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ABSTRACT 

Expansions in Chebyshev polynomials are used to study the linear 

stability of one-dimensional magnetohydrodynamic (MHO) quasi-equilibria in the 

presence of finite resistivity and viscosity. The method is modeled on the 

one used by Orszag in accurate computation of solutions of the Orr-Sommerfeld 

equation. Two Reynolds-like numbers involving A1fven speeds, length scales, 

kinematic viscosity, and magnetic diffusivity govern the stability boundaries, 

which are determined by the geometric mean of the two Reynolds-like numbers. 

Marginal stability curves, growth rates versus Reynolds-like numbers, and 

growth rates versus parallel wave numbers are exhibited. A numerical result 

which appears general in that instability has been found to be associated with 

inflection points in the current profile, though no general analytical proof 

has emerged. It is possible that nonlinear subcritica1 three-dimensional 

instabilities may exist, similar to those in Poiseui11e and Couette flow. 
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The linear stability of plane shear flows has been one of the most 

intensively studied hydroQynamic problems from the time of Rayleigh, since it 

1 
was thought to hold clues to the nature of turbulence (see, e.g., Lin or 

2 Maslowe). Although the linear theory alone appears to be inadequate to predict 

the onset of shear flow instabilities, it remains an important first step in 

any discussion of the problem. We report here on an analogous problem in 

incompressible magnetohydroQynamics (MHD). We report numerical solutions of 

the quiescent-MHD analogue of the Orr-Sommerfeld equation, using spectral 

methods developed by Orszag3. 

We begin with the incompressible MHD equations in a familiar dimen-

sionless form: 

a~ = Vx(v x B) + ~ V2B (1) 
at - - S -' 

supplemented by the conditions that V,! = 0 and V·~ = O. B is the magnetic 

field measured in units of a mean magnetic field magnitude B, say. The velocity 

, -(4 )-1/2 field is measured in units of the mean Alfven speed C
A 

= B np , where p 

is the mass density, assumed uniform. The dimensionless pressure is p, and it 

is determined by solving the Poisson equation which results from taking the 

divergence of Eq. (2) and using v·a!/at = O. The dimensionless numbers S and 

M have the structure of Reynolds numbers. S = CAL/n is the Lundquist number, 

where n is the magnetic diffusivity and L is a macroscopic length scale; 

M = CAL/v is a viscous analogue, where v is a kinematic viscosity. Both n 
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and v are assumed to be scalars. The regime of most interest is that in 

which S and M are both substantially greater than unity. 

The boundary conditions are taken to be those appropriate to a 

perfectly-conducting, mechanically-impenetrable wall bounding a viscous, 

resistive magnetofluid: y = 0, fl • ~ = 0, and fl x (V x~) = 0, where fl is 

the unit normal at the wall. 

We study the linear stability of the quasi-equilibrium :f!{o) = (Bo{y),O,O) 

and Y{o) -- (O,O,O) b t all II· f· . . e ween par e, p ane ~n ~n~ te boundar~es at y = 1 and 

y = -1. The current density is in the z-direction only: j = -DB , where 
o 0 

D - d/dy.The configuration described is not a true equilibrium, and the mag-

netic field will resistively decay according to B (y,t) = exp{S-ltV2)B (y,O). 
o 0 

The temporal variation will be assumed to be slow enough to be negligible: 

B (y,t) = B (y,O) = B (y). This implies that our stability boundaries will 
000 

not be accurate in regions of small S; there is in this feature a conceptual 

difference from the already much studied4,5,6 problem of a mean flow parallel 

to a uniform magnetic field with no current, which is a true equilibrium, and 

from Hartmann flow6• 

A linear expansion ~ = ~(o) + ~(l), Y = y{l), is assumed, with pro­

ducts of y{l) and ~(l) being discarded everywhere in the equations of motion. 

Manipulating the components of the resulting linear equations, we may prove 

a Squire's theoreml , which implies that for the location of the most unstable 

modes it suffices to consider the two-dimensional case: a/az may be set equal 

to zero throughout. All variations with the parallel coordinate x and the 

time t are assumed to be contained in a factor exp{iax-iwt), with a an arbitrary, 

real, parallel wl:2.ve !lumber and w = w + iw. a complex eigenvalue. Dahlburg 
r ~ 

and Mbntgomery7 have given the eigenvalue equations in the form used here: 
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and 

-iaSB v. o 

( 3) 

( 4) 

Here b and v are the y components o£ ~(l) and y{l), and depend only upon y. 

The boundary conditions become v = 0, Dv = 0, and b = 0 at y = 1 and y = -1. 

Equations (3) and (4) are the magnetostatic analogue o£ the Orr­

Sommer£eld Equation, which in the same notationl ,2,3 is (D2_a2)2v = 

iaR[{U _w/a){D2_a2)v_{D2U )v], where U (y) is a shear £low velocity pro£ile in 
000 

the x direction, R is the Reynolds number, and the boundary conditions are 

that v = 0, Dv = 0 at y = ±l. 

Equations (3) and (4) are quite similar to eigenvalue problems 

arising in connection with con£inement o£ thermonuclear plasmas. The litera- . 

ture o£ "tearing modes" is extensive, and we may. cite the central papers o£ 

Furth, Killeen, and Rosenbluth8, o£ Wesson9, o£ Coppi, Greene, and JOhnsonlO , 

o£ Furth, Ruther£ord, and Selbergll , and o£ Dibiase and Killeen12 • Concern 

has £requently been with the non-viscous (M = ~) case, which lowers the order 

of the differential equations. Viscous results from a linear initial-value 

computation have been reported by Dibiase and Killeen12 for the compressible 

case, and to the extent that the results can be compared, ours do not appear 

to disagree with theirs. Because for plasmas of interest to date, the calcu-

lated viscosity coefficients give estimates of v at least as great as those 

~ ( B· k· .13). d . bl t t·· f~ t Lor n see, e.g., rag~ns ~~ , ~t seems es~ra e 0 re ~n ~scous e Lec s 

even at the price of raising the order of the eigenvalue problem to the point 

where results can be extracted only numerically. 

Analytical information is dif£icult to extract even for the simpler 

Orr-Sommerfeld equation (e.g., Maslowe2 or Reid14) and numerical solution is 
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indicated here. We use a spectral technique closely patterned on the method 

used by Orszag3 to calculate critical Reynolds numbers for Poiseuille flow to 

six-figure accuracy. It is to be expected that spectral methods will find 

further applications in plasma physics beyond the immediate ones. 

The mean magnetic field B (y) and the perturbation quantities v and 
0 

b are expanded in truncated Chebyshev series 

N 
Bo(Y) = 1: B T (y) 

n=O n n 

N 
v(y) = 1: v T (y) 

n=O n n 

N 
bey) = 1: b Tn (y), ( 5) 

n=O 
n 

where T (y) is the nth Chebyshev polynomial o~ the ~irst kind, and B , vn ' n n 

b are the respective expansion coe~~icients. 
n 

The equations satisfied by the (unknown) expansion coef~icients are 

obtained by substituting the N ~ 00 expansions of (5) into Eqs. (3) and (4), 

each o~ which produces a countably infinite number o~ equations in the expan-

sion coefficients for n = 0, 1,2, ••• , when the orthogonality and recursion 

relations 3 are used. We then set all coefficients beyond n = N to zero, use 

the n = 0 to n = N-4 equations 
N 

and the boundary conditions 1: 
n=O 

from (3), the n = 0 
N 

vn = 0, 1: (_l)nv 
N n=O n 

N )n 2- N 
1: (-1 n v = 0, 1: bn = 0, and 

n=l n n=O 
1: (_l)n b = O. 

n=O n 
is called the "tau approximation" after Lanczos15 ; 

to N-2 equations from (4), 
N 2-

= 0, L n v =.0, 
n=l n 

This method of truncation 

Gottlieb and orszag16 give 

a general discussion of the use of the tau method in the Chebyshev case. 

This spectral discretization process yields a generalized eigenvalue 

problem which can be written as A:X. = Clffix, where the vector x = (vo ' VI' ... vN' 

b
o

' b
l

, .•• b
N
), and A and B are non-symmetric (2N+2) by (2N+2) square matrices. 
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As is customary for this type of stability problem, either global 

or local methods are used to determine the eigenvalues. The global method 

is based on the QR algori thIn (Wilkinson17, Gary and Helgason18) and produces 

a full spectrum of eigenvalues. It is employed when no good guess for the 

least stable (or most unstable) eigenvalue is available. The local method 

employs inverse R~leigh iteration17 and converges to the eigenvalue (and its 

associated eigenfunction) closest to the initial guess for the eigenvalue. 

The global method m~ be used to identify the eigenvalue with the largest 

imaginary part, and the local method is useful when making a series of computa-

tions in which either the wavenumber or the Reynolds numbers are slowly varied. 

For functions B (y) which are antisymmetric about y = 0, it is readily 
o 

inferred from Eqs. (3) and (4) that v and b are of opposite parity when re-

fleeted about y = o. We have confined attention to the case B (y) = -B (-y) o 0 

with an associated current distribution j = -DB which has even parity about o 0 

y = 0: the classic "sheet pinch" configuration. This configuration (indeed, 

any Bo(Y) profile) can be rigorously proved to be stable in the ideal limit 

(M = 00, S = 00); any instabilities must result from finite values of S or M 

or (in our case) both. 

We have solved for the several eigenfunctions corresponding to the 

largest values of Wi for four different antisymmetric profiles Bo(y): 

BOI(y) - y _ y3/3 

B~I(y) - -1 (2 )-1 tan yy - yy y +1 

B~II(y) 21 - Y - y /21 

BoIV(y) - -1 (2 -1/2 sinh yy - yy y +1) • (6) 
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Two numerical results have characterized all runs performed, and 

though we have been unable to prove either one analytically, we suspect they 

are generally true: (1) as S or M is raised a first unstable eigenvalue 

always appears (w. > 0) at finite values of S and M with W = 0; and (2) a 
1 r 

necessary condition that instabilities appear is that the current profile j o 

shall have an inflection point between y = -1 and y = +1. Steep current gradi-

ents alone seem insufficient to produce instability. For example, BIII(y), 
o 

which has a large maximum current gradient of 20 near the walls, was found to 

be stable up to M = 104 , S = 104 (for a = 1), while profiles such as BII which 
o 

did contain inflection points would characteristically be unsta~le for S and M 

no greater than a few tens, with considerably smaller current gradients involved. 

Particularly extensive investigations were carried out for the profile 

B!I(y) for various values of a, S, M, and the "stretching par~eter" y. Figure 

1 is a plot of BII(y) and its associated current profile jII(y) = _DBII as a 
o 0 0 

function of y for y = 10. This case will be used to illustrate the results in 

Figs. 2 through 9. 

Figure 2 shows typical eigenfunctions, stable and unstable, computed 

from the BII of Fig. 1. Figure 2a applies to S = M = 10, for the least-damped 
o 

eigenValue w. = -0.1695. 
1 

For this case, wr = 0, a = 1.0, b = ib. is purely 
1 

imaginary, and v = v "is purely real. This last property always applies to the 
r 

eigenfunction with the greatest W .• Figure 2b shows b., v for an eigenfunc-
1 1 r 

tion immediately above the instability threshold, with S = M = 20, 

W. = 0.06940, a = 1.0, W = O. Figure 2c shows b., v well above the thres-
1 r 1 r 

hold, with S = 1>1 = 1000, a = 1.0, Wi = 0.19681, and wr = O. Figure 2d shows 

the case S = 10, M = 105 , with a = 1.0, Wi = 0.4391 and wr = O. Figure 2e 

shows the case S = 105 , M = 10, Wi = 0.002531, a = 1.0, wr = 0, and 
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illustrates the (perhaps unsurprising) result that viscosity is better at 

suppressing unstable growth than resistivity. 

The damped modes have, in general, both wi and w fini te. Typical . r 

eigenfunctions for a highly damped mode for BII are shown in Fig. 3 
o 

(w = -0.40492, w. = -6.01303, S = M = 20, a = 1.0). r ~ 

At the stability threshold w = 0, the scaling VI = VM-l / 2 , 

b l = bS-l / 2 reduces Eqs. (3) and (4) to a pair of equations for VI and b l 

which depend upon S and M only in the combination ISM (and, of course, upon 

a) • The neutral stability curve in the ·SM plane, across which w. becomes 
~ 

positive for some a, is therefore a hyperbola, approximately SM = 231.9. 

The computed location of this hyperbola (for BII with y = 10) is shown in 
o 

Fig. 4. The relatively low values of the critical Reynolds numbers (two orders 

of magnitude or more below the corresponding hydrodynamic ones for shear flows) 

are perhaps the most significant feature of this graph. It is also interest-

ing that for low enough values of either Reynolds number, stability will always 

result for any fixed value of the other, but since 8M increases with tempera­

ture, according to kinetic theory estimates13 , at high enough temperatures, 

we may always expect to be on the unstable side of the boundary. 

To make a comparison with traditionall hydrodynamic plots, Fig. 5 

exhibi ts a set of marginal stability curves: w = 0 in the a, S plane for 

fixed M for BII and y = 10. The first unstable a (which, for the reasons 
o 

previously noted, must be the same for all such ~urves) is a = a c = 1.184±0.005. 

We have generated the ~ curves (not shown) in the a, 1-1 plane for fixed S. 

Figure 6a shows a growth rate (w. vs. S) curve for M = 10. Figure 
~ 

6b shows a logarithmic plot for large values of S, illustrating the S-3/5 

regime identified analytically by Furth et al 8• Figure 7 shows the somewhat 

different behavior of w. vs. M for fixed S. Figure 8a shows a contour 
~ 
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plot of two periods of the magnetic field lines B(O) + B(l) for the BII equi-
- - 0 

libriwn plus a 20 percent admixture of the eigenfuction shown in Fig. 2b. Figure 

8b shows the streamlines of the velocity fie1.d for the same eigenfuction. 

Figure 9 shows the growth rate w. vs·. a for several values of S and M. 
1 

The results presented have all been computational and are not the 

result of an asymptotic "tearing layer" analysis. The marginal stability 

curves such as Fig. 5 or the stability hyperbola of Fig. 4 could only have 

been obtained numerically. Despi te these new results, we are well aware of 

other potentially important physical effects which have been left out of the 

analysis, such as compressibility, or the effects of spatially varying vis-

cosity and resistivity tensors. Nevertheless, we believe there to be some 

value in bringing a more classical hydrodynamic perspective to bear on this 

highly idealized problem. It is not impossible that subcritical instability 

thresholds from nonlinear three-dimensional computations may be i:lmi.tified 

for this problem as they have been for shear flows (see, e.g., Orszag and 

Kells l9 or Orszag and patera20 ). Further computations of a more elaborate 

kind will be required to test this possibilitYi for further discussion of the 

hydrodynamic antecedents, see the review by Herbert2l• 
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Fig. 1 

Fig. 2a 

Fig. 2b 

Fig. 2c 

Fig. 2d 

Fig. 2e 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6a 

Fig. 6b 

Fig. 7 

FIGURE CAPl'IONS 

Bo = BII{y) and its associated current profile j = -DB , for y = 10. 
000 

Eigenfunctions b = ib. , v = v for the least-damped eigenvalues for 
l. r 

M = 10, S = 10. 

Eigenfunctions b = ibi , v = vr slightly above the instability thres-

hold: M = 20, S = 20. 

Unstable eigenfunctions b = ib. , v = vr for S = M = 1000. 
l. 

Unstable eigenfunctions b = ib. , v= v for S = 10, M= 105• 
l. r 

Unstable eigenfunctions b = ib. , v= v for S = 105, M = 10. 
l. r 

Highly damped complex eigenfunctions for M = S = 20. 

Locus o~ critical Reynolds-like numbers S = S M = Mc in the M3 c' 

plane, as determined by computation. 

The neutral stability curve w= 0 in the a, S plane for M = 1, 10, 

and 1000 for BII and y = 10. 
o 

II Growth rates (Wi vs. S) for a = 1.0, (on Bo with y = 10), 

M = 10, 100, and 1000. 

Growth rate wi vs. S for fixed M, a = 1.0, BII with Y = 
o 10. 

Growth rate W. vs. M f'or f'ixed S = 10, 100, 1000; a = 1. 0, Y = 10 
l. 

II on B • o 

13 
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Fig. 8a Contour plot of magnetic field lines for a typical unstable eigen-

function near the threshold (8 = M = 20). Field lines are equilibrium 

plus 20 percent admixture of eigenfunction. 

Fig. 8b Velocity streamlines corresponding to eigenfunction represented in 

Fig. 8a. 

Fig. 9 II 
Growth rate Wi vs. parallel wave number a for Bo ' M = 8 = 100; 

M = 8 = 500; M = 1000, 8 = 100; M = 100, 8 = 1000. 
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Fi3. 8a Contour plot of maGnetic field lines for a typical unstable eieen­

function ncar the threshold (S = i~ = 20). Field lines are. cquilibriU:l 

plus·20 percent admixtur~ of eigenfunction. 
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Fig. 8b Velocity streamlines correspondinG to eigenfunction represented in 

Fig. 8a. 
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