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The rotordynamic characteristics of turbomachinery are known to depend

on the forces developed due to relative motion between the rotor and the housing.

For example, the critical-speed locations generally depend on the bearing stiff-

nesses, seal damping influences rotor stability and bearing-reaction amplitudes

near critical	 speeds, etc.	 A systemat-;, examination of the influence of changes

in the forces acting on rotors is the subject of this study.	 More specifically,

the sensitivity of the rotordynamic characteristics to changes in rotor forces

is the subject of this study and report.

Rotordynamic characteristics of the HPOTP (High Pressure Oxygen Turbopump)

and HPFTP (High Pressure Fuel Turbopump) of the SSME (Space Shuttle Main Engine)

` are investigated in this study. 	 Because of their markedly different rotordynamic

characteristics, these units are considered to be representative of a range of

E possible future liquid-rocket-engine turbomachinery.

The following steps were used to examine the sensitivity of rotordynamic

characteristics to changes in force parameters:

(a)	 A "nominal" rotordynamics model	 is analyzed based on best estimates of the

parameters which are known to influence rotordynamic characteristics.	 The

4 selection of "best estimates" is largely based on the TASK A report	 [1].

(b)	 A systematic and sequential 	 change in the parameters which define the
5

forces is carried out to establish the influence of these changes on the

rotordynamic characteristics.	 The decision on the appropriate magnitude

G of changes to be undertaken from the nominal parameters. was also largely
T

based on [1].

The rotordynamic models used in this study resemble those employed by the

author	 [2,3,4]	 and other rotordynamics investigators of the SSME turbopumps.

Specifically, modal models are used to represent the structural 	 dynamics models

1



of the rotor and housing, Frei -- ' oc r,e :fi i4as are used for the rotor, and the housing

modes are developed from a 1 ,1c=n o ra ^ finite-element structural dynamic; development-.

The forces which couple the houNrng and rotor depend on their relative motion and

are generally modeled as linear elements,, The df d-band clearances at to e bearings

provide the only known significantnonli viearity in the rotor-housing models.

Both linear and nonlinear analysis t=echniques are employed. The bearing

clearances are neglected in models used for linear analysis. Linear analysis

results yield (a) complex eigenvalues, which are used to predict onset speeds of

instability and (b) synchronous-response due to imbalance excitation, which

predict bearing reactions and housing accelerometer levels as a function of

running speed. The nonlinear analysis is based on a transient time-integration

approach and is only used to examine the combined effects of bearing dead-bands

and fixed-direction side loads. Most of the results presented here are based

on linear analysis and models.

Given that the bearings of turbopumps tend to be most vulnerable to failure

due to excessive synchronous or subsynchronous vibration loads, synchronous

bearing magnitudes due to imbalance are used as a relative measure of vibration

quality for a given turbopump configuration. The term relative is underlined

because bearing reaction predictions from linear models generally predict larger

bearing loads than nonlinear models whichinclude bearing dead-band clearances

and sideloads. The second relative measure of the vibration quality of a turbo-

pump configuration is the OSI (Onset Speed of Instability) as predicted by

linear models.

The data and parameters which are required to define a rotordynamics model

can be separated into those which are relatively well known, and assumed fixed,
r

and those which are known only within limits and are to be varied. A discussion

of these two types of data follows.

2
t
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Spea6 i.ed Data

In this study, the following parameters are assumed to be known and fixed:

(a) rotor and case structural dynamic models,

(b) local	 radial case stiffness at bearing locations,

(c) speed-dependent stiffness and damping coefficients for the balance piston,

(d) speed-dependent hydrodynamic side load, and

(e) the imbalance distribution.

F

Vaned Data

Data which are varied account fv (a) uncertainties in force magnitudes,

and (b) alternative configurations of force elements.	 Parameters which control

the following force elements are varied:

(,a) bearing stiffnesses,

(b) impeller cross-coupling forces,

(c) turbine clearance-excitation forces,

(d) liquid seals,

(e) turbine-interstage seals, and

(f) bearing "dead-band" clearances.

Appendix A provides most of the numbers required to define both the nominal

E and extremes for the forces to be varied.

G 3



IT, ANALYSIS RESULTS FOR THE HPOTP

A. Introduction

With respect to tilie. HPOTP, this study began as a "theoretical" invest-

igation without any particular regard for rotordynamic problems being ex-

perienced by the HPOTP development program, However, as the study has

progressed, concern has increased at MSFC and Rocketdyne over rotordynamic

problems encountered with the HPOTP in achieving FPL (Full Power Level)

conditions. Specifically, HPOTP units have developed subsynchronous

vibration problems after sustained operation above RPL (Rated Potter Level)

conditions. Consequently, the scope of this study was broadened to address

some aspects of the current subsynchronous vibration problems.
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Q. The Nominal Linear Model

The nominal linear model is based on best estimates of parameters

and primarily differs from the corresponding nonlinear model in the

following aspects:

(a) bearing dead band clearances are assumed to be zero, and

(b) the linear model does not include axial motion of the rotor; hence,

coupling at the balance piston is not accounted for.

The fixed data cited in Chapter I provide the basic structure of the

nominal model. The : ,.mining data used to define the nominal model

are discussed below.

Bea,,Ung S.i; 4 4ne,6,ae

The four bearings are identified numerically, proceeding from the

preburner impeller to the turbine. The nominal bearing stiffnesses used

are	 Kbi- 8.76 x 10 1 N/m (,5 x 10 6 lb/'in); i z 1,2,...4	 (1)

^rHr: r::w^c-^'ho^s -Guu^ rug coed 6,Ltea

Table B.11 defines the nominal coefficients.

CZeana.nce-Exc.i to ti.on Fohcu

The nominal clearance-excitation force coefficient is based on the

data of Table B.12. However, a R of 0.25 is used, which reduces the

cited coefficient by a factor of four.

Sea.2 Coe66ic Lep

The nominal rotor model accounts for the seal configurations which

were in use at the outset of this study and does not account for either

changes which have been made or proposed as remedies to current rotor-

dynamic vibration problems_. Nominal seal coefficients are provided in

Table B.I. The "original" turbine interstage seal coefficients of these

tables are used in the nominal model.

Y
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Damp t ng

The nominal linear model without additional damping between the housing

and rotor yields a predicted onset speed of instability at 25,810 rpm.

Linear damping was added between the rotor and housing at the center of

the main impeller and at the bearing supports. The damping coefficients

C = 525 Ns /m (3 lb sec/in) elevated the predicted OSI to 30,430 rpm,

with an associated whirl frequency of 540 Hz. This value of damping was

used in the nominal linear model.

Imbatanc,e D.i..etk tbwti on

The imbalance distribution used in all cases consisted of the following aligned

imbalances:

Location	 Magnitude

(a) Boost Impeller	 .1273 gm.cm

(b) Main Impeller	 10,18 gm.cm

(c) Mid-turbine	 12.73 gm.cm

Table I. HPOTP imbalance distribution.

While considerable uncertainty exists concerning the particular imbalance

distribution in a given turbopump, the distribution of Table 1 provides

adequate excitation for the modes of interest. Appendix A provides the

numbers used to define the remaining "fixed" data.



C. The Influence of Changes in Bearing Stiffnesses

I nt)Loduc,tLoii

The principal direct influence of a change in bearing stiffnesses is

the location of critical speeds. Results are presented in this section

for the dynamic characteristics of the following configurations:

(a) nominal model,

(b) nominal model with bearing stiffneses reduced 50%,

(c) nominal model with bearing stiffnesses increased by 50%, and

(d) nominal model with a complete loss of stiffness at bearing 2.

The results presented are from a linear model which neglects bearing

clearances and are useful for comparison purposes. However, as demon-

stated in section H of this chapter, the dead-band clearances markedly

change the dynamic characteristics of the rotor with respect to stability

characteristics and peak amplitudes.

Nomina.2 Modee

Figure 1 illustrates the local coordinate system used for definition

of HPOTP rotor and housing motion. The frames of Figure 2 illustrate the

synchronous response characteristics of the nominal model. The first and

second critical speeds are at 12,500 and 32,500 rpm, respectively. The

first critical speed primarily involves overhung motion of the turbine as

illustrated i'n Figure 3. The second critical speed is a coupled housing-

rotor mode similar to that of Figure 4.

By comparison to [3], the current model has fewer predicted resonant
K

peaks in the operating range, and substantially less assymmetry between

the X-Z and Y-Z plane response. Aside from the first and second_ critical

peaks, onl,)r a few small resonant peaks are evident in the operating speed

3 F 	 range. The fact that the peaks at the first and second critical speeds are

not split is an additional indication of symmetry in the housing modes.

9
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The FPL running speed of the HPOTP is 30,900 which is 95 110' of the	 Y

predicted second critical speed. Obviously, this is an undesirable

situation, which is exacerbated by minimal damping. For comparison

purposes, the predicted maximum bearing reactions of th^ nominal model

at 30,500 rpm are

R1 = 2527 N (568 lbs), 
R2 

2835 N (637 lbs)

(2)

R3 = 2780 N (625 lbs), R4 2433 N (547 lbs)

So 4t Beating4

Figure 5 illustrates the synch'r'onous response solution for a 50%,

reduction in stiffness from the nominal model, i.e.,

Kbi	 4.38 x 10 7 N/m (.25 x 10 6 lb/in); i = 1,2,...4	 (3)

Only the bearing-reaction magnitudes are illustrated, and illustrate a

reduction in the first and second critical speeds to 10,500 and 25,000 rpm,

respectively. The following peak bearing reactions now occur in the oper-

ating range at the second critical speed.

R 1 = 22,820 N (5130 lbs), R 2	23,950 N (5385 lbs)

(4)

R3	18,281 N (4110 lbs), R 4 = 15,150 N (3407 lbs)

t
The associated onset speed of instability and whirl frequency are 2.1,950 rpm

and 417 Hz-, respectively.

w
St i,4 4 Beatings

Figure 6 illustrates the synchronous response solution for a 50%

increase in bearing stiffness in the nominal model to

Kb i	 1.31 x 10 8 NJm'(.75 x'10 6 lbs/in); i _ 1,2,...4 	 (5)

12
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The illustrated bearing reactions show an increase in the first and second 	 9 ,1

critical speeds to 1.3,460 and 38,750 rpm, respectively. The maximum bearing	 Y

loads at 30,600 rpm are

R 1 = 934 N (201 lbs), R2 = 1090 N (246 lbs)	 (6)

R3 = 867 N (195 lbs), R4 = 506 N (114 lbs)

The associated onset speed of instability and whirl frequency are 25,300 rpm

and 646 Hz., respectively.

BeaAi.ng St.L&esb 2 Ubni.nated

Inspection of the balls in bearing 2, following subsynchronous vibra-

tion episodes, has revealed a loss of diameter on the order of .17 mm

(6.5 mils), With this loss of diameter, bearing 2 might completely lose

its stiffness, leaving bearing 1 to carry the load. Figure 7 illustrates

the synchronous response characteristics for bearing-reaction magnitudes

with a complete loss of stiffness in bearing 2. The single-peak critical

speed at 32,500 rpm of the nominal model is replaced by a three-peak

cluster of critical speeds within the operating range. The three new

criti^.ul speeds are located as follows

26,420 rpm (440 Hz)

27,890 rpm (464 Hz)

29,370 rpm (496 Hz)

x
A small peak continues to be present at 32,500 rpm.	 Maximum bearing

,

reactions generally occur at the 26,420 rpm, and are

R1 = 15,710 N (3531 lbs),	 R2 0,0

R3 	10,680 N (2400 lbs),	 R4 = 8,820 N	 (1980 lbs)

n

The onset speed of instability for this configuration is 32,640 rpm;

however, the whirl frequency is at 444 Hz, which is in the range of sub-

synchronous frequencies experienced in practice.

14
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A,6d C'.bzmeiLt

The HPOTP is potentially subject to severe problems due to both synchronous

response amplitudes and instability associated with the second critical speed.

Both the onset speed of instability and critical-speed locations are sensitive

to changes in bearing stiffnesses.

The following summary of the results of this section is helpful in under-

standing the dynamic characteristics'of the HPOTP.

Configuration	 2nd Criticals	 Whirl Frequency
at Instability

Nominal	 32,500	 540 Hz.

50% Stiffness	 250000	 417 Hz.

150% Stiffness	 38,750	 646 Hz.

Kb2 _ 0	 26,420	 444 Hz.
27,890
29,366

The fact that the whirl frequencies experienced in practice range from 400 to

480 Hz. can only be explained by a loss in bearing stiffness. Specifically,

the whirl frequency that would be expected for the nominal bearing stiffness

would be 540 Hz. which is simply too high in comparison to the observed results.

Further, given that most units only begin to whirl after sustained operation,

bearing damage with an associated loss of stiffness is probably required to

yield subsynchronous motion.

A summary of the onset speed of instabilities for the configurations ex-

amined follows.

Configuration	 OSI

Nominal	 30,429

50% Stiffness	 21,946

150% Stiffness	 25,299

Kb2 = 0
	 32,636

16



The results for 15010 of bearing stiffness are puzzling in that an increase in 	 9 •

bearing stiffness would be expected to elevate the O5I. However, in this case, 	 Y

the increase in bearing stiffness reduces the effectiveness of the limited

damping which is available. The result of eliminating Kb2 is also surprising

in 'that the OSI is increased. However, eliminating K b2 yields a marked change

in the mode shape, which increases the effectiveness of the limit:ad damping

which is available.

The above numerical results emphasize the limitations of mathematical

models, and linear models in particular, in reaching conclusions about specific

turbomachinery units. On the basis of general experience with unstable turbo-

machinery units, the 150° stiffness configuration would be very much preferred,

if such a configuration were available. The contrary predicted results arise

because of ignorance concerning the forces acting on the rotor.
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9	 ^^
YD. The influence of Changes  n Impeller Cross-CouRlinq Coefficients

The recent report by Jery and Franz [51 includes the nondimensional

results of Eq.(A.8) for vaned-diffuser stiffness coefficients. These

results supplement the earlier test data of Chamieh et a1. [6] for a

logarithmic volute. Test results are not as ,vet available for the dampin0

and added-mass coefficients of impellers.

Changing the coefficients of Eq.(A.8) as follows

	

1	 FX M ..2,0	 0.9 JX/R2

	PA2U	 R2z	 FY	 -0.9 -2.0	 Y/R2

in the nominal model yields an onset speed of instability and whirl

frequency at 24,533 rpm and 544 Hz., respectively. The magnitude of

increase in the cross-coupling coefficients from 0.7 to 0.9 is reasonable

based on [5,6a and yields a marked reduction in OSI.



i~, The Influence of Chan es in Clearance Excitation Forces 	 Y

The nominal model uses a 6 = 0,25 in Eq.(A.10) with the Table of Q.12.

Increasing 0 to 0.6 as suggested by the test results of (7) has no percep-

tible influence on the OSI associated with the second-critical-speed mode,

because the mode shape associated with this motion has 'relatively small

motion at the turbine. Conversely, the first- critical -speed mode shape

has large motion at the turbine,'

The nominal model predicts that the lowest critical speed motion

would first become unstable at approximately 17,600 rpm and then become

stable again at approximately 23,800 rpm. The whirl frequency increases

rapidly with speed, but is approximately 250 Hz. Increasing 6 to 0.6,

significantly extends the predicted speed range of instability to

(14,400 - 27,200 rpm).

Hence, with respect to the HPOTP, the first-mode stability is sensi-

tive to reasonable changes in the clearance-excitation force, while the

second-mode is almost completely insensitive to changes in this force.

x

c

s
Y
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9
F. The Influence of Changes in Liquid Seals

	
Y

1vrttoduc.,tLojl

The liquid seals in the current flight hardware consist of the inlet

and discharge wear rings for the boost impeller. Labyrinth configurations

are used for both these seals and, ort the basis of past experience and

analysis, provide comparatively little stiffness or damping. In fact, the

absence of damping through the main impeller and boost impeller portions

of the turbopump is a mayor factor in both subsynchronous vibration problems

and high synchronous bearing loads associated with the second critical

speed. The following alternative configurations have been proposed to

s =apply additional damping through this portion of the turbopump:

(a) Replace the boost-impeller inlet wear-ring seal with a smooth

constant-clearance seal. Table B.9 contains the predicted seal

coefficients for this configuration.

(b) -Replace the boost-impeller inlet wear-ring seal with a "damper-seal".

This configuration differs from the smooth seal in that a deliberately

surface-roughened stator is employed. Table B.8 contains the predicted

seal coefficients for this configuration.

(c) Replace the rear wear-ring seal with a smooth constant-clearance seal.

Table B.5 contains predicted coefficients for this seal.

(d) Replace the current unshrouded main-impeller inducers with shrouded

inducers to create new seals on the outside surfaces of the inducers.

Table B.10 contains predicted coefficients for these seals.

The effectiveness of these proposed changes in reducing synchronous bearing

i
	

loads and improving the predicted rotordynamic stability of the HPOTP is
t :,

the subject of this section.



Smooth, Gon.6 t=t-CZeanance Intet Seat bon the Boo ,6.t Impe.P..Cen	 9

This change elevates the OSI to 34,580 rpm, an increase of 4150 rpm	 Y

in comparison to the nominal model. The whirl frequency associated with

this configuration is 550 Hz. as compared to the nominal model whirl

frequency of 540 Hz. The bearing reactions at 30,500 rpm are

R1 = 1780 N (400 lbs),	 R2 = 2120 N (477 lbs)
(8)

R3 = 2410 N (542 lbs),	 R4 = 1950 N (443 lbs)

pampa Intet Seat bon the 3oo,5.t Impei2en

This change elevates the OSI to 34,980 rpm which is an increase of

4550 and 400 rpm, respectively, over the nominal model and the smooth

inlet seal result. The associated whirl frequency is approximately 550 Hz.,

and the bearing reactions at 30,500 rpm are

R1 = 1830 N (410 lbs), R 2 = 2160 N (487 lbs)

(9)

R3 = 2430 N (547 lbs), R4 = 1970 N (443 lbs)

r	 By comparison to Egs.(2), this represents a reduction in bearing loads on

the order of.25% for bearings 1 and 2. The second critical speed is

elevated slightly to 34,980 rpm from the nominal value of 32,500 rpm.

}	 Figure 8 illustrates the synchronous bearing-reaction magnitudes for

this configuration. By comparison to Figure 2(a), observe that the damper

seal does not significantly modify the overall dynamic characteristics
k

of the turbopump,

Smooth DischoAge Seat bon the Boo4.t ImpetCen

This change would elevate the predicted OSI to 41,640 in comparison to

30,430 for the nominal. The associated whirl frequency is approximately

575 Hz., and the bearing reactions are

f	 21
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Figure 8. Synchronous response solutions for bearing reaction magnitudes with
a damper-seal configuration at the inlet boost-impeller seal.
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R'1 = 1130 N (254 lbs), R2	1430 N (320 lbs)

(lo)

R3 = 1780 N (400 lbs), R4 = 1400 N (316 lbs)

This change yields a reduction of approximately 50% in the nominal predictions

for R1 
and R2.

Figure 9 illustrates the synchronous response solution for the bearing

reactions for this configuration. An elevation of the second critical

speed to 34,500 rpm is the principal, predicted consequence of introducing

a smooth constant-clearance configuration in the boost-impeller discharge

seal.

Sh,touded Liduceh Seae6

Introducing shrouded inducer seals yields OSI that are much greater

than 40,000 rpm. The associated bearing reaction loads are

R 1 = 518 N (117 lbs),	 R2 = 540 N (122 lbs) 	

(11)

R3 = 410 N (91.7 lbs),	 R4 = 410 N (92.8 lbs)

The current plans at Rocketdyne and MSFC are to modify the present con-

figuration by implementing both a damper-seal configuration for the

boost-impeller inlet and shrouded impeller seals. The frames of Figure 10

illustrate the predicted synchronous response amplitudes for this config-

uration and demonstrate that the bearing-reaction problem associated with

the second critical speed is eliminated. A resonance continues to exist

in the neighborhood of 33,000 rpm; however, the bearing reactions are no

'>	 _longer of a magnitude that elicits concern. The calculated bearing

reactions at 30,500 rpm are

R 1 = 406 N (91.3 lbs)	 R 2 = 464 N (104. lbs)
(12)

R3 = 406 N (91.., lbs), R4 = 398 N (89.5 lbs)

23
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which are approximately one sixth of the predictions for the nominal case.

The predicted accelerometer results in Figures 10(b) and (c) suggest

that new resonances have been introduced by incorporation of inducer and

damper seals. However, most of these peaks are present in the nominal

model results of Figures 2(b) and (c). They are simply suppressed by the

scaling which was required to account for the huge predicted g-levels

associated with the second critical speed.

A,ssuzment

The results of this section support the following general conclusions

with respect to seal modifications:

(a) The damper seal or smooth constant-clearance seal have the potential

for elevating the OSI by approximately 14%. These seals do not

significantly alter the critical speed location. They reduce the

bearing reactions by approximately 25%.

(b) Introducing a constant-clearance configuration for the boost impeller

discharge increases the predicted onset speed of instability by 37%

and reduces the predicted bearing reactions by approximately 50%.

Thi 43 change elevates the second critical speed by approximately 6%.

(c) The inducer seals eliminate the bearing-reaction problem associated

with the second critical speed, and elevates the OSI far beyond the

top operating speed.

i

z
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9
YG. The Influence of Changes in the Turbine Interstage Seal

As noted in the preceding section F, linear analysis of the nominal

model predicts that motion associated with the first critical speed would

be unstable over the speed range (17,600 - 23,800 rpm),, Use of the seal

coefficients in Table B.1 for a tapered seal with anti-cortex ribs in the

linear model eliminates this instability prediction. These results are

to be expected, since the first-critical-speed mode shape of Figure 3

involves large motion at the turbine.

Changing the turbine interstage seal coefficients causes a slight

reduction in the OSI associated with the second critical speed from

30,430 to 30,290 rpm. The fact that changing the turbine interstage

seal location has a minimal predicted influence on motion associated

with the second critical speed is to be expected, given the nature of

the mode illustrated in Figure 4. Specifically, the second-critical-speed

Mode shape involves very small motion in the turbine.

t
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9

H. The Influence of Changes in Bearing "Dead-Rand" Clearances 	 y

The influence of changes in dead-band bearing clearances are nonlinear

and must be examined by means of a transient nonlinear program, From past

experience, bearing clearances are known to yield the following deviations

from the predictions of linear models:

(a) Peak amplitudes are smaller but may be experienced at lower speeds.

This result is analytically predicted by Yamamoto [8) in the absence

of side loads, A parametric study of this effect was examined at

length in reference [3].

(b) The rotor is more stable with clearances than without them. This

stability enhancement has been explained previously as resulting

from bearing stiffness asymmetry resulting from the combined influence

of bearing clearances and a fixed-direction side load.

The turbine and pump bearing clearances used in this study were

Sp	.0254 mm (.001 in)

(11)

6 	 .0127 mm (.0005 in)

In addition to the effect of bearing clearances, the transient model

accounts for the axial rigid-body motion of the rotor. This motion is

coupled to the housing model via the balance-piston coefficients.

The response characteristics of the transient model becomes linear

when the dead-band clearances are eliminated, and transient simulation

runs were made in this mode to verify that the transient program was

functioning as expected with the following results:

(a) In the absence of external damping at the bearings or main impeller,

the transient model is unstable as predicted.

(b) As predicted, the second critical speed is located between 32,000

and 32,500 rpm. The frames of Figure 11 illustrate the result of
29
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an acceleration from 30,200 to 35,000 rpm. This motion is stable 	 Y

because the destabilizing forces at the main impeller has been elimi-

nated.

Simulation runs including the influence of the bearing clearances

of Eq,(11) confirm the general reduction of amplitudes. Figure 12

illustrates this result for bearing 2. This is a constant-speed run at

30,200 rpm; however, the initial conditions were obtained front a previous

zero-bearing clearance run which included damping at the bearings of

1750 Ns/m (10 lb sec/in). The sharp initial reduction in amplitude is

occasioned entirely by the introduction of bearing clearances, since the

external damping at the bearings has been reduced to zero. The frames of

Figure 13 illustrate an acceleration from 30,200 rpm to 35,000 Ypm with

bearing clearances, no external damping at the bearings, and no destabilizing

forces at the main impeller. A comparison of these results to those of

Figure 13 demonstrates the following:

(a) The peak amplitude in bearing loads associated with a 32,00032,500

rpm critical speed has been eliminated.

(b) The distinct peak in the preburner accelerometer levels in the X-Z

plane is substantially eliminated.

x	 (c) The amplitudes of preburner accelerometer levels in the Y-Z plane is

substantially reduced; however, an apparent resonance continues to

be present at approximately 32,500 rpm.

The frames of Figure 14 illustrate simulation results for the nominal

model with the bearing clearances of Eq (11), no bearing damping, and the
C

nominal impeller-cross-coupling coefficients of Table B.11 when running at

30,000 rpm. The results of Figures 14(a) and (b) show that bearing 1 and
6

2 are unloading periodically at a frequency of approximately 80 Hz.
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destabilizing force at the main impeller.
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Figure 14(a). Bearing reaction 1 from the transient, nominal, nonlinear model
for a simulation of 30,000 rpm running speed.
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Figures 14(c) and (d) show the more frequent unloading of bearings 3 and	

9
4. The proburner and turbine accelerometer magnitudes of Figu 	 14(e)	 Y

through I4(h) illustrate a "beating" type motion which could be generated

by a nonsynchronous frequency near the 30,000 rpm running speed.

Increasing the impeller-cross-coupling coefficients by a factor of

1.29 and 1.57, respectively, causes the following changes in the nominal

solution:

(a) Bearing- reaction magnitudes for bearings 1 and 2 are increased, and

the frequency at which they become unloaded increases.

(b) Bearing-reaction magnitudes for bearings 3 and 4 are largely unchanged.

(c) The preburner accelerometer magnitudes are relatively unchanged in

magnitude; however, the "regular" beating of Figure 14(f) is replaced

by the more erratic result of Figure 15(a). Similar results are

demonstrated for the turbine accelerometer response illustrated in

Figure 15(b).

The results of reducing the bearing stiffnesses by 80 while maintaining

the remainder of the nominal model constant are illustrated in the following

results of Figure 16:

(a) As illustrated in Figure 16(a), bearings 1 and 2 are no longer periodically

unloaded.

(b) The nominal magnitude and variations of bearing reactions for bearings

3 and 4 are reduced as illustrated in Figure 16(b).

(c) The "beating" in the accelerometer levels are largely eliminated as

illustrated in Figure 16(c).

The results of the simulations performed above support the expected

conclusions with respect to stability and synchronous response amplitudes;

however, *hey do not explain the observed experimental results; specifically,

the occurrence of subsynchronous vibrations which track running speed. A

more lengthy study, involving extensive simulation runs and spectrum analyses,

would be required to advance an explanation. This type of study is beyond

the scope-of-work for the present investigation.
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9

I. Summary and Conclusions for the HPOTP 	 Y

The rotordynamic characteristics of the HPOTP involve problems with

both subsynchronous motion associated with the second critical speed and

synchronous response amplitudes due to operation near the second critical

speed. The pertinent linear results are summarized in Table 2, and support

the following general conclusions:	 ,.

(a) Both synchronous-response and OSI ch<tracteristics are sensitive to

bearing stiffnesses. Generally speaking, the situation would be

improved by increasing the bearing stiffness; however, no feasible

approach is available to further increase the bearing stiffnesses.

(b) Loss of stiffness in bearing will generate critical speeds within

the speed range which could explain some of the subsynchronous

frequencies observed in practice. Very large bearing reactions

are predicted if the second critical speed drops into the operating

r range.

(c) Replacement of the current labyrinth configuration for the inlet seal

of the boost impeller by either a smooth constant clearance seal or

a damper seal will	 elevate the OSI by approximately 14 1/' and reduce

the bearing loads by approximately 25%.	 These are feasible options

in the HPOTP.

(d) Replacing the current labyrinth configuration for the discharge seal

of the preburner impeller elevates the OSI by 37% and reduces the

s bearing reactions by approximately 50%.	 Unfortunately, due to

tk bearing-lubricant flow limitations, this does not seem to be a

viable option.

(e) Introducing shrouded inducers with seals eliminates subsynchronous

vibration problems associated with the second critical 	 speed.	 Bearing
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loads are reduced by a factor of 5-6 by this modification. On a

linear basis, shrouded inducer seals are the only proposed change

which absolutely eliminates the current problems.

(f) Changes in either the clearance-excitation forces or the turbine-

interstage seal coefficients have little or no effect on either

synchronous or subsynchronous motion associated with the second

critical speed. They do have a significant influence on motion

associated with the first critical speed.

(g) The bearing clearances investigated have a pronounced influence on

both synchronous and subsynchronous amplitudes associated with the

second critical speed. Specifically, they sharply reduce the

bearing-reaction amplitudes which would be obtained for zero

bearing clearances. Further, in combination with the fixed-direction

side loads acting on the turbopump rotor, they substantially enhance

rotor stability.

9
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LII, ANALYSIS RESULTS FOR THE HPFTP	 Y

A. Introduction

The principal rotordynamic difficulties which have been experienced

with the HPFTP involve a conventional rotordynamic instability problem

associated with the first or lowest critical speed [2]. This instability

problem arose because of the following factors:

(a) A softly-supported bearing design yielded a first-critical speed at

10,000 rpm as compared to the FPL (Full Power Level) running speed

of 37,360 rpm.

(b) The unshrouded turbines yield relatively large predictions of de-

stabilizing forces, and the original turbopump design provided no

significant sources of damping.

This problem was remedied by stiffening the bearing supports and eliminating

grooves in the interstage seals. Stiffening the bearing supports elevates

the undamped critical speeds of the rotor-housing system, and eliminating

the interstage seal grooving markedly increases the stiffness and damping

forces due to relative motion between the rotor and housing. The initial

interstage seal modification eliminated the grooving in the original seal

design but retained the stepped configuration, yielding a "'smooth-stepped"

configuration. Subsequently,, a seal having the same general dimensions

but with a conw.rgent-taper geometry has been employed. The taper angle

K	
in this configuration is relatively small and is provided to restrict any

two-phase flow condition to the seal exit. Despite the taper, this con-

figuration has generally been referred to as a "smooth-straight" config-

uration. The current flight hardware employs the "straight-smooth" seal

configuration.

The principal changes which have arisen since the last examination of

HPFTP rotordynamics [4] involve (a) replacement of the "smooth-stepped"

55
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interstage configuration with the "smooth-straight", and (b) development 	 9 
t

Y

of extensive test data for both configurations from a test program at

Texas AM University (9]. This chapter examines the influence of changes

in the interstage seal rotordynamic coefficients on the rotordynamic

characteristics of the HPFTP, and also considers reasonable variations [1].

of other parameters of importance.

Only linear analysis procedures are used in the current investigation

of HPFTP rotordynamics. The influence of nonlinear effects due to "dead-

band" bearing clearances are considered for the FIPOTP in Chapter II. They

were examined in reference [4] for the HPFTP, and are notably less important

for the IiPFTP than the HPOTP because of the following factors:

(a) the clearances are smaller for the HPFTP; 6.35 pm versus 25.4 pm,

and

(b) the spring constants of the interstage seals reduce the degree of

discontinuity experienced when moving through the "dead band". More

specifically, the seal stiffnesses are comparable to the bearing

stiffness, and are not influenced by motion through the bearing

clearances; hence, there is never a complete loss in radial stiffness

between the rotor and housing.

B. The Nominal Model

The nominal model is based on best estimates of parameters for the

current flight hardware. The fixed data cited in Chapter I define the

basic structure of the nominal model. The remaining data used to define

the nominal model are discussed below:

Bewu.ng S.ti 46nazez

The four bearings are identified numberically, proceeding from the

pump inlet to the turbine. The nominal bearing stiffnesses used are

Kbi = 8.76 x 10 7 N/m (.5 x 10 6 lb/in); i	 1,2,3,4	 (12)
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Impe een Cto'6.6-Coup.Ung COC64 aent's

Table A.6 defines the nominal coefficients,

Uea%ance Exc to tton Fouez

The nominal clearance-excitation force coefficient is based on the

data of Table A.7.

Seat Coe66i i.evt

The nominal rotor model accounts for seal configurations used in the

current flight hardware; in particular, the nominal model uses the smooth-

straight seal coefficients of Table A.5(b).

Damping

No damping was used in the rotor model at the bearings or elsewhere.

Imbmeance Da.ti,i bat i.on

An imbalance of .1524 gm-m (6 gm in) between the main impeller was

used for all cases. This imbalance distribution provides adequate ex-

citation for all modes.

C. The Influence of Changes in Bearing Stiffnesses

Inthoductiow

The principal direct influence of a change in bearing stiffnesses is

a change in the location of critical speeds. Results are presented in

this section for the dynamic characteristics of the following configurations:

( a ) , nominal model

(;b) nominal model with bearing stiffnesses reduced 50%, and

(c) nominal model with bearing stiffnesses increased by 50,°0.

Nomi,na.2 Modei'

Figure 1 illustratgi the local coordinate system used for definition

of HPFTP rotor and housing motion. The frames of Figure 17 illustrate the

synchronous response characteristics of the nominal model. Recall that

~	 the nominal model uses K bi	 8.7E x 10 7 N/m (.5 x 106 lbs/in) for the
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bearing stiffnesses and the rotordynamic coefficients for the "smooth-

straight" seal, The MP L (Minimum Power Level), RPL, (Rated Power Level)

and FPL (Full Power Level) running speeds are 23,700, 35,000, and 37,400

rpm, respectively. Hence, the second and third rotor-housing critical

speeds at 31,600 and 36,600 rpm are of primary concern from a bearing

reaction viewpoint.

By comparison to Figure 2, the HPFTP nominal model is seen to dis-

play a higher degree of assymmetry. This is particularly notable in the

turbine accelerometer results of Figure 17(c) which shows very high

9 levels in the Y-Z plane and minimal response in the X-Z plane associated

with the critical speed located at 31,600 rpm. Similarly Figure 17(b)

shows alternate peaks in the X and Y directions as the speed increases,

Figure 18 illustrates the coupled rotor-housing modes which are

primarily responsible for the first critical speeds around 14,450 rpm.

The modes in the X-Z and Y-Z planes have approxiamately equal eigenvalues

and very similar mode shapes. The mode shapes would predict substantially

larger bearing reactions for bearings 3 and 4 than bearings 1 and 2.

Further, the large amplitudes in the center of the rotor would explain

the effectiveness of the interstage seals in providing effective damping

for the first critical speed.

Figure 19 illustrates the Y-Z plane mode shape which is responsible

for the sharp critical speed near 31,600 rpm. This is a closely-coupled

rotor-housing mode with comparatively small relative deflections between

the rotor and housing at the interstage seal locations. This might account

for the very sharp peak evidenced in Figures 17(a) and 17(c). The rotor

mode shape is Figure 19 resembles the first bending modes of Figure 18.
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Figure 20 illustrates the rotor-housing mode which is primarily

responsible for the critical speed at 36,600 rpm. Note that the rotor

mode shape resembles a second-critical speed mode shape for a beam

supported by bearings with zero motion of the housing. The comparatively

small displacement at the midspan of the rotor would suggest that the

damping and stiffness provided by interstage seals should have a minimal

influence on this mode.

The nominal model predicts an OSI of 66,000 rpm with an associated

whirl frequency of 360 Hz. At FPL, the mode which is eventually pre-

dicted to become unstable has 3.78% of critical damping. The peak

bearing reactions occur at 31,600 rpm and are

R 1 = 2,520 N (566 lbs),	 R2 = 3,280 N (738 lbs)

(13)
R3 = 1,300 N (294 lbs),	 R4 = 1,890 N (424 lbs)

So 6t Beatings

Figure 21 illustrates the synchronous bearing reactions fur a 50`,"

reduction in the nominal bearing stiffnesses. The critical speeds within

the operating range are now located at 14,000, 31,000 and 35,500 rpm as

compared to 14,450, 31,160 and 36,600 rpm for the nominal-bearing-stiffness

results. Peak bearing reactions occur at 31,000 rpm and are

R1 = 1,085 N (244 lbs),	 R2	1,370 N (308 lbs)

R3 =	 712 N (160 lbs), 	 R4	 912 N (205 lbs)

	 (14)

r	 The bearing reactions are reduced byapproximately a factor of 2.0 due
7

to a 50% reduction in bearing stiffnesses.

The predicted OSI is 59,945 rpm with a whirl frequency of 361 Hz.

At FPL the mode which is eventually predicted to become unstable has

3.46 % of critical damping.

f
63

i

9

Y



9

S;U. 6 Bea4,i.ngs	 Y

Figure 22 illustrates the synchronous bearing reactions associated

with a 150% increase in bearing stiffnesses. The ri,! "-housing critical

speeds are now located at 15,040, 31,900, 33,900 and 38,100 rpm. Peak

bearing reactions occur for bearings 1 and 2 at 31,900 rpm, while peak

bearing reactions occur at 33,900 rpm for bearings 3 and 4. At 31,900

rpm the bearing reactions are

R 1 = 2335 N	 (525 lbs), R2 = 3090 N (695 lbs)

R3 = 1050 N (237 lbs), R4 = 1610 N (361 lbs)
(15)

while at 33,900 rpm they are

R 1	1590 N (358 lbs),
	

R2 = 1730 N (387 lbs)

R3 = 1580 N (355 lbs),
	

R4 = 1780 N (400 lbs)

	 (16)

By comparison to Eq.(13), the peak bearing reactions occurring for the

stiff bearings are comparable to those for the nominal bearing stiffnesses.

The predicted OSI is 82,740 rpm with an associated whirl frequency

of 360 Hz. Increasing the bearing stiffness increases the damping factor

from 3.78 to 9.74 percent of critical damping.
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D. The Influence of Changes in Interstage Seals

Figure 23 illustrates the synchronous-response bearing reactions that

result when the smooth-straight interstage seals are replaced with smooth-

stepped seals. The critical speed locations are now at 14,100, 31,600,

and 36,750 as compared to 14,450, 31,600, and 36,600 rpm. The following

maximum bearing reactions occur at 31,600 rpm:

R 1 = 4130 N (927 lbs),	 R2	5220 N (1170 lbs)

(17)
R3 = 2510 N (564 lbs), 	 R4 = 3374 N ( 758 lbs)

By comparison to Eq.(13), bearing reactions 1 and 2 are increased by a

factor of approximately 1.6, while bearing reactions 3 and 4 are increased

by a factor of approximately 1.8. Clearly, the seal forces provide a

substantial amount of damping for the mode whose critical speed occurs

at 31,600 rpm. However, since the critical speed location is not shifted

by a change in interstage seals, the direct-stiffness coefficients of

these seals has a minimal influence on this mode.

A change to the smooth-stepped interstage seals yields the predicted

onset speed of instability at 58,336 rpm with a whirl frequency of 337 Hz.

At FPL, the mode which is predicted to become unstable has 2.3% of critical

damping.

E. The Influence of Changes_in Clearance Excitation Forces

As defined by Eq.(A.10), the clearance-excitation force coefficient is

proportional to the factor S which is defined by Alford [10] to be the

"change in thermodynamic coefficiency per unit of rotor displacement,

expressed as a function of blade height." For unshrouded turbine blades,

Alford predicts R's on the order of 1-1.5; however, Urlich's measurements

{	 [11] yield estimates on the order of 4"5.
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Figure 24 illustrates the predicted OSI for the nominal model with

smooth-straight and stepped-smooth seals, Values of R which are required

to reduce the OSI to FPL are approximately 7.3 and 5, respectively, for

the smooth-straight and smooth-stepped configurations, respectively.

F. The Influence of Changes in Impeller Diffuser Forces

The impeller cross-coupling force coefficients of Table A.6 are notably

small in comparison to the direct and cross-coupled stiffness coefficients

for the interstage seals which are provided in Tables 4(b) and 5(b). These

coefficients are accounted for in the nominal model which yields an OSI

prediction of 66,000 rpm. Removing the coefficients increases the OSI

prediction to 70,590 rpm. This roughly 7% increase in OSI is not surprising

in view of the comparatively small coefficients, and supports the conventional

view that impeller-diffuser cross-coupling forces are negligible in the

HPFTP due to the low density of hydrogen.

G. The Influence of Changes in the Turbine Interstage Seal

As noted in the preceding chapter, changing the turbine interstage

seal from a stepped-labyrinth to a straight-honeycomb configuration

significantly improves the stability and response characteristics of the

motion associated with the first critical speed of the HPOTP.- The ques

tion that arises is, "Would a comparable improvement in stability and

response result for the same type of change in the HPFTP?" Figure 25

illustrates the bearing reactions wvhich result if the HPOTP honeycomb

turbine interstage coefficients are used for the HPFTP interstage. The

use of HPOTP coefficients is justified based on comparable dimensions,

pressure differentials, and fluid properties. No appreciable reduction

in bearing reactions is predicted by the results of Figure 25. The

9
Y
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following peak bearing reactions occur at 31,660 rpm: 	 Y

R1 = 2450 N (551 lbs), 	 R2 = 3190 N (717 lbs)

(1$)
R3 = 1284 N (289 lbs),	 R4 = 1850 N (415 lbs)

A comparison to Eq.(13) indicates a reduction in bearing reactions on

the order of 2-3%.

The OSI which results for these turbine interstage seal coefficients

is 87,100 rpm with an associated whirl frequency of 664 Hz. The mode

which is predicted to become unstable has 2.1% of critical damping at

FPL. These results represent a 32% increase in OSI as compared to the

results for the nominal model. The fact that the turbine-interstage

seals act basically at the same location as the clearance-excitation

forces of the turbine wheels accounts for this significant improvement.

Introducing the larger turbine-interstage-seal coefficients increases

the percent of critical damping from 3.78% to 3.9/ for the 360 Hz. mode

at FPL.



9
YH. Summary and Conclusions for the HPFTP

The current HPFTP configuration which incorporates stiff bearing

supports and smooth-straight seals has a comfortable predicted margin

of stability, As illustrated in Figure 24, it is able to withstand a

very sizable clearance-excitation force increase without becoming un-

stable; hence, the initial over-riding concern for the stability of this

unit has substantially been eliminated. The remaining dominant concern

deals with the bearing reactions at critical speeds and at FPL (Full

Power Level). Table 3 summarizes the results of this section and supports

the following general conclusions:

(a) The synchronous response and OSI characteristics are sensitive to

changes in bearing stiffnesses. Generally speaking, an increase in

bearing stiffnesses improves the stability margin while increasing

the bearing reactions. Decreasing the bearing stiffnesses decreases

both Che stability margin and the bearing reactions.

(b) A comparison of the results for configuration 1 (nominal model using

smooth-straight interstage seals) and configuration 4 (nominal model

using smooth-stepped interstage seals) demonstrates the clear supe-

riority of the smooth-straight configuration. This superiority is

valid for both stability margins and bearing reactions.

(c) The onset speed of instability is only modestly improved by removing

the impeller-diffuser forces, and the bearing reactions are sub-

stantially unchanged.

(d) Changes in the turbine interstage seals from the current coefficients

to those of the HPOTP turbine interstage seals (honeycomb) yields a

substantial increase in the predicted OSI with a minimal change in

bearing reactions.

R
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IV. SUMMARY AND CONCLUSIONS

The present study has examined the influence of variations in forces

which are known to act on rotors and influence their rotordynamic char-

acteristics. The magnitude of variations which have been considered

are based on the Task A report [1] and current estimates of force coef-

ficients. Both the HPFTP and HPOTP units have been examined and variations

in the design and dynamic characteristics of these two units have lead,

in some rases, to quite different results. In general terms, the relative

importance of changes in force coefficients can be summarized as follows:

Force Element	 HPOTP	 HPOTP

Bearing Stiffness	 Very important	 Very important

Clearance Excitation 	 Important for	 Very important as principal
Force	 first mode	 destabilizing element

Liquid Seals	 Potentially very	 Interstage seals are
important if intro-	 very important
duced in shrouded
inducer

Gas Seals	 Tobine interstage	 Potentially significant if
seal ,s very	 a honeycomb seal should be
important

	

	 introduced for the turbine
interstage seal

Impeller-Diffuser	 Very important for 	 Minimal importance
Force	 second mode

instability

Bearing "Dead-band"	 Very important	 Moderately important
Clearances
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9
YThese results are consistent with earlier studies and reveal no

"new" force element or new action of an old force element. The absence

of a "new" finding is not surprising in view of (a) the past extensive

studies which have been carried out on both the HPFTP and HPOTP, and

(b) the nature of the study which has first established reasonable

variations in the parameters of known force elements and then examined

the influence of these parameter changes. The author feels that a great

deal of uncertainty remains concerning the identity of "new" elements

which may have a significant influence on the rotordynamics of turbo-

machinery. For example, the inducers of the HPOTP main impeller probably

have a significant influence on rotordynamic characteristics, but no

test data are available to quantify or describe the forces developed

by these elements. The forces developed by the fluid in the annuli at

bearing clearances represents a potentially significant source of damping

in turbopumps. Again, no test data are available to estimate or bracket

the forces developed by these elements. Additional insight concerning

the influence of these and other force elements awaits additional test

data.

--
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APPENDIX A

INPUT DATA FOR THE HPFTP ROTORDYNAMICS MODEL

The fixed data used to define the HPFTP rotordynamics model are provided

in this appendix. SI units are used throughout.

Rotor Eigenvalues

The rotor eigenvalues and eigenvectors used here are based on a structural-

dynamic model by B. Rowan. The free-free eigenvalues used are listed below:

A l = 0
15 = 2048.6 Hz

X2 = 0
X6

= 2622.7 Hz

X ! -= 632.72	 Hz A = 3155.4 Hz

a4 = 1397.2	 Hz a8 = 3784.7 Hz

One-half percent of critical	 damping was used for all bending modes.

Case Eigenvalues and Damping Facto rs

The case eigenvalues and eigenvectors are based on a 1980 MSFC structural

dynamic model. The eigenvalues used in this study are:

Xci	
271.04 Hz	 Xc6 = 561.79 Hz

	

Xc2 = 370.11 Hz	 Xc7 = 564,99 Hz

	

Ac3 - 440.28 Hz	 Ac$ - 609.84 Hz

s	
c4 = 500.54 Hz	 ac9 = 706.10 Hz

^c5	
512.59 Hz	 ac10= 730.64 Hz

One-half percent of critical damping was used for all modes.

,r
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Seal Rotordynamic Coefficients

Stepped-Seat Con6iqutat,on

The only seals of importance to the rotordynamic response of the HPFTP

are the interstage seals. The original flight configuration used a "stepped"

configuration consisting of three annular segments separated by two steps.

The steps introduce a radius reduction in the direction of flow. The seal

segment dimensions consisting of radius, length, and radial clearance are

listed below:

i Ri(cm) L(cm) Ori(mm)

1 4.039 1.199 .2667

2 3.988 1.219 .2159

3 3.937 1.438 .1778

Table A.1 Dimensions of "stepped" HPFTP interstage seal.

Seal	 coefficients are to be calculated for FPL, RPL, and MPL conditions de-

fined by the following data:

w(rpm) AP(bar) p(Kg/m3) p(Ns /m2)

FPL 37,360 136.5 70.9 1.1623 x	 10
-5

RPL 35,014 119.9 69.2 1.1012 x	 10-'

MPL 23,710 56.0 53.0	 - 0.7560 x 10-5

	

,y	
Table A.2 HPFTP seal operating conditions and fluid properties.

Seal leakage depends on the entrance-loss coefficients at each step and

the wall friction along each annular segment. Yamada's formula [12] for seal

leakage can be stated

AP 22 ( 1 + + 2a)	 (A.1)

i
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9 k
Ywhere AP is the pressure differential, p is the density, and V is the leakage

velocity. The quantity (1 + ^) accounts for an inlet pressure drop due to

(a) the acceleration of the fluid from a velocity near zero to V, and (b)

additional entrance losses within the seal until a fully-developed flow field

is established. The term apV 2 is the pressure drop due to wall friction,

where a is defined in terms of the friction factor, length, and radial clearance

by

o = ^i_/C	 (A.2)

Yamada's definition for A is

	

mo	 1+mo
X	 no Rao [1 + (Rco/Rao)21 2	 (A.3)

where no and mo are empirical constants, and 
(Rao,Rco) 

are the nominal axial

and circumferential Reynolds numbers defined by

Rao
	 2CVp	 R	 = 

CRwp	
(A.4)

ao	 u	 co	 u

The constants (mo,no) depend on the surface roughness of the particular seal

of interest. Yamada's test results yielded the numbers mo = 0.079, no = -0.25.

The friction-factor formula employed by Allaire et al. [131 directly accounts

for changes in surface roughness. Their formulraas are adopted from Colebrook's

rough-pipe formula [141 and provide the following definition for the friction

factor

4X = a +bRao-c

a = 0.0948
0.225

 + 0.538
(A.5)

b = 8860.44

C = 1.626 0.134

where 6 is the relative roughness, and is defined in terms of the surface
s

roughness e and the radial clearance C r by
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Measured test results at TAMU (Texas A&M University) [9] under contract

NAS8-33716 yielded the following values for the stepped-seal entrance-loss

and relative roughness coefficients;

i	 ^i 6i

1	 0.129 .309 x 10-
y

2	 -0.566 .309 x 10-9

3	 -0.538 ,309 x 10-'

Table A.3 Entrance loss and relative-roughness
coefficients for stepped seal.

These numbers were obtained form static zero-eccentricity flow data, and yield

reasonable correlation with leakage-AP results.

The seal rotordynamic-coefficient model used in current seal analyses are

FX ) K	 k C	 c X M	 m X
-

J X
+ + (A.7)

FY ^ -k K Y -c C Y -m M Y

where	 (X,Y) are the components of the seal	 displacement vector, and (FX,FY)

are the reaction -force components.

Calculated coefficients for the stepped-seal configuration are provided

below:
FPL RPL	 MPL

K .2193 x 10 8 .1927 x 10 8	.9014 x 101

k .1863 x 10 7 .1617 x 10 7	.6522 x 106

C 3675. 3395.	 2001.

6 c 12.22 10.34	 .8538

M -.01853 -.01809	 -,01465

-	
m -.02928 -.02818	 -.01873

Table A.4(a)	 Calculated dynamic seal	 coefficients for HPFTP
stepped interstage seals;	 vo =	 -0.5	 initia l,	 swirl.
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These results are based on an improved short-seal solution by Childs [15],

and use a summation of the segment coefficients.

The TAMU test program measures radial and tangential force components

on an eccentrically-precessing seal. The test results show reasonable agree-

ment between theory and prediction for the phase angle between the radial and

tangential components; however, measured force amplitudes are approximately

twice as large as predictions. Hence, the nominal seal coefficients used

in the present study are obtained by doubling the coefficients of Table 4(a)

to obtain the following results.

	

FPL	 RPL	 MPL

K	 .4386 x 10 8	.3854 x 10 8	.1803 x 108

k	 .3725 x 10 7	.3234 x 10 7	.1304 x 107

C	 7350.	 6790.	 4002.

Table A.4(b) Nominal dynamic seal coefficients for HPFTP
stepped interstage seals; v o = -0.5 initial
swirl.

b .1, i gitit Seat Con4iguna tier

The dimensions for the constant-clearance seal which replaced the stepped

seal are

R = 4.039cm	 ,	 L = 4.57cm	 ,	 Cr 	 .2184mm

Using the entrance-loss coefficient E = 0.1 and the data of Table 2 yields

the calculated predictions

4 FPL RPL MPL

K .6883 x 10 8	.6046 x 10 8 .2772 x 108

k .8568 x 10 7	.7452 x 107 .3029 x 107

C 16,310 15,080 8,866

c 370.3 338.7 174.2

M ,3390 .3313 .2548

m -.0370 -.0353 -.0226

Table A.5(a) Calculated rotordynamic seal	 coefficients for HPFTP
constant-clearance interstage seals; vo _ -0.5
initial	 swirl.

y
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These results are based on an improved short-seal solution by Childs [15).

Experience has shown that k and C are reasonably well predicted by the theory

but that K is underpredicted by approximately 20%. Hence, the nominal seal

parameters used in this study are given in Table 5(b).

FPL	 RPL	 MPL

K	 .7021 x 10 1	.6167 x 10 8	.2827 x 101

k	 .8568 x 10'	 .7452 x 10'	 .3029 x 10'

C	 16,310	 15, 080	 8,866

Table A.5(b) Nominal rotordynamic seal coefficients for HPFTP
constant-clearance interstage seals;
vo = -0.5 initial swirl.

4
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YImpeller-Diffuser Forces

Jery et al. [51 have reported the results of force measurments on

impellers in volutes, and have also recently conducted tests on 'i'mpeller forces

within vaned diffusers. Their tests yield the following nondimensional model

for impeller-diffuser forces

1	 FX - [K* k* X/R2	-2.0	 0.7 X/R2

pA2V2 2 Fy	 -k* K* Y/RZ	1-0.7 -2.0 Y/R2

where R2 is the impeller radius, p is the fluid density, V 2 = R241 is the

impeller tip velocity and A 2 = 27TR2 b2 is the exit flow area. Note that the

direct-stiffness coefficient in Eq.(A.8) is negative, i.e., the impeller-

diffuser force causes a net loss in system stiffness. From Eq.(A.8), the

dimensional impeller-diffuser coefficients are defined by
2

K = K* pRV2= K*(7Tpb 2 R2 2)w22
2

(A.9)

is	 k*(7rpb2R22)w2

The dimensions of the HPFTP main impellers are

R2 = 14,99cm	 ,	 b2 = 1.27cm

The density and calculated coefficients for the HPFTP impellers are given below;

FPL	 RFL	 MPL

RPM	 37,361	 35,014	 23,710

P	 75.3	 72.1	 64.1

K	 -,2055 x 10 8 	.1735 x 10 8 	 .7073 x 108

k	 .7222 x 10 7	.6073 x 10'	 .2476 x 107

k	 Table A.6 Impeller-diffuser force coefficients for

f	 HFFTP impellers.

.y
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By comparison to Tables 4(b) and 5(b), IKI is approximately 510 and 3%,
	 Y

respectively, of the stepped and constant-clearance predictions for the

direct stiffness coefficient K. Further, k is approximately 20°0 and 8°0,

respectively, of the stepped and constant-clearance predictions for the

cross -coupled stiffness coefficient k.
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Clearance-Excitation Forces

Clearance-excitation forces are developed at turbines due to the dependency

of local efficiency on local clearances. This destabilizing force is modeled by

FX _ 0	 kT X	
k = FH(A.10FY w -k T 0 Y T	 p

where T is the turbine torque, D  is the average pitch diameter of the turbine

blades, H is the average height, and $ is the "change of thermodynamic effi-

ciency per unit of rotor displacement, expressed as a function of blade height."

Alford [10] states that $ is on the order of 1-1.5, while Urlich's measurments

[111 yield estimates on the order of 4-5.

The dimensions of the HPFTP turbines are

Dp = 25.8cm	 H = 2.217cm

The torque and clearance-excitation coefficient (R=1) are listed below:

w(rpm)	 T(N/m) x 10 -4	kT(N/m) x 10-6

FPL	 37,361	 1.456	 2.544

RPL	 35,015	 1.266	 2.212

MPL	 23,710	 .5123	 0.8954

Table A.7 Combined clearance-excitation coefficients for both
HPFTP turbine stages with P = 1.

Balance-Piston Stiffness and Damping Coefficients

The balance-piston stiffness and damping coefficients are

KZ = 4.553 x 10 8 N/m

CZ = 7.882 x 104 N/m



9
Bearing & Bearing Carrier Stiffness 	 Y

The following nominal bearing stiffness is used for all bearings

Kb = 8.756 x 10 7 N/m

The bearing support stiffness used is

KS = 4.640 x 10 8 N/m

r
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DATA INPUT FOR THE HPOTP ROTORDYMMICS MODEL

The fixed data used to define the HPOTP rotordynamics model are ,provided

in this appendix. Explanations for the parameters and models are provided

in Appendix A.

Rotor Eigenvalues

The rotor eigenvalues and eigenvectors used here are based on a model

by B. Rowan. The free-free eigenvalues used are listed below.

X 1 = 0	 X7 = 3723,6 Hz

X2 = 0	 X8 = 4388.7 Hz

	

X3 = 426.2 Hz	 X9	 6599.5 Hz

X4 	969.6 Hz	 X10^ 7396.7 Hz

	

X 5 = 1560.9 Hz	 X11= 10396.0 Hz

	

X6 = 2698.0 Hz	 X12= 11916.0 Hz

One-half percent of critical damping was used for modes three 'through twelve.

Zero damping was used for modes 1 and 2.

Case Eigenvalues and Damping Factors

The case eigenvalues and eigenvectors are based on a 1982 Rocketdyne

structural-dynamic model. The eigenvalues used in the study are

Xc1	 45.21 Hz	 Xc6	 351.35 Hz

	

Xc2 = 85.67 Hz	 Xc7	 431.90 Hz

	

X
c3 = 111.47 Hz	 ac8 = 468.48 Hz

	

Xc4 = 300.52 Hz	 Xc9	 487.91 Hz

h	 XcS = 310.11 Hz	 Xc10= 542.45 Hz

F	 One-half percent of critical damping was used for all housing modes,

87
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YSeal Rotordynamic Coefficients

Nominal seal rotordynamic coefficients at FPL and MPL are given in

Tables B.1(a) and (b). These coefficients were calculated by Rocketdyne

personnel in 1977. Experience has shown that the high pressure turbine seal

and the turbine interstage seals are important in the current configuration.

Forces developed at the remaining seals are comparatively small. Both of

the "important" seals in the current configuration are gas seals, sealing

hydrogen-rich steam. The Mach number in the turbine interstage seal is on

the order of 0.3, and incompressible analyses [15,16] are appropriate,

However, flow in the high pressure turbine seal is choked, and Fleming's

analyses [17,18] must be used. The numbers used for the convergent- tapered

seal with anti-vortex seals were calculatad by W. Chan at Rocketdyne, and

correspond to entry and exit clearances of .38/.25 mm (.015/.010 in) with

an assumed inlet tangential velocity that is (Rw/2)/4, i.e., one fourth of

the predicted asymptotic velocity within the seal.
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At various times, proposals have been made to modify the current grooved

and stepped preburner-discharge seal by one of the following two procedures:

(a) remove the grooves yielding a "smooth-stepped": configurat'ion, or

(b) remove both the steps and the grooves %°ielding a smooth, constant-clearance

configuration.

The dimensions for the proposed smooth-stepped seal and operating conditions are

given in Tables B.2 and B.3.

i	 Ri(cm)	 Li(cm)	 Cri(mm)

1	 4.267	 0.579	 0.381

2	 4.229	 0.695	 0.381

3	 4.191	 0.775	 0.381

Table B.2 Dimensions for a proposed smooth stepped HPOTP
boost-impeller discharge seal.

w(rpm)	 AP(bar)	 P(kg/m3)	 u(Ns /m2)

FPL	 30,960	 439	 1068	 1.4610 x 10
-1

MPL	 19,841	 205	 1088	 1.5224 x 10
-4

Table B.3 Operating conditions for preburner discharge seal.

Soal coefficients were calculated using the data of Tables 3, 9, and 10

using an improved short-seal solution [16] for vo = 0.0, ire., are-rotated
6

flow entering the seal. The results of these calculations are provided in

Table B.4,

FPL	 MPt

K	 .6908 x 10'	 .3354 x 10'

k	 .6925 x LO'	 .3026 x 10'

rt ',
	

C	 4420.0	 3002.0

c	 -383.0	 -246.9

.a	 M	 -.1212	 .1216

m	 .0511	 -.0484

Table B.4 Calculated rotordynamic coefficients for a smooth-stepped	
Sy

preburner discharge seal.
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Based on the TAMU test results, the nominal coefficients used in the study are

provided in Table B.5,

FPL	 MPL

K	 1.3816 x 10 8	.6708 x 107

k	 1.3850 X 10 7	.6052 x 107

C	 8840	 6004

Table B.5 Nominal rotordynamic coefficients for a
smooth-stepped preburner discharge seal.

The proposed dimensions for a constant-clearance preburner discharge seal are

L = 2.21cm	 ,	 R = 4,267cm	 11	 Cr = 0.381mm

Using the operating cond Lions of Table B.3, with zero inlet stgirl and	 0.1

yields the predicted coefficients of Table B.6.

FPL	 MPL

K	 .3569 X 10 8	.1773 x 108

k	 .3125 x 10 8	.1352 x 108

C	 19,620	 13,216

C 	 21.41	 56.94

M	 -2.337 x 10
-4
	.02163

m	 -0.1188	 -.10671

Table B.6 Calculated rotordynamic coefficients for a
smooth constant-clearance preburner discharge
seal.

Based on the TAMU test experience, the nominal seal coefficients used in

this study are provided in Table B,7.

FPL	 MPL

K	 .4283 x 10 8	.2127 x 108

k	 .3750 x 10 8	.1622 x 108

C	 23,540	 15,859

Table B.7 Nominal rotordynamic coefficients for a smooth,
constant-clearance p reburner pump discharge seal.
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Recently, a proposal has been made to change the HPOTP boost-impeller	 Y

inlet wear-ring seal from a stepped labyrinth configuration to a "damper"

seal configuration employing a surface-roughened stator and a smooth rotor.

This proposed seal has the dimensions

L	 1.27 cm, D = 7.34 cm, L/D = 0.173

The clearance depends on the running speed as follows

C r	Cr/R

FPL	 .127 mm	 3.46 x 10-3

RPL	 .152 mm	 4,14 x 10-3

For specified surface-roughness magnitudes of .203 pm and 20.3 pm for the

rotor and housing, respectively, W. Chen [19] has made the following predic-

tions for the seal dynamic coefficients

K	 k	 C	 c

N/m	 N!m	 Nsec/m	 Nsec/m

FPL .220 x 10 6 .167 x 10 5 	6080	 317

MPL .957 x 105 .616 x 10 4	 3770	 193

Table B.8 Nominal rotordynamic coefficients for a "damper"
seal configuration to be used for the preburner
inlet wear-ring seal.

An alternative configuration which has been proposed for this seal would

use the same geometry with a smooth stator. For this configuration, W. Chen

F	 [19] predicts the following seal coefficients.

6



K	 k	 C	 c	 9

Y
N/m	 N/m	 Nsec/m	 Nsec/m

FPL	 .268 x 10 7 .173 x 10 6 10,900	 2510

MPL	 .108 x 10 7 .710 x 10 6	6,680	 1500

Table B.9 Nominal rotoriynamic coefficients for a smooth
seal configuration to be used for the preburner
inlet wear-ring seal.

^f

The proposal has been made to replace the current unshrouded inducers

for the main impeller with shrouded inducers. Calculated coefficients for

the sealing, surfaces formed at the outside of the shrouded inducers are

provided in Table B.10.

K	 k	 C

t	 N/m	 N/m	 Nsec/m

F	 FPL	 2.70 x 10 7	2.88 x 10 7	2.91 x 10'

r
MPL	 1.09 x 10 7	1.14 x 10 7	1.72 x 10'

Table B.10 Nominal rotordynamic coefficients for
shrouded-inducer seals.

p



Impeller-Diffuser Forces

The model of Eq.(A.8) is used to define impeller-diffuser forces for the

main and boost impellers. The dimensions of the two impellers are provided

below:

Main Impeller: R2	8.51cm, b2 = 2.54cm

Boost Impeller: R 2 = 6.60cm, b 2 = 0.686cm

The impeller-diffuser coefficients for the two impellers are provided in

Table B.11.

Main Impeller Boost Impeller

FPL MPL FPL MPL

W 30,960 19r841 30,960 19,841

P 1,137 1,137 1,114 1,109

K -1.381x107 -4.833x10G -2.200x106 -9.002x105

k 5.670x106 1.984106 01.034405 3,150405

Table B.11	 Impeller-diffuser coefficients for the HPOTP
main and boost impellers.

F
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Clearance-Excitation Forces

The dimensions of the HPOTP turbines are

Op = 24.3cin	 , H = 1.26cm

The torque and clearance-excitation coefficient (0 = 1) are listed below.

w(rpm)	 T(Nm)	 kT(N/m) x 10
-G

FPL	 30,960	 7,005	 2.2870

MPL	 19,841	 2,803	 .9155

Table B.12 Combined clearance-excitation coefficients for
both HPOTP turbine stages with 3	 1.

Measured values for 8 in shrouded turbine blades have yielded values on the

order of 0.6, (20].

r



Balance-Piston Stiffness and Damping Coefficients

	

	
9
Y

The balance-piston stiffness is modeled by the quadratic

KZ = -431.97 w + .3542 
w2

where w is the rotor running speed, However, KZ is never allowed to fall

below 200,000 lbs/in. The equation above fits Winder's graphical data [21].

Balance piston damping is held at 15% of critical for all speeds.

Hydrodynamic Side Loads

The hydrodynamic side loads used in this study were assumed to be

proportional to speed squared. The proportionality constants employed are

Listed below.

K(X-Z)	 K(Y-Z)

Boost Impeller -1.248 x 10 w 2.200 x 10

Main Impeller 3.243 x 10 -4 -2.721 x 10 -4

Turbine 0 1.058 x 10-4

r

Local Case Stiffnesses

The local case stiffnesses at the bearings used in this study are

Kc1
= 3.502 x 10 8 N/m

Kc2
3.502 x 108 N/m

Kc3
= 7.002 x 10' N/m

Kc4
= 7.002 x 10 8 N/m

Bearing Stiffness and Damping

Nominal values for the bearing stiffness and damping coefficients are

Kb
= 8.756 x 107 N/m

a

b
0

t
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