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ABSTRACT

Expansions in Chebyshev polynomials are wused to study the 1linear
stability of one-dimensional magnetohydrodynamic (MHD) quasi-equilibria in the
presence of finite resistivity and viscosity. The method is modeled on the
one used by Orszag in accurate computation of solutions of the Orr-Sommerfeld
equation. Two Reynolds-like numbers involving Alfvén speeds, length scales,
kinematic viscosity, and magnetic diffusivity govern the stability boundaries,

which are determined by the geometric mean of the two Reynolds-like numbers.

Marginal stability curves, growth rates versus Reynolds-like numbers, and
growth rates versus parallel wave numbers are exhibited. A numerical result
which appears general in that instability has been found to be associated with
inflection points in the current profile, though no general analytical proof
has emerged. It 1is possible that nonlinear subcritical three-dimensional

instabilities may exist, similar to those in Poiseuille and Couette flow.
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The linear stability of plane shear flows has been one of the most
intensively studied hydrodynamic problems from the time of Rayleigh, since it
was thought to hold clﬁes to the natﬁre of turbulence (see, e.g., Linl or
Maslowez). Although the linear theory alone appears to bé inadequate to predict
the onset of shear flow instabilities, it remains an important first step in
any discussion of the problem. We report here on an analogous problem in
incompressible magnetohydrodynamics (MHD). We report numerical solutions of

the quiescent-MHD analogue of the Orr-Sommerfeld equation, using spectral

methods developed by Orszag3.

We begin with the incompressible MHD equations in a familiar dimen-

sionless form:

9B _ L2

3t VX(! X E) + S % E s (l)
ov _ __. ) 192
3t - YV ABVB-Up+yVy, (2)

supplemented by the conditions that V-v = 0 and V-B = 0. B is the magnetic
field measured in units of a mean magnetic field magnitude B, say. The velocity
field is measured in units of the mean Alfvén speed CA = E(hnp)_l/z, where p

is the mass density, assumed uniform. The dimensionless pressure is p, and it

is determined by solving the Poisson equation which results from taking the

divergence of Eq. (2) and using V-3y/3t = 0. The dimensionless numbers S and

M have the structure of Reynolds numbers. S CAL/n is the Lundquist number,

where 1n is the magnetic diffusivity and L is a macroscopic length scale;

M= CAL/v is a viscous analogue, where v is a kinematic viscosity. Both n



end v are assumed to be scalars. The regime of most interest is that in
which S and M are both substantially greater than unity.

The boundary conditions are taken to be those appropriate to a
perfectly~conducting, mechanically-impenetrable wall bounding a viscous,
resistive magnetofluid: v =0, fi - B=0, and i x (V x B) = 0, where fi is
the unit normal at the wall.

(o)

We study the linear stability of the quasi-equilibrium B°’= (B,(¥),0,0)
and y(o) = (0,0,0) between parallel, plane infinite boundaries at y = 1 and
¥ = -1. The current density is in the z-direction only: Jo = -DBO, where

d/dy. The configuration described is not a true equilibrium, and the mag-

D
netic field will resistively decay according to Bo(y,t) = exp(S-ltvz)Bo(y,O).
The temporal variation will be assumed to be slow enough to be negligible:
Bo(y,t) = Bo(y,O) = Bo(y). This implies that our stability boundaries will
not be accurate in regions of small S; there is in this feature a conceptual

4,5,6

difference from the already much studied problem of a mean flow parallel

to a uniform magnetic field with no current, which is a true equilibrium, and

6

from Hartmann flow .

A linear expansion B = g(°) + g(l), v = g(l), is assumed, with pro-
ducts of !(l) and g(l) being discarded everywhere in the equations of motion.
Manipulating the components of the resulting linear equations, we may prove
a Squire's theoreml, which implies that for the location of the most unstable
modes it suffices to consider the two-dimensional case: é/az may be set equal
to zero throughout. All variations with the parallel coordinate x and the
time t are assumed to be contained in a factor exp(iax-iwt), with o an arbitrary,

real, parallel wave number and w = @, + iwi a complex eigenvalue. Dahlburg

and Montgomery7 have given the eigenvalue equations in the form used here:



(D°=a2)%v = —iwM( De-az)v-iaMBo(Dz-az)b + ioM( D2B°)b (3)

and

(p2-a? + iwS)b = -ioSB v. (L)
[0}

Here b and v are the y components of g(l) and y(l), and depend only upon y.
The boundary conditions become v = 0, Dv =0, and b =0 at y =1 and y = -1.

Equations (3) and (4) are the magnetostatic analogue of the Orr-
Sommerfeld Equation, which in the same notationl’2’3 is (D2-a2)2v =
iaR[(Uo-w/a)(D2-a2)v-(D2U6)v], where Uo(y) is a shear flow velocity profile in
the x direction, R is the Reynolds number, and the boundary conditions are
that v =0, Dv= 0 at y = #].

Equations (3) and (Y4) are quite similar to eigen&alue problems
arising in connection with confinement of thermonuclear plasmas. The litera-
ture of "tearing modes" is extensive, and we may cite the central papers of
Furth, Killeen, and Rosenblutha, of Wessong, of Coppi, Greene, and Johnsonlo,
of Furth, Rutherford, and Selberg >, and of Dibiase and Killeen 2. Concern
has frequently been with the non-viscous (M = ) case, which lowers the order
of the differential equations. Viscous results from a linear initial-value
computation have been reported by Dibiase and Killeen12 for the compressible
case, and to the extent that the results can be compared, ours do not appear
to disagree with theirs. Because for plasmas of interest to date, the calcu-
lated viscosity coefficients give estimates of v at least és great as those
for n (see, e.g., Braginskiil3), it seems desirable to retain viscous effects
even at the price of raising the order of the eigenvalue problem to the point
where results can be extracted only numerically.

Analytical information is difficult to extract even for the simpler

Orr-Sommerfeld equation (e.g., Maslowe2 or Reidlh) and numerical solution is



indicated here. We use a spectral technique closely patterned on the method

3 to calculate critical Reynolds numbers for Poiseuille flow to

used by Orszag
six~-figure accuracy. It is to be expected that spectral methods will find
further applicationsvin plasma Physics beyond the immediate ones.

The mean magnetic field Bo(y) and the perﬁurbation quantities v and

b are expanded in truncated Chebyshev series

R
B(y) = T B T(y)

n=0
N ~
viy) = T v T(y)
=0
N -~
b(y) = I b T(y), (5)
n=0
where Th(y) is the nth Chebyshev polynomial of the first kind, and in’ ;n’

Sn are the respective expansion coefficients.

The equations satisfied by the (unknown) expansion coefficients are
obtained by substituting the N + = expansions of (5) into Egs. (3) and (L),
each of which produces a countably infinite number of equations in the expan-
sion coefficients for n =0, 1, 2, ..., when the orthogonality aﬁd recursion
relations3 are used. We then set all coefficients beyond n = N to zero, use
the n = 0 to n = N-L4 equations from (3), the n = 0 to N-2 equations from (4),

N

N
and the boundary conditions £ v_=0, I (-l)HG =0, Inv =0,
N n:O n N n=0 n n:l n

N
L (—l)nnz; =0, I bn =0, and I (-1)° bn = 0. This method of truncation
n=1 n n=0 n=0 15 16
is called the "tau approximation" after Lanczos “; Gottlieb and Orszag give
a general discussion of the use of the tau method in the Chebyshev case.

This spectral discretization process yields a generalized eigenvalue

problem which can be written as AX = wBx, where the vector x = (56, Vs oee ~N’

So’ 51, ces SN)’ and A and B are non-symmetric (2N+2) by (2N+2) square matrices.



As is customary for this type of stability problem, either global
or local methods are used to determine the eigenvalues. The global method
is based on the QR algorithm (Wilkinson17, Gary and Helgasonla) and produces
a full spectrum of eigenvalues. It is employed when no good guess for the
least stable (or most unétable) eigenvalue is available. The local method
employs inverse Rayleigh iteration17 and converges to the eigenvalue (and its
associated eigenfunction) closest to the initial guess for the eigenvalue.
The global method may be used to identify the eigenvalue with the largest
imaginary part, and the local method is useful when making a series of computa-
tions in which either the wavenumber or the Reynolds numbers are slowly varied.

For functions Bo(y) which are antisymmetric sbout y = 0, it is readily
inferred from Eqs. (3) and (4) that v and b are of opposite parity when re-
flected ebout y = 0. We have confined attention to the case Bo(y) = qBo(—y)
with an associated current distribution Jo = -DBo which has even parity about
y = 0: the classic "sheet pinch" configuration. This configuration (indeed,
any Bo(y) profile) can be rigorously proved to be stable in the ideal limit
(M=o, §=o); any instabilities must result from finite values of S or M
or (in our case) both.

We have solved for the several eigenfunctions corresponding to the

largest values of w; for four different antisymmetric profiles Bo(y):

y - y3/3

<
n

= tan lyy - yy(y2+1)~t

NS
t

H

)

L)
—
~—
(1}]

=y - y21/21

= sinh—le - Yy(Y2+1)—l/2. (6)

<
A
1]



Two numerical results have characterized all runs performed, and
though we have been unable to prove either one enalytically, we suspect they
are generally true: (1) as S or M is raised a first unstable eigenvalue
always appears ((ui >' 0) at finite values of S and M with w, = 0; and (2) a
necessary condition that instabilities appear is that the current profile Jo
shall have an inflection point between y = -1 and y = +1. Steep current gradi-

ents alone seem insufficient to produce instability. For example, BiII(y),

which has a large maximum current gradient of 20 near the walls, was found to

be stable up to M = th, S = 10h (for o = 1), while profiles such as BiI which
did contain inflecti;n points would characteristically be unstable for S and M
no greater than a few tens, with considerably smaller current gradients involved.

Particularly extensive investigations were carried out for the profile
Bgl(y) for various values of a, S, M, and the "stretching parameter" y. Figure
1 is a plot of BiI(y) and its associated current profile jiI(y) = -DB(JD:I as a
function of y for y = 10. This case will be used to illustrate the results in
Figs. 2 through 9.

Figure 2 shows typical eigenfunctions, stable and unstable, computed
from the BiI of Fig. 1. Figure 2a applies to S = M = 10, for the least-damped
eigenvalue mi = -0.1695. For this case, w, = 0, a=1.0,b = ibi is purely
imaginary, and v = vr'is purely real. This last property always applies to the
eigenfunction with the greatest mi. Figure 2b shows bi’ Vr for an eigenfunc-

tion immediately above the instability threshold, with S = M = 20,

W, = 0.06940, a = 1.0, w_ = 0. Figure 2c shows bi, v well above the thres-

hold, with § = M = 1000, o = 1.0, w; = 0.19687, and w, = 0. Figure 2d shovs

the case S = 10, M = 105, with a = 1.0, w; = 0.4397 and w, = 0. Figure 2e

10°, M = 10, w; = 0.002537, @ = 1.0, w_ = 0, and

shows the case S



illustrates the (perhaps unsurprising) result that viscosity is better at
suppressing unsteble growth than resistivity.

The damped modes have, in general, both mi and mr finite. Typical
eigenfunctions for é highly damped mode for BEI are shown in Fig. 3
(w, = -0.k0k92, w, = -6.01303, § = M = 20, o = 1.0).

At the stability threshold w = 0, the scaling v' = vM_l/2,
b' = bS'_l/2 reduces Eqs. (3) and (4) to a pair of equations for v' and b'
which depend upon S and M only in the combination YSM (and, of course, upon

o). The neutral stability curve in the ‘SM plane, across which wi becomes

positive for some &, is therefore a hyperbola, approximately SM = 231.9.

II

o withy = 10) is shown in

The computed location of this hyperbola (for B
Fig. 4. The relatively low values of the critical Reynolds numbers (two orders
of magnitude or more below the corresponding hydrodynamic ones for shear flows)
are perhaps the most significant feature of this graph. It is also interest;
ing that for low enough values of either Reynolds number, stability will always
result for any fixed value of the other, but since SM increases with tempera-
ture, according to kinetic theory estimatesl3, at high enough temperatures,
we may always expect to be on the unstable side of the boundary.
To make a comparison with traditionall hydrodynamic plots, Fig. 5
exhibits a set of marginal stability curves: @ = 0 in the o, S plane for
fixed M for BiI and y = 10. The first unstable a (which,.for the reasons
previously noted, must be the same for all such curves) is o = a, = 1.184+0.005.
We have generated the same curves (not shown) in the o, M plane for fixed S.
Figure 6a shows a growth rate (mi vs. S) curve for M = 10. Figure
6b shows a logarithmic plot for large values of S, illustrating the S-B/5

regime identified analytically by Furth et als. Figure T shows the somewvwhat

different behavior of w; vs. M for fixed S. Figure 8a shows a contour



(0) (1)

plot of two periods of the magnetic field lines B + B for the Bél equi-
1librium plus a 20 percent admixture of the eigenfuction shown in Fig. 2b. Figure
8b shows the streamlines of the velocity field for the same eigenfuction.

Figure 9 shows the growth rate mi vs. o for several values of S and M.

The results presented have all been computational and are not the
result of an asymptotic "tearing layer" analysis. The marginal stability
curves such as Fig. 5 or the stability hyperbola of Fig. 4 could only have
been obtained numerically. Despite these new results, we are well aware of
other potentially important physical effects which have been left out of the
analysis, such as compressibility, or the effects of spatially varying vis-
cosity and resistivity tensors. Nevertheless, we believe there to be some
value in bringing a more classical hydrodynamic perspective to bear on this
highly idealized problem. It is not impossible that subcritical instability
thresholds from nonlinear three-dimensional computations mgy be identified
for this problem as they have been for shear flows (see, e.g., Orszag and
Kells19 or Orszeag and Paterazo). Further computations of a more elaborate
kind will be required to test this possibility; for further discussion of the

hydrodynamic antecedents, see the review by HerbertZl.
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FIGURE CAPTIONS

Fig, 1 B, = Bgl(y) and its associated current profile Jo = -DBO, for y = 10.

Fig. 2a Eigenfunctions b = ibi’ V=V, for the least-damped eigenvalues for

M= 10, S = 10.

Fig. 2b Eigenfunctions b = ibi, V=, slightly &@bove the instability thres-
hold: M= 20, S = 20.

Fig. 2¢ Unstable eigenfunctions b = ibi, V=V, for S = M = 1000.

Fig. 24 Unstable eigenfunctions b = ib., v = v_ for § = 10, M = 10°.

Fig. 2e Unstable eigenfunctions b = ibi’ V=V, for S = 105, M = 10.

Fig. 3 Highly damped complex eigenfunctions for M = S = 20.

Fig. h Locus of critical Reynolds-like numbers S = S, , M= M_in the M5

plane, as determined by computation.

Fig. 5 The neutral stability curve w=0 in the a, S plane for M = 1, 10,

and 1000 for Bil and y = 10.

Fig. 6a Growth rates (mi vs. 8) for a = 1.0, (on BZI with y = 10),

M = 10, 100, and 1000.

Fig. 6b  Growth rate w; Vvs. S for fixed M, a = 1.0, BEI with v = 10.

Fig. T Growth rate w; VS. M for fixed S = 10, 100, 1000; o = 1.0, Y=10
on BII.
o
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Fig. 8a

Fig. 8b

13

Contour plot of magnetic field lines for a typicael unstable eigen-
function near the threshold (S = M = 20). Field lines are equilibrium

plus 20 percent admixture of eigenfunction.

Velocity streamlines corresponding to eigenfunction represented in

Fig. 8a.

Growth rate ws vs. Parallel wave number o for BiI, M= S = 100;

M=8 = 500; M=1000, S =100; M= 100, S = 1000.
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Fig. 2a
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Eigenfunctions b = iv,, v = V.. for the least-damped eigenvalues for

M=1.0, S = 10.
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Fig. 2b
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Fig. ) Locus of critical Reynolds-like nuunbers S = Sc’ M= Mc in the MS

- plane, as determined by computation.
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200 o 400 . 600 800 1000

The neutral stebility curve w=0 in the a, S plane for M = 1, 10,

and 1000 for BE')I and v = 1C.
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Fig. 6a Growth rates (mi vs. S) for a = 1.0, (on Bgl with y = 10),

M = 10, 100, and 1000.
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Contour plot of megnetic field lines for a typical unstable cigen-

function near the threshold (S = M = 20)} Field lines are equilibrium

plus -20 percent admixture of eigenfunction.
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Velocity streamlines corresponding to eigenfunction represented in

Fig. 8a.
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M=100, S=1000
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a
Fig. 9 " Growth rate ®; vs. parallel wave number a for BgI, M=§8 = 100;

M=8 = 500; M=1000, S =100; M = 100, S = 1000.
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