5X10-4

c — .99999

;& 	 103

d—.9

and assume that the system initially has ail three modules operational, i.e.,

p—[1000].

Then, depending on the choice of the software failure rate o, the
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performability of the system exhibits various kinds of relationships between

different levels of accomplishment. In particular, Figure 3.2 and 3.3 display the

performability of S as a function of t (the duration of the utilizatien) for

a-10-2 and or-10-3 , respectively.

In both figures, the performability of S is represented by three

curves: I, II and M. Curve I is the prolyaaility of fault-free operation

throughout the utilization. The probability decreas-s from 1 to 0 as t goes to

infinity. Curve II is the probability that the system suffered from performance

degradation due to software faults while remaining operational throughout the

utilization period. Finally, we note that curve III is the familiar S-shape

function for system unreliability.

When we compare Figure 3.2 with Figure 3.3, we find that

substantial performance improvement is obtained by reducing the number of

design faults in the software. For example, consider the case when the

duration of the utilization is 400 hours. With the reduction in software failure

rate by a factor of 10, the probability of degraded performance and the

probability of system failure are reduced, respectively, to 1/2 and 1/3 of their

original values; more significantly, the probability of full performance is

increased by a factor of 37.

Although the above example has established the feasibility of the

hierarchical modeling approach for the evaluation of system performabilities,

the operational model constructed in the example is based on a specific state
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transition diagram (Figure 3.1). Thus, to extend the generality of the model,

we consider in the next chapter a systematic approach for describing the

underlying Markov process together with a general metho4 for determining the

operational structures of degradable computing systems. Moreover, we also

note that the results developed in this chapter are further extended in Chapter

S to permit the modeling and evaluation of systems with a time-varying

environment.
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CHAPTER 4

MODELING AND EVALUATION OF DEGRADABLE

MULTIPROCESSOR S`t"STEMS

4.1 Introduction

The design of a distributed multiprocessor system (see [2814301, for

example) is generally approached in a sequential manner beginning with the

identification of the computing system's application. The problem identification

phase is followed by a functional breakdown of the application into major

subtasks to be performed by the system. Following these phases, the designer

then specifies the performance and reliability requirements in terms of the

resource requirements for each task, the time relationship between iasks, the

executive software overhead for system control, etc. Finally, based on the

performance and reliability requirements of the system, alternative har&._,e

and software architectures are then considered to optimize cost, performance

and other trade-off criteria.

Moreover, in the design of multiprocessor systems for real-time

control applications, tasks to be performed are often partitioned into several

priority groups and priority interrupt mechanisms are used to meet the stringent

constraints of fast response time (see [291 and [30], for example). Normally,

-7S-
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all tasks are executed iteratively to generate sample-time updates of control

variables. However, when the computer's resources decrease due to faults to a

point that only some of the tasks can be completed in time, tasks from the

higher priority groups are given preferential treatment over tasks from the

lower priority groups. Computing systems capable of performance degradation

as above are often referred to as gracefully degradable co npudng systems or

simply degradable computing systems.

Performance degradation of degradable multiprocessor systems are

typically realized through the following steps [311:

1) Error detection: Basic techniques for error detection include error

detecting/correcting c,)des, time-out counter, memory protection, majority

voting, periodic testing, etc.

2) Fault location and hardware reconfiguration: Once an error is

detected, diagnostic programs and testing strategies are used to localiz. the

faulty components. The hardware reconfiguration program is then ..ailed upon

to establish an operational configuration.

3) Computation recovery: Computation recovery concerns the

restoration of a valid system state from which the system can resume its

operation. The restoration of a valid system state can be achieved by rollback

and retry, uses of traces, program roll-aheads, etc.

4) Software reconfiguration: Fault-tolerant software permits the

replacement of suspected software modules with their alternative versions at
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run time. Current approaches include N-version programming [26] and the use

of recovery blocks [32].

There are many different designs of degradable multiprocessor

systems that are potential candidates for real-time control applications. In

general, these designs can be characterized in terms of the degree of

redundancies built into their basic components (e.g., simplex, duplex and

triple-modular-redundancy). The characterization is useful because each class

of systems can be attributed with certain specific performance and reliability

trade-offs.

Replicated components are often used in a degradable

multiprocessor systems to enhance the system reliability. For example, when

triple-modular-redundancy (TMR) is used, not only all single faults can be

tolerated, but procedures for error detection, fault-location and system

reconfiguration are also simplified considerably. However, since there is no

parallel-processing within TMR, the configuration represents a substantial loss

of computing power. Systems using triplicated components in their design

include C.vmp [33], SIFT [3J] and FTMP [25].

When the application of a degradable multiprocessor system requires

not so much reliability (i.e. uninterrupted operation throughout the utilization

period) as the ability to recover from failures, simplex components are often

used to improve the performance/cost ratio of the system (e.g., PRIME [34]

-zd PLURIBL'S [29!). Since such systems rely mostly on complicatcc: s%0
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testing logic for error detection and location, the reliability of these systems is

generally lower than that of systems using replicated components. This is

because single faults may cause such systems to crash and the detection latency

[35] (the time period between the first error and the first detected error) of

these systems are generally longer.

In this chapter, a comprehensive model for degradable

multiprocessor systems is presented for studying the trade-offs between systems

with different degrees of component redundancy. The model is based on the

approach considered in the previous chapter; a Markovian base model is

described to represent the physical resources of the system and priority queuing

models are used to determine the operational structure associated with the base

model. Since our model supports the evaluation of system performability, it

differs substantially from those considered by Borgerson [36) and Losq [37]

which stress hardware-oriented measures such as reliability or availability.

4.2 System Model

As compared with existing Markov models for degradable

multiprocessor systems (see [36] and [37], for example), the model presented

here has the advantages that (i) the partitioning of the system is on the

system's available resources as well as computational requirements of the user's

application, (ii) the hierarchical representation (i.e., the base model together

with the operational structure) permits the formulation and evaluation of user-

oriented performance variables.
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4.2.1 Base Model for System Resources

Degradable multiprocessor systems typically can be divided into

several physical resources each of which is made up of one or more identical

components. These resources generally form a pool shared by tasks to be

performed by the system. For example, as described in [25], the FTMP

computer includes 15 processors, 9 memory units, 5 busses and 48 bus

guardian units to be shared by aircraft functional tasks. Generally, the amount

of resources thai a system can provide varies from time to time depending on

the intrinsic hardware failure rates, the effectiveness of fault tolerance

mechanisms and the repair procedures. Hence, if we assume that (i) the

occurrences of failures and repairs are independent among different

components, (ii) each component has constant failure and repair rates, and (iii)

fault tolerance mechanisms are "memoryless" in the sense that they are

determine" by the current state of the system, then the resource availability of

the system can be represented as a Markov process.

Before attempting t- describe a general Markov model for system

resources, let us consider first the effects of failures on the system resources.

As suggested in [37], two classes of hardware faults can be distinguished

according to the characteristics of fault tc leranee mechanisms. The first class

corresponds to !irdware faults that are detected and recovered from as soon as

they occur. Hardware faults of the first class are referred to as safe fauns

because failed components are removed instantaneously from the resource pool

{
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to avoid data contamination or faulty control. The second class of hardware

faults, referred to as unsafe faults, contains those that are either latent faults or

those that are in the process of fault recovery. Depending on the degree of

component redundancy, failure to tolerate unsafe faults may cause the system

to crash because of the loss or the corruption of important information.

Since the performance of a system is determined by the amount of

fault-free resources, the state of the resource model can be defined to be the

number of safe faults and unsafe faults. More precisely, suppose that the

multiprocessor system contains N rr -.f - where the itb resource contains ni

identical components. Suppose further-:.i. component of the itb resource has

failure rate Xi and repair rate µ;. If we assume that the occurrence of more

than one event such as failure or repair completion has negligible probability,

then the system can be represented as a Markov process

X — {Xt ltET)	 (4.1)

where, for each tET, Xt is random variable taking values in the state set

Q — {(a l ,bl ,a2 ,b2,...,aN,bN)10<a;+bi<n; for all 1<i<N} .

For each state (a l ,b 1 ,a2,b2 ,...,aN,bN) in Q, a; denotes the number of safe faults

of the Ph resource and b i denotes the number of unsafe faults of the itb
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resource.

Four types of state transitions can be distinguished: repair, safe

fault, unsafe fault and fault recovery (see Table 4.1). On the completion of a

repair, the number c,; safe faults is decreased by one. Once a hardware fault

has occurred, either the number of the safe faults or the number of unsafe

faults is increased by one depending on whether the fault is safe or unsafe.

Finally, the successful recovey of an unsafe fault will decrease the number of

unsafe faults by one and increase the number of safe faults by one.

To derive the transition rates of the above state transitions, the

system's ability to recover from a hardware fault is modeled by a single

parameter c defined to be the conditional probability that a system will be able

to recover once a hardware fault has occurred (referred to as the coverage of

the sys±em, see Section 3.6). It is further assumed that the probability of a

failure being transient is represented by another parameter a. Based on the

above assumptions about the iailure and repair characteristics of the system,

the transition rates of the above Markov process can be expressed as in Table

4.1 (where the parameters are summarized in Table 4.2).

s
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Type of
Next state Transition Rate

Transition

repair (al,bl,...a, l

b19 ... ,aN,bN) ai'µi

safe (ai,bj,...,ai+1,

fault bi, ... ,aN ,bN) (ni—a; bi)-(l—a)-c'Xi

unsafe (al,bl, ... , ai,

fault bi+1,...,aN ,bN) (ni—ai—bi)•(l—c)•ai

recovery (al ,b l , ... , ai+l,

b, 1,...,aN,bN) bi•vi

Present State — (a 1 ,b1 , ... ,ai,bi, ... ,aN,bN)

Table 4.1

State Transition Rates

of a General Resource Model
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When the system contains only one type of resource (i.e., N-1),

the model can be represented more conveniently using transition graphs as in

Figure 4.1. This single resource model, as a special case to the above model, is

the same as the one considered in [371 by Losq except that states are named

differently here to simplify the formulation of operational rates.

Another special case of the above general model can be obtained

when all unsafe faults result in system failure. In this case, since unsafe faults

cause system resources to vanish, the state of the system can be taken to be the

number of fault-free components at each moment in time. In other words, the

state set Q defined in (4.1) can be represented as

Q = [(a1,a2,....aN)I0<a;<n; for all 1 <i<N)	 (4.2)

where, for each (a i ,a2 , ... , aN) in Q, ai is the number of fault-free

components of the itb resource. The simplification on the corresponding

transition rates is described in Table 4.3. Again, as a special case, the single

resource model can be represented by a transition graph as in Figure 4.2.

is _ _ Ad6-,.—



. 84 .

OF POUR QUALITY

Parameter Interpretation

l►; Component failure rate of the itb resource

µ; Component repair rate of the ith resource

v; Component recovery rate of the itb resource
following unsafe faults

a Probability of a fault being transient

c Probability of a fault being safe

Table 4.2

Base Model Parameters
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Type of
Next state Transition Rate

Transition

repair (a l,...,ai_l,ai+ l,ai+l,...,aN) (ni^i)'µl

hardware (al,...,ai-1•ai-1,a;+1, .... aN) ai'(I—a)'c'X i

fault

recovery (a l , ... ,ai-1 90,ai+l,...,aN) ai'(I—c)'Xi

failure

Present State — (al,...,ai, ... , aN)

Table 4.3

Tralisition Rates for Systems with

Instantaneous Detections and Recoveries
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Single Resource Model for Systems with

Instantaneous Detections and Recoveries
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4.2.2 Performance Variable

`the performance and reliability requirements of a real-time system

often differ from those of a general purpose cA mputer because of the stringent

constraints of fast response time. Thus, to characterize the performance and

the reliability of a real-time system by a single performance variable, the

performance variable must take into account both the resource availability as

well as the promptness of the system response.

As an example, let us consider first a typical real-time environment

encounted by a control computer. In a study concerning the design of fault-

tolerant computers for aircraft, Ratner et al. [391 have identified 26

computational tasks most likely to be performed by the control computer of an

advanced commercial aircraft. These computation tasks conceptually can be

regarded as short programs stored in a common memory of a multiprocessor

system and each task is scheduled to be executed periodically according to a

predetermined frequency. However, the actual execution of a task may be

delayed from its scheduled execution time because of the resource sharing,

interface between tasks and the overhead for running system software. Since a

prolonged starting-time delay may cause dangerous conditions to develop, the

computational tasks are grouped into S priority classes and priority interrupt

mechanisms are used to reduce the delay times of more critical tasks.

The above example clearly shows that the concept of the starting

time delay is a useful tool for specifying the performance criteria of a real-time
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control application: A task is regarded as failing to satisfy the real-time

constraint if its starting-time delay, on a regular basis, exceeds a certain

predetermined value. More precisely, let d be the estimated length of time that

would have to elapse before an undesirable condition is noticed. Then the

real-time constraints can typically be stated as: either the average starting-time

delay or the percentile starting-time delay must be less than d. For example,

the percentile starting-time delay can be stated as that the starting-time delay

should not exceed d for 99% of the time when a task is scheduled to be

executed. For simplicity, it will be assumed in the following discussions that

the average starting-time delay is used to specify the real-time constraints.

To generalize the above notion of the st-rting-time delay, a user-

oriented performance variable can be formulated as follows. First, let us

assume that the tasks to be performed by the computer belong to one of a set

of jr different priority classes. Then, relative to the utilization period T — [O,t;,

the p rformance variable can be defined as a random variable Y taking value in

the set {0,1,...,K} such that
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Y — k iff

k is the largest nonnegative integer less than or

equal to K such that all tasks from the first

k priority groups are executed within the real-time

constraints throughout T.

In other words, if we adopt the convention that the priority groups are

numbered in reverse order (i.e., the smaller the number, the higher the

priority), then the performance variable Y can be regarded as the degree of

user satisfaction relative to how well the more critical tasks are executed by the

computer to satisfy the real-time constraints. In particular, Y = 0 can be

interpreted as a system crash, since, in this case, the computer does not even

have enough resources to meet the de,.,and of the most critical tasks (i.e.,

those from priority group 1). On the other hand, Y=K represents nondegraded

performance, since all tasks are executed properly within their real-time

constraints.

4.2.3 Operational Structure

To ease the evaluation of system performability, the connection

between the performance variable Y and the base model X can be established

more easily by introducing intermediate models to account for the internal

structure of the computer. Under the assumptions described in Sections 4.2.1

and 4.2.2, a natural representation of the system's behavior at the operational
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level is the behavior of the computer's control programs. Typically, to resolve

conflicting demands on system resources, the control software of a

multiprocessor system must provide a scheduler (also called a supervisor or

executive) that allocates system resources to application tasks and handles

interfaces between tasks. When the computer is degradable, the control

software must also provide a mechanism (called a reconfiguration mechanism)

which, upon detection of faults, appropriately changes the scheduler to facilitate

error recoveries. In other words, given a general resource model as described

in Figure 4. 1, it is possible to associate each state of the model with a

scheduler. Accordingly, depending on how well the application tasks are

performed within each resource state according to a given scheduler, various

operational rates can be identified to reflect different degrees of user

satisfaction.

To measure the effectiveness of the scheduling algorithms associated

with the resource states, it is assumed that each scheduler is modeled by a

resource sharing priority queuing model (see [21], for example). For each

resource state of a resource model, it is further assumed that arriving tasks

form a single queue according to the "head-of-the-line" (HOL) queuing

discipline (see Figure 4.3), that is, an arrival from priority class k joins the

queue behind all "customers" from priority class k (and higher) and in front of

all "customers" from priority class k+1 (and lower). Moreover, the value of



-92-

OF PO"M C" A''-f"

arrival

Figure 4.3

Head-of-the-Line

Priority Queue



-93-

one's priority remains constant in time. Thus, while the customers with the

highest priorities are selected for service ahead of those with lower priorities,

customers from the same priority class are served on a first-come, first-served

(FCFS) basis. Finally, we also note that two possible refinements in priority

mechanism can be distinguished depending on whether the execution of a low-

priority task is interrupted when a task of higher priority arrives.

Since we are concerned with the ability of a system in satisfying the

real-time constraints, the effectiveness of each scheduler can be men ;ured in

terms of the "expected waiting times" of the corresponding queuing model.

More precisely, for each state q of a general resource model and for each

priority class k, let rk be a random variable denoting the time spent waiting in

the queue of a priority k "customer" with respect to the queuing model of

resource state q (see [401, p. 189). Then the expected value of rt is a close

approximation of the average starting-time delay when i) the communication

delays 1.• .tween tasks are negligible, and ii) the transition rates of the given

resource model are much lower than the arrival and the service rates of the

computational tasks. The first condition can typically be satisfied by treating

each task as an atomic unit for resource allocation. The second condition is

usually satisfied automatically because failures and repairs of a computer occur

much less frequently than the iteration rates of the computational tasks (thus

the expected waiting times rapidly approach steady-states once the system

enters a particular state).
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The above relationships between the average starting-time delays

and the expected waiting times provide us with a basis for partitioning the

resource states into operational modes. Fu rst, we note that the ability of a

resource state q in satisfying the real-time constraints of a priority k task can be

expressed as

E[rk] < d
	

(4.4)

where d is the predetermined time length as described in the previous

subsection. The use of average starting-time delays to specify the real-time

constraints is reasonable because, in general, the effect of a starting-time delay

on the behavior of the system is proportional to the duration of the delay.

In addition to the real-time constraints, the partitioning of system

states into operational modes must also take into account the effects of unsafe

faults. For example, consider a multiprocessor system with triplicated

components. The occurrence of a undetected double fault in a triad will cause

the system to fail regardless of the duration of starting-time delays.

Accordingly, if we assume that the probabilistic nature of the system resources

is specified as a Markov process X with state space Q (see (4.1)), then an

operationai structure can be given as a function

f.Q —^ {0, i , ..., x;
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k if unsafe faults in q are tolerated and,
for some 1 <k<wc, E[rk] <d and E[rq+s]>d,

f(q) _	 (4.5)

0 otherwise.

Note that, in the above formulation, we have assumed that tasks of higher

priorities have shorter expected waiting times, i.e.,

k < k' implies E[7k] :5 E[r^] .

The assumption is satisfied when the scheduling algorithm (associated with q)

uses the usual priority queuing disciplines in resource allocation. Having

established the operational structure, the performance variable describes, in

Section 4.2.2 can now be expressed as

Y -- min {f(Xs)jteT] .

Finally, to conclude the construction of the operational model, we

note that the analysis of a priority queuing system is generally more difficult

than that of a nonpriority system. In particular, for the multiplt channel

(multiple server) case, it is usually required to assume no service-time
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distinctions between priorities or else the mathematics becomes intractable.

However, as illustrated in the fullowing section, even under the above stringent

conditions, the scheduling algorithms of a single resource model can still be

modeled satisfactorily using a priority M/M/m queue (see [40], pp. 193-194).

For multiple resource models, the scheduler associated with each

resource state can be modeled by an open or a closed queuing network (also

called network of queue; see [4] and L211, for example). In addition to the

basic assumptions governing the arrival and service rates of each "service

station" (see [4), pp. 161-163), it is also required to assume that the priority

queuing discipline at each service station is work conserving in the sense that

the priority interrupts will not impose extra work on the server. Solutions for

the expected waiting times at each service station can be obtained by

incorporating solutions for priority M/M/m queues in the multiple resource

models.

4.3 Evaluation of Two Degradable Multiprocessor Systems

In this section, the performances of two degradable multiprocessor

systems are evaluated and compared to determine the tradeoffs between two

design approaches. Both of the computers to be evaluated are assumed to be

multiprocessor systems containing 4 identical processors and a common

memory module. They differ in the way that the system resources are allocated

to perform computations. One computer (S l ) is assumed to operate in simplex

mode, i.e., the processors are allowed to operate independently. The other
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computer (S,) is assumed to operate L duplex mode, i.e., the processors are

paired _into duplex subsystems to enhance the system reliability. While the

simplex mode of operation generally can improve the performance/cost ratio of

the system., the duplex mode of operation provides better detection and fault

coverage relative to the simplex mode of operation.

With respect to hardware faults, we assume that the processor

modules fail independently and permanently with a constant failure rate 1\2

(failures per hour). The memory module is assumed to have a constant failure

rate a, and fails independently with respect to other subsystems. We further

assums that the system's ability to recover from a failure is accounted for by

the coverage factors c l and c2, respectively, for S l and S2. Since simplex

subsystems rely on error detecting codes and self-checking logic for error

detection and location, the coverage of S 1 is generally lower than that of S2.

This is because, in the simplex mode of operation, undetected single faults may

cause the system to crash and the detection latency (i.e., the time duration

between the first error and the first detected error) of a simplex subsystem is

generally longer than that of a replicated subsystem. Accordingly, it will be

assumed that

Cl S GZ.
	

(4.6)

Under the above assumptions, both S1 and S2 can be represented as
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a Markov process according to the generr' resource model as described in (4.1).

Howevor, since neither the simplex mode of operation nor the duplex mode of

operation can tolerate unsafe faults, the model can be reduced to the special

case whose state space is given by (4.2). In particular, each of S t and S2 can be

conveniently represented by a 10-state Markovian base model X i (i-1 or 2),

where the state space Q; (i-1 or 2) can be represented as

Q; — { (ki) ( k-0,1 and j-0,1,2,3,4 ). 	 (4.7)

For each state (k,j) in Q;, k denotes the operational status of the shared

memory module (0 — failed and 1=working) and j denotes the number of

working processor units. Thus, for instance, a fault-free configuration is

encoded as state (1,4). The state-transition diagram of the model is depicted in

Figure 4.4.



... 

- 99 -

OR'G"~··"l" , l't. ~ r:/~':;2 r;" 
OF POOR QUAlny 

N 

).1 -< -..-t 
t) 
I 

r-4 -... 
A1 

Figure 4.4 

State-Transition Diagram 

of the Base Model for SI a.ld S2 



100-	 ui-,,	 ._ .	 ,,

OF PCOR Qi_oA:M

To provide a useful comparison between S, and Sz, their

performance must be evaluated with respect to the same work environment. In

this regard, let us consider a typical real-time control application where its

control computer uses priority interrupt mechanisms to meet the stringent

constraints of fast response time. For simplicity, let us assume that each

computational task of the system is assigned a priority of 1 or 2 denoting,

respectively, high or low-priority. Normally, all tasks are executed iteratively to

generate sample-time updates of control variables. However, when the

computer's resources decrease, because of failures, to a point that only some of

the tasks can be completed in time, tasks from high-priority group are given

preferential treatment over tasks from low-priority group. Based on the above

assumptions of the work environment, a user-oriented performance variabl::

can then be formulated as

2 if the system is operating
as prescribed,

1 if only high priority tasks meet
Yi	 the average response time requirement, 	 (4.8)

0 if high priority tasks can not meet
the average response time requirement.

In other words, the performance of Si conveys the following

information:
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Value of Y; Interpretation

2 normal

1 degraded

0 failure

On closer examination of the relationship between Y; and X;, we

find it is necessary to introduce an intermediate model between them because

Xi is not detailed enough to support the user's view of system performance Yi.

One way to introduce such an intermediate model is to identify an operational

model by taking into account the workload environment of the computer. In

this regard, let us assume that tasks from priority group i (i=1 or 2) arrive in a

Poisson stream at 1 task per millisecond. We also assume that each task,

regardless of its priority, requires a service time exponentially distributed with.

mean service time 1/3 milliseconds. Furthermore, we assume that the HOL

queuing discipline is used, but there is no preemption (S). Then, if the behavior

of the system in a state q is modeled as a queuing system with m servers, the

average starting-time delay of tasks from priority group i can be approximated

by the expected waiting time of the M/M/m priority queue.

As for the operational structure, the states of the base model X i can

now be partitioned into three operational modes according to their average
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starting-time delay. In particular, suppose that the s.verage starting-time delays

of both priority groups shall not exceed d milliseconds. Then, the operational

structure of Si (i — 1 or 2) can be expressed as a function

fi:Qi	R

such that, for each geQi,

2 if E[ri ]sd and E[r$]Sd,

	

fi(q) — 1	 if E[r9]Nd and E[rf]>d, 	 (4.9)

	

0	 otherwise.

If d — 1/2 millisecond, the operational structures of S 1 and S2 can be tabulrted

as follow:

State q of Si
i — 0 or 1

Operational rate
f	 of S

Operational rate
f	 of S

(1,4) 2 2
(1,3) 2 2
(1,2) 2 1
(1,1) 1 1
(1,0) 0 0
(0,4) 0 0
(0,3) 0 0
(0,2) 0 0
(0,1) 0 0
(0101 0 0
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The operational rate assignments in the table are determined by the

degree of subsystem redundancies. For instance, suppose that the system it in

state (1,2), i.e., the memory module is operational and two processors are

working. Then, since in the duplex mode of operation both processors must

perform the same function in parallel, the behavior of S 2 in state (1,2) can be

modeled as a M/M/1 priority queue. Thus, using the existing formula for

computing the expected queueing times (see [401, for example), the average

starting-time delays can be approximated by

Ti — 1/3 milliseconds and Tj — 1 milliseconds

where q=(1.2), Since, in this case,

Ti < d and TZ > d,

we have f2(q) — 1 by equation (4.9). On the other hand, since the behavior of

S 1 in state (1,2) can be modeled as a M/M/2 priority queue, the average

starting-time delays can be estimated as

T? — 1/30 milliseconds and Tj — 1/20 milliseconds

where q= (1,2). Accordingly, it follow: by (4.9) that fl(q)=2.
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Given the above performance variables Y; and the operational

structures fi , it can easily be verified that, for each X; (i = 1 or 2),

Y; = min { f;(Xj I teT )

where T is the utilization period. Thus the solution methods described in the

previous chapter can now be used to solve the system per.ormability (i.e., the

probability distribution function of Y).

Suppose that the system is initially fault-free, i.e., Pr[J{o=(1,4)1=1.

Then, relative to the utilization period T=[O,t], the performability of SI is

given by

perfl (2) = Pr[ YI=2

= C (4A 2+k I)t + 4c1[C (3A2+kI)t — e-(4A2+Ai)ti

+ 6cI2[e (2A2+A 1)t _ 2e (3A=+A l)t + C (4A2+Al)t],

perfl (1) = Pr[ YI=1

= 4c1 [e-(A2+)')t _ 3e-(2A2+Al)t

+ 3 C (3A2+A,)t _ (4A2+A,)t]

and
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perfl (0) — Pr[ Yl-0

— 1 — perfi (2) — perfl(1).

Similarly, the performability of S2 is given by

perf2(2) — Pr[ Y2-2 )

— C—(4X=tAi)t + 4C2[C (3a i+a i)t — (4A2fAjti

perf2(l) — Pr[ Y2-1

— 4c23C (A2+Al)t + 6(c22-2c23)C (2At+Al)t

+ 12(C23—C22)e (3A-,+AJt + (6c22-4c23)C (4As+Al)t,

and

perf2(0) — Pr[ Y2-0 J

— 1 — perf2(2) — perf2(1).

When expressed as functions of the duration of the utilization, the

above equations can be represented, respectively, as in Figures 4.5 and 4.6 for

the indicated parameter values of S l and S2. When we compare Figure 4.5 with

Figure 4.6, S2 clearly results in better system reliability than S 1 in the sense that

perf2(0) < perfl (0).
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Moreover, S2 also has a much higher degraded performance even though its

nondegraded performance is slightly lower than that of S l . In general, we may

conclude that, if the system's ability to recover from faults is low, then the

performance of the system can be made to degrade more gracefully by allowing

the subsystems to operates in duplex mode.

.a

A-
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CHAPTER 5

PHASED MODELS

5.1 Phased-Missions

S. L I Introduction

The performability models considered in the previous chapters

assume that the environment of the system is invariant in time in the sense

that the underlying processes are time-homogeneous and the operational

structures of the system remain the same thro ighout the utilizzdan period.

Although this assumption is appropriate for certain applications, there are many

cases where the user's demands on the computing system can change

appreciably during different phases of its utilization. This is particularly true for

real-time control applications in which the computing system is required to

execute different sets of computational tasks during different phases of a

control process.

One approach to dealing with a time-varying environment is to

decompose the system's utilization period into consecutive time periods

(usually referred to as a decomposition of the system's "mission" into "phases

see [4214451). Demands on the system are then allowed to vary from phase to

phase; within a given phase, however, they are assumed to be time invariant.

-1o9-
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This permits intraphase behaviors to be evaluated in terms of conventional

time-homogeneous models; but raises the interesting question of how the

intraphase results are combined. This is the essential question addressed in

investigations of phased-mission reliability evaluation methods (e.g., (4214451)

where the problem has been constrained as follows. It is assumed, first, that a

success criterion (formulated, say, by a structure function; see (181 for

example) can be established for each phase, where the criterion is independent

of what occurs during other phases. It is required further that successful

performance of the system be identified with success during all phases, that is,

the system performs successfully if and only if, for each phase, the

corresponding success criterion is satisfied throughout that phase.

Although the above constraints are reasonable for certain types of

systems, they exclude systems where successful performance involves

nontrivial interactions among the phases of the mission. In more exact terms,

it has been shown (see (461 Theorem 6) that "structure-based" formulations of

success are possible if and only if the phases are functionally independent in a

precisely defined manner. What we wish to do, therefore, is to examine the

utility of phased-sission evaluation methods in a less restrictive context.

In addition to removing the above constraints, we extend the

domain of application to include evaluation of computing system performability.

Moreover, by representing intraphase models in terms of operational models,

we are able to obtain useful results even without the typical no-repair
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assumption of the traditional phased -mission reliability methods.

Finally, unlike the models used in phased-mission reliability

evaluation methods, we permit the intraphase models to differ from phase to

phase. Thus, the modeling of a pani,^ :lar phase can be tailored not only to the

computational demands of each phase but also to the relevant properties of the

total system that influence performance during the phase.

5. 1.2 Formulation

Intuitively, phased -missions are real-time control processes whose

utilization period can be decomposed into phases. During each phase, the

system is required to execute a predetermined set of computational tasks. A

typical example of a phased-mission is an "unmanned space mission" during

which the spacecraft 's on-board computer must complete different phases of

the mission. The analysis of such a system is usually complicated because of

the time-varying nature of the system 's performance criteria.

To generalize the notion of a phased -mission in the context of

performability modeling, we assume that (i) the behavior of each single phase

can be characterized by a single performance variable regardless of the

interactions among phases, and (ii) interactions among Phases can be

characterized without reference to the detailed behavior of each phase. More

precisely, let us suppose that the utilization period T is the continuous interval

T — [O,h]. Suppose further that T is divided into a finite number of

consecutive phases (time intervals) Tl — [foa lL T2 — [t1321,..., TM — (tm_l,tm]

t 1.I
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where 0 — to<t l < • • • <tm — h. During each phase Tk, we assume that the

system.can be modeled by a performability model (X k ,yk) where

Xk — (VltETk}

is a continuous-time stochastic process such that, for each t in Tk, V is a

random variable taking values in the phase k state space Qk (Xk : a —.%), and

yk: Uk _, Ak

is a function that maps the phase k trajectory space U k to the phase k

accomplishment set Ak- Xk is referred to as the intraphase process (of phase k)

and yk is called the phase k capability function. When each phase can be

represented by an intraphase performability model, a performability model

(X,y) of S is referred to as a phased model if it can be constructed by the

following steps:

(i) X — U Xk = M Wit(To	 (5.1)
k-I	 k-i

(ii) there exists a function (referred to as an organizing

structure)

I
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*:AIXA2X ... Xqm --- A	 (5.2)

such that, for all ueU,

7(u) — `y (7 1 (ut), ... ,7m(um))

where uk is the restriction of u to Tr (k = 1,2,...,m).

On examining X we see that it is similar to a base model except

that, for each time instant tk ( 15k:sm), the state of the system is represented

by two random variables Xk and Xk +1 whose values, respectively, are the final

state of the kth phase and the initial state of the k+ l ch phase. Since we permit

the state sets of the intraphase models to differ from phase to phase,

V. and XtM'^ can also be different. However, if we consider an augmented

utilization period

T — T  { tk' ( k-1,2,...,m-1}

(where tk can be interpreted as the initial time of phase k+1), then X can be

expressed as

X — {XtitET}

where
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if t-0
Xo

Xt - Xtk	if ti(tk-1,tk)
WII
"4 

ift — tt.

If, further, we regard the state space of X as the union

MQ- U Qk

k-1

then X is a base model in the sense defined in Chapter 2. When X is so

constructed from intraphase processes, we will refer to it as a phased base

model.

Generally, there arc two types of dependencies among phases that

can affect tti- performability evaluation of phased models. The first type,

encountered when computing intraphase performabilities, are caused by

statistical dependencies among phases. For example, if we assume that the kth

intraphase process Xk is a Markov process with a given transition probability

function, then the performability of the system during phase k can be

computed once the initial distribution of X k is known. However, in general,

the initial distribution of X k is determined by that of the first phase together

with the behav;%,r of the previous phases in realizing a specific level of

performance of the total system.

(S.3)
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The second type of dependence occurs when combining intmphase

performabilities to determine system performability. This type of dependence

is determined by the algebraic relationship among phases, i.e., those

relationships which do not involve probability concepts. In other words, the

relationship is analogous to structure functions that are concerned with the

structural representation of multicomponent systems (see [47), for example).

Clearly, a complete analysis of phased models will require a detailed knowledge

of both types of dependencies and their effects on the performability of the

system.

In the following section, we first study the above algebraic

relationship among phases via an extended definition of structure functions. In

Section 5.3, we then consider the probabilistic aspects of the dependencies

among phases. In both cases, we only assume that the behavior of the system

during each phase can be summarized by a performance variable Yk defined by

the phase k performability model (Xk ,-yk). Finally, in Section 5.4,

computational methods and formulas are derived, when Yk can be defined as

the minimum value assumed by a functional of Xk.

5.2 Structural Properties of Phased Models

In system theory, the structure of a system is generally taken to be

the interactions among subsystems to perform certain specific tasks. The

interaction may involve the physical interconnection of the subsystems or,

more generally, 'functional dependence' among subsystems [46]. Thus, if we
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regard the phases of a phased model as subsystems, then the structure of a

phased mode; An be effectively regarded as the interaction among phases in

the realization of various degrees of system performance.

Since the relationship among phases an be represented as an

organizing structure, and since the accomplishment sets of the phases are

totally ordered sets (see (2.2;), the-e is a natural connection between the

structure of a phased model and the mappings of partially ordered sets. More

precisely, for each phase k, let us denote the phase k performance variable as

Yk: 0 — Ak

defined by the phase k performability model (Xk,yk) according to (2.12).

Then, by (5.2), the performance variable of the total system S can be

represented as a random variable

Y:0 A

where, for each we 0,

Thus, the structural relationship between Yt ,Y2,.. ,Ym can be characterized in

terms of the properties of the mapping *:A IX • • • XAm–+A. The product of

r^_.
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sets A IX • • • XAm is a partially ordered set because, by extending the ordering

relation of the individual phases, an ordering relation for A IX • • • XAm can be

defined as, for all (al,a2,...,am) and (bl,b2,...,bm) in A IX - - - XAm,

(a, A2, ... , am) < (bl,b2,...,bm)

iff ak<bk for 
all 

It — 1,2,...,m .	 (5.4)

Our interest will be restricted to the case when *:A I X • • • XAm—+A

is order-preserving in the sense that, for all (al ,a2, ... , am) and (bl,b2,...,bm) in

AIX ... XAm,

(al ,a2 , ... , am) < (bl ,b2, ... , bm)

implies *(aj,a2,...,am) < *(bj,b2,...,bm) .

C Tk'o-r-preserving mappings as defined above can be used to characterize

.>yr..-ms whose performance do not deteriorate due to the performance

improvements of the subsystems. Thus, the notion of an order-preserving

mapping is a proper generalization of the notion of a coherent structure

function [18] because the coordinates of A IX - - • XAm are not restricted to

binary valued sets.

Our investigation efforts will be focused on the properties of
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which permit us to simplify the evaluation of system performability. In

particular, given a subset B of A, we wish to consider methods for representing

the set *-I (B) without enumerating its elements. The representation methods

are important because, as shown in the following discussions, such

representations are amenable to iterative methods of evaluation.

We note first that the effects of * on A I X • • • XAm is that it

imposes an order structure on the equivalence kernal of the order-preserving

mapping. First, let us define, for all aeA,

C(a) _ {gjgeA I X • • • XAm and *(q)>a}	 (5.5)

and

D(a) — (glgeAIX ... XA. and *(q)?a) . 	 (5.6)

In words, D(a) is the set of elements in A I X • • • XAn, that result in at least

level a accomplishment. Clearly, when * is an order-preserving mapping, for

all a,beA,

a < b implies

C(a)DC(b) and D(a);2D(b) . 	 (5.7)

Accordingly, if we let
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C — {C(a) laeA}	 (5.8)

and

D — {D(a) IaeA) , 	 (5.9)

then, because A is a totally ordered set, it follows that C and D are totally

ordered sets with respect to set inclusion. Moreover, if the elements in A are

expressed as a sequence

.. <a, <a2< ... <a i< ...

where, for all i, a;+ l covers ai in the sense that ai+ l >ai and for no

aeA, ai+ l >a>ai, then the corresponding elements in C and D can be expressed

in a like manner, i.e.,

... ;?C(a l );2C(a2)D • .. DC(a);? .. .

and

... 
;2D(ai)Z)D(a2);? ... DD(ai)D ...

Hence, if we denote the difference between two sets X and Y by X-Y, then it

can easily be sho an that
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Let A be a totally ordered and countable set and let

*:AI X - - • XAm-yA be an order-preserving mapping. Then, for all a,bEA, a

covers b implies, for all q,rEA IX • • . XAm,

(1) *(q) _ * (r) - a if and only if
both q and r belong to C(b)-C(a),

(2) *(q) _ *(r) - b if and only if
both q and r belong to D(b)-D(a).

The above results imply that, when evaluating system performability

based on a phased model, the sets C(a) and D(a) where aEA can be used as

building blocks for describing events that characterize system performance. In

particular, given an order-preserving mapping *:A IX • • • XAm-yA and a closed

interval B-[a,b]QA, we show in the following theorems that *-I (B) can be

specified by D(a) and C (b). The set *-I (B) has practical significance in

performability modeling because its probability quantifies the ability of S to

perform within the specified limits a and b.

First, we note that Cartesian subsets of A IX • • • XAm are amenable

to iterative methods of evaluation. A subset VQA IX • • • XAm is called a

Cartesian subset if V-k,(V)X • - • X^m(V) where fk(V) is the projection of V

onto its ktb coordinate. To illustrate the use of Cartesian sets in the evaluation

of perfornabilities, let us consider the evaluation of a specific Cartesian subset
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Bk = [geA1X ... XAm1tk (q)efk(V))

be the set of elements in A IX • • • XAm that assume values in tk(V) at the 0

coordinate. Then, the probability of B k can be expressed as a one-dimensional

distribution of the phase k performance variables Yk , i.e.,

Pr[Bk] 0 Pr[(Y l ,Y2, ... , Ym) E N)

A Pr[Yketk(V)l

Accordingly, when V is a Cartesian set, V clearly can be represented as the

intersection of those elementary sets Bk, i.e.,

V = ti(V)X ... Xtm(V)

M
= n Bk .

k-1

By iteratively applying the definition of conditional probability, then
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Pr[V) — Pr[Bm)n' Bk] - Pr[Bm-11 w-2 Bk]
k— I	 11-1

... pr[B2 1BI ] . Pr[BI]

— Pr[YM f WV)IYm— I E tm—I(V), ... ,YAI(V)]

... pr1Y2 E f2(V) IY I E EI(V)1 ' Pr[YI(MV)]
(5.10)

Since each term in the product involves only elementary sets B t, we show in

the following section that Pr[V] can be determined iteratively using matrix

multiplications.

An important class of Cartesian subsets of A I X • • • XAm is the sets

of "intervals! For all q,reA 1 X • • • XAm where q—(al,a2,...,am), r—(bl,b2,...,bm)

and q<r, a closed interval [q,r] is defined to be

[q,r] — {q`EAIX ... XA m lq:sq'<r) .

It follows that

[q,r] — t1([q,r])X ... Xtm([q,r])

— [a l,b l ]X ... X [am,bm] ,

hence [q,r] is Cartesian. The open interval (q,r), half-open intervals (q,r) and



-123-

[q,r) can be defined in a like manner. Moreover, if we assume that

A IX • • • XAm has greatest and least elements I and 0, satisfying

qz0 and I;—:, -q

for all q in A IX • • • XAm, then A IX • • • XA m can be expressed as a closed

interval [03].

Given an interval B of A, an important problem then is to find the

"representation" of *-I (B) in terms of intervals of A IX - - - XAm. The

problem is interesting not only because the representation permits us to

evaluate Pr[*-1 (B)] using the iterative algorithm described above but also

because the representation reduces the number of elements needed to describe

the set *-1(B).

To express *—I (B) as intervals, we note first that since * is order-

preserving, for all q,reA I X • • • XAm„ we have

q < x -S r implies *(q) 5 P(x) < *(r) 	 (5.11)

(for all xeA IX • • • XAm). Thus, if B is an interval of A and q,re*-1(B), it

follows that

[q,r] C *-t (B) .
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Moreover, for each aeA, let C(a) and D (a) be the sets as defined in (5.5) and

(5.6), and denote the set complement of C(a) by —C(a). If we define

M(a) A {geA I X - - - XA.1q is a maximal element of —C(a)) ,
(5.12)

and

m(a) .4 {geA IX • • • XAm jq is a minimal element of D(a)) ,
(5.13)

then, applying (5.11), it follows that

Lemma:

If *:AI X • • • XAm—+A is order-preserving, then

*—I ([a,b]) Z U [q,r] .	 (5.14)
qem a)

nM( )

In general, the relation 2 in (5 . 14) can not be replaced by an

equality. However, we found that the equality holds when A I X • • • XAa

satisfies the chain conditions [48]; A partially ordered set L is said to satisfy the

ascending chain condition when every nonempty subset of L has a maximal

element. Similarly, L is said to satisfy the descending chain condition when every

nonempty subset of L has a minimal element. L is said to satisfy the chain
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conditions when it satisfies both chain conditions. When the chain conditions

are imposed on the above lemma, we then have the following result:

TJuorem 5.2:

If *:A IX • • • XAm—A is order-preserving and AI X - - • XAm

satisfies the chain conditions, then for all a,b eA,

*—I ((a,bl) = U Iq,rl •	 (5.15)
gcm^s)

nM(

Proof .

We only need to show that

qe a)

i.e., for all xEA,X • • • XAm, we have to show that aS*(x)<b implies q<xSr,

for some gem(a) and reM(b). First, for each fixed xeA 1 X • • • XA m, let

K I — tyeA1X ... XAm *(y) Sb and xSyl

and

K2 — (yeA I X • • • XAm laS* (y) and ySx) .
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Then K, and k2 are clearly nonempty since xeK I and xeK2. Moreover, since

A IX • • • XAm satisfies the chain conditions, K I must satisfy the ascending

chain condition and K2 must satisfy the descending chain condition. Hence KI

contains a maximal element, say r, and K2 contains a minimal element, say q,

that is q:5xSr, for some geK2 and reK 1 . Finally, we note that r is a maximal

element of KI implies reM(b) and q is a minimal element of K2 implies

gem(a), i.e., xe[q,r] for some gem(a) and reM(b).

Note that, for each aeA, the set M(a) is an unordered set in the

sense that, for all qI and q2 in M(a), neither ql<q2 aor g l ?-, g2 unless ql-'q2•

Hence, the number of elements in M(a) is bounded by the width of

A IX - - - XA m defined to be a natural number n if and only if there is an

unordered subset K of A IX • • • XAm of n elements such that all unordered

subsets of A IX • • • XAm have no more than n elements [48]. Similarly, for all

aeA, the cardinality of m(a) is no larger than the width of A IX • • • XAm.

Since a finite partially ordered set always satisfy the chain conditions

and the width of a finite partially ordered set is finite, we also obtain the

following result:

Corollary:

If *:A IX • • • XAm-+A is order-preserving and A IX • • • XAm is

finite, then for all intervals B in A, *-I (B) can be expressed as the union of a

finite number of intervals in A I X • • • XAm.
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In addition to the conditions of Theorem 5.2, Equation (5.15) also

holds when *:A IX • • • XAm—+A is a lattice homomorphism. A partially

ordered set L is called a lattice when any two of whose elements x and y have a

least upper bound denoted by x V y, and a greatest lower bound denoted by

x A y [48]. Clearly, every totally ordered set L is a lattice because, for any

q,reL,

q if q--Sr
qVr=

r otherwise,

Moreover, since A I ,A2, ... , Am are totally ordered sets, the least upper bound

and the greatest lower bound of any two elements (a i ,a2, ... , am) and

(bi,b2,...,bm) in A I X • • • XAm can be defined as

(ai,a2,...,am) V (b i ,b2 , ... , bm)

A (a,Abi ,a2nb2 ,-.-,amnbm) .	 (5.16)

and

(ai,a2,...,am) A (bi,b2,...,bm)

A (a,Abi ,a2Ab2....,amAbm) .	 (5.17)
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Now, since A I X - - - XAm is a partially ordered set, it follows immediately from

(5.16) and (5.17) that A I X • • • XAm is also a lattice.

When the mapping *:AI X • • • XAm-yA is a lattice homomorphism in

the sense that, for all q,reA 1 X • • • XAm,

Ì'(gVr) - Ì'(q) V `y(r)

and

`I'(gAr) - `I'(q) A `I'(r) ,

we are able to show that

Theorem 5.3:

If *:A I X • • • XAm-+A is a lattice homomorphism and

A I X • • • XAm satisfies the chain conditions, then, for any interval B in A,

*-'(B) can be expressed as an interval of A I X - - - XA m in one and only one

way.

Proof

We note first that a lattice homomorphism %i order-preserving

because, when qzr,
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`I'(gAr) — `y (q) n *(r) — *(r)

`I'(gVr) — `y (q) V `I'(r) — `I'(q)

Moreover, given an interval B in A, *— I (B) contains at most one maximal

element. To provide this statement, let us suppose that *- I (B) contains two

maximal elements q and r. Since A is a totally ordered set, we have either

*(q)a:*'r) or *(q)S*(r). If we assume *(q)?--*(r), then

`y(gVr) : `I'(q) V *(r) — `I'(q)

But this implies q can not be a maximal element of * —i (B) unless gVr—mq or,

equivalently, q>r. However, since r is also a maximal element of *-1(B),

qtr implies q — r. In other words, *—'(B) contains at most one maximal

element. By similar argument, we can also show that * —I (B) contains at most

one minimal element.

If we assume that *—I (B) is nonempty then, since A I X • • • XAm

satisfies the chain conditions, *—'(B) contains a unique maximal element, say

qZ, and a unique minimal element, my q l . Now since * is order-preserving,

we have
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`f'— ' (B) D [gi,g2l .

Thus, it remains w be shown that

*—'(B) Q [gl,g2l ,

i.e., xe*—I (B) implies g 1 :Sx5g2. This follows immediately since q2 is also a

maximal element of the set (yet -1 (B)1y2'x) and q, is a minimal element of

the set (ye*-1(B)1ysxl.

Theorem 5.2 and 5.3, in our opinion, have established a feasible

method for the evaluation of system performability based on the notion of a

phased model. To illustrate the application of the method, let us consider the

following hypothetical two-phase model. During each phase, it is assumed that

the phase k performance variable is given by

Y 5,:0 — Ak	(k-1 or 2)

where Ak — (0,1,2) and
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`2 if the s) ,̂ •em operates in the nondegraded
mode thi^ol,.4hout phase k,

1 if the syse • - nters degraded mode during
Yt =	 phase k V hal e• i emains operational throughout

the phase,

0 otherwise.

It is further assumed that the performance variable of the total system S is

given by

Y:0 A

where A = {0,1,2} and

2 if the system operates in the nondegraded
mode throughout all phases,

Y = l if the system remains operational for at
least one phase

0 otherwise.

Then, the organizing structure can be expressed as an order-preserving

mapping

*40,1,21X{011,21 _" 10,1,21

as illustrated in Figure 5.1. Note that in the figure the domain and the
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codomain of the mapping are both represented by diagrams where two nodes q

and r are connected by a downward line when q covers r.

Suppoze that the user is interested in evaluating the probability of

the event Y — 1 or 0, i.e., the probability of encountering degraded

performance or system failure. Applying Theorem 5.2, the event *-I([0,11)

can be expressed as

*-1 ([0,11) — [(0,0),(2,1)] U [(0,0),(1,2)]

where [(0,0),(2,1)] and [(0,0),(1,2)] are intervals of the partially ordered set

10,1,21X[0,1,2). Note that the intersection of [(0,0),(2,1)] and [(0,0),(1,2)] is

also an interval [(0,0),(1,1)]. Accordingly, the probability of * -1 ([0,1]) can be

expressed as

Pr[NY-1([0,1])]

— Pr[[o,o),(2,1)] U [(0,0),(1,2)]1

— Pr[[(0,0),(2,1)]] + Pr[[(0,O),(1,2)11

— Pr[[(0,0),(1,1)11 .

Since an interval of 10,1,2}X(0,1,2) is a Cartesian subset, each of the last three

terms of the above equality can be evaluated iteratively using the solution

method described in Section 5.3 for Cartesian subsets.
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R o l)	 (192)

(2,0)	 (191	 (0,2)	 -	 - -

(110)	 (091)

(0,0))------------

Figure 5.1

An Order-Preserving Mapping

*: {0,1,2) 2 —. 10,1,21
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In general, given an order-preserving mapping *:A I X • • • XAm—+A

and an interval B of A, let us suppose *—' (B) can be expressed as the set

union of a finite number of intervals I 1 ,I2, ... , IN, i.e.,

`I'-1 (B) = I i U 12 U ... U IN .

To generalize the above evaluation method, let us define

S I = f Pr[I;]

S2 = 2; Pr[Ii n Ij]
ij

S3 = 2; Pr[Ii n Ij n Ik]
ij.k

SN = Pril i n I2 
n .. , n IN]

where 1 < i<j<k<...<N so that in the sums each combination appears once

and only once; hence N has U) terms. Then, since the intersection of

intervals is an interval, each of the sums can be evaluated by repeatedly

applying the computational algorithms described in the following section.

r_-.
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Hence, by the method of inclusion and exclusion (see [511, p. 89), the

probability of *-I (B) can be computed by the well-known formula

Pr[*-' (B)l - S, - S2 + S3 - S4 + ... t 
SN ,
	 (5.18)

5.3 Probability Computation of Cartesian Trajectory Sets

Given a phased model (X,y) satisfying assumptions (5.1) and (5.2)

the performability model can be simplified as follows. The simplified base

model is taken to be the imbedded discrete-time process

XS - {Y,Ik-1,2,...,m}

wh p.re, for each k-1,2,...,m, Yk is the phase k performance variable. The

trajectory space of X can be effectively regarded as the product space

U - A 1 XA2X • • • XAm

where Ak is the accomplishment set of phase k. The corresponding

simplification of y is the organizing structure

*:U A
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as defined in (5.2). Then, it follows that, for all a in A, the probability that S

performs at level a is

perf(a) — Pr[Y i (a)] — Pr[*—I(a)]

and hence the performability model (XS,fl can be used to evaluate the

performability of S. We will thus refer to (X,*) as being equivalent to the

model (X,,y).

Generally, given an equivalent performability model the

evaluation of Pr[* -1 (a)] requires a detailed knowledge of how intraphase

processes cooperate to accomplish level a, i.e., a thorough understanding of

their functional dependencies (see [461). The difficulties are further aggravated

by statistical dependencies between phases. However, we show in the following

discussions that when a trajectory set V g U is Cartesian in the sense that, for

every phase k, there exists RkC.Ak such that V—R I XR2X • • • XRm, then Pr[V]

can be determined iteratively using matrix multiplications. Moreover, given

this ability to compute the probabilities of Cartesian sets, the probabilities of

more general sets can be determined by decomposing them into Cartesian

components (see (5.18)). Hence, the problem reduces to that of computing

th probabilities of Cartesian trajectory sets.

If, for each phase k, let nk be the number of states in Qk. Then, for

a Cartesian trajectory set V—R,XR2X - - - XRm, the conditional
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intraphase transition matrix of the kte phase is the nkXnk matrix PV,k where,

for all i,jeQk,

Pv,k(i^l) — Pr[YkeRk. X4^^X4-^^,Yk_IER^I, ... ,Y I ER I j 	(5.19)

where X k and X k respectively are the initial and the final states of phase k

intraphase process (see (5 . 1)). In other words, Pv .kN) is the probability of

having performance levels Rk during phase k while the intraphase process

initiates in state i and ends up in state j, conditional by the first k-1 components

of V. Similarly, for all but the first phase, the conditional interphase transition

matrix is the n k- 1Xn k matrix Hv ,k where, for all ieQk- 1 and all jeQk,

Hv,k0j) — Pr[X --j j X k-1—i,Yk_ 1 eRk- i ,...,YjeRj1 .	 (5.20)

In other words, H V,k(i,j) is the probability that the ktb phase initiates in state j

given that the final state of the k-1 1h phase is i, conditioned by the first k-1

components of V. Finally, for consistency, we let H V,1 be the n 1Xn 1 identity

matrix. In terms of the above matrices, we are able to establish the following

matrix formula for computing the probability of a Cartesian trajectory set V.

Given X, let p denotes the initial state distribution, i.e., p — IN Pz ... Nil

where pi — Pr[Xa —i), and let Fk denote the n kX1 column matrix with "1" in

each entry. Then, by induction on k, it can be established that

r—
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Theorem 5.4:

If V — RI X ... XRkXQk+I X " - XQm then

t
Pr[V] — p-[f11Hv ,! 'Pv,fITk 	 (5.21)

Proof:

For k—!,

p-Hv,l -Pv,l — p 'Pv,l — [al ... aj ... aj

aj — 7 Pr[Xj—i]-Pr[YIERI,X'JXo—ij
ieQ,

— I Pr[YIERI,X tl,-j,3j—il
i:Q,

— Pr[YI ER I ,Xtj-'j .

Multiplied by FI,
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DF	 TYe1-i

p'Hv,i'Pv.l'Fi

— I Pr[YI eR,,X 1-il — Pr[YjcR1]
1OQI

Pr[YI eRI,Y2eQ2, ... , YMeQ.]

— Pr[V] .

Suppose that the formula holds for k<m, then

k+i

p-[PII Hv.1'Pv,tl -Fk+i

k

— p- [fin Hv,# -Pv,f I -Hv,k+i'Pv,k+i ' Fk+t

— A1•Hv,k+,,Pv,k+i'Fk+,

where

Al — [bi ... bj ... bnil

and

bj — Pr[X k--j,YkeRk, ... , Y1eT,]

by applying the equation for k.
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When we iteratively compute the matrix product, beginning from

the left, the first two terms become

A2 — At'Hv,k+i — [cl ... 5 .. cn,+,]

where

5 — 2 bi'Hv,k+i (iJ)
ieQk

Pr[Xt̂ i,YkERk, ... , Y l ER,]
ieQk

Pr[X t+'-^ IXtk-k—i ,YkERk, ... ,Y,tR,l

= Pr[X k
tk

+1
-j

'YkElck, ... , Y i E R l ] .

The next partial product is the result of multiplying A 2 by the

transition matrix Pv.k+t which yields:

A3 — A2'Pv,k+t — [d, ... di ... 
dnr+11

where
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di = I ci'Pv,k+l (ii)i@Qr+i

}r Pr[Xy 1=i,YkeRk,...,Y l ER,l
i1Qt+j

- Pr[Yk+1 ERk+1+Xtkk*1—j
'
X

k+1..i,YkeRk, ... ,Yleftil

Pr[Xt^1=j ,Yk+IERk+1, ... ,YieR t l .

The product is completed by multiplying A3 by the summing vector

Fk+1+ that is,

k+1

P-1 H Hv,4'Pv,t]'Fk+1

= A3'Fk+1

j,Yk+,eRk+1 .... ,YjeRj1
iEQi,+l

= Pr[Yk+1 ERk+1+Yk eRk ....YjeRj1

= Pr[YIER , ,...,Yk+I ERk+l ,yk+2 EQk+2, ... tYmeQml

Pr[R 1X ... XRk+1XQk+2X ... XQm] .

Accordingly, the equation holds for all k<m, which completes the proof of

Theorem 5.4.
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In particular,.- ,jr k — m, we have

Corollary:

For any Cartesian set V—k 1 XR2X • • • XRm,

MPr[VJ — p• [kH Hv ,k •Pv^kJ • Fm .	 (5.22)

Although Equation (5.22) provides us with a general formula for

computing the probability of a Cartesian set, its disadvantages derive from the

fact that the Hv ,r and Pv•k matrices may be difficult to obtain in practical

applications. In particular, these matrices will generally depend on V as well as

X and, moreover, will generally depend on the history of X before phase k.

However, the latter objections disappear when the transition probabilities are

"memoryless." More precisely, let the (unconditional) intraphase transidon

matrix of the kdb phase be the nkXnk matrix Pv,k where, for all i j(Qk,

Pv .k(i j) — Pr[X tk—j, YkeRk 1X k-1- iJ	 (5.23)

i.e., the probability of having performance levels R k during pease k while the

intraphase process initiates in state i and ends up in state j. Similarly, let the

(unconditior.,i1) interphase transition matrix be the n k_ 1 Xnk matrix Hk where,

for all ieQk- 1 and je%,
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Hk(ij) - f - ix --jIxtk-  1 -i]	 ;s.24)

i.e., the probability that the ktb intraphase process initiates in state j given that

the k— l tb intraphase process ends up in state i. Then the intraphase transitions

of (X,y) are memoryless for V at phase k if

Pv.k — Pv,k -

Similarly, the interphase transitions of (X,y) are memoryless for V at phase k if

Hv,k " Hk

Accordingly, when transitions are memoryless through phase k, by the

definitions and Theorem 5.4, we obtain

Theorem s.s:

If V — R I XR2X • • . XRkXQk+ 1 X • • • XQm and the intraphase and

interphase transitions of X are memoryless for V through phase k, then

k
Pr[VJ — p-[ fn H1•Pv.l)'Fk . 	 (5.25)

Corollary:
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For any i artesia:i yet V, if the intraphase and inteaphase transitions

of X ate -memoryless for V for all phases, then

k
	Pr[V) — p•[

#
1I H^•P^,^J•Fk . 	 (5.26)

When V is a Cartesian set anti N — Qf , for Q — 1,2,...,k-1, then the intraphase

and intraphase transitions of X are memoryless for V through phase k.

A-cordingly, applying Theorem 5.5, we obtain the following formula for the

)bability ' of the trajectory set V — QI X • • • XQk_,XRkXQk+ 1 XQm which,

alternatively, is the probability of the event YkeRk.

Theorem 5.6:

If V — Q I X • • • XQk_,XRkXQk+ i X • • • XQ., then

]a	 P^ .1 ]'Fk •	 {5.27)Pr[V] — p-[# 

By Theorems 5.5 and 5.6, when certain intraphase and intraphase

transitions are memoryless for V, the probability uf a Cartesian set V is easily

obtainatle. However, such results may still be difficult to use because, even

through the transitions are memoryless for V, they may not be memoryless for

other Carte-ti an sets. Accordingly. we have sought to identify stronger

conditions under which the formulas will hold for ::::artesian trajectory sets.
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First, by extending previous definitions, the intraphase (intraphase) transitions

of (X,7) are memaykss at phase k if they are memoryless for all Cartesian sets

V at phase k; the intraphase (inteaphase) transitions of (X,Y) are memoryless if

they are memoryless at all phases. The advantages of memoryless transitions

are obvious, for by their definitions and the corollary to Theorem 5.4, we have

Theorem 5.7:

If (X,Y) is a phased model and the intraphase and intraphase

transitions of X are memoryless, then, for all Cartesian sets V,

M _

Pr[V] — p•[kH Hk •Pv,k]'Fm .	 (5.28)

Moreover, we find that the memoryless property is relatively easy to

characterize, that is, we are able to show the following characterization

conditions for the memoryless property. Note that the conditions d ,) not

involve any specific Cartesian sets.

Theorem 5.8:

(1) The intraphase transitions of X are memoryless at phase k if and only

if, for all i;jeQk and all a4 in At (Q — 1,2,...,k),



.a

-146-

OF POOR

Pr[XL̂ j ,Yk-ak I 	^,Yk—l^k-1,...,Y1—all

• — Pr[Xtè̂—j,Yk—ak lXtk- 	.	 (5.29)

(2) The interphase transitions of X are memoryless at phase k if and only

if, for all ieQk-1 , jeQk and all af eAf (Q — 1,2,...,k-1),

Pr[X _.jlXk---1'i'Yk_l—ak-1, ... ,Y1—a1]

= Pr[X"jlxk l i]
	

(5.30)

Proof:

Suppose	 PV,k is	 memoryless	 for all Cartesian	 sets

V — R 1 XR2X • • • XR, By taking Rf to be the singleton set {a4 } (Q — 1,2,...,k),

PV,k(ij) — Pr[X t̂ j,Yk-arlX ,-,—i,Yk—l—ak-1,...,Y1=aj1

— Pr[Xtt-j,Yk—akIX ,-,—il

— Pv,k(i,J) -

Now, suppose that, for all a f eA# (Q — 1,2,...,k),
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Pr[Xtk—j ,Yr=at IX1̂  ,—i,Yt-1—ak-i,...,Yl—alJ

= Pr[X4^j ,Yk—aklX4-1=ij

Then, for any Cartesian set V - R 1 XR2X • • • XRm,

PV,k(i i) — Pr[Xt̂ j ,YkeRk IX k-,—i,Yk-jeRk-I,...,YjeRj1

7	 c^(al, ... ,ak)-djk(aj,... ,ak)
a l eR ,,...,ak#Rk

—
Pr[X^-i, Yk-leRk-1, ... ,YleR11

where

cij(al,...,ak) — Pr[Xt,-j ,Yk—ak lX	 ,Yki k-i, ... , Y1=alI

and

dik(al,...,ak) — Pr[X ^-,- i,Yk—I"ak, ... , Yl=al ] .

Thus, by the assumption, PV,k(i,j) is equal to

I	 PrN,t ,Yk—ak1X!-,-'i1
ajtRj.....4oRk

'Pr[X ^ i+Yk-1=ak-19 ... , Yi-%j1

Pr[x4- -i,Yk-i ERk-1, ... , Yl eR, l
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Factoring out the term Pr[Xy^j,yk=ak jX mil, we have

Pv,k(i^1) _ Pr[X',, j,Yk-aklx^,=Il•1

= Pv,k0j)

which completes the proof for part (1) of the theorem. Part(2) is proven in a

like manner.

5.4 Upt:a::•aal Models as Intraphase Processes

To illustrate the application of the above general results, we consider

in this section perform bility evaluation methods assuming that the phased base

model of a phased model (see (5.3)) is Markovian and that the intraphase

performance variable are defined as the minimum operational rates experienced

by the system during a particular phase (see (3 .23)). The representation of

intraphase processes as operational models permits us to calculate the

intraphase transition probabilities using Equations (3.45) and (3.49). By

formulating the intraphase performance variables in terms of functionals, we

also obtain a considerable gain in expressive power of a phased model,

particularly in representing the effects of intraphase "repair." Moreover, since

the operational models are allowed to vary from phase to phase, the modeling

of a particular phase can be tailored to the computational requirements of the

phase. In other words, this special class of phased models can be regarded as

the time varying versions of the z~aodels introduced in Chapter 3.
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5.4.1 Derivation of Intraphase Transition Probabilities

• Recall that, in order to represent the phased base model as a one-

parameter family of random variables

X — {Xt ItET] ,

the augmented utilization period is taken to be

T — T U {tk I k-1,2,....m-1 }

where t — [O,h] is the original utilization period. Hence, to describe X as a

Markov process, T must be specified as a totally ordered set by inheriting the

ordering relation of T and by assuming t k <tk , tk <x, y<tk' for all

k — 1,2,...,m-1, and all x,yeT such that t k <x and y<tk. By Theorem 5.8, the

Markov assumptions imply that the intraphase transition and the interphase

transitions of X are memoryless. Hence, applying (5.28), for all Cartesian sets

V 9 AIX ... xpm,

M	 _
Pr[V] — 

p•[ II Hk•Pv.k]•Fm .	 (5.31)

In other words, the probability of V can be expressed in terms of the initial

distribution of the first phase, p—[pl p2 - - - pj, the interphase transition
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probabilities	 CF	 ► °^

Hk( ia) — Pr[Xtr-1^I"t1-11 —iJ

where k-1,2,...,m, ieQk_1 and jeQk, and the intraphase transition probabilities

Pv,k(i.l) — PrNk.—j,YORk IX .-

where k-1,2,...,m and i,jeQk. Assuming p and Hk(i,j) can be determined from

the known properties of the system, then the problem of computing Pr[VJ is

reduced to that of computing the intraphase transition probabilities.

To compute the intraphase transition probabilities, we assume that

each phase of the mission is represented by an operational model. More

precisely, for each phase k, the intraphase process

Xk - JXt ItETJ

is a time-homogeneous Markov process and the phase k performance variable

Yk is given by

Yk — min{fk(Xt) IteTk)
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where fk is an operational structure defined on the state space of X k. Clearly,

the intraphase transition probability P V,k(i ,j) can be determined by

Pr[Xj,k-j,Yk—gIXt%,—i]	 (gEQk)

which, in turn, can be determined by the conditional probabilities m;q (t)

described in Section 3.2. More precisely, for each

1<k<m and gEQk—jl,2,... ,nk) let us define a nkXnk dimensional matrix

Mk,q = [MAI

where for all i,jeQk,

m;^ = pr[X^̂̀ =],yk—glXtk ,'i] .

Then, since Xk is a time-homogeneous Markov process, m;9 can be computed

by applying either (3.45) or (3.49). Moreover, it follows that the intraphase

transition probabilities can then be obtained from M k,q by matrix additions, i.e.,

PV,k(ij) _	 Mk,q
gtRk
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5.4.2 Evaluation of a Two-Phase Mission

In constructing a phased model that can support an evaluation of

system performability, we must specify the intraphase processes and an

organizing structure with respect to a specific computer and its computational

environment. The intraphase processes together with the organizing structure

determine an equivalent performability model that can be evaluated using

solution methods developed in Section 5.3.

To illustrate these modeling and evaluation methods, a

comprehensive phased model has been examined in [491, involving the SIFT

computer with an environment taken to be the control of a transoceanic air

transport mission. The model represents the internal structure of the SIFT

computer as well as conditions of its environment in terms of Markov

processes (see [491, Figure 3 and Table III). State trajectories of the equivalent

base model are then related to accomplishment levels of the mission via a

capability function (i.e., an organizing structure) which is formulated in terms

of a three-level model hierarchy (see [491, Figure 2). After the capability

function is formulated, solution methods are then applied to determine the

performability of the total system.

Although the performability modeling and evaluation effort of the

SIFT computer has shown the essential aspects of the phase model method, it

has emphasized the construction of realistic higher level models. Simple

Markovian models for nonrepairable systems are used to reduce the complexity
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of the performability calculation. Hence, to show the solution algorithms in

more detail, we consider in this subsection a phased model that uses

operational models as intraphase processes.

We consider a total system S — (C,E) comprised of a control

computer C operated in the environment E of a two-phase mission. The

computer initially operates as a multiprocessor system with three identical

components. However, system reconfiguration can occur in the computer due

to phase change, hardware faults, or software faults. During the first phase

Tl=Ito,t 1 J, all three subsystems are required to perform all computational tasks

successfully. But, when less than three subsystems are available, the system

can still survive by executing a reduced set of computational tasks. Depending

on the amount of resources available, the system exhibits the following levels

of accomplishment during phase 1:

Phase 1
accomplishment I Interpretation

levels

3	 Full performance

2	 Noncritical performance
degradation

1	 Critical performance
degradation

0	 Failure

During the second phase T2=(t 1 ,t2], the system is reconfigured into a TMR
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system with software recovery to obtain a high degree of reliability (see Section

3.4). Hence, the system exhibits the following three accomplishment levels:

Phase 2
accomplishment Interpretation

levels

2	 Full performance

1	 Degraded performance

0	 Failure

To describe aspects of the system performance that the users

consider important, we assume that users are interested in distinguishing only

three levels of mission performance A = {2,1,0}, where the accomplishment

levels convey the following information:

Mission
accomplishment Interpretation

levels

2	 Full performance

1	 Degraded performance

0	 Failure

We further assume the following characteristics of the mission:

1) To achieve level 2 mission accomplishment, if the performance
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degraded noncritically during the first phase, then performance

degradation is not permitted during the second phase. If phase 1

performance is not degraded, then phase 2 performance is allowed to

degrade.

2) Mission performance is degraded if phase 1 performance is noneritically

degraded and phase 2 performance is degraded. A critically-degraded

performance in phase 1 will result in level 1 mission accomplishment

only if phase 2 performance is not degraded.

3) Mission accomplishment level is 4 if the system enters the failure mode

during any phase.

Under the above assumptions, the organizing structure of the phased model

(i.e., the capability function of the equivalent performability model) can be

tabulated as in Table 5.1. Clearly, the organizing structure *:A 1 XA2 —+A is

order-preserving and satisfies the conditions of Theorem 5.2.
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Accomplishment Levels

Mission
Phase 1 Phase 2 (t)

3 2 2

3 1 2

3 0 0

2 2 2

2 1 1

2 0 0

1 2 1

1 1 n

1 0 0

0 2 0

0 1 0

0 0 0

Table 5.1

An Organizing . tr,-..^ture
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Hence, for each mission accomplishment level aeA, * —I (a) can be expressed as

a finite union of Cartesian subsets of A I XA2. In particular, one such

representation is

*-1 (2) _ (3}X(1,2) U (2}X(2) 	 (5.32)

*-1 (1) _ (2)X(1) U (1}X(2}	 (5 .33)

*—'(0) _ (0)X(0,1,2) U (0,1 }X(0,1) U (0)X(0,1,2,3)	 (5.34)

Note that each Cartesian set in the above equalities is an interval as defined in

Section 5.2.

To specify the equivalent base model, it is necessary that the state

spaces of the intraphase processes be refined enough to support the evaluation

of system performability. This condition can be satisfied if the phased base

model (5.3) is chosen to be a time-homogeneous Markov process with a state

space detailed enough to distinguish different operational modes of the

intraphase processes. In other words, even though the operational models vary

from phase to phase, they share the same underlying Markov process

throughout the whole mission.

Assume that the computer has the same failure characteristics as the

one considered in Section 3.4. Then, if we denote the model parameters by
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X —	 component failure rate

o — software failure rate

C —	 hardware error coverage

d — software error coverage

dµ — rate of software recovery,

a common time-homogeneous Markov process for both phases can be specified

as in Figure 5.2. Each state of the graph (except state 0) represents a specific

number of subsystems that are free from hardware faults; a prime (I is

appended to the number if the system is attempting  recovery from a : ,ftware

error. State 0 represents any other configurations. Using this Markov process,

the probabilistic nature of phase 1 and phase 2 can :)e represented, respectively,

by operational models induced by the operational structures as illustrated in

Table 5.2. Note that the operational rates are chosen to convey the same

information as the accomplishment levels of each phase so that the intraphase

performance variables Yk (k—1 .)r 2) can be defined as

Yk — min{fk(Xj IttTk)

where fk is the operational structure of the k1h phase.

To compute the performabi " ity of the total systems, note also that

the use of a common Markov process for all phases implies that each

interphase transition matrix is an identity matrix. Accordingly, once the initial
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Figure 5.2

Underlying Markov Process

of a Phased Model
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Phase State Operational
rate

3 3

3' 2

1 2' 1

1 1

0 0

3 2

Y 1

2 2 2

2' 0

1 0

0 0

Table 5.2

Operational Strictures

of a Phased Model
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distribution of the first phase model is known, the probabilities of Cartesian

sets can be determined by repeatedly applying (5.31). First, let us assurac the

following parameter values:

Parameter I Value

A	 5X10-4

c	 10-2

µ	 103

c	 .99999

d	 .9

Then, if we assume that the duration of the two phases are both 10 hours, we

have, by (5.31),

.89137 0 0 0 0 0
0 0 0 0 0 0

MIJ 0
0

0 0
00000

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

.08393 .01402 .00001 0 0 0
0	 .89583	 0	 0 0 0

.87777 .01262 .00001 0 0 0
MI.2	 0	 0	 0 000

0	 0	 0 0 0 0
0	 0	 0 0 0 0
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0 .00065 0 .00001 .00005 0
0 .08436 0 .00001 .00005 0

M1.1 '
0 .00058 0 0 .00846 0
0 .88218 0 .00001 .00846 0
0 0 0 0 .90032 0
0 0 0 0 0 0

.89137 .01338 0 0 0 0
0 .89583 0 0 0 0

M2,2
0 0 0 0 0 0
0 0 0000
0 0 0 0 0 0
0 0 0 0 0 0

and

.08393 .00065 .00001 0 0 0
0 0 0 0 0 0

M2.1=
.87777 .01262 .00001 0 0 0

0 0 0 000
0 0 0 0 0 0
0 0 0 0 0 0

Accordingly, the trajectory sets in (5.32) and (5.33) can be

evaluated by applying (5.28) and (5.18), i.e.,

Pr[*-1 (2)] = Pr[[3}X{1,2)] + Pr(12)X(2)]

= P'M1,3'(M2,1+M2.2)'F + P'M1,2'M2.2'F

and
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F

Pr[if-1 (1)] — Pr[(2)X{1}] + Pr[ I1]X(2)]

P'M1.2'M2,1'F + p•M1,1•M2,2'F

where p is the initial distribution of the first phase and F is a 6X1 dimensional

matrix with a "1" on every entry. In particular, if the computer is fault-free at

the beginning, i.e., p=[1 0 0 0 0 0], the performability of the phased mission is

as follows:

perf(2) — Pr[*-1 (2)] —.97036

perf(1) — Pr[* -1 (1)] _ .00769

perf(0) — Pr[* -1 (0)] — .02195 .



CHAPTER. 6

CONCLUSION AND FURTHER RESEARCH

The objective of this research has been to develop a general

stochastic process model for evaluating the performability of degradable

computing systems. This objective was established to fulfill the need of

evaluating the unified performance and reliability of distributed multiprocessor

systems. To accomplish the objective, a precise formulation of system

performance is developed in a broad context and the concept is then applied to

analyze the performance of degradable computing systems. Furthermore, a

simple and useful user-oriented performance variable is identified and shown to

be a proper generalization of the traditional notions of system performance and

reliability.

In addition to the above modeling framework, a specific two-level

hierarchical model is developed. The model is constructed according to a

hierarchical decomposition of a system's behavior: Priority queueing models are

used to analyze the system's detailed program behavior and the results are

combined via a Markov reward process to characterize the overall system

performance. Although the modeling approach resembles the top-down

structured approach of software development, the decomposition considered

-164-
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here is based on a more precise classification of a system's short term and long

term equilibrium behavior. Accoraingly, the modeling approach permits the

evaluation of a computing system's hardware and software as a whole, and it

becomes possible to deal with the performance and the reliability of a

computing system simultaneously to measure the extent to which the user can

benefit from tasks accomplished by the computer.

Finally, a time-varying version of the model is considered to analyze

the performance of phased missions. By representing intraphase models in

terms of operational models, we are able to obtain useful results even without

the typical no-repair assumption of the traditional phased-mission reliability

methods. Moreover, since the model considered does not require the structure

function representation of system success, the approach thus represents an

important generalization of traditional fault-tree analysis.

Although the investigation efforts documented in this thesis were

carried to the point where the research objectives described in Section 1.2 were

satisfactorily accomplished, there remain several problems that must be

resolved before the performability modeling techniques can become a major

tool in the design and analysis of computing systems.

First, to extend the usefulness of operational models, more efforts

can be made to formulate various user-oriented performance variables that are

suitable for a wide variety of computer applications. Since solution methods for

these performance variables may differ considerably from those obtained in this
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study, new solution techniques should also be explored.

Several generalizations of the phased model are possible depending

on how the notion of phasing is relaxed. For example, by allowing the duration

of each phase to vary, the model can be extended to a larger class of systems

with time-varying environments. One may also extend the phased model by

allowing the decision on selecting a succeeding phase to be made at the time of

a phase change to improve the mission performance.

Another important problem that may have significant influence on

the modeling of degradable computing systems is the modeling of software

faults. The problem becomes even more interesting when both software and

hardware faults are considered simultaneously. Note that the model considered

in Chapter 4 measures the effect of hardware faults while taking into account

the behavior of the system software. On the other hand, software reliability

models (see [551-[561, for example) are typically concerned with the effect of

software faults on the system performance assuming that the hardware is fault-

free. Clearly, useful performance measures can be obtained by combining

performability with she results of software reliability analysis.

Finally, we note that the hierarchical decomposition method

considered in Chapter 4 may also be extended to the performance modeling of

computing systems in general in addition to the performance modeling of

degradable computing systems. By classifying the physical and logical resources

of a computing system according to their frequency of accesses, various models
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can be constructed to facilitate the step-by-step approximation of system

performance. To make the approach useful, however, it then becomes

necessary to have a better understanding of the error bound of the

approximation.
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MARKOVIAN FUNCTIONALS OF

MARKOV PROCESSES

This appendix is reference material for Chapter 3. Conditions under

which operational models become Markovian are stated in terms of slightly

modified forms of what can be found in the literature. The utilization of such

conditions together with their limitations are illustrated through examples.

When modeling computing systems as operational models, there are

many situations in which the state space of the underlying base model may be

much larger than needed to distinguish operational rates via the operational

structure. Accordngly, to simplify the evaluation of system performability, one

question that arises naturally is whether the operational models can be

described as Markov processes and, if so, whether they are time-homogeneous.

More precisely, let us suppose the total system is modeled by a time-

homogeneous Markov process

X — {XsIOSs_<t}

with a denumerable state space Q and, relative to an operational structure

f:Q—R,
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Z — {f(XS)10<s-C O .

Since the above question does not involve the actual values of f, Z may be

regarded here as a "lumped" [52] version of X, where states i and j sre in the

same lump if and only if f(i) — fa). In other words, lumps coincide with the

operational modes of S. If f is 1-1 then Z is obviously both Markovian and

time-homogeneous since, in this case the lumping is trivial. If i is properly a

many-to-one function, the answer is no longer obvious, and indeed the

qucstion needs further clarification.

To begin, let us suppose that the underlying process X is specified

by its generator matrix A and an initial distribution p. Then our original

inquiry can be reduced to the following questions:

Q1) Given P., p and f, is Z Markovian?

In many applications, however, one wants the freedom to alter the initial

distribution p without losing the Markov property. In this case we are asking:

Q2) Given A and f, is Z Markovian for arbitrary p?

Finally, we can raise our sights even higher and ask:

Q3) Given A and f, is Z Markovian for arbitrary r and,

moreover, is the transition function of Z

independent of p?
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Adopting the terminology of [52] (which investigates the discrete-time versions

of Q1 and Q3), if the answer to Q1 is "yes" then the process X specified by A

and p is weakly lumpable (with respect to f). A "yes" answer to Q2 is stronger

but, generally, these Markov processes will not be time-homogeneous. If the

answer to Q3 is "yes" then, for all initial distributions p, the Markov processes

Z have the same transition function and, by the homogeneity of X, it follows

that this function is invariant under time shifts, i.e., the processes are time-

homogeneous. In this case we say that the processes X specified by A are

strongly lumpable (with respect to f).

Addressing first the question of weak lumpability (Q1), if Z is to be

a Markov process, we must insure it hay the "memoryless" property, that is, any

sequence of past observations of Z provides the same information as the last of

those observations. To formalize this requirement, if OSt l <t<< • • • <tk is a

sequence of observation times and q;EQsf(Q) is the state of Z observed at time

t;, for each underlying state jeQ, let

Mj(t i , ... ,tk;g l , ... , qk) — Pr[Xc"—j12^,—%, ... ,Zt.—qkl	 (A.1)

then the 1XIQI matrix

M(t l , ... , t L;gl,...,gk) : [M;( ; A
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is the probability distribution of the states of X at time tk , rs conditioned by

these observations of Z. In particular, since Z, -%, it follows that Mj(;) is

nonzero only if fa)-%, where (Mj( ; ) jf(j)-%j gives the probability

distribution of states inside the lump f -l (qk). Moreover, since X is a Markov

process, Mj( ; ) permits us to represent conditional probabilities in terms of the

transition function of X, i.e., it can be shown that, for all

Ost l <t2< • • • <tk—t and s;—,,,O,

Mj(t l , ... , tk;gl,...,gk)'p(s)
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(A.2)

where, for each ieQ,

,ri — Pr[Xt+,—il?.,."gl, ... , 7.1—qkl .

To translate distributions of X back up into distributions of Z

relative to some specified ordeding of the lumps, let q denote the #re lump,

i.e., the collection of sets

(gIIS0sIQI}

is the partition of Q induced by f. Accordingly, if it-[v l 72 • • • j is a
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probability distribution over the states of X, we let f denote the corresponding

distribution, that is

f_IflV2 ... )	 (A.3)

where

IEQj

In terms of the above notation, weak lumpability can then be characterized

similar to its discrete time analog.

Theorem A.1:

Let X be a time-homogeneous Markov process with transition

function P and a fixed initial state probability distribution p.	 Let Z be a

functional of X and, for all ta:0, define

Op(t) _ {M(ti,...,tk;gl, ... , q. ) j0<tj < ... <tk—t and q l , ... , gkEQ} .

Then, Z is a Markov process if and only if, for all s>0 and for all r,,r'eA,(t),

>r — x implies ;•P(s) _'r'-P(s) .	 (A.4)
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Theorem A.1 can be proved in a way similar to that of its discrete-

time analog (see [521; pp. 132 - 134). To illustrate its application, let us suppose

that the system in question is a multicomputer comprised of three identical

computer modules. Suppose further that modules fail independently and that

each fails permanently with a constant failure rate X. Then we can take the

base model X to be the Markov process depicted by the state -transition-rate

diagram of Figure A.I.

Figure A.1

Markov Model of a Multicomputer

As for operational rates, let us assume they are normalized so that, at full

rapacity the rate is 1, and with the loss of one or two modules the rate is 1/2;

loss of a third module results in total failure. Accordingly, the operational

structure here is the function
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i I f(i)

1	 1

2 1/2

3 1/2

4 0

and hence the functional Z takes values in the state set Q--{ 1,1/2,0). On taking

the inverse of f, these states correspond as follows to lumps of Q:

1 — {1}

1 /2 ,_... {2,3}

If we now examine the probabilistic nature of Z, we find that the conditional

probability Pr[7,ft=0j7-t=1/2] depends on the time that Z enters state 1/2 from

state 1 if the latter event is possible (i.e., if the probability of initially being in

state 1 is nonzero). Thus, for example, if X is initiaiiy in state 1 with

probability 1, i.e., p=[1 0 0 01 is the initial state probability distribution, then

we have such a dependence (on the past history of Z) and therefore Z is not a

Markov process. On the other hand, let us suppose the initial distribution is

p= [0 0 1 01, which i, not a likely choice from a functional point of view, but it

serves to illustrate the role of p. In this rase Ap(t) (as defined in the statement

1 1	 of Theorem A.1) is the same for any time t in T, i.e., it is the set
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Op(t) — 1[00101 ' [00011)  .

Accordingly, the conditions of Theorem A.1 are vacuously satisfied, and

therefore Z is a Markov process for this choice of p. Moreover, it should be

obvious that Z, is this case, is time-homogeneous. Other distributions, such as

p — [0 1 0 01 can be shown to result in Markov processes that are not time-

homogeneous.

Regarding the second question (Q2), a necessary and sufficient

condition can be obtained by extending the previous theort:r to arbitrary initial

distributions. More precisely, it can be shown that Z is a Markov process

whatever the initial distribution if and only if, for all t,s2 ,--0 and any initial

distribution p, condition (A.4) holds for all Ir, ir' in Ap(t). Although the

characterization is useful from a conceptual point of view, it is difficult to use in

practical applications. A more desirable form of this result can he found in [531

(pp. 1113-1114, Theorem 4) which assumes that X has a :mite state space.

(The theorem was generalized later in [541 to allow for arbitrary state space.)

Stating the desired form of this result in terms of the notation defined abort-

we have:

Theorem A.2:

Let X be a time-homogeneous Markov process with generator

matrix A=[aril and let Z be a functional of X determined by l :. 'When Z is a

Markov process, whatever the initial distribution of X, if and only if for each
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qEQ taken separately either

(i) For all i ,jeQ such that f(i)*q and fa)—q,

a4 — 0

or

(ii) For all rei5 such that r*q, the sum

2; ail
fu)—r

is the same for all ieQ such that f(i)—q.

Although the conditions of Theorem A.2 guarantee that Z is a

Markov process relative to any initial distribution p for X, note that the specific

nature of Z (as specified by its transition function) wil generally depend on p.

Moreover, the process Z need not be time-homogeneous.

To illustrate Theorem A.2 and the above observations, let us again

consider the Markov process X having the state-transition-rate diagram given

by Figure A.I. Then, the generator matrix of X is the 4X4 matrix

—U A 0 0
A — 0 —2X 2X 0

0 0 —a X
.

0 0 0 0
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Suppose, however, that the operational structure here is one that corresponds

to triplication with voting (TMR), i.e., the function

1	 1

2	 1

3	 0

4	 0

Then Q—{1,0} and, applying Theorem A.2, we see that state 1 (i.e., lump 11,2})

satisfies condition (i) and state 0 (i.e., lump 13,4)) satisfies condition ;ii).

Hence, the functional Z is a Markov process. To determine the probabilistic

nature of Z, let us rename state 0 (in Q) as state 2 (permitting the use of

standard matrix notation) and let P(s,t) denote the transition function of Z,

i.e.,

P(s,t) — [Pj;(s , t ))	 (sit)

where

Pii(s,t: — Pr[4—jl4—il .
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Then, relative to an initial distribution p=[p t P2 P3 P4J for X, if we let

d	 Pi

P1+P2

it can be shown that the matrix Rs,t) has the following entries:

511(s,t) = 
e ga(t—s) (1+2d(1—e Xt))

(1-2d(1 —e u))

P120,0 „ 1 — pi i (SA) •

P2i(s,t) = 0 , (A.S)

p224,0 = 1 .

From the above equations, we see that the transition function P(s,t)

depends on d and, hence, on the initial distribution p =[p i p; P3 P4J- Moreover,

we observe that Z is time-homogeneous (i.e., the values of P(s,+) depend only

on the time difference t-s) only when d =0. In other words, by the dennition

of d, Z is time-homogeneous if and only if p i-0, i.e., there is a zero probability

that the underlying process X is initially in state 1 (all three modules fault-

free). However, with our interpretation of Z as a TMR model, this special case

is pathological, and hence for most practical purposes Z will not be time-

homogeneous.
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Finally, turning to the question of strong lumpability (see Q3

above), - the answer can be characterized by removing condition (i) of Theorem

A.2 and modifying the proof to accommodate this change. More precisely, we

have

Theorem A.3:

Let X be a time-homogeneous Markov process with generator

matrix A-[%] and let Z be a functional of X determined by f. Then Z is a

Markov process, whatever the initial distribution p of X and with a transition

function that is independent of p, if and only if for each qeQ the following is

satisfied:

For all rei5 such that r # q, the sum

	

j aii
	

(A.6)

P(j)—r

is the same for all ieQ such that f(i) — q. To illustrate Theorem A.3, suppose X

is specified by the generator matrix

U X X A 0 0 0
0 —2a 0 0 a a 0
0 0 —2X 0 a 0 A

A — 0 0 0 —2X 0 X X (A.7)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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and f is the function

q I f(q)

1	 1

2	 2

3	 3

4	 3

S	 4

6	 4

7	 4

Testing condition (A.6) for states 1 and 2 in Q, we see that it holds trivially

since these states correspond to singleton lumps. As for state Ni

(corresponding to lump 13,4)), with respect to states 1,2E5 the sums are zero

for both i=3 and i =4; with respect to state 4ei the sum is 2X for both i-3

and i=4. Thus condition (A.6) holds for state 3. Finally, (A.6) is likewise

satisfied for state 4ei and we conclude that Z is a Markov process with a

transition function that is independent of p.

In general, if X is strongly lumpable (as characterized by Theorem

A.3) it is easily shown that Z must inherit the time-homogeneity of X. In

other words, a strongly lumped processes will always be time-homogeneous

and, accordingly, it can be specified by a constant generator matrix. More
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precisely, let us rename the states in Q (if not already so named) with the

integers from 1 to IQI, the generator matrix A — [Eqr] of Z can be constructed

directly from A, where entry aqr (q#r) is given by the invariant sum of

condition (A.6) for any i such that f(i) —q. (The diagonal entries K., are then

determined by the condition that rows must sum to zero.) Thus, for the

example just considered (see (A.7) and (A.8)), the generator matrix of Z is the

4X4 matrix

—U X 2X 0
A — 0 —2X 0 2X

0 0 —2a 2X
0	 0	 0 0

As illustrated through the above examples, a strongly lumped

process is clearly the most desirable type of operational model. On the other

hand, by Theorem A.3, it is evident that such models require a relatively

restricted "match" between the probabilistic nature of the base model (as

specified by A) and the operational structure f.

The conditions of Theorem A.2 are somewhat aker although,

when satisfied, the transition rates of the resulting Markov functional are

generally time-varying and dependent on the initial distribution of the

underlying process. Of significance here is that even without strong lumpability

one can obtain operational models that are Markov ian and admit to feasible,

closed-form analytic solutions (see Equations A.S, for example). What must be
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used here, then, are solution techniques for arbitrary (discrete-state) Markov

processes, as opposed to more special (and much more familiar) techniques

that apply only to time-homogeneous Markov processes.

Finally, regarding weak lumpability (Theorem A.1), the requirement

here is even less restrictive. However, depending on A, p, and f, it may be

difficult to decide whether the condition of Theorem A.1 is satisfied.

Moreover, we currently know of no general means of solving such models

without resorting to detailed computations at the base model level. The utility

of weak lumpability is also curtailed by the fact that the initial state distribution

of the base model is fixed. This may be satisfactory in certain applications but

one often wishes to examine the influence of different initial distributions. In

such cases, one must derive a solution for each of the given distributions

provided, of course, that each admits to weak lumpability.

Theorems A.1-A.3 thus provide formal support of what we and

others in the field have observed through experience: at higher, more user-

oriented levels of abstraction, it is difficult to maintain a Markovian

representation of system behavior. As a consequence, we should seek means

for accommodating operational models (functionals) that are not Markovian.

The latter task is less formidable than it might appear if we bear in mind that,

when evaluating a system S, an operational model Z plays an intermediate role

in support of a specific performance variable Y. Thus, our knowledge of Z can

be restricted to that required to solve the probability distribution of Y, i.e., the
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performability of S. The latter observation serves as the guiding principle for

the work describes! in Chapter 3.
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