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ABSTRACT

An analysis of attenuation of the Range Safety Signal at 416.E MHz
observed after SRB separation and ending at hand over to Bermuda, during which
transmission must puss through the LOX/HZ propelled maize engine exhaust
plumes, is summarized. Absorption by free electrons in the exhaust plume can
account for the nearly constant magnitude of the observed attenuation during
this Feriud; it dues not explain the short term transient increases that
occur at one or more times during this portion of the flight. It is necessary
to assume that a trace amount (about 0.5 ppm) of easily ioij'jzable impurity
must be present in the exhaust flow. Other mechanisms of attenuation, such as
scattering by turbulent fluctuations of both free and bound electrons and
absorption by water vapor, were examined but found to be inadequate to explain
the observations.
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NOMENCLATURE

A Nozzle area
B Constant in plume density equation
CF Nozzle thrust coefficient
c Speed of light
k Wavenumber (- 27/X)
R* Characteristic plume length (_ (T/q.)1/2)
MW Flight Mach number
M Mean molecular weight
n Molecular number density
np Plasma index of refraction

n► Z Mean square fluctuation in index of refraction
p Pressure
qm Freestream dynamic pressure
Q Scattering efficiency
R Amplitude reflection coefficient
s Distance along line-of-sight
T Temperature, K, or thrust
t time

a Attenuation constant for absorption by free electrons
as Attenuation constant for scattering by turbulence
aH O

2
Attenuation constant for absorption by water vapor

d Phase constant, or 1 - cosO in plume density equation
8 Angle of incidence of a plane wave
A Turbulence macroscale length, or constant in plume

density equation
J. Wavelength
u i Species mole fraction
V Circular frequency
ven Electron-neutral collision frequency

P Mass density
Angle between line-of-sight and plume axis
(aspect angle = 7-^)

W Radian frequency
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Subscripts

CL
c

e

0

Superscript
n

`	 i	 *

iL .

Centerline
Chamber
Exit plane, or electron
Reference conditions

Conditions at the nozzle throat
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1.0 1NTRODUC'1'.M

The Space Shuttle hats a Range Safety SyQ4em (RSS) that can terminate the

thrust and separate the two solid rocket boo,;iters (SRB's) from the Orbiter and

also separate the external tank (ET) from the Orbiter in an emergency. The

commands for these events are transmitted from, the ground by a °Ens of an

FM-frequency shift keyed signal with a center frequency of 416.5 MHz. It is a

requirement that this signal never drop below 81 d.Bm.

Previous analyses (Boynton, et al., 1977, 1978) and measurements show

that severe interference and attenuation occur during the SRB burn. This was

expected because of the composition of the solid propellant. It contains

impurities such as sodium (Na), potassium (K), and chlorine (Cl) that are

easily ionized and contribute to a large number density of free electrons in

the motor exhaust plumes. These propellants also burn at conditions that

provide a fuel-rich exhaust (excess carbon monoxide and hydrogen) that allows

subsequent combustion (a£terburning) when the exhaust mixes with air to

further increase the temperature and electron concentration over their values

at the nozzle exit.

Subsequent to separation of the SRB's, the exhaust plume is due only to

the three liquid oxygen-hydrogen (LOX/H2) main engines. This oxidizer-fuel

combination is known to have a very clean exhaust which is expected to be

nominally free from impurities that can contribute free electrons at the

temperature levels experienced by the gases (< 3600 K). Pre-flight estimates

of the RSS signal, do not even consider any attenuation from these plumes.

However, comparisons of the predicted and measured RSS signal indicate an

attenuation during that portion of the trajectory ;.,bsequent to SRB separation

when the transmitter line-of-sight passes through the main engine exhaust

plumes and vehicle wale. The essential features of this attenuation are (see

Figure 1):

I. it occurs after SRB separation (t - 127 sec) to the time of hand over to

Bermuda (t - 430 sec),

2. the line-of-sight from the Cape Command transmitter to the Orbiter during

this period varies from about 20 o to loo from tail-on (160-170 0 from

}	 nose-on). At hand over to Bermuda, the aspect angle changes to near

nose-on.
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3. the attenuation level changes slowly from near 5 dB to at most 15 dB with

	

increasing time between 127-430 sec after launch. There are times between 	 Y

200 and 300 sec where the attenuation increases suddenly and then

decreases again within a short period of 10-20 sec. This additional

attenuation is superposed on the nominal level which slowly increases with

time.

4. the attenuation is repeatable; the overall levels and peaks are about the

same for STS flights 2, 3, 4, and 5 0 although the times at which the peaks

occur differs from flight to flight. (No measurements were made for the

STS-1.)

5. during this period, the vehicle altitude increases from about 53 to

130 km, and the velocity increases from about 2.0 to 6.0 km/sec.

The aspect angle dependence and repeatability suggest a plume and/or wake

related cause for the unexpected attenuation. However, the source of the
attenuation, unlike that of the SRB plumes, is not obvious. It is argued that
the repeatability rules out an explanation based on atmospheric effects

because the launches were at different times of the year. There is the

possibility that there may be a reason unrelated to any gas dynamics origin,

such as a systematic error in the gain pattern of the RSS antenna on the ET.

However, that possibility is not considered to be a likely explanation.

	

This unexplained attenuation is not a critical issue at this time. For
	

t

these first five flights, the opinion is that the RSS would have operated if

needed. Launch azimuths for subsequent flights are such that no additional

attenuation is expected. However, the Space Shuttle is a manned vehicle with

the potential. for a wide variety of missions that may require launch

situations other than those contemplate; for the near future. It is therefore
4

desirable to understand the reasons for this unknown attenuation, in order to

determine if there are lines-of-sight, altitudes, and velocities for which the

attenuation might be sufficient to compromise the RSS operation.

This report summarizes an analysis which attempts to determine if there

are plumy and/or wake related phenomena that can explain the observed

attenuation during the period when only the LOX/H2 main engines are operating.

The properties of the exhaust plume and wake are examined to determine if they

can contribute RF attenuation of the magnitude needed to explain the

measurements.

3



2.0 PRELIMINARY ASSESSMENTS

2.1 Plume and Wake Flowfields

It is important to acknowledge at the beginning that a precise prediction

of the Space Shuttle exhaust plume structure is not possible because there are

three engines involved. Moreover, the same limitation exists for the vehicle

wake because of the complicated shape of the Orbiter and because of the

attached external tank. These limitations are particularly important in the

nearfield where the disturbed flow has not yet relaxed to a uniform ambient

pressure. A simple estimate of the plume length that affects the attenuation

can be obtained from the range of aspect angles encountered. For example,

aspect angles from 10-20 degrees from tail-on imply lines-of-sight that are

affected by plume lengths of from 1.0-2.5 9*, where R* = (T/goo) 1/2 is a

characteristic scaling length for which high altitude plume shapes become

similar (Moran, 1974). In actual dimensions, these lengths are from 0.15 to

13 km for the altitudes and velocities of interest. These dimensions are

large, but the plume and wake flows are not yet equilibrated to ambient

pressure. Both the plume and wake still retain a sensitivity to the initial

conditions of the flow over the vehicle, which are not accurately known.

An additional restriction is that the altitudes of interest are high

(> 53 km). Our current detailed exhaust plume and wake numerical codes are

not applicable at altitudes above about 70 km (Dash, et al., 1980), and so

more approximate calculations must be used. However, for this particular

study, the upper limit for these codes was found to be 80 km.

2.2 Identification of Easily Ionizable Species

An essential part of this study was the identification of the presence of

ionizable species in the plume and wake that could generate free electrons. A

survey of the oxidizer and fuel of the main engines was made with the result

than no species of this type could be identified. Consequently, there are no

easily ionizable species known to be in the main engine exhaust. The known

source of these species in the ET ablation products is quickly exhausted. A

conclusion from this assessment is that there is no a priori identifiable

w	 source of free electrons in the plume or wake that offers a potential

explanation.

4



There is a source of free electrons in the partially ionized air that

passes through the shock wave of the vehicle and plume. Thin source is

confined to the outer edges of the plume and will be examined subsequently.

Because of this initially negative result of no easily identifiable

ionizable species, the study was forced to take essentially an inverse

approach. That is, the analysis works backwards from the known level of

attenuation to determine what amount and origin of trace impurities are

required to offer P, possible explanation.

2.3 Catalogue of Possible Attenuation Mechanisms

Before presenting the details of the analyses, a list of the gas dynamic

phenomena that could contribute RF attenuation is presented. Each is listed

`	 in Table 1 and roughly identified by its origin and spatial location in the

flow.

3.0 ATTENUATION BY EXHAUST PLUME

3.1 Initial Conditions

For the purpose of this study, the exhaust plumes from the three main

engines were combined into an equivalent plume from a single engine with the

total exit area. Exit plane properties were obtained by a one-dimensional
s

flow solution from the chamber conditions. The exit plane conditions are
1

summarized in Table 2.

An important result of these calculations is that trace species in the

exhaust, a - , OH, OH- , etc. are chemically frozen near the nozzle throat. This

result is particularly important for any ionizable species that migh t_ be

present. A sample kinetic calculation for the electron mole fraction in the

nozzle resulting from a contamination level of 1 ppm of Na (UNa - 10-6 ) is

shown in Figure 2. Because of the expansion, the electron concentration is

frozen at near its chamber value with the result that the concentration at the

exit plane is much larger than it would be under equilibrium conditions.

Major species in the nozzle flow (H20 and H2) are essentially in equilibrium.
.ds

Initial conditions for the subsequent plume expansion were taken from the
a	

chemical kinetics calculations.

5
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TABLE 2.	 EXIT PLUME PROPERTIES OF MAIN ENGINE
9

(a) Chamber Conditions Y

LOX/112 with Oxidizer/Fuel ► 6.0
PC - 204.9 atm
Tc ► 3616 K
Ae/A* - 78.5

(b) Exit Plane Properties

Exit Temperature, 1183 K
Exit Pressure, 0.1773 atm
Exit Velocity, 4488 m/sec
Exit Lip Angle 100
Effective Exit Radius, 1,98 m

Exi t Plane Composition:

Species	 Mole Fraction Species Mole Fraction

e- 2.46(-10) NaO ---

H 5.55(-4) NaOH 8.10(-10)

H2 2.67(-1) 0 1.24(-3)

H2O 7.27(-1) 0- ---

H02 --- 0}', 2.70(-3)

H2O2 --- 0H- 3.31(-9)

Na+ 3.83(-9) 02 1.64(-3)

Na 1.01(-9) OZ ---

NOTES:
(1) Includes	 1	 ppm	 Na as	 a model of a	 trace amount of	 easily	 ionizable

impurity.

('2) Species list includes all those formed in chamber.

(3) All quantities except exit plane composition were determined	 by chemical

equilibrium rocket motor performance code (Gordon and McBride,	 1976).

(4) Non-equilibrium composition was calculated with a one-dimensional,	 stream

tube code.

7
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3.2 Plume Structure
9 }

	Subsequent to the nozzle exit, the flow expands even farther because of 	 Y

the low ambient pressure (p„/Pe « 0. Calculations accounting for the

detailed chemical kinetics of the exhaust gases show that the chemistry at

these altitudes is very slow beyond the exit plane, afterburning of the excess

H2 is suppressed, and the entire plume composition is frozen at the nozzle

exit conditions.

The nearfield plume structure, accounting for the inviscid expansion and

turbulent mixing* of the plume with the atmosphere was calculated with

A.R.A.P.'s version of the JANNAF Standard Plume Model (SPF/1) (Dash, et a1.,

1980). Although this code is nominally operable to about 70 km, solutions up

to 80 km altitude were obtained for the Shuttle main engines. A sketch of the

inviscid plume boundary and superposed mixing layer is given in Figure 3.

These solutions were obtained between altitudes of 60 and 80 km and were used

for the basic detailed attenuation predictions. However, because of this

altitude limitation, arguments about the attenuation at higher altitudes are

based on approximate plume models and scaling relations.

The overall inviscid structure of high altitude plumes becomes

self-similar if the dimensions are normalized by R * _ (T/q oD) 1/2.	 In the

present	 case,	 T	 is	 the	 total	 thrust	 of	 the	 three	 engines

(3 x 470 klb f = 6.27 x 10 6 N). This scaling is verified at the lower

altitudes of interest by the detailed calculations used here. The scaled

plumes are shown in Figure 4. For aspect angles of 10-20 degrees from

tail-on, the attenuation by the plume and/or wake is contributed by the

nearfield where the inviscid structure determines the plume shape, except for

the mixing layer between the plume and freestream gases.

3.3 Primary Attenuation Mechanisms

With the detailed plume flowfield and chemical composition prescribed,

attenuation predictions for the appropriate lines-of-sight were performed with

the Naval Weapons Center Plume Radar Frequency Interference Code (PRFIC)

(Pearce and McCullough, 1982). For a given flowfield, geometry of

observation, and radar frequency, this code predicts the attenuation due to

absorption and scattering by the mean and fluctuating free electron number

density.

*even though the flow is a high altitude, low density plume, the flow is still
turbulent throughout the portion of the trajectory of interest here.

9
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Figure 4. Scaled Plume Shapes of Equivalent Shuttle Plume at
60, 70, and 80 km Altitude W = (T/q.)1/2).
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	It is important to note that when the electron number density is small	 9

	(ne 4 1014 m-3),  such that the plasma frequency is small compared to the radar 	 Y

frequency, v (v p « 416.5 MHz), and the electron-neutral collision frequency

is also small compared to v (v en « 2nv), the absorption is very weak, For

these conditions, the attenuation constant a, is (see Appendix A)

a 8--=2 
9 
k(l12 (JIn	 ( d B)	 (1)
 

W )

Also, the phase constant $,

Sk 
1-\j2 

=k
W

	 (2)

remains the same as the free space wavenumber k - 27/X. Since wp - ne Pen)

and ven -- n, the important result is that

a „ ku en2 „ k1jep2
	

(3)

in the plume. Furthermore, since the chemical composition is frozen, the mole

fraction of electrons at any point is proportional to the value of l i e at the

exit plane. This is an important scaling that will be applied to extend the

detailed plume predictions to higher altitudes.

The additional attenuating mechanism that occurs when free electrons are

present in turbulent flow is scattering by the fluctuating concentration

(Tatarski, 1961). This mechanism is also included in PRFIC. For a low

density plume, and for large turbulent length scales, A, the attenuation due

to this mechanism depends on concentration according to (see Appendix A)

as - Ane/k2 - Auep 2 /k2	(4)

t

	

	 These two mechanisms, absorption and scattering, can be of comparable

magnitude in the turbulent shear layer.

12



3.4 Specific Predictions 	 9 
t,

Y

Predictions of the attenuation at 416.5 MHz using the detailed numerical

flowfield solutions at 60, 70, and 80 km altitude were made with PRFIC. It

was necessary to assume that there was a trace amount of contaminant in the

exhaust gases. A very small ;amount, 1 ppm of sodium, was chosen. Sodium has

an ionization potential, of 5.12 eV. The same results apply to other elements

such as K (4.32 eV) and calcium (6.09 eV). In fact, the same result holds

even for metals such as Al (5.96 eV), Cr (6.74 eV), Fe (7.83 eV), Ni

(7.61 eV), and Cu (7.69 eV). Metal impurities.are a potential source from

erosion of the thrust chamber.

An impurity level of 1 ppm of any of these elements corresponds to a mass

flow of about 1 gm/sec per engine and represents about 1 kg of mass loss for

the duration of the main engine burn. This mass loss is larger than that

expected for erosion of metal in the engines. A more plausible source is an

impurity in the fuel or oxidizer for which the combined flow rate is about

475 kg/sec per engine.

Attenuation, in dB, for the aspect angles of interest at 60 and 80 km

altitude is shown in Figure 5. It is possible to match the magnitude of the

observed attenuation at these altitudes with the predictions assuming less

that 1 ppm of Na, or comparable amounts of other low ionization potential

contaminants in the exhaust.

Predictions of the attenuation due to plume absorption and scattering

throughout the trajectory were made in the following manner. The magnitude

and aspect angle dependence of the attenuation at altitudes higher than 80 km

were taken to be the same as that from the detailed numerical solution at

80 km. Arguments based on an approximate density distribution in the plume

given in Appendix B suggest that for the mechanism of attenuation by

absorption, the magnitude and aspect angle dependence are independent of

altitude and vehicle velocity. Predictions of attenuation due to absorption

in the plume are then essentially a constant throughout the period of interest

except for the changes in effective aspect angle of the line-of-sight through

the plume.

The detailed predictions through the plume include a contribution from

scattering in the turbulent shear layer. However, that contribution also

scales like the absorption if the chemistry is frozen (i.e., l i eP 2 and UeP2,

respectively) except that the scattering includes a normalized electron

13
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density fluctuation and a length scale. These additional quantities may have

some altitude dependence. For example, the turbulent length scale dependence 	 9

is A - k. * - gw-112. Therefore, the actual attenuation through the plume is	 Y

not strictly independent of altitude or velocity because of the scattering

mechanism. Fortunately, the scattering contribution is not a major part of

the total attenuation, and any altitude dependence from that mechanism is

Ignored for the lines-of-sight considered here.

The locations of the RSS antennas on the ET are shown in Figures 6 and 7.

They are at diametrically opposed positions on the forward portion of the ET.

Coordinates of the two locations in the Orbiter coordinate system (Figure 6)

are 'Listed below. The axial location. (X-Xo) is the distance forward of the

main engine nozzle exit planes. Calculations of the attenuation were made for

the antenna location nearest the Orbiter.

Antenna Coordinates

Antenna	 Yo, m	 Zo, m	 X-Xo, m

Nearest to Orbiter 	 -2.80	 -5.41	 42.7

Farthest from Orbiter	 2.80	 -12.21	 42.7

During the portion of the trajectory of interest, the Orbiter is inverted.

The antenna nearest to the Orbiter is one with the non-obstructed,

line-of-sight to the Cape Command (except for the intervening exhaust plume).

It is important to note that the y true line-of-sight through the plume

does not pass through the plume axis because of the location of the antenna.

A precise description of the line-of-sight direction requires more than a

single aspect angle. The calculations given here account for the detailed

location of the antenna and line-of-sight. However, for simplicity, the angle

of the line-of-sight from the plume axis, ^, is used to identify the different

lines-of-sight along the trajectory.

The calculation at 80 km was scaled to match the average level of

attenuation (about 10 dB) for STS-2. This same nominal level was used for

STS-3 and 4, This nominal level corresponds to about 0.5 ppm of trace

impurity. Predictions using this nominal level, and accounting for the

varying aspect angle along the trajectory, are compared with measurements for

STS-2, 3, and 4 in Figure 8. The measured attenuation was taken to be the

"	 difference between measurements and NASA predictions for transmission to the
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Range Safety Command Antenna

Figure 7. Locations of RS Command antenna on External. Tank
(Side View, SRB's are not present beyond ^ 1 1-7 sec).
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RSS antenna, using the best estimate of the trajectory (BET) and not 	 9
accounting for attenuation by the plumes. A complete history of the aspect	 Y
angles for STS -4 was not available, and so the predictions for STS-2 and 3 are

.shown.

This comparison suggests that the overall level of attenuation can be

explained by the presence of a contaminant in the main engines exhaust that

results in absorption by the inviscid core of the plume. The contaminant

concentration need be only about 0.5 ppm of a low ionization potential (6 eV

or less). There are times when the attenuation substantially exceeds the

nominal levels predicted, for example, at 225 sec for STS-2, 270 sec for

STS-3, and at 210 and 250 sec for STS-4. These short time increases are not

directly explained by the plume absorption. There were no sudden changes in

the vehicle attitude or other factors observable in the trajectory data.

There are sudden changes in the aspect angle, for example at 135 and 265 sec

in STS-2 (Figure 1). However, these times do not coincide with the large

increase in attenuation. The same conclusion holds for STS-3.

It is concluded that a trace impurity with a concentration of less than

1 ppm in the main engine oxidizer or fuel can explain the observed attenuation

over most of the trajectory between SRH separation and hand over to Bermuda.

There are short periods of duration of 20-50 seconds during the trajectory

between 200 and 300 seconds where the attenuation exceeds the nominal ,levels

expected for the indicated lines-of-sight. There were no sudden changes in

vehicle attitude during these times to indicate a change in the line-of-sight.

The plume attenuation based on the single equivalent plume model used here

cannot explain these short period increases. In addition, the measurements

for STS-4 indicate about half the attenuation reported for STS-2 and STS-3,

although the overall trajectory dependence is similar. Since the aspect

angles are indicated to be the same for these flights, there is no explanation

for this difference, except that the contamination level might have been less

for this flight.

There are at least two reasons why there might be short time fluctuations

in the observed attenuation.	 One is related to the exhaust plume/wake

structure itself. The actual plume/wake flowfield structure is very

complicated because of the multiple engines and comb--icated body geometry. It

is expected that the plume and wake will show some very localized nearfield

structure that the single equivalent axisymmetric plume models can not

duplicate. It is reasonable to expect that there will be some localized

19



variability in the attenuation as the lino-of-sight moves across these

non-uniform regions of the flow. A second possibility is that the transmitter	 Y

line-of-sight may also traverse segments of the exhaust plume that are
drifting far behind the vehicle. These segments could be from the main

engines or even the SRB's. The times and the additional attenuation

contributed by this source would depend on the direction and velocity of the

winds at lower altitudes. One or both of these additional features of the

exhaust plume structure and ambient conditions could be the reason for the

additional attenuation.

4.0 ATTENUATION BY THE WAKE AND SHOCK LAYER

4.1 Sources Ionizable Species

Unlike the exhaust plume, which required an assumed source of ionizable

species, the Orbiter wake and shock layer contain two known sources of

electrons. One is from the ablation products leaving the Orbiter and ET

thermal protection system, and the other is from the ionization of air by the

vehicle shock waves.

4.2 Attenuation by Ablation Products

The ET ablation products contain Na, K, and Ca and consequently, are

possibly ionized in the mixing layer between plume and wake. However, the

duration of ablation is confined to a short period after SRB separation..

Heating rates are not sufficiently severe to maintain any significant ablation

at the higher altitudes. The duration of the primary ablation is compared

with the attenuation in Figure 9. The known ablation is over by 200 sec into

the trajectory. More importantly, the measured attenuation during the

ablation period shows no time dependence like the ablation rate. If ablation

was a primary contributor, the attenuation should show some time dependence

that would correlate with the rate of ablation. It is concluded that the ET

heat shield ablation is an unlikely contributor to the attenuation.

4.3 Shocked Ionized Air

The second source of electrons, the vehicle shock layer, is velocity

dependent. For the relatively slow (compared to unmanned boosters) Shuttle

Orbiter, which does not exceed a flight Mach number of seven until about

250 sec and 113 km altitude, the ionization behind the shock is very low

level. The initial electron number density behind a shock in clean air does

20
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not reach levels adequate to explain the observed attenuation until a velocity	 q k

	of about 2.8 km/sec (Mm s 7.2) at a time of 240 sec and altitude of 110 km. 	 Y
At this point, the number density becomes comparable to those initial levels

in the exhaust plume needed to give the correct attenuation levels. However,

a more important consideration is that in the shear layer, attenuation by the

turbulent scattering is more important than absorption. According to the

earlier analysis, scattering scales with the square of electron mole fraction

as „ I ep 2 A/k2	(5)

while absorption scales linearly with mole fraction

a kU p	 ORIGINAL PAGE 69	 (6)e 
2	

OF POOR QUALITY

Predtaxons of attenuation from this source, scaled from the lower altitude

results according to Eq. (5), and using equilibrium number densities behind

the shock at the sppropri3te altitude and flight velocity, were made. The

magnitude and altitude dependence (because of the Pe dependence) is

sufficiently different from that observed that this source of attenuation is

not a likely source. This mechanism could become important at higher

velocities, however, if the transmitter of the RSS signal is maintained near

the launch site longer into the trajectory.

5.0 ADDITIONAL ATTENUATION MECHANISMS

5.1 Absorption by Water Vapor

It is well-known that microwave radiation is absorbed by the rotational

transitions of water vapor and other heteronuclear polyatomic molecules.

Since the exhaust plume is predominantly water vapor (73 percent mole

fraction), this is a potential explanation. In addition, this absorption

would be altitude independent, like that found for the attenuation by free

electrons.

An upper bound estimate of this absorption is easily made. The maximum

attenuation will occur along the plume axis. If the plume density

distribution described in Appendix E is used, the attenuation due to

absorption by water vapor will always be less than the quantity
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ao is the absorption coefficient at the reference conditions given by Hill and

Clifford (1981); ao = 10-7 M' 1 at 416.5 MHz (w = 1/X .0139 cm- 1 ), Po = .0278,

mixture molecular weight, Mo = 28, To = 300 K, po = 1 atm. For the main

engine plume, M = 13.603 r* = 0.2235 m (effective value), PH20 = 0.727,

Pc/Po = 8.26 9 Pe/Pc = 2.75 x 10-3 , and B = .206.

1aH20 d  < 2.70 x 10_
4
	.00235 dB	 (10)

This result suggests that the absorption by water vapor is unimportant.

There are uncertainties in this estimate. One uncertainty concerns the

absence of rotational lines that become important at higher temperatures than

that for which the line atlas used to predict ao was compiled (Hill and

Clifford, 1981). It is not expected that this could increase the absorption

estimate by more than a factor of 10 3 , which would be required for this

mechanism to be important.

5.2 Reflection by Weakly Ionized Layer

The wave front from the Cape Command transmitter must penetrate the

weakly ionized shock layer and plume in order to reach the antenna. It is

known that some energy is reflected as a wave traverses a discontinuity in

optical properties. This mechanism would still require some trace impurity in

the plume, but the basic physical mechanism of removing energy from the wave

propagating to the antenna is different from absorption. A suggestion of the

k

	

	
importance of this effect can be obtained from a simple solution for

reflection of a wave incident at angle 6 to a plane ionized homogeneous layer

(Taylor, 1961; Panofsky and Phillips, 1962). 	 The amplitude reflection

coefficient, R (using the absorption coefficient of Eq. (1)) is

23
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kc9 2Wn)

Y/ cas 2 0	 (11)
cos0 + (np - sin2e)

for small a. The power reflection coefficient is IR1 2 , and the attenuation is

approximately

	

fads -4.
  44

(Wp)4(v
wn2 cos `+ 0 (dB)

	
(12)

for the small values of wp/w and ven/w encountered in the plume. In the outer

edges of the shear layer, a < 10-3 m-1 .  For 416.5 MHz, k - 8.727 m-1

fds < 0.15 dB

even for grazing incidence (e - 89 0). Reflection is therefore not a likely

explanation for the observed attenuation.

5.3 Scattering by Turbulent Fluctuations in Index of Refraction

Scattering by bound electrons (fluctuations in the real part of the index

of refraction, np ) can occur as well as that due to fluctuations in a free

electron concentration. This is the phenomena that is responsible for

scintillation of starlight at visible wavelengths. It is caused by

fluctuations in the index of refraction due to temperature and species

concentration fluctuations. Like the scattering by free electrons, the total

energy in the beam remains unaltered (in the absence of absorption) but is

scattered out of the direction of propagation. For this mechanism, the

effective attenuation is given by

S

fads = 8.48 k2
fo 	

Ads	 (dB)	 (13)

rO is the mean square index of refraction fluctuation and A is the turbulence

macroscale. The primary contribution to n'Z is from the temperature

fluctuations in the turbulent mixing layer at the plume boundary. For typical

cases, 77 10-14, A - 10-100 m, and

	

fads < 10-8 dB	 (14)

9 ,
Y
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This estimate suggests that the scintillation mechanism is too weak to

contribute any attenuation.	 I +

6.0 SUMMARY AND CONCLUSIONS 	 Y

An analysis of the possible mechanisms responsible for attenuation of the

Space Shuttle Range Safety System command signal at 416.5 MHz between SRB

separation and hand over to Bermuda is summarized. During this period; the

line-of-sight from the Cape Command Center to the antenna on the external tank

passes through the exhaust plumes of the Orbiter main engines. This

attenuation was observed on all STS flights for which the necessary

measurements were recorded (all except STS-1). The following mechanisms were

examined:

1. absorption and scattering by the exhaust plume flow, assuming a trace
amount of easily ionizable impurity in the main engine exhaust

2. absorption and scattering from the outer edges of the plume and vehicle
wake due to free electrons added by the external tank ablation products
and ionization of clear air by the vehicle and plume shock waves

3. absorption by rotational lines of water vapor in the plumes

4. reflection of the incident wave by the edges of the plume

5. attenuation by scattering from fluctuations in the index of refraction in
the turbulent mixing layer of the plume.

The only mechanism that yields the correct magnitude, and altitude and

aspect angle dependence, is absorption by the exhaust plume. However, it is

necessary to assume about 0.5 ppm of an easily ionizable impurity species in

the exhaust for this mechanism to be present. Any species with an ionization

potential of about 6 eV or less would be adequate. With this assumption, it

is possible to predict the correct level of attenuation. This source of

attenuation is predicted to have no velocity or altitude dependence, but it

does depend on aspect angle. The overall dependence of the observed

attenuation during the trajectory is reproduced, except for short period

increases. It is suggested that these features may be due to either detailed

structure in the plume/wake that was not modeled or to temporary obscuration

by drifting elements of the plume far downstream from the vehicle.
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APPENDIX A: Absorption and Scattering in a Weakly Ionized, Low Density Gas

r
If an electromagnetic wave is assumed to have a spatial dependence on

distance, x, along the direction of propagation of the form

E - exp(ikx)	 (A-1)

in an ionized gas, then the dispersion relation is (Mitchner and Kruger, 1973)

(

2	 ( E)2	 ( wp) 2(vwn
 _^ W	 (A-2)kw)

	
+ i

c	 Ven 2	 Ven 2
C1+ 

w	
1+(

)

kw/c = n  is the index of refraction of the plasma which is generally complex.

The real part is the usual refractive index (ratio of speed of light in a

vacuum to that in the plasma), and the imaginary part is the absorption index,

which accounts for the attenuation of wave amplitude. If

( )2 
= KR + i K 

t)

then

(A-3)

IK f + K	 ^Re(kw\_	 _ w	 R 1/2	 (	 )

J	
A-^

c	
B ^ c ._._ 2

Im (kw = a = w IKI - KR_ 1/2 	
(A-5)

C)	 c	 2

in the special case of a weakly ionized gas (like the Shuttle main engine

with a trace impurity, or the vehicle and plume shock layer)

W  << 1	 (A-6)
W

Furthermore, for low density flows (v en = v enQ, where n is the particle number

density - p/T, ve is the electron thermal velocity - T 1/2 , and Q is a

collision cross-section = 1.5 x 10-19 m2)
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en
w 

<< 1	 (A-7)

With these two approximations, (Pearce and McCullough, 1982)

a = Z k -^ 2 
ei	 (A-8)

and

S = k	 (A-9)

In an ionized turbulent flow, the number density of free electrons

fluctuate (due to fluctuations in temperature, pressure, and species

concentrations). These fluctuations create locally non-homogeneous regions

(eddies) of non-uniform refractive index that act to scatter the RF wave.

Various models for the scattering from these turbulent non-homogeneous regions

have been developed (Tatarski, 1961). Scattering does not reduce the overall

energy in the RF radiation, however, it removes it from the direction of

propagation and can therefore contribute an apparent attenuation. The

effective attenuation coefficient due to this scattering is

r̂n n2 r2 A3

as = .0528(8n3)	 e v	 2 Q(2k2A2 )	 (A-10)

1 + 
en2
w

n/ne is the mean square fluctuation of electron number density normalized by

the square of the mean number density, r t is the Thompson radius of the

electron (2.81 x 10-15 m2 ), A is the turbulence macroscale, and Q is a

scattering efficiency. For the Shuttle main engine and 416.5 MHz radiation,

2k2 A2 is large (Pearce and McCullough, 1982),

Q 

_12Tr	
(A-11)►

 5(2k2A2)

and the attenuation due to scattering has the dependence

Ie

n
as ne A/k2	(A-12)

9
Y
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APPENDIX B: Approximate Aspect Angle and Altitude Dependence of
Attenuation through the Exhaust plume 	 9 r

Y
As indicated in the main section of the report, the attenuation through

the core region of the plume depends on the integral of the square of the

plume density along the line-of-sight.

s	 s

I
a ds	 P2 ds	 (B-1)

0
	

fo

This appendix summarizes the derivation of an approximate value for this

integral and more importantly, suggests the altitude and aspect angle

dependence of the expected attenuation at altitudes beyond the capability of

the detailed numerical solutions.

For this purpose, an approximate density distribution in the plume
r

proposed by Hill and Draper (1966) is used.

Pr*2
= 4B r2 exp - ^A203 	 (B-2)

Pc

This is a non-uniform spherical source flow model

(r) dependence from the angular dependence, B = 1

between the radial direction and axis of symmetry

the line-of-s '-ht). B and A are constants depe.

specific heat ratio. This and similar models have

in many plume analyses (Moran, 1974; Lee ;, et al.,

which separates the radial

- cos¢, where ^ is the angle

(7-^ is the aspect angle of

iding on the motor thrust and

been widely used and tested

1982).

This density relation will be used to evaluate the integral in Eq. (1)

along a line-of,-sight with fixed ^ to approximate that of the line-of-sight

between Cape Command and the RSS antenna on the ET. The line-of-sight does not

actually follow along a radial ray from the nozzle exit, but it is very nearly

that on a plume scale defined by X*.

First, it is necessary to modify the density distribution near the

origin. To accomplish this, a curve fit between the exit plane density Pe/Pc

and the asymptotic radial decay rate

lim	 P - r*/r 2	(B-3)
r+aD	 P c
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is used. A satisfactory form is 	
9 }
Y

p	 Pe/Pc	
(B-4)

Pc -	 pe/p^ rte£

1 + 4Br*2

The density at any point in the plume is then given by

P	
pe/pc exp - A262
_»	

--I--	
( B-5 )

Pc	 Pe/Pc 
1+ 4B--?

For a fixed radial angle ^, the attenuation through the plume is proportional

to

fads - 
P
e \2 exp(- 2A202) f
	

--- dr 2 
2	

(B-6)

(TC)	 0	 pe/pc r_
1 + 4Br*2

a Pe 3/2 exp(- 2A202) r*	 3 B	 (B-7)
e

Since A and B are independent of altitude, this approximation indicates that

the attenuation due to absorption by free electrons in a high altitude exhaust

plume of chemically frozen composition is essentially independent of altitude.

It does depend on aspect angle (n-¢). A search for that dependence is the

motivation for using this approximation model to extend the more detailed

calculations to higher altitudes.

Since all parameters except A and S do not affect the angular dependence

of the attenuation, only these need be varied to answer the question of the

aspect angle sensitivity. A depends on the vacuum and maximum thrust

coefficients (Moran, 1974)

A - 1/ 3n (1 - CF/CFm ^	 (B-8)

For the main engine, C F - 1.960, CFm - 2.134, and A - 6.909. The attenuation

relative to that at ^ - 10 0, predicted by this simple model, is compared to

the detailed numerical integration through the plume at an altitude of 80 km

30



in Table B-1.

Table B-1. Aspect Angle Dependence of Attenuation
through the Plume

(normalized by attenuation at 	 100)

deg	 Eq. (7)	 Detailed Predictions
at 80 km Altitude

12	 0.977	 1.005

16	 0.867	 0.936

20	 0.722	 0.794

24	 0.501	 0.611

Both the simple model and precise calculation show a 20-30 percent

decrease in attenuation as the aspect (7r-^) decreases from near tail-on.

Moreover, since the approximate model has no altitude dependence and becomes a

more accurate approximation to the actual plume as the altitude increases, it

is argued that the aspect angle dependence and magnitude of attenuation are

independent of altitude.

f
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