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1. INTRODUC iUI,

The method of complex characteristics and

hodograph transformation for the design of shock-
less airfoils was introduced by Bauer, Garabedian
and Korn and has been extended by the author to
design supercritical cascades with high solidities
and large inlet angles.This new capability was
achieved, [1], by introducing a new conformal

mapping of the hodograph domain onto an ellipse
and expanding the solution in terms of

Tchebycheff polynomials. A new computer code was
developed based on this idea.

The design of two-dimensional inviscid sub-
critical and supercritical cascades has been

widely accepted as a method to produce axial com-
pressor and turbine blades. With this method a
number of sections, spanning from hub to
tip, can be designed independently of each other
and according to the flow conditions required in
the spanwise direction. Five of these 2-d sec-

tions are us-ually enough to design a blade with
considerable three dimensional effects.
In this design procedure the basic 2-d code has
to be able to handle high solidities, usually at
the hub sections, and high stagger or inlet angles
at the tip sections, especially in compressor ro-
tors. Low maximum thickness-to-Chord ratios are
desirable for compressor blades. For turbine

blades large turning angles exceeding one hundred
degrees will not be unusual and thick blades will
be, in general, required for cooling purposes.
In this case, thick trailing edges will be
necessary.

In the first two sections of the paper we re-
view the method and report some improved new
designs of compressor and turbine blades. A mid-
span propeller section is also shown. Although
the primary purpose of the new code is the design
of supercritical cascades, emphasis is made in
the design of subcritical cascades because of the

robustness of the code in this type of design as
well as the low C.P.U. and overall time neces-
sary to achieve a good design.

The next section describes the results ob-

tained with the incorporation of a turbulent
boundary layer computation to the inviscid design
code. The lag-entrainment method of Green, Weeks
and Brooman has been incorporated into the code.
As the inverse design code uses an input surface
pressure distribution, it is especially well
suited for this coupling. An inviscid blade
is first designed with the approximate required
inlet angle and Mach number, turning and solidity.
The turbulent boundary layer computation is then
switched on, and by modification of the input
pressure distribution the required design condi-
tions are obtained, ensuring that no separation
occurs.

*Visiting Research Scientist at NASA Lewis

Research Center, Cleveland, Ohio 44135.

The last section describes a cascade grid

generator based on the sar , eil:ptic transforma-
tion that the author has introduced for the in-
verse hodograph method. A single conformal

transformation suffices to map a cascade plane
onto the computational domain. Open trailing edges
can be handled with this transformation. A grid

generated with this procedure is shown for the
Korn airfoil.

2. REVIEW OF THE METHOD

A complete description of the complex char-
acteristic design method can be found in [21, and

the elliptic hodograph transformation and new code
has been described in [1].We briefly review the
design method. The basic idea is to
construct by numerical integration an analytic

solution to the potential flow equations finding,
along with this solution, the body that corre-
sponds to a prescribed surface pressure distribu-
tion. The equations of potential flow can
be written in the hodograph complex characteris-
tics form

	

T+ s	
o

•n	
T- 

en

where p and * are the potential and stream
fuctions, and M and p are the Mach number and
density. The complex characteristics coordinates
{ and n are defined by means of the con-
formal transfomations

f({) . log h - ie	 dh - V1-M
2
 dq , (2)

	

h	 q

f(n) . log h + ie

and where h and a are the Chaplygin hodograph
variables and q is the modulus of the velocity
vector. The characteristic coordinate {, and
similarly n, is defined in a circular ring

1 <m{i< R, The conformal transformation

w.I({ +E^, 1<	 R	 (3)

maps this circular ring onto an ellipse. Any ana-

lytic fuction on the ellipse can be expanded in
the form.

f(w) .i c n Tn (w) . co +	 c' "+
 1)
	

(4)
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where	 3. SUBSONIC AND SUPERSONIC DESIGN

Tn(w) . 	 ( n •
2

11
\	 /

1 , n . i, 2,	 (5)

are the Tchebicheff polynomials, (1].

Because equations (1) are linear in a hodo-

graph domain, a complete set of solutions can be
found by solving the characteristic initial value
problem

i(C.0) - g (E) - i(0 . E)	 (6)

where the regular part of the characteristic ir-i-
tial value function g can be expanded in terms
of the Tchebycheff polynomials. The
coefficients of that expansion can be determined
by imposing the boundary value problem.

Re WE.0) - 0	 (7)

This C.I.V.P. can be solved when the mapping func-

tion f is known, as the coefficients
Tt depend implicitly on it. On the other
hand, the mapping function f is determined by

the Dirichlet problem

R
e 

(f(t)) . log h*	 (8)

where h* is based on the prescribed input speed

distribution. Problems (7) and (8) can be solved

by means of an iterative process,[1], (2).

The use of codex characteristics allows ex-

tension of the computation to mixed fiows.Although
the equations are established in the four-
dimensionai space of two complex variables, the

computation is carried out in a two-dimensional
manifold, conformally transformed from r two-

dimensional recta., gular computational domain. The
topology of this manifold is such that it avoids
the sonic surface where the equations of the flow
become ill-conditioned.

The computation is started at a subsonic point

and is continued through the complex domain until
it reaches the real supersonic region without
intersecting the sonic surface. In the supersonic
region it first reaches the body surface and then
the sonic line. This technique avoids the inaccu-
races that the ill conditioning of the equations
near the sonic line could introduce. The elliptic
transformation, by restricting the position of the
upstream and downstream points of infinity to the
foci of the ellipse, makes it possible to simplify
the topology of these paths of integration. For
purely subsonic flows the two dimensional manifold
where the solution is carried out becomes the
'diagonal' of the four dimensional space,
simplifying and reducing the computation.

A wide variety of airfoils in cascade can

now be designed with this inverse design proce-
dure. The input to the design code can be sepa-

rated in three parts. First we specify a surface
speed distribution. By means of this

input speed distribution we control the aerodyna-
mic performance an the airfoil.

Second, three design parameters must be

given. These parameters are the radius R of the
outer circumference of the circular ring in the
hodograph domain, which controls the solidity of

the cascade; the ar;le Theta which locates the
leading edge stagnation point, and thereby con-
trols the stagger angle; and a Mach parameter
controlling the inlet Mach number.

The third set of parameters, or numerical

parameters, is concerned with the accuracy versus
computational speed of the design process. The
parameters are grid size for the subsonic or su-

personic region, number of Fourier coefficients
for the mapping function ,number of iterations
and others.

To achieve a good design, one could proceed

in the following way. An input speed distribution
is prescribed that reflects the desired aerody-
namic behavior. Then the three design parameters
are determined. The parameter R, that controls

the solidity, can be chosen with values that in
practical terms, varies from 1.4 for a solidity
of approximately 2 to a value of 2.5 for lower
solidities of about 1. In the same manner we set
the angle Theta for the leading edge stagnation
point and the input Mach number.

A run can be made with this set of input pa-

rameters, and the design parameters changed suc-

cessively until we obtain the inlet flow condi-
tions and solidity. The advantage of the elliptic

transformation is that changes in each
of the three parameters have tittle effect on the
flow variables that the two other perameters con-
trol. For instance, large changes in the parameter
Theta have small effects on the solidity.

Once we have obtained the required solidity,

inlet Mach number, and inlet air angle the input
speed distribution is modified. This modification
increases or decreases the lift, and thus the
turning angle of the blade, by changing the

area enclosed by the speed distribution. When
the required turning has been achieved, and hence
the exit flow conditions, the input speed distri-
bution is used to tailor the body geometry. The
maximun thickness of the airfoil, the leading edge
curvature, and the trailing edge thickness can
then be adjusted.

If all the numerical parameters are kept at
their default values, a subcritical airfoil can
be designed with as little as 30 seconds of C.P.U.
time per run on the I.B.M. 370-3033 at the NASA
Lewis Research Center. Subcritical designs can
be obtained with as few as 15 runs, including th^
boundary layer correction. This makes the design
of subcritical airfoils a very fast and reliable
process.

E
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For transonic designs the situation is more

complicated. In the first place, we do not know
if a shockfree solution exists in the region we
are searching. The paths of integration, although
automated not to intersect the sonic line, can

reach a wrong branch of the analytic solution.
Also, limit lines can appear in the supersonic
region. The number of points in the computational
domain is much larger, both because the integra-
tion paths are longer and because a finer grid is
required, increasing the C.P.U. time

cunsiderably. The procedure for a transonic de-
sign would be to obtain first a subsonic blade

with flow characteristics close to the design in
question. Then, raising the input Mach number a
supersonic region will be formed and the design
parameters tuned to obtain the desired blade. In
the final stages, a transonic run with a fine grid
and a Richardson extrapolation in both the sub-

sonic and supersonic regions takes about 5 minutes
of C.P.U. time on the same I.B.M. 370-3033.

We describe in the rest of this section six

airfoils designed with this procedure.The first
one is a transonic airfoil fit for a midspan
section of a modern propeller. An inlet Mach

number of .83 was reached before the appearance
of limiting lines. The maximum thickness to chord
ratio of .059 is reached at about 45 per cent of
the chord, which makes it an attractive design.
Figure 1 shows a hodograph plane for this airfoil.
In figure 2 can be seen the surface Mach number
distribution obtained and the inviscid airfoil.
Figure 3 shows the relative position of the air-
foils in the cascade plane. A cubic spline has
been passed through the airfoil after subtracting
the computed displacement thickness.

The next airfoil, figures 4 and 5, represents

a tip section for a compressor rotor. The inlet
Mach number reached is 0.86. This airfoil shows
a large supersonic region on the suction side and

an incipient supersonic bubble on the pressure
side. The thickness-to-chord ratio at the trail-
ing edge after substracting the displacement
thickness is .024. We show next a low speed rotor
tip section with a high inlet air angle of 71 de-
grees, see figures 6 and 7.

The code has been used to design two turbine

blade sections shown in figures 8 to 11. The first
one is a subcritical section with a solidity of
1.77 (gap to-chord-ratio of 0.56). The surface
speed distribution presents an accelerated pro-
file on both sides of the blade. A small amount
of diffusion is present in the last 30 percent of
the suction side to obtain the correct trailing
edge opening. This airfoil has been designed to
form the midspan section of a cooled turbine
rotor.

After this subcritical design, we show a

transonic turbine blade section with half the so-
lidity of the previous section. This, naturally,
implies that one half of the blades should be
needed for a turbine rotor with this section. In

assessing this design we lost 20 per cent of the
flow turning. Also, the diffusion on the suction
side is now considerable greater.

The last example is a turning vane designed

to operate at both zero incidence and at 45 * of
positive incidence, with the same exit flow angle
in both modes of operation. Because of the blunt

leading edge, large maximum thickness-to-chord

ratio, and high solidity this blade is capable of
turning the flaw for the 45 of positive inc;-
dence operation mode.

4. BOUNDARY LAYER CORRECTION

A turbulent boundary layer computation has

been incorporated into the inviscid inverse de-

sign code. We follow the lag-entrainment method
as developed by Green, Weeks and Brooman in ref-
erence [3]. This method contains less empirical
factors than the classic of Nash and McDonald.
It solves three ordinary differential equations
for three independent parameters, the momentum
thickness, the shape factor and the entrainment
coefficient, instead of one O.D.E. for the momen-
tum thicknes as in Nash and McDonald.

These three O.O.E. can be written as

do . 
C  - (H+2-M2) a dqe.

Ts T'	 qe Ts

	

dH dH 
I(
	 C 	 +	 1— dqe

	a Ts ` 3R1 10E - H l -7 - (H 
i) e as	 (9)

dC
Er2.8	 112	 1/2l

	

e _s	 F 1TRI 
f 

CTEQ - a Cr	
f

+ (

a 

dqe	

a 

dqe ` 1 + f `M2/)Jqe ^) E Q qe Ts

where the three independent parameters e, H and
CE are defined by

a fq- (1-q)dy
0 e	 e

H e
 J

±_
 o ^I qJ dy	

(10)

0 e	 e

CE °eqe ^ \ 0 . 
pgd y i

The suffix a refers to flow variables at the edge

of the boundary layer. The two other shape param-
eters and the skin friction coefficient are defined
by

H- 0/a

H i r e I p—q^dy	 (II)
0 e e
Tw

C  `

 

T___ 7
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We refer to [3] for the definition and value of
the others coefficients, which are function of the
entrainment coefficient and the local free-stream
magnitudes.

The transition point at which the computation

of the boundary layer is started is left as an in-
put parameter. Of the three initial values neces-

sary to numerically solve the system of ordinary
differential equations (9), only the initial
momentum thickness is specified as an input param-
eter. The other two are computed by means of the
equilibrium relations established in [3].

As described before, once an inviscid airfoil

has been obtained, the turbulent boundary layer
correction is switched on. The transition point is

usually set at the point where the adverse pres-
sure gradient starts. The Stratford criterion is
followed to diffuse the flow from this point to
the trailing edge. The Nash-McDonald separation
parameter

SEP . - L 
dq	

(12)
q ds

is used to predict separation. Separation is pre-
dicted when this parameter reaches a value of 0.004.
Figures 14 to 19 shows the values of the parameter
SEP for the six airfoils that we have discussed in
this paper. An initial Reynolds number based on
momentum thickness of 320 is assumed.

5. ELLIPTIC GRID GENERATION

The elliptic transformation introduced in [1]

to map the hodograph plane onto an ellipse can also
be used to transform a cascade of airfoils in the
physical plane onto an ellipse. Let z be a point
in the physical plane of a cascade, and w the el-
liptic variable introduced in section 2. The do-
main of the variable w is the ellipse onto which
the conformal transformation (3) maps the circular
ring 1 <iti< R. Consider the conformal transfor-
mation defined by

known iteration procedure first described by
Theordorsen and Garrick, Ives and Liutermoza and
Bauer Garabedian and Korn. It will be enough to
say here that the convergence of the iterative
procedure is achieved by imposing, at each itera-
tion, the trailing edge gap condition

cnTn( -1)

dx * i dy . ii { 
(w

T*1) a	 (14)

c 
n 

T 

n (1) ^_ (
wT_1) e

when, dx and dy are the trailing edge opening

in the x and y direction.

The solidity is controlled by the parameter

R and the stagger angle by the location of wT.
A Newton iteration automatically changes these two
parameters to obtain the input solidity and stagger

angle.

A grid generated with this transformation is

shown in figure 20 for the Korn airfoil.

Because of the equivalence established before

between the ellipse and the circular ring, this
circular ring can be used in conjunction with this
transformation in the computational domain to solve
the potential flow equations in an analysis mode.

6. CONCLUSIONS

The new design code based on the method of

complex charcteristics and elliptic hodograph
transformation is an efficient method for the de-
sign of airfoils in cascade. In particular, the
design of subcritical cascades of airfoils is a

very fast, robust and versatile process. The in-
verse design code can be made to interact with a
turbulent boundary layer calculation to obtain
airfoils with no separated flows at the design

condition. The elliptic conformal mapping can al-
so be used to generate grids for airfoils in cas-
cade with open traling edges.

dz

	

	 tr

)1iF. cnTn(w)
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Figure 1. - Hodograph plane.
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Figure 2. - Supercritical propeller section.
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Figure 14. - Supercritical propeller section.
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Figure 15. - Supercritical rota section.
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Figure 17. - Subcritical turbine blade.
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Figure 18. - Supercritical turbine blade.
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