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ON PARAMETER IDENTIFICATION FOR LARGE SPACE STRUCTURES

By

S.M. Joshi l and G.L. Goglia2

ABSTRACT

The design of a controller for large space structures (LSS) based on

the LQG theory requires the knowledge of the LSS parameters. Since apriori

knowledge of the parameters is usually not reliable, the parameters must be

identified prior to the controller synthesis, using methods such as the

maximum likelihood technique. In this report, an expression is obtained for

the Fisher information matrix for LSS, from which Cramer-Rao bounds can be

obtained in order to determine the accuracy with which the parameters can be

identified.

INTRODUCTION

The problems encountered in controlling large flexible space structures

arise mainly because of (1) infinite number of structural modes, (2) numer- 	 t

ous low-frequency structural modes, (3) extremely small structural damping

ratios, and (4) closely-spaced structural mode frequencies. The controller

design for large space structures (LSS) can be accomplished by using tools

of modern control theory. Two types of control systems synthesis techniques

were discussed in reference 1. The first technique, the "collocated con-

troller technique," utilizes the stability and robustness properties of

controllers employing positive definite feedback and collocated actuators

and sensors. The second technique results in a reduced order Linear-Quadra-

tic Gaussian (LQG) controller, where the order reduction is accomplished

by methods such as those described in reference 2.
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In the course of the present grant, these two techniques were applied

(ref. 1) for synthesizing control system for a large space antenna, and RMS

(root-mean-square) performance, described by pointing, surface and feed

misalignment errors, was obtained in the presence of sensor and actuator

noise. The results were also reported in the preceding progress report of

this grant. One of the outcomes of this study was that the LQG controller

yielded markedly superior performance. However, the design of an LQG

controller requires at least a reasonable knowledge of the parameters, i.e.,

natural frequencies, damping ratios and mode shapes (or slopes). It is

extremely difficult, if not impossible, to accurately determine these

parameters apriori, on the ground. Therefore, the parameter identification

will probably have to be performed in orbit, and control system designed

subsequently.

it is important to investigate

In this report, expressions for

using rate gyros as sensors.

theoretical accuracy with which

ned by inverting the Fisher

In the light of the above discussion,

the identifiability of the LSS parameters.

the information matrix for LSS are derived

Cramer-Rao bounds, which indicate the best

parameters can be identified, can be obtai

information matrix.

FISHER INFORMATION MATRIX FOR LSS

Consider a linear constant coefficient system described by

x = Ax+Bu+v	 (1)c
y = Cx+ Du	 (2)

z=y+wc	
(3)

where x, u, y• and z represent n x 1 state vector, m x 1 input vector,

R x 1 output vector and X x 1 observation vector; v  and w e repre-

sent process and observation noise (stationary, zero mean, white). A, B, C,

and D are functions of a parameter vector p which has the dimension n x 1.
p

2
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The discrete-time, maximum likelihood identification problem can then be

stated as follows:
Y

Given observations z(t) at t = kT, k - 0,1,2,...,N, for a known in-

put u ( t), determine the estimate fp of p which maximizes the conditional

density f(Z N/p) where

Z  - ( zo , Z i t ... ,zN)

If the apriori density of p is known, then the conditional density

(likelihood) above can be replaced by the unconditional density.

The discretized version of equations ( 1), (2), (3) is given by:

x(k + 1) - F x(k) + Gu(k) + v(k)	 (4)

y(k)	 - C x (k) + Du(k)	 (5)

z(k)	 - y(k) + w(k)	 (6)

If x(o), v(k) and w(k) are Gaussian, the density f(Z N/p) is Gaussian. (If

f(p) is Gaussian, then the unconditional density f ( ZN) is also Gaussian.)

N	 - 1
f(Z N/p) - c1 exp [-1/2kE0(z(k) - y(k ) ^ T W	 (z(k) - y(k))]	 (7)

where cl is a constant and W is the covariance matrix of w(k).

It can be proved that ( ref. 3)

	

E[ (p+ (p-p ) T /pl ). J
_1

	 (8)

where ^ is any absolutely unbiased estimate of p, and where

J = E 

C a
L I nf ( ZN/p) 1 T 

Ci Inf
( ZN /P)^ /PL	 J

2
3.

= -E 	 Bpgtnf ( Z 
N IP) /p
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It can be proved from equations (7) and (9) that 	 OftilVF(, Pr,.°
OF POOR QUA61T

J M E	 ^(k)T W 1 y(k)	 (10)
k=0	 8p	 ap

J is known as the "Fisher information matrix," and J -1 is the Cramer-Rao

lower bound on the covariance of the parameter estimation error.

Appl ication to LSS.- The unforced modal equations of motion for a

flexible LSS are given by:

qi + 2pi mi Qi + wig i 	0	 U= 1, 2, 3, ..., nm )	 (11)

where n
m 

is the number of modes. The output equation is:

n
y 

=itmO qi	 (12)

where 
q i , p i' w  and 0

i are the modal amplitude, damping ratio, natural

frequency, and ( W) mode shape (or mode slope) matrix for the ith struc-

tural mode. y is the fxl output vector. (The rigid-body equations are

not given because they do not play a role in the identification of the

structural parameters. It is assumed that the mass and inertias of the LSS

are known). The parameters to be estimated for the ith mode are:

p i = tp i t Wi t Ali, ^2i " ' 0Ril	
(13)

Thus there are (X+2) . parameters per mode, or a total of nm(4+2) para-

meters to be estimated.

The evaluation of the Fisher information matrix in equation (10)

requires the computation of

Since the parameters to be identified appear explicitly in the

continuous model, it is more convenient to first write the continuous

equations for the sensitivity states (8q
i
/8p), and then to discretize them.

The sensitivity state equations are (from Eq.10 :

4
f
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d2 aqi + 2 p . W. d	 a

	

d2  p. 
}	 i i 

at 
q i + OR a qi + 2 wiQ i - 0	 (14)	 Y

	

i!	 TF.	 (Tp-i

d2 aqi)+ 2 p . w. d (3qi)+  w?	 aq i + 2piiq	 2w. q - 0	 (15)

	

dt 2 ( aw. /	 1 1 dt ^	 1 ( dTi . )	 + i i

	

i	 1	 i

If rate gyros are used for rate measurements,

y -Em  . 
4.
	 (16)

X i i

where ^.i is the X x 1 mode-slope matrix for the ith mode. ( There would

be three y vectors corresponding to each axis; only one is given here to

retain simplicity ) . ay/Bp., ay/aw,, ay/a¢.. (j-1,2,..,X) can be obtained

from (14) (15) and (16). The evaluation of ay/ ap then requires the

discretization of the coupled continuous differential equations (11), (14)

and (15), which represents a sixth-order system (for each mode). Therefore

the total order of the system is 6nm. However, since the equations for each

mode are not coupled with the other modes, discretization for each mode can

be carried out separately.

The sampling period is next selected, so that the sampling frequency is

higher than the Nyquist frequency based on the highest mode estimated. The

estimation time (N in Eq. 10) is determined so that the final time is at

least equal to the largest MW (i.e., the longest decay time). Nonzero

initial conditions are created by aaplying torques through the torquers

(e.g. on the mast of the hoop/column antenna). The applied torques could

consist of sine waves, or pulses, etc. The torques are turned off after the

modes are sufficiently excited (as indicated by the deflections), and Fisher

information matrix J is computed as the unforced motion continues. The

Cramer-Rao standard deviations for each parameter are then the square roots

of the appropriate diagonal elements of J-1.

CONCLJDINC REMARKS

In order to investigate the ar,curacy with which LSS parameters can be

identified, expressions were derived for obtaining the Cramer-Rao bounds. A

computer program has been written to compute the bounds, and is presently

being used to investigate the identifiability of the parameters of the 122m

hoop/column antenna. The results will be reported in a future report.
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