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SUMMARY

The Tracking and Data Relay Satellite (TDRS) System (TDRSS), a major National Aeronautics
and Space Administration program, will become operational with the launch of the first TDRS in
1983, This program caused major changes in spacecraft operations, User satellite antenna system
performance is very crucial for achieving reliable TDRSS link performance at the desired data
rate, This Technical Memorandum c¢ontains guidelines that will assist the TDRSS user in selecting
and procuring the correct high-gain antenna system,
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PERFORMANCE INTERFACE DOCUMENT
FOR
USERS OF TRACKING AND DATA RELAY SATELLITE SYSTEM (TDRSS)
ELECTROMECHANICALLY STEERED ANTENNA SYSTEMS (EMSAS)

INTRODUCTION

HISTORICAL BACKGROUND

The success of all space missions has been based on the ability to gather data in space and return
that data to Earth-based investigators, The National Aeronautics and Space Administration (NASA)
tracking and data acquisition stations, located in various parts of the Earth, underwent three
distinct evolutions, These were as follows:

® Space Tracking and Data Acquisition Network (STADAN)~STADAN, completed in 1958,
was used for tracking unmanned spacecraft in Earth orbits from ground facilities that used
sensitive receivers and powerful transmitters,

® Manned Space Flight Network (MSFN)—During the Mercury, Gemini, and Apollo
programs of the early 1960’s, MSFN was used to provide two-way contact between the
ground, the sea, and space for the astronauts,

® Deep Space Network (DSN)—Implemented in the early 1960’s, DSN usod paraholic dish
antennas in three stations located approximately 120° of longitude apart, tn support
NASA lunar and planetary missions, DSN is still operational and continues to support
planetary missions under Jet Propulsion Laboratory (JPL) management,

The Spaceflight Tracking and Data Network (STDN), operational from May 1971 to the era of the
Tracking and Data Relay Satellite (TDRS) System (TDRSS) Network, is a combination of the
STADAN and the MSFN,

The Ground Space Tracking and Data Network (GSTDN) is composed of 14 fixed and portable
land-based stations that serve as direct support to NASA’s Earth-orbiting scientific and applications
spacecraft and manned spaceflight programs such as the Space Shuttle, Network operation and
control and the associated central computing facility for operation and analysis are located at
Goddard Space Flight Center (GSFC).

The STDN’s most significant disadvantage is that the antennas are bound to the Earth’s surface
which creates a limited field of view (FOV). This limited FOV is caused by the antenna which
usefully transmits and receives signals only when a spacecraft is in view. Therefore, the average
coverage a spacecraft may expect to receive from the tracking stations is limited to approximately
15 percent of its orbit.

The TDRSS Network will become part of the new STDN on operational acceptance and will substi-
tute the space segment and one ground station for many of the ground stations within the STDN,
Some of the ground stations such as Bermuda and Merritt Island remain in operation for launch
support.
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TDRSS NETWORK

It was recognized that the GSTDN’s limitations could be removed through a new network that used
ssostationary satellites rather than ground stations for tracking and communicating with user
spacecraft, This network could provide coverage for almost the entire orbital period of a user
spacecraft, support a number of spacecraft simultaneously, and have a high assurance of availability.
Several NASA studies showed that this network was feasible by using state-of-the-art technology
developed in the middle to late 1970’s and by using the ATS-6 and the Nimbus-6 spacecraft as
demonstration models, This research led to the development of the TDRSS Network.

The impact on the user spacecraft is the requirement for increased effective isotropic radiated
power (EIRP), higher-gain antennas, higher power transmitters, and more sensitive receivers,

TDRSS NETWORK CAPABILITIES

The TDRSS Network consists of the TDRSS and a series of associated ground-based organizations.
The Network Control Center (NCC), located at GSFC, manages the entire TDRSS Network. The
NCC is lin ~ed with the NASA Ground Terminal (NGT) and collocates and interfaces with the
TDRSS White Sands Ground Terminal (WSGT), Communications between the NGT, the NCC, and
the users are through the NASA Communications Network (NASCOM), headquartered at GSFC.
Other elements of the TDRSS Network include certain Earth stations that are needed during the
launch and transfer orbit phases of user spacecraft. GSFC is responsible for developing, operating,
and managing the TDRSS Network,

The TDRSS Network provides adequate performance margins, operational flexibility, and high
reliability for supporting projected Space Shuttle payloads and free-flying spacecraft during the
1980’s, Signal processing is not performed on board the TDRS. The satellite acts as a bent-pipe
repeater that relays signals or data between the user spacecraft and the ground terminal, The space
segment is simply designed and highly reliable. The TDRSS Network has three primary capabilities:

® Tracking—The TDRSS network determines the precise location of orbiting user spacecraft
by measuring range (distance) and range rate (velocity) with respect to the TDRS’s.

e Telemetry and Data--Each user spacecraft transmits telemetry signals that indicate certain
operational parameters (e.g., power level and temperature). The spacecraft also transmits
data signals that correspond to the scientific or applications information collected by the
spacecraft instruments. The telemetry and data signals are relayed by the TDRS’s from the
user spacecraft to the WSGT for ultimate use by GSFC and the user community,

® Command~The WSGT, which sends command signals through the TDRS’s to user space-
craft, orders the spacecraft to perform certain functions such as aim a camera and fire
a thruster. The commands are originated by GSFC or Johnson Space Center (JSC) for
unmanned or manned spacecraft, respectively,




To relay large amounts of scientific data from the Space Shuttle or investigatory spacecraft the
Network provides:

e Simultaneous service to mul iple spacecraft and support for the scientific user community

® Accurate orbit determination for placement and position of user spacecraft, including
determination of the range (distance of the user spacecraft from the relay satellite and
ultimately from the ground terminal) and the range rate (velocity at which the user space-
craft is moving),

e Single-access service or multiple-access service, offering options to user spacecraft for radio
frequencies (RF’s), bandwidths, and rates of data transmission between the spacecraft and
the TDRS’s,

e Forward-link service provides an uplink from the WSGT to the TDRS and a downlink to the
user spacecraft for commands, These links pass through either the multiple-access S-band
RF or the single-access S- and Ku-band RF’s.

e Return-link service provides an uplink from the user spacecraft to the TDRS and a downlink
to the WSGT for telemetry and data, Up to 20 links are available on the multiple-access
RF,

® Pseudorandom noise (PN) coding applies to all data streams for transmission and some
reception, PN coding, which is primarily used for meeting Earth flux density regulations,
provides some security from interception and protection against additive noise disturb-
ances, For example, telemetry data generated by the user spacecraft are transmitted in a
data stream with PN coding to the TDRS at S-band RF, The TDRS transmits these data to
the WSGT through the Ku-band return link, When the data reach the ground station, an
algorithm (i.e., a mathematical procedure) is applied to decode the data, The data are then
sent to the user by Nascom.

TDRS OPERATIONS

The TDRS’s ope:ate from geostationary orbits. Using the satellites for tracking and data transfer
allows for a greater FOV. To achieve cost savings by using only one ground station and two relay
satellites, it is necessary to locate the satellites at certain fixed positions relative to the ground
station, This configuration, however, has an undesired result: the Earth blocks either relay satel-
lite from viewing the user spacecraft for a portion of the spacecraft’s orbit. This blockage, which
specifically applies to user spacecraft with orbital heights of less than 1200 km, may extend to

15 percent of the orbit. The blockage occurs over the Indian Ocean and is termed the “Zone of
Exclusion” (ZOE). A spacecraft that orbits above 1200 km receives 100-percent coverage from
the TDRSS Network,

The TDRSS Network provides bent-pipe communications links from user spacecraft to relay satel-
lite to ground station and vice versa, This state-of-the-art telecommunications service is based on

a successful experiment that involved the Applicat’ons Technology Satellite 6 (ATS-6) and the
Nimbus-6 spccecraft during the mid 1970%s. The ATS-6’s Tracking and Data Relay Experiment
demonstrated that the Earth-orbiting Nimbus-6 could be commanded from a ground station by the
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ATS-6 Earth-synchronous satellite. Data generated on board the Nimbus-6 were sent back to the
ATS-6 and were relayed by the ATS-6 to the ground, In addition, the range and rang:-rate mea-
surements of the Nimbus-6 through the ATS-6 determined the relative distance and velocity of the
two spacecraft, These measurements were then compared with similar direct measurements made
by the ground station,

PERFORMANCE CONSIDERATIONS

IMPACTS OF ANTENNA SYSTEM PERFORMANCE ON ACHIEVABLE DATA RATE

To achieve reliable TDRSS link performance at the desired data rate depends on how well a User
Satellite (Usat) antenna system performs, Users employing TDRSS S-band or Ku-band return-
link service at medium-to-high data rates usually will requirs a high-gain antenna (HHGA). A steer-
able system is necessary because of the narrow beamwidths associated with high RF gain, The
primary antenna system used for meeting this need is the electromechanically steerable (gimballed)
antenna (EMSA).

Antenna system performance is principally directed towards TDRSS return-link service performance
because the resulting RZ- gain values required for return-link medium-to-high data rate service are
far greater than the gain needed for supporting the required command data rates in forward-link
service, Figure 1 shows an example of user antenna gain requirements versus link-data rates for

the various TDRSS forward-link services,

TRADEOFFS BETWEEN ANTENNA GAIN AND TRANSMITTER POWER

Usat antenna system performance for the TDRSS return-link services is a key factor for maintaining
and pointing the necessary EIRP toward a TDRS for achieving the desired data rate at an acceptable
bit error rate (BER) under dynamic tracking conditions, The EIRP is the sum (in dB) of the
antenna RF gain, G, and the transmitter power, P, available at the antenna input port (transmitter
power less RF transmission line and rotary joint losses). After the required EIRP has been estimated
by the methods described in the section on *Relating Required Antenna Gain and Transmitter
Power to Achievable Data Rate,” there is an important tradeoff between transmitter power and
antenna gain. This tradeoff process causes numerous effects such as:

® Impact on prime power requirements

® Weight and moment impacts

® Impact on gimbal steering angles

® Tradeoff between locating the transmitter power amplifier (PA) and its associated compo-
nents on the movable portion of the antenna system to minimize RF line and rotary joint
losses—at the expense of increased moment~or locating the PA at some fixed location

away from the antenna assembly, necessitating a cable wrap for bypassing the gimbals

® Antenna minor lobe performance and transmitter power impact on power flux density
limits

B e T e b SuL AT SRy
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e Statc-of-the-art limitations on achievable transmitter power output with high reliability

The highest available nominal power output of the NASA GSTDN/TDRSS transponder, which
operates at S-band, is S W (7 dBW). At present, solid-state S-band PA’s which may be interposed
between the transponder and the antenna, are in the final stages of advanced development at GSFC,
These amplifiers have nominal 10 W (10 dBW), 20 W (13 dBW), and 30 W (14.8 dBW) outputs.

The PA’s can be packaged in a variety of configurations that include a low-noise reseiver preampli-
fier and a diplexer. These configurations, referred to as RF Performance Improvement Packages
(RFPIP’), are small, ligit-weight units of high efficiency.

The maximum RF power output currently achievable at Ku-Band is 20 W (13 dBW) using travelling
wave tube (TWT) amplifiers of proven high reliability, and 5 to 8 W (7 to 9 dBW) using solid-state
power amplifiers which may prove to be highly reliable. Solid-state power amplifiers with 20 W
output are projected for the late 1980’s. Solid-state power amplifiers are easier to implement than
TWT amplifiers at the antenna input port location because of their lighter weigl:!, smaller volume,
and less sophisticated power supply requirements. A frequency upconverter is required between the
S-band output of the NASA GSTDN/TDRSS transponder and the Ku-band PA for Ku-band operation.

RELATING REQUIRED ANTENNA GAIN AND TRANSMITTER POWER TO ACHIEVABLE
DATA RATE

User operations with TDRSS are detailed in the “Tracking and Data Relay Satellite System (TDRSS)
Users’ Guide,” STDN 101.2, hereafter referred to as the “Users’ Guide.” The Users’ Guide contains
the methods used for determining the user EIRP required to achieve the desired data rate for the
return-link services, The Users’ Guide also includes an example of a return-link calculation that
provides a convenient checklist of all the loss items that usualiy need to be considered.

Figure 2 shows the range of parabolic-dish and array antenna sizes that are necessary to accommo-
date TDRSS S-band and Ku-band return-link services. In addition, the figure uses the state-of-the-
art transmitter power ratings described in the section on “Tradeoffs Between Antenna Gain and
Transmitter Power,” and the antenna-size gain relationship discussed in the scction on, “Antenna
System RF Performance.”

The antenna diameters range from 0.7 to over 2,0 m with S-band gain values in the 20- to 36-dB
range and Ku-band gain values ranging from 24 to 49 dB. The curves of data rate versus EIRP are
derived from Table 3-6 of the Users’ Guicdie which has been appropriately corrected for the particu-
lar user unique congstraint parameters used as an example in this figure, These curves can be altered
so that a user can match his unique constraints, The figure also indicates the points on the curves
corresponding to the axis*ing flight-qualified tape recorder playback rate of 2.56 Mbps, the 20 Mbps
playback rate of recordesz currently being developed, and the 150 Mbups of recorders playback rate
that are planned for development,

In addition, Figure 2 shows the remarkable reduction in S-band dish size that can be achieved by
using the advanced technology currently under development (i.e., high power PA’s that can be
located at the antenna input port). For example, at 3 Mbps the dish diameter is reduced from 2.7 m
using a conventional NASA GSTDN/TDRSS 5-W transponder connected to the antenna with a 10-ft
RF transmission line, to 0.75 m using a 20-W PA located directly at the antenna input port. The
antenna weight/moment/cost advantage is obvious.
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ANTENNA SYSTEM RF PERFORMANCE
Antenna Size and Gain Consideration

Antenna gain, G, for a parabolic-reflector (dish) antenna is given as

lOlog[: Dj

referenced to an isotropic radiator (a hypothetical radiator with unity gain (0 dB) that radiates
equal powers over 4r steradians) where D is the diameter in the same units as the operating wave-
length, A, and 7 is the efficiency that accounts for the feed system illumination taper and spillover
of energy past the dish and feed components.

Although the user is not limited to using a dish antenna for a mechanically steered system, this
antenna has proved very practical for the range of gain required. Space-qualified hardware has been
supplied for existing missions, but, a planar array could be used as an alternative. Planar arrays,
which typically have an efficiency of 10 to 20 percent greater than a dish antenna for the same
physical aperture size, have the potential for a size, weight, and shortened moment from gimbal
axes advantage. This advantage, however, may be offset by a small reduction in steering angle
caused by physical shape,

The minimum dish size (thus the Jowest available gain) is limited at S-band by geometric optics
considerations. The maximum dish size is determined by the 60 dBW EIRP limitation into TDRS
and the transmit power used at Ku-band.

Considering the minimum dish size, the D/X ratio can be reduced to about 6 by using a design

that ensurss reasonable efficiency. As the D/X ratio is further reduced, the efficiency rapidly
decreases with a corresponding rapid rise in minor-lobe levels that could possibly impact power flux
density limitations, See the section on “Minor Lobe Performance.” (n versus D/ is approximated
by the empirical formula shown in Figure 2.)

Referring to the return link example of Figure 2, a2 0.88-m diameter would be required (G =21.1 dB,
D/A = 5.75, and n = 0.3%95) for the maximum S-band single access (SSA) 3.15 Mbps, DG-2 return-
link data rate with 20-W power. With 30-W power, a 0.77-m diameter would be required (G = 22.9
dB, D/A-6.61, and n = 0.45). At Ku-band in this example the larger of these two antennas with
20-W power would just be able to handle the maximum available 150-bps rate for 1/2 rate coded
Ku-band single access (KSA) DG-2 service (n = 0.62). In reference to the example parameters
chosen, the maximum unccded KSA DG-2 300-Mbps rate could not be achieved without exceeding
the 60-dBW EIRP allowed toward TDRS. The maximum rate for 60-dBW EIRP would be 200 Mbps
and would require a 1.81-m dish (G = 47.0 dB, D/X\ = 90.6, and 1 = 0.62) unless the user was willing
to reduce his margin M from 3 to 1.2 dB to achieve the 300 Mbps maximum. Because this antenna
is fairly large, the user may choose a planar array with a 10 to 20 percent higher efficiency. Assum-
ing a 15 percent higher efficiency, the required physical aperture area would be 2.24 m? with a 1-
by 2.25-m flat array. Many large antennas of this type have been built and qualified (e.g., the
synthetic aperture radar antenna flown on the second Shuttle mission) with the radiator elements,
RF transmission lines, and matching networks etched into the supporting substrate.
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Antenna Beamwidth Considerations

The antenna half-power (3 dB) beamwidth (HPBW) is approximately related to the gain, G (numeric),
by

h

412537
HPBW =

W[G]

Probably TDRSS should be autotracked for a user antenna having a HPBW 1° or less because of
user and TDRS ephemerides and timing accuracy limitations. Even with a larger HPBW (smaller
diameter), the user may want to autotrack because the magnitude of ground software support
required for command pointing may be unpalitable or signal level changes induced by nonprecise
pointing and tracking may cause errors in the TDRSS autotrack system, A 1° HPBW, based on a
62-percent efficiency, is characteristic of antennas having a gain of 44 dB and a diameter of 1,3 m
at Ku-band (15 GHz).

HPBW and beam-nose shape are included in the estimation of user pointing loss. A parabolic approx-
imation to the true main-beam shape is sufficiently accurate to estimate the pointing loss from the
mechanical pointing error budget. Once the HPBW is estimated or measured, the pointing loss is
related to the mechanical pointing error by

Pointing loss in ¢B = 3.00 | 2 (pointing error in degrees)|’
° HPBW

Polarization Considerations

Circular polarization is always used. The polarization sense may be either left-hand circular polari-
zation (LHCP) or right-hand circular polarization (RHCP) depending on the TDRSS application.

The maximum polarization axial ratio (AR) must be specified (usually over the HPBW angle)
because polarization loss enters into the link performance calculations. Figure 3 shows the polariza-
tion coupling loss as a function of user AR for both 5SA and KSA services. Sometimes, the polari-
zation sense may be deliberately chosen to minimize interference to other users. Figure 3 indicates
the minimum achievable isolation between two antennas that have oppositely sensed polarizations.
Both sets of curves assume a maximum AR of 1.5 and 1.0 dB at S-band and TDRSS Ku-band for
the TDRS antennas, respectively. Surprisingly, little same sense coupling loss occurs with a rela-
tively poor user AR. When isolation from the user signals is required by using the opposite sense,
however, the achievable isolation is a very sensitive function of the user AR.

Minor-Lobe Performance

The power flux density at the Earth’s surface from space segment emitters in the frequency bands
shared by terrestrial systems is liraited by international agreement. Both the TDRSS SSA and KSA
frequency bands fall into this category. Figure 4 shows the EIRP limitations for both bands as a
function of satellite orbital height, elevation, and off-nadir angles.
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Figure 3, User/TDRS Elliptical Polarization Isolation and Coupling Losses

The user’s main beam is never pointed toward the Earth’s surface during routine service, Antenna
sidelobe and back-lobe performance and transmitted power are the determining factors. The curves
of Figure 4 are based on a uniformly spread signal by the PN code. EIRP in this figure is trans-
mitter power plus side-lobe gain (total of all polarizations) referred to an isotropic antenna in
dB. Because density limitations are expressed in terms of the maximum occurring in any 4-kHz
band, uncoded high data-rate user signal emission spectra must be examined in detail to ensure
compliance.

Figure 5 shows how minor-lobe maxima are generally distributed. Two types of feed arrange-
ments, front feed and Cassegrain (double reflecting), are commonly used. Dual-frequency antennas
(i.e., antennas serving S-band and Ku-band simultaneously) usually apply one feed type at S-band
and the other feed type at Ku-band with special treatment of the subreflector to reduce blockage
for the front-feed frequency. These antennas can operate at lower efficiencies because of increased
blockage by the feed components and supports, and can produce higher than normal spurious
side lobes and back lobes by reradiation from these structures. The side lobes near the main beam
show a rapid drop in level as the angle from boresight increases. Feed spillover to the rear part of
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Figure 5. Generalized Antenna Lobe Structure for Antennas of Large D/A

the main dish tends to be greater when using a front feed instead of a Cassegrain, Primary feed spill-
over past the subreflector in a forward direction is characteristic of the Cassegrain arrangment.
Both feed systems, however, have very broad cross-polarization lobes that occur about 60° from
boresight because of main reflector curvature. Control of these elements is necessary in the design
to ensure that off-boresight radiation toward the Earth is maintained at a value that satisfies the

power flux density limitations.

In addition, Figure 5 shows how the side lobes and back lobes are distributed, The first side lobes
adjacent to the main beam are generally of the greatest amplitude and lie between 17 and 35 dB

below the main beam depending on the shape of the illumination taper. Because the first few
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side lobes of the higher-gain antenna are quite close to the main beam, the Earth would not be
illuminated during routine TDRSS service. At larger angles from the main beam but still in a
relatively forward direction, the side lobes are usually at the isotropic level (0-dB gain), Lower
levels can be expected in the rear region whese the feed components are “out of sight,” Directly
to the rear, the level may rise appreciably because of the ring of illumination around the dish
periphery, The level expected in this region is a function of illumination taper and is generally
lower with a Cassegrain feed than with a front feed, In addition, the oppositely sensed polarization
in this region is often the stronger component,

Usually arrays have nearly uniform amplitude side lobes in the 25 to 35 dB range decaying as the
cosine of the angle off-beam maximum,

For small parabolic reflector antennas with a D/ less than 10, side-lobe and back-lobe control may
be difficult, Therefore, the user should carefully watch the high PA power/low antenna gain com-
bination, especially at S-band, Furthermore, the close-in side lobes may illuminate the Earth during
routine service,

Note that the power flux density restrictions at the Earth’s surface do not respect polarization, so
minor lobe levels should be specified in terms of all polarization components because these exhibit
strong cross-polarization components.

Input Impedance and VSWR Consideration

The RF impedance of the antenna input port should be matched carefully to the power source,
Usually, the connection between the power amplifier and the antenna is by a coaxial cable at
S-band and by either a coaxial cable or waveguide at Ku-band, RF rotary joints may be used,
Impedance mismatch is indicated by a voltage standing wave ratio (VSWR) greater than unity.

A VSWR that is not greater than 1.5 should be satisfactory. The VSWR must be specified over the
operating bandwidth, and care taken to ensure that the VSWR curve over the operating bandwidth
versus frequency is smoothly varying function so that with the rest of the RF system the overall
gain slopes are small enough to meet the Users’ Guide constraint limits for amplitude modulation/
phase modulation (AM/PM) conversion, differential gain, and allied signal characteristics.

GIMBAL DRIVES

To ensure reliable, long lifetime gimbal drives, the following two approaches have been successfully
used for space antenina systems;

® Direct drive (no gearing), brushiess dc torque motor
® Harmonic drive gear reduction, stepper motor

Bearings and Lubricants

Ball bearings are the choice for low friction and long lifetime. Bearings are sized to survive the
launch vibration environment with a maximum Hertzian stress of 350,000 psi. Usually, thin race
(torque tube) geometry is preferred to maximize the number of load-sharing balis and to minimize
weight, Material is 440C stainless steel,
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Bearings and harmonic drives are lubricated with either of two proven low-vapor pressure oils—a
synthetic fluorocarbon oil (i.e., Krytox) or a highly refined mineral oil (i.e., Apeizon C KG-80).
The lubricant is vacuum impregnated into sythane ball separators,

To provide adequate angular repeatability bearing fits and preload provisions must be carefully
considered and constraints and loads caused by thermal changes and gradients minimized, The
general rule is to use the lightest preload and to minimize constraints to the extent allowable,

Shaft Angle Sensors

Gimbals angles must be accurately measured for feedback and telemetry for both open and closed
loop tracking systems. Angle sensors should be noncontacting for long, trouble free lifetimes,
Either optical or inductive approaches are suitable.

Torque Margin

Although normal gimbal friction torques are very low, a substantial torque margin should be de-
signed for the drive motors because reserve torque is often the difference between success and
failure when unexpected loads are encountered (i.e., uncaging, thermal control problems, or bearing
deterioration). Although an optimum margin cannot be stated, a capability of three times the worst
predictzd load at end of lifetime is the minimum.

Gimbal Pointing Performance

The following maximum gimbal pointing errors can be expected;

(1) Response to a commanded angle (3 Z error, degrees)

Absolute Repeatability
Boom £0.2 10.1
Gimbal £0.1 £0.1
Total +0.2 +0.14

(2) Closed loop tracking
® Accuracy determined by error signal characteristics
e Follow-up within +0.01° is typical
DEPLOYABLE MASTS/BOOMS
Deployable masts and booms for antenna systems are considered as nearly mission-unique items.

Basic masts and booms have been space qualified; however, size, hinge points, attachment points,
and caging are expected to vary according to spacecraft structure and antenna system location.



Fomtar- o

IMPLEMENTATION
GENERAL

EMSA'’s consist of a variety of configurations that include a fan-beam antenna and one gimbal, a
reflector, and an array-type pencil beam antenna with two or more gimbals (usually two), The most
common gimbal combinations are crossed axes (X-Y arrangement) or axes intersecting in a “tee”
arrangement (elevation over azimuth). The gimbals are attached to a deployable beam or mast that
is accurately deployed in relation to the spacecraft during postlaunch operations. Associated elec-
tronic packages that drive the gimbals and interface with the spacecraft are in the spacecraft body.
To keep antenna sizes to a minimum, RF packages may be located at or near the antenna, See the
section on “Performance Considerations” for the RF performance and gimballed drives. The elec-
tronics subsystem’s three principal functions are:

® To develop the drive power s¢ that the gimbals point to the antenna

® To process gimbal position/desired pointing direction errors

® To interface the command and telemetry signals to the spacecraft
There are three principal approaches to steering an antenna:

® The antenna is command pointed by data generated on board, on the ground, or a combi-
nation of both

® The antenna is program-tracked by an onboard antenna processor that calculates where the
antenna should point at regular intervals

® The antenna autotracks on an RF signal received from the data relay satellite that produces
an error signal continually processed to point the antenna at the data relay satellite

Combinations of these three basic methods can also be implemented.

A number of flight-worthy antenna systems and subsystems have been developed. Appendixes A
through H contain data on these systems. Only minor design modifications are believed necessary
for meeting the requirements of most future missions. Antenna and RF component sizes and
location, however, can be expected to vary when configuring future spacecraft that may require
thermal, structural, control and dynamic modelling, program modes, and redundancy philosophy.
In addition, location and deployment/attachment would cause minor changes to the basic existing
dasigns,

Requirements that would cause dramatically new designs are not foreseen. Two possible economi-

cal designs that may evolve into flight-capable hardware are a low-torque noise-limited scan angle
antenna system and a cost-effective autotrack antenna system.
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LOCATION/COORDINATES/ALIGNMENT/SWEPT VOLUME

Selecting a location for the antenna system is a major activity during the early phases of a spacecraft
project, Usually, the antenna must be deployed away from the spacecraft body, because the
antenna's size could be 0.5 to 9 ft across with a typical swept volume of 0,1 to 300 ft* for conven-
tional gimbaled antennas, This type of location would ensure that physical interference with parts
or appendages of the spacecraft would not occur. Furthermore, the antenna’s beam should never be
directed toward parts of the spacecraft (degradation of RF performance would occur or possible
degradation of the part),

Because swept volume is usually greater than a hemisphere, the location shoul-{ be on the side of the
spacecraft that views either or both of the data relay satellites, Data relay sate.lite access time for
these desired locations should be established in early planning phases to ensure adequate contact
time and to ensure that onboard communications and data-handling subsystems are not seriously
impacted and are of a practical design,

Once the location is defined, both the antenna coordinates relative to the spacecraft and the
accuracies of alignment of these sets of coordinates must be defined. Stiffness and accuracy
requirements of the deployment boom or mast must be determined so that alignment errors can be
found and controlled and torque and momentum perturbations induced back into the spacecraft are
limited and definable, The usual method for determining these alignment errors and perturbations
is by controlling manufacturing tolerances, by using optical cubes (i.e., antenna and spacecraft), and
by testing the total antenna systems in a zero-g test facility that is capable of measuring both
amplitude and frequency components of the perturbations generated, and modal frequencies of the
support structure, At present, this facility does not exist, however the concept will be demon-
strated in fiscal year 1983.)

OPERATION

To meet launch environmental and safety requirements the usual antenna configuration that evolves
from the mission gain, contact time, and location requirements must be caged to the spacecraft
body during launch operations. Once the spacecraft is at or near final orbit and attitude be-
comes stabilized, the antenna is uncaged, deployed from the spacecraft, operationally validated,

and routinely operated to meet mission data acquisition requirements. The caging points and design
are expected to be unique, but the holding and release methods will have to be proved.

LIFE

The antenna system is designed to reliably operate, assuming that a 50-percent duty cycle (““‘on/off’)
of continuous operation during the lifetime of the space mission and its test and storage periods
before launch. A design margin of two or more lifetimes is used to ensure that this critical system
operates,

SINGLE-POINT FAILURES

Single-point failures are minimized in accordance with good spacecraft design practices. Redundant
components of a EMSAS consist of electronics packages, motors, position sensors, and duplex
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bearings. Nonredundant components consist of the deployable boom or masts, the actual antenna,
and a separate pair of gimbals, Should these nonredundant components become redundant, a
completely separate EMSAS with electronic cross strapping is the best approach because of cos: ~nd
complexity.

TEST REGUIREMENTS
Tests are performed to ensure the following:
® Adequacy of the functional performance requirements
® Capability to withstand environmental conditions
® Life expectancy
® Unit performance during pre- and post-integration and prelaunch activities

The project will determine the amount of testing for the antenna system and its components and
the extent of modifying or designing additions to the antenna system. To define the extent of
required testing, previous testing and test levels should be compared. It should be emphasized that
if this system does not function the mission will probably fail.

Testing that can be performed after integration onto a spacecraft is limited to operability not capa-
bility. Some operability testing require special tools that allow for positioning the antenna as if it
were in space (e.g., location, alignment, and steering). Ground-test equipment should be modified
or designed for simulating the specific spacecraft interface level, acceptance testing and for monitor-
ing and supporting the system spacecraft level testing.

HANDLING AND STORAGE

Every antenna system should have handling and storage tools and containers. Tht antennas, which
will be large and fragile, require a container that can be safely handled by one or more persons. The
complete antenna system, for this same reason, will not be installed onto the spacecraft except for
special tests and prelaunch assembly. This storage container would have multiple purposes such as
handling, storage, and shipping,.

INTERFACES
MECHANICAL

All EMSAS’s will require some means of attaching and positioning the gimbals and antenna to the
spacecraft body while the spacecraft is in orbit and during space transportation system (STS) pay-
load launch operations. Booms/masts, cages, latches, and other mechanisms and devices may be
used. The EMSAS could include these items if a simple attachment location could be defined on
the spacecraft body at an early period, the attachment/deployment subsystem could be coordinated
between the designers and manufacturers of the spacecraft and the EMSAS, and the attachment/
deployment subsystem could remain the spacecraft manufacturer’s responsibility, Variations of
existing designs would be adequate for meeting the uniqueness of the mission,
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Because the release and positioning of the EMSAS's are critical to the mission, relevant items must
be carefully designed and extensively tested, Alignment measurements of the operational position
of the gimbals and antenna must be completed to remove fixed, accumulated assembly and inte-
gration errors if programmed track-type antenna control is used.

The alignment between the gimbals, gimbal interfaces, and spacecraft support structures simply
requires locating the holes and alignment pins in the mating surfaces to ensure minimum tolerance
buildup and misalignments with respect to the spacecraft,

The entire assembly should be attached to rigid and fixed structural members of the spacecraft
to ensure that minimal pointing errors and unknown modes are set up by steering or slewing the
antenna,

THERMAL

Thermal designs of existing antennas and gimbals that are now in orbit or planned to be are prob-
ably adequate for most other missions, Each mission should have these designs validated to ensure
that the components remain within operational temperature limits and that distortion of antenrnia
masts does not cause the antenna to point outside the allowable pointing errors.

The antenna system is thermally isolated from the spacecraft to the maximum extent possible. The
complex thermal model of the antenna system is simplified to include only a few nodes for incor-
porating into the entire spacecraft thermal model,

ELECTRICAL

The electrical interfacing of the EMSAS connectors, power, grounding, command and data handling,
and timing are considered of only usual concern to ensure that they are compatible with the total
spacecraft, Modifications and additions of electronics and thermal controls to current designs are a
minor effort as compared with the total effort of building and testing an entire EMSAS.

The EMSAS should have an antenna control processor to ensure that it can be completely tested as
a spacecraft subsystem to minimize integration complexities,

Ground-support equipment should emulate spacecraft electrical (nonRF) interfaces and monitor
spacecraft engineering-type data during testing and integration stages.

Two RF interfaces that should be considered are: the microwave signal interface with onboard
microwave components by RF transmission lines that require compatible connectors and the effects
of scattering or reflections from spacecraft structure and appendages.

TORQUE DISTURBANCE

The 1 :iion of the EMSAS antenna dish with the mast deployed will result in torque disturbances
on e spacecraft that interface with jitter-sensitive scientific instruments. In addition, this motion
may cause a degradation in pointing accuracies of controlled systems, For exampie, a simplified
mathematical model indicates that a step input to the antenna position is seen by the control
system as a disturbance with amplitude at least 27 percent greater than actual input. The problem
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is further compounded by antenna motion which can excite modal frequencics in the antenna
support structure and in the spacecraft, Figure 6, which is constructed from the solar maximum
mission (SMM) data, shows the ratio or “'gain” in single axis spacecraft angular motion caused by
antenna “jitter” (i.e,, small amplitude angular motion) at various frequencies from 0.1 to 10
rad/sec. (For example, the antenna jitter of SMM is estimated from 0.8 to 1./ arc-sec i ampYtude.)
Should the frequency of this jitter be very near or equal to cither the frequency of the flexible
appendage or the antenna support structure, a resonant condition would exist and the spacecraft
would experience a jitter gain factor of 2,5 (flexible appendage) to 4,25 (antenna support). For
some spacecraft such as Space Telescope this jitter would degrade pointing accuracy to unaccep-
table values,
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Figure 6. Gain in Single Axis Spacecraft Angular Motion Caused by Antenna Jitter

The problem of torque noise or jitter is impossible to eliminate, however, if the modal frequesicies
of the antenna support mast and the spacecraft can be determined, control compensation techniques
can be used to diminish the response at these frequencies.

Spacecraft modal frequencies are difficult to predetermine except by an involved computer simu-
lation. The antenna and antenna support structure can be physically tested to determine the modal
frequency ccatent and to determine the characteristics and effectiveness of control compensation,
To perform these tests it is neccssary to construct a test facility, the “Zero Gravity Test Facility”
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in which the force of gravity can be unloaded as much as possible. (Report of “Proof of Concept,”
will be completed in August 1983,)
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APPENDIXES Y

The appendixes show that users requiring a high-gain antenna system do not have to support a sig-
nificant development program. In recent years, functional flight components and systems have |
been developed that need only minor modifications to meet the uniqueness of a mission, |

Letters were sent to the following representative industrial organizations (copy of letter, Appendix
I) requesting data about representative flight components of electromechanically steered antenna
systems. The list was compiled in the order of receipt of information when the information con-
tained data of flight-proven designs:

Appendix Organization Type of Response
A Sperry Flight Systems Letter, information
B General Electric Brochure

Valley Forge Space Center
c ASTRO Research Corporation Letter, information

D Ball Letter, information
Aerospace Systems Division

E Harris Corporation Letter, information
GESD
F Hughes Aircraft Company Phone (no information available)

Space & Communications Group

G Fairchild Space and Electronics Letter, development information |
Company (FSEC) |
H TRW Incorporated None
Space Technology Group
I Letter of Solicitation ———

Each appendix does not include all the eiectromechnical flight hardware designs of the source
company, but it does show that they have an interest in supplying future needs. A “no response”
cannot be interpreted as no future interest in supplying flight components, however, it can be
assumed that the source company was not interested in contributing to this document.
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'High-Gain Antenn
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-

HGAS Gimbals % \

The Sperry Flight Systems
High-Gain Antenna System J
(HGAS) has been developed and
space qualified for spacecraft
requinng a communications link
with the Tracking and Data Relay
SatelV e System (TDRSS) Itis
<9 _able of transmitting and re
ceiving in both the S and Ku bands
with a pointing accuracy of 64
degrees. The modular design
allows for many different mission
unique configurations; the gimbal
drive and electronics may be
adapted 1o various payloads
including antennas, platforms
and solar panels

~

> t

+ Solar Maximum Mission (High
Gain Antenna System)

« Space Telescope (gimbal drive
and electronics)

* High accuracy
* Low friction

A-]

a Systems

Shuttle launch compatibility
Mirimal disturbance to
spacecraft

Redundant pointing electronics

Excess of 10-year life test for
low earth orbit pointing
Proven thermal control for ex
ternal operation
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- Polnting Asowreesy -+ Pointing accuracy within 0.64 degree; fixed geomelr*s errors and variable error

sources combined, Accuracy within 0.30 degree could be achieved.

- JPerturhationate ¢ Reactiontorqueislessthan3.0 x 10 ?N-Mpeakspike, 1.3 seconds between
Spacsersit

pulses,

+ Reactiontorquelmpuiseislessthan3.2 x 10 ?N-M-S peak, approximate
sawtooth of samé polarity with 1,3 seconds between peaks,

» Momentum storage s lessthan2.6 X 10 2N-M-S.

“Thermal Contrel « Primary system Is passive through materlal and surface coating selactions to
ensure an operational HGAS at an amblent where adjacent components are
at 180° Celslus, A backup system Isimplemented with heaters near the gimbal
bearings in both drives and in the steering control electronics,

Power » Nominal Operating (steeringorslewing) 17,4 watts
' Nominal Heaters (both gimbal drives) 6,2walts
" Glmbal Rates + 30 deg/min slew and 1,2 deg/min steer maximum with electronically limiteci
conlinuous motlon.

Antonna and RF + Parabolicreflector utifizing the S-band single access link of the TDRS
Parameters system

Antenna Galn =27 dbaiBand 2
Frequencies: Band1 = 2106.4 = 20MHz
Band 2 = 2287.5 = 20MHz

System Galn + 25,0 dB with cable arid RF couplerlosses in Band 2
PowerHandling = 10 watiscw minimum
VSWR = 2,0inband 1;1.5inBand 2

Rellabliity * Probability of success of .98 for a 3-year mission obtained through the use of
redundant pyrotechnics, electronics, drive motors, resolver and wiring. The
single channel! probabliity of success s 887,

OperationaiDuty ¢ A3-ysarorbitiifeonas0 per'cehtduly cycle subsequentto a ground storage

. of upto 18 months, The life capability of the HGAS is estimated to be 10 years

ormore,

Welght « Gimbals = 11 pounds each

: ' Astromast and

supporting structure = 30 pounds
Electronics = 11 pounds per channel
Antenna = 25 pounds (nominal)
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System Versatility
Modular Design Approach
Single or Dual System

PAGT V3
QUALITY

v

STEEAING
comMTnot
SLECYRONICS |g

+ Analog Inputs

DEPLOYMENY
HETHACTION
ASSEMBLY

KN

+ Fixed or No Mast

LI T TS

» Diflorent Torque

» Vanuble Accel + Different Langths Output
and Velocily » Various Stiffnesses » Limited or Full
Limits + Daploy Only Rotation
» Microprocessor s Different Rates
Controller » Other Tharmal
» Hybrid Design for Ambients
Lighter Weight,
Increased
The HGAS consists of four major  ceives and processes com-
components: mands and sends telemetry

» A 27-dB-gain parabolic reflector
that is used for spacecraft com-
munications via the S-band
Single Access (S8A) link of the
TDRSS in the radio frequoncy
bands of 2106.4 + 20 MHz and
22876 + 20 MHz.

An antenna drive assembly
capable of steering and pointing
ata TDRS, orslewingtoa TDRS
prior to communication, through
a solid cone of * 110 degrees.
All electromechanical hardware
is dual redundant, and the direct
drive Is used to minimize distur-
bances to the spacecratt.

A mission-unique deploy, re-
tract, and jettison assembly,
which stows the antenna and its
drive for launch, deploys the
system in orbit, and is capable
of jettisoning all protruding ele-
ments in the event of a failure to
stow for shuttle recovery.

A dual-redundant set of stearing
control electronics which re-

GPERRY FUIGHT BYSTEMS 15 A DIVIBION OF SPERRY CORPORATION

signals to and from the space-
craft’s data bus, Controls for
both gimbals, for deployment
and retraction, and for an active
thermal system are included,

The HGAS is stowed within the
spacecraft at launch and later
deploys to a fixed relationship
with respect to the spacecraft's
coordinate axes to assure proper
execution of commands, The
HGAS may also be retracted to
the stowed position for recovery
by the space shuttle.

The commands for steering the
HGAS can be from an operations
control center (for real-time con-
trol} or from an on-board computer
(tor steering through many suc-
cessive orbits). The 16-bit position
command contains the address
and axis position and rate for
each axis (Z-Y), When an error s
detected (that is, when the an-
tenna is not within the arc limits of
the digital words), the error is pro-

A4

OIMBAL ANTENNA

; ANTENNA DRIVE ;
ASsuMBLY

« Higher Power

+ Varlous Paylonds
{Antennas,
Platiorms,
Solar Panels)

cessed In the steering control
electronics, The antenna drive
assembly then rotates and steers
the antenna until it Is within the
digital-word arc limit. The an-
tenra’s rotation 6 correct any
combination of errors causes
perturbation of the spacecraft
within the disturbance torque and
momentum storage limits listed in
the summary of characteristics.

A thermal control system is
incorporated in the HGAS gim-
bals, control electronics, and
actuation assembly; this system
maintains required temperatures
during all phases of flight and
storage.

For more information on the
High-Gain Antenna System (and
the rest of the Space Systems
product line), call (602) 869-2474
or write:

Sperry Flight Systems
Space Systems Marketing
P. 0, Box21111

Phoenix, AZ 85036

61720-06-00
May 1082
Printod in U §.A,
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DEPLOYMENT/RETRACTION MZCHANISM FOR SOLAR
MAXIMUM MISSION HIGH GAIN ANTENNA SYSTEM

By

Neal Bennett, Sperry Flight Systems
Peter Preiswerk, ASTRO Research Corporation

ABSTRACT

Accurate steering of a spacecraft communication antenna requires a stable
platform. A mechanism called a Deployment/Retraction Assembly (DRA) which pro-
vides not only a stable, but a deployable platform for the High Gain Antenna
System (HGAS) aboard the Solar Maximum Mission (SMM) spacecraft is described,
The DRA also has the capability to retract the system upon command.

INTRODUCTION

The SMM spacecraft scheduled for launch into a 357 mile orbit in October
1979 will have aboard a high gain S-band antenna system capable of communicating
with and tracking the TDRS system. This antenna system, called HGAS, must be
stowed within a required envelope in the aft end of the spacecraft and withstand
launch by a Delta launch vehicle. The spacecraft attitude does not allow the
antenna to view the relay satellites when stowed. Consequently, once in orbit,
the HGAS must be deployed to a position that allows the antemna to communicate
with and track the relay gatellites., The HGAS is shown in the deployed condition
in Figure 1. When deployed, the deploy mechanism must maintain accurate support
alignment for the antenna and articulation system while being exposed to the
orbital space environment. Space Shuttle recovery of the SMM is planned and to
facilitate this the HGAS 1is required to retract within its launch envelope so
that the SMM spacecraft can fit within the Shuttle bay. If retraction is not
possible, all portions of the HGAS outside the recovery envelope must be jetti-
soned from the spacecraft.

The DPA design described in this paper was selected based on the flight
experience of the concept and its potential to satisfy the stringent HGAS require-
ments described above. Similar structures have flown successfully on the Air
force S-3 sateliljte and NASA's Voyager 1 and 2 as magnetometer booms of 20-foot
length, 7-inch diameter and of 43~foot length, 9-inch diameter respectively.

The deployable porticn of the DRA, the Astromast, provides an ultralight, low
profile structure with the deployed stiffness and stability required of HGAS.

DRA DESIGN DESCRIPTION

The DRA is a major subassembly mechanism of the High Gain Antenna System,
weighing less than 23 pounds. The total deploy stroke is 60 inches, which



positions the antenna at a point relative to the spacecraft that allows a view of
the TDRS system, It has overall stiffness properties that yield major HGAS de-
ployed resonant frequencies in excess of 8 Hz., Deployed alignment stability is
expected to be better than ,2 degrees over the required temperature range and
deploy/retract cycle life. The required cycle life for ground operation will be
approximately 30 cycles and for space, 1 eycle,

The DRA itself consists of five major subassemblies: (1) An Astromast
Assembly which is the basic deploying and retracting support structure for the
antenna and articulation system, (2) A servo assembly, which restrains the
Astromast during deployment in a controlled manner, and provides the force
required for retraction, (3) hardware that interfaces the HGAS with the SMM
spacecraft, (4) a jettison mechanism that is capable of jettisoning certain
portions of the HGAS, and (5) an antijettison caging mechanism that inhibits the
jettison mechanism in the stowed condition.

ASTROMAST

The Astromast provides the key function in the DRA of structural support to
the deployed antenna and articulation system. 1Its construction provides for
maximum stiffness, minimum weight, and minimum volume.

Figure 2 is a layout of the Astromast showing the truss type construction.
The basic members are the three main longitudinal members (longerons), triangular
frames separating the longerons (batten frames), and pretensioned diagonal
members connecting adjacent longerons and batten frames. The diameter through
the longerons is 18.5 inches and the length between longeron pivot points is
62,16 inches. There are 5 batten frames, forming 6 bays, each 10.36 inches long.
All members are fabricated from unidirectional S-glass/epoxy laminate to take
advantage of the inherent high stiffness~to-weight ratio and thermal stability,
The total weight of the Astromast is 3.7 pounds.

Stowed, the Astromast is coiled into a height of only 2.3 inches. The
longerons develop, like coiled springs, a force tending to deploy the system
and are restrained by a central lanyard. Figures 3 through 6 show the deploy~-
ment sequence, as demonstrated by an engineering model, beginning with the
fully stowed condition. Two different stages during the transition from
stowed to deployed are shown in Figures 4 and 5. Since all or some portion
of the longerons still form a helix, the Astromast is relatively weak
during the transition phase. The maximum stiffness and strength properties are
not achieved until full deployment, shown in Figure 6. Note the restraining
lanyard located im the center. The top plate, representing the interface to the
antenna and articulation system, rotates about the longitudinal axis a total of
382.5 degrees as the Astromast deploys.

In the deployed state, the longerons provide axial load capacity and bend-
ing stiffness, the battens stabilize the structure while in an elastically
buckled condition, and the diagonals provide shear and torsional stiffness.
Though the DRA will not be exposed to direct sunlight, the thermal alignment



stability is designed to remain within .2 degrees with as much as 270 degrees R
temperature differential between the two diagonals of each bay panel.

SERVO MECHANISM

The DRA servo mechanism controls the rate of deployment and provides
the retracting force. A pully containing the restraining lanyard is attached to
the output shaft of a simple worm gear assembly., The worm 1s casehardened steel
and the driven helical gear is cast bronze; the mesh as well as the gear bearings
are lubricated by Braycote 3L-~38RP grease. The worm is driven by a brush type
DC gear head motor, producing a total speed reduction of 2433:1. Motor brushes
are redundant and of the longlife dry-lube type consisting of 85 percent silver,
12 percent molydisulfide, and 3 percent carbon, Figure 7 shows the location of
the servo mechanism on the bottom of the DRA.

For launch the Astromast is not held in position by the lanyard, but by a
pyrotechnic pin puller which absorbs the load directly. The pin puller is shown
in Figures 7 and 9. Once the spacecraft is stabilized in orbit, the dual initi-
ated pin puller is fired and the deploy sequence is started by commanding the
DC motor on., The lanyard is in turn played out at a controlled rate allowing
the DRA to deploy. Redundant microswitches are used to indicate the deployed
state and are used to switch off the motor. A special bridle system, shown in
Figure 8, is used in conjunction with a change in effective lanyard pully radius
to prevent the DRA from 'snapping' into the deployed state. This bridle system
also serves to generate the initial rotation of the DRA about the longitudinal
axis when retraction is commanded. Redundant stowed status micr&switches, lo-
cated so that they sense contact of the top structure with the base plate, are
used to turn off the servo mechanism once stowage is complete.

INTERFACE HARDWARE

The interface between the DRA mechanism and the SMM spacecraft consists of
a lightweight, stiff aluminum cylinder 28.3 inches long and 21 inches diameter,
called the canister, shown in Figure 9. Three hat section stringers run the
length of the canister carrying loads from the three Astromast longerons
directly to three I-beams in the aft end of the spacecraft. The canister not
only provides the static and dynamic interface with the spacecraft, but also
acts as a guide tube during jettison.

JETTISON MECHANISM

The DRA is capable of jettisoning the antenna, articulation system, Astro-
mast, servo mechanism, and control electronics. The jettison mechanism will only
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be activated in the event the DRA cannot be retracted to the fully stowed condi-
tion for Shuttle recovery. This capability is provided by three ball release/
jettison spring assemblies, shown in Figure 10. A lightweight but structurally
sound mechanism has resulted through extensive use of 7075 aluminum. A pyro-
technic cable cutter, shown in Figure 7, severs 3 stainless steel cables that
release spring loaded plungers, unloading a set of steel balls in sockets.

Once the ball loads are released, 3 jettison springs eject the base plate and
all assemblies attached to it out of the canister., The spring stroke is

2.5 inches providing a terminal velocity of 12 in./sec. Spring forces are de-
signed to yield a net force through the HGAS center of gravity to minimize the
tendency to rotate., In addition to the jettison release cables, the pyrotechnic
cable cutter severs all electrical and RF cables interfacing the HGAS to the
SMM spacecraft.

CAGING MECHANISM

To prevent inadvertent jettisoning of the HGAS after Shuttle recovery, the
jettison capability is inhibited by a unique but simple caging mechanism shown
in Figure 9. Caging occurs only in the stowed condition, but the machanism
allows the DRA to deploy and retract normally. It consists of a pivoted wedge
which, when the DRA is fully retracted, will not allow the base plate to move
relative to the canister. Consequently, if the cable cutter is accidentally
fired, the jettison springs are inhibited from forcing the baseplate out of the
canister. After approximately .75 inches of deployment, the caging wedges are
released, and jettison is possible.

CONCLUDING REMARKS

A unique mechanism, called a Deployment/Retraction Assembly, has been de-
scribed that is capable of deploying and retracting the S-band antenna and asso-
ciated articulation system aboard the SMM spacecraft. Once deployed, it provides
a stable and stiff structure from which the antenna can track and communicate
with the TDRS system.

At the time of writing, engineering model tests are underway and the proto-
flight DRA is being fabricated. Engineering models of the worm gear assembly,
the jettison mechanism, and the Astromast have been tested and the following has
been demonstrated:

e Worm gear design has load/cycle capability in excess of that
required for ground and space operationm.

e Jettison mechanism ball release concept works successfully.

e The Astromast has adequate cycle life and stiffness to meet
mission requirements.
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PACE-PROVEN ELECTRO-ME ANICA Y EM ic torque tors (brush ar brushless.
ntiny ‘ and te r tat n, § w and
BASD has been developing electro-mechanica) high speed), stepper motors, harmonic drive
systems for despinning and pointing scien- and spur gear speed reducers, and resolver,
tifd instruments, antennas, solar arrays, potentiometer, magnetic pickup, optical
and satellftc despun platforms since 1957 encoder and synchro angle readout methods
BASD has remained at the forefront of this We design and build both open and closed
field, developing a full range of component C electronic contro)l systems for these
analytical, electront and lubricatior irives These systems feature the latest
technologies ver 1§ imulative year f in analog and digita integrated frcuits
s pAace perat n by 14 qua fied dr Ve r and s width modulation techr 1ues for
ver 3 flight reflect their super r ore rd eff ent peratior
f performance and re 4 ity eratir
lifetimes of ver nine years prove their A ne f a few companies that produces drive
long fe capabilities systems as a product for ther aerospace
mpanies, the tElectro-Mechanical Products
Beginning witt torque tor drives for Irouf f BASD is experienced with a broad
rocket yntrol systems, followed by the range f istomer documentation, contractusl
jespin and instrument pointing drives for and quality control requirements, and al
the seven BA built rbi. q Solar bserva relevant NASA and military specifications
tories (0S0's), BASD established fts drive We are sensitive to the importanc of meet-
system capabilities in the early years of ing schedules, and much of the work 1s done
America's space progran Jur Va Kote ubri- on a fixed price basis to protect the custom-
ation technology, that riginated with the ¢ ers financial risk Superior technology,
program, has been a majov factor in the su responsiveness to customer needs, extensive
ess of all our drives inflight space experience these are the hall
marks of the Flectro-Mechanical Products Grouy
The technology BASD applies to electri of BASD
mechanica)l systems includes direct drive
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FLIGHT MODEL EXPERIENCE

ORIGINAL PAGE (8
OF POOR QUALITY

Number of Cumulative Period
Units of Inflight
(Inc)uding Per formance
Designation Description Cus tomer Non-Flight Flight Status through 1980
POINTING SYSTEMS:
EMS-101 o Elevation Drive Assembly for | BASD 11 Efght successful 330 wonths
EMS-105 080's 1-7 Spavecraft and P78 flights
=1 _Spacecraft
EMS-121 o Biaxial Antenna Pointing Sys- |GE 3 One successful 18 months
tem for Nimbus~F Spacecraft flight
EMS-131 e Biaxial Solar Pointing System |RCA 4 Three successful 130 months
for AE-C, D, and E Spacecraft flights
EMS-151 o Solar Pointing System for University of 2 One successful 26 months
SAM-11 on Himbus-G Wyoming flight
ENS-155 o Solar Pointing System for HASA/Langley 2 One successful 23 months
SAGE on AEM-B flight
EMS-171 o Gimballed Mirror Assembly MeDonnell 1 Seyeral Successful N/A
for Alrborne Laser Commun- Douglas f1ights-1980
jcation Experiment
EMS-173 o Gimballed Mirror Assembly McDonnell 1 1983 Launch N/A
for Satellite Laser Commun- Douglas
ication Experiment
SOLAR ARRAY DRIVE SYSTEMS:
EMS-201 e Solar Array Drive Assembly TRH 9 Several flown Unknown
for Classified Program
EMS-221 e Solar Array Drive and Power Rockwell 12 Six Successful 138 months
Transfer System for NDS International flights
(GPS) Sateliite
EMS-231 ¢ Solar Array Orientation Sys- Naval Research 2 One successful 43 months
%$m for NTS-IT (GPS) Satel- l.aboratory flight
te
EMS~-241 ¢ Solar Array Drive System Rockwell 1 1984 Launch N/A
for P80-1 Satellite International
DESPIN DRIVE SYSTEMS:
EMS-301 ¢ Azimuth Drive Assembly for BASD 11 Seven successful 330 months
EMS-305 0S0's 1-7 Spacecraft flights
EMS-311 o Mechanical Despin Assembly Ford Aerospace 12 Four successful 241 months
for Skynet 1 and 2/NATO 1 flights
and 2
EMS-313 ¢ Mechanica) Despin Assembly Selenia-Italy 4 One successful 41 months
for SIRI0 Spacecraft flight
EMS-321 o Despin Mechanical Assembly TRW 22 Ten successful 385 months
EMS-323 for DSCS-I1 Spacecraft flights
EMS-331 e Despin Drive Assembly for MBB-Germany 5 Two successful 134 months
Heljos A and B Spacecraft flights
EMS-333 o Antenna Drive Mechanism Mitsubishi 1 In Development
for Maritime Observation Electric-Japan
Spacecraft
EMS-335 o Duspin Drive Assembly Nippon Electric 1 In Development
for Planet~A Spacecraft Japan
ACTUATORS:
EMS-401 o Drive Unit Actuator for HESD 6 Classified Program  Unknown
Classified Program
EMS-410 o Payload Retention Latch Rockwell September 1981 N/A T
Actuator for Space Shuttle International
EMS-420 e Active Keel Actuator Rockwell 2 September 1981 N/A
for Space Shuttie International
EMS-450 ¢ Rendevous Radar Deployment Rockwell 1982 In Development
Actuator for Space Shuttle International

D-2
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(1 of 2)

L U



DRIVE
SYSTEMS

OTHER DRIVE EXPERIENCE

ORIGINAL PAGE 13
OF POOR QUALITY

Number
Designation of Units
EMS-111 Biax{al Antenna Drive Antenna Pointing System gel} Telephone Labora- 1
ories
EMS-141 Biaxial Solar Pointing System Solar Instrument for Afrcraft |Jet Propulsion Labora- 1
and Balloon Flights tory
EMS-161 Geared Stepper Drive for Antennas or Solar Array Point- 1 BASD 1
High Inertia Loads ing System
EMS-211 High Power Capacity Orienta. l.arge Space Station Lockheed-MSC 1
tton Drive and Power Transfer
Assembly (ODAPT)
EMS-251 Geared Stepper Drive $olar Array, Antenna, or BASD 1
Experiment Pointing System
EMS-501 Satellite Vacuum Test Fixture NASDA (Japan) Test Facility Hitachi~Japan 1
D-3
DB-212

(2 of 2)
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The elevation axis drive is the second-half of
the solar science instruments pointing system,
After the despin drive provides azimuth orien
tation of the upper platform, the elevation

axis then rotates to position the optical axes
of the pointed experiments to the center of

the sun. Offset pointing capability is avail
able. Coarse and fine BASD sun sensors supply

the error signal.

EMS-121 BIAXIAL ANTENNA POINTING SYSTEM FOR
NIMBUS -F SPACECRAFT

This biaxial antenna pointing system consists
of a gimbal assembly (GA) and a drive electron
ics package. The GA is mounted at the very
top of the spacecraft and orients a high gain
antenna toward the Applications Technolog)
Satellite (ATS-F).

IAXIAL SOLAR POINTING SYSTEM FOR
TMOSPHERE EXPLORER [AE) C, O, AND
SPACECRAFT B

EMS-131 B
A
£

This system consists of a solar pointing plat
form, a control electronics package, and a
fine sun sensor assembly. The purpose of the
SPS on the three AE satellites is to auto
matically acquire and point an extreme ultra

violet spectrophotometer towards the sun.
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SYSTEM
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EMS 141 BIAXIAL SOLAR IMAGING POINTING SYSTEM

This drive is used in the Mark I Afrcraft In-
terferometer built by Jet Propulsion Labora-
tory to measure the atmosphere trace const

tuents It is used on high altitude aircraft

and bailoon flights

EMS 151  SOLAR POINTING SYSTEM FOR STRATO
SPHERIC AEROSOL MONITOR [SAM) ON
NIMBUS -G

!

This hraxi3al pointing system on the Nimbus-(
spacecraft points at the sun during sun-

rise and sunset The solar image is reflect-
ed from che scan m ~ror through a Cassegrain
telescope to the sc ence detector aperture
The image 1< scanned across the aperture by

the motion of the scan mirror.

QM§“L§§VA§Q_§__EOINYXNU SYSTEM FOR STRATD-
SF HERTC A cRGSU "AND GAS EXPERIMENT
AGE) ON AcM-B

This biaxial pointing system on the Applica-
tions Explorer Mission (AEM-B) spacecraft
points at the sun during surrise and sunset.
BASD also provided the science experiment
which evaluates aerosols and ozone constit-
uents in the earth's upper atmosphere.
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EMS 161 GEARED STEPPER DRIVE

Thi geared

stepper drive is designed to move
a high inertia load in small steps, It i

light -weight, has excellent lateral rigidity,

and includes redundant precision potenti
ometer for position feedback signals. Thi
drive is well-suited for pointing large

antennas or orienting large solay array:

EMS 171 GIMBALLED MIRRUK ASSEMBLY FOR
ATRBORNE LASER COMMUNICATION
EXPERIMENT

This system consists of a two-axis gimbal
assembly and an optically flat mirror. The
iirborne system tests the feasibility of

using an accurately pointed moving mirror
to redirect laser transmissions from a

moving source. The system has been suc

sful on a military aircraft.

ENS 173 GIMBALLED MIRROR ASSEMBLY FOR
SATELLTTE TASER COMMUNTCATION
EXPERTMENT

This system consists of a two-axis gimbal
assembly and an optically flat mirror. It
is a derivative of the airborne gimballed
mirror assembly. This system is installed
in a spacecraft and carried into orbit by
the Space Shuttle. It is used to redirect

the line-of-sight of laser transmissions.

PRIMARY MIRROR POINTING SYSTEM FOR APOLLO

I
TELESCOPE MOUNT (ATM)/HARVARD COLLEGE

OBSERVATORY (HCO

The pointing system which controls the pri-
mary mirror of the HCO/ATM instrument sup-
ports the mirror frame on flexure pivots,
eliminating friction and hysteresis. The
mirror is co.trolled to form a raster scan
pattern of 60 lines that are five arc-
minutes long and separated by five arc-
seconds. It can also point to any chosen

spot within the five arc-minute square area.

D-6
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EMS 201 SOLAR ARRAY ORIVE ASSEMBLY FOR CLAS-
SIFIED PROGRAM

BASD developed, built, and tested several of

these drive assemblies to orfent two separate

solar panels toward the sun. Each assembly "“‘h-—.___k P '
consists of a drive, a slipring module, a

resolver module, and a drive shaft, This

assembly has been used in a classified appli-

cation,

EMS 211 HIGH POWER CAPACITY ORIENTATION DRIVE
AND POWER TRANSFER ASSEMBLY (ODAPT)

The ODAPT assembly was built to point very
large solar arrays toward the sun and trans-
fer the 100kw of electrical power generated
by the arrays across the rotating interface
to the Space Shuttle-launched Modular Space
Statior. A clear passageway through its cen-
ter is provided for cargo and astronauts.

The ODAPT design permits continuous (360-
degree), bidirectional solar tracking in two
axes.

EMS 221 SOLAR ARRAY DRIVE AND POWER TRANSFER
SYSTEM FOR NAVIGATIONAL DEVELOPMENT
SATELLITE (NDS) GLOBAL POSITIONING
SYSTEM (GPS) SATELLITE

The two independeint solar arrays of the Navi-
gational Development Satellite (NDS) are each
oriented by individual drive units and their
related sun sensors and control electronics.
The ciosed loop pointing of the arrays by

this drive system, with each drive assembly
operating in syn-hronism with the other, maxi-

mizes power output through accurate control
of the solar array/sun angle.

EMS 231 SOLAR ARRAY ORIENTATION SYSTEM FOR
NAVIGATIONAL TCCHNOLOGY SATELLITE-iQI
(NTS) GLOBAL POSITIONING SYSTEM (GPS)
SATELLITE

Un the Navigational Technology Satellite com-
ponent of the Glnbal Positioning System, a
single drive unit orients the two solar
arrays. This drive, with its associated
control electronics and sun sensors, operates
in a closed loop mode to acquire the sun
automatically and position the arrays for
m.ximum power output.

D-7
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This solar array drive system is designed

for larce array: and has a current transfer
apacity of 50 ampere The system includes

3y drive, electronics and ir ensors The

reference | 1ti1on 1¢ incremented at nominal

spacecraft rbit rate, and 1s trimmed by

means Of the sun sensors to maintain sun

pointin
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The azimuth axi jrive despins the sail, which
ntains the solar array and the olar instruy-

ment package Coarse and fine BASD sun sen
rs ipply the error signal¢ In addition to
eneral | ition orientation for the solar

array, the frive is responsible for precisior

pointing and ffset pointing for the science

MS-311 MECHANICAL DESPIN ASSEMBL FOR SKYNET
EMS-313 1 AND 2/NATO'S 1 AND 2 SATELLITES, AND
FOR SIRIO SPACECRAFT

This RF antenna despin drive 1S used on the
United Kindgom comaunication satellite, Skynet,
and NATO 1 and 2 satellites It is designed

to perform for five years, continuous duty.

The drive is a1so used on the Italian SIRIO

experimental satellite. One drive on Skynet

. .

ran for 9 4 years before being deactivated by

ground c.mmand

] DLSPIN MECHANICAL FSSEMBLY FOR DEFENSE
3 SATELLITE COMMUNICATTONS <YSTEM (DSCS)

T1 SPACECRAFT

,2.
L]
[4

EM5-3
EMS-3

The despin mechanical assembly is the vital
link between spinning and despun sections of
the DSCS-I1 spacecraft. It supports and drives
the despun platform and provides multiple elec-
trical power and signal paths across the inter-

face.
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TRACKING AND DATA RELAY SATELLITE SINGLE ACCESS DEPLOYABLE ANTENNA

Summary

The Tracking and Data Relay Satellite (TDRS) utilizes two 4.8 meter
deployable antepnas for accessing and communicating with high data rate user
satellites. These single access antennas operate at the dual frequencies of
S- and Ku-band, with full tracking capability at Ku-band. The stringent gain
and tracking requirements at Ku-band require state-of-the-art designs in the
deployable reflector and the dual frequency feed system. To meet these
requirements, special surface shaping techniques and thermally stable materials
were developed for the deployable reflector. A unique dual frequency cassegrain
feed system utilizing sidelcbe cross-over for tracking was developed to meet the
tracking requirements. The feed system tracking performance is essentially
insensitive to reflector distortions. This paper summarizes the design and
performance of the TDRS single access antenna design.

I. Reflector Desijan

Figure 1 illustrates the deployable reflector design. The reflector
utilizes eighteen graphite fiber reinforced plastic (GFRP) ribs to shape and
support the reflective mesh surface. The number of ribs is based on a trade-off
considering surface tolerance and weight. As the number of ribs increases,
the surface error decreases, while weight increases. The minimum number of ribs
consistent with the surface tolerance requirements is, therefore usually
selected. The ribs are circular in cross-section tapering in diameter from
the root to the tip. The reflective mesh surface is attached to the ribs by
adjustable standoffs and therefore the tolerance on rib shape is not a critical
parameter. The ribs are typically fabricated to a constant radius of
curvature rather than a parabolic shape.

The reflective mesh consists of gold-plated wire which is knitted into a
soft {low spring rate), elastic mesh. The mesh opening size can be varied to
ensure adequate RF refiectivity for a given requirement. The required reflector
surface tolerance is achieved with minimum weight through the use of a secondary
drawing surface technique. A series of circumferential quartz cords is attached
to the back of the ribs by adjustable standoffs. A second series of quartz
cords is attached to the front mesh surface. These "front" cords run parallel
to the "back cords". The front and back cords are connected by a series of

tie wires. By properly adjusting the rib stand-off heights, the back cord
E-1






geometry, and these individual tie wires, an 2ccurate surface contour is
achieved.

For setting the reflector surface, the contour is measured in the face-up
and the face-down positions. The measured face-up and face-down positions are
then averaged to determine the "zero-gravity" surface contour. This contour is
then comparea on a point-by-point basis with the desired parabolic contour
and surface adjustments made as necessary to achieve the desired manufacturing
contribution to the total surface tolerance budget. The setting process is
iterative. Two to three setting jterations yield a high accuracy contour.

Deployment of the reflector surface is achieved in a totally controlled
manner to ensure no degradation of the accurate reflector surface occurs and to
essentially eliminate any transfer of stored energy to the spacecraft. The
mechanical deployment system (MDS) consists of a carrier mounted to the moving
section of a recirculating ballnut pair on the ballscrew shaft. Connected
between the carrier and the ribs are pushrods that transmit the required force
and motion to deploy the ribs. As the carrier moves along the screw shaft,

the ribs are rotated from their stowed to their fully deployed position. Latching

in the deployed position is accomplished by driving the carrier and linkages
through an overcenter condition (relative to the rib pivot position).

The feed support structure provides the primary structure for the stowed
antenna as well as serving as the structure for support of the dual frequency
feed and subreflector. This support structure consists of a 6 member GFRP
truss structure and monocoque (single skin) quartz radome structure. The
subreflector is a sandwich construction of skins and a honeycomb core.

Thermal contrcl of the reflector ribs and feed support structure is
accomplished with multi-layered insulation blankets. These blankets utilize
inner layers of embossed aluminized kapton and an outer layer of kapton with
vapor deposited aluminum striping. The percentage of VDA striping is based on
the average solar absorptivity (as) and emissivity (e) values desired. The
number of layers is selected to provide a desired thermal time constant and to
minimize distortions due to diametral temperature gradients.

I1. Feed Design

Five-Horn Cassegrain feeds are very desirable for communications antennas
for which the tracking requirements are usually not very stringent. The
simplicity of the sum channel makes possible greater bandwidth and higher

E-3



efficiency. The historical problem has been the tradeoff between a sufficiently
Targe sum horn for good illumination efficiency and sufficiently small error
horn spacing for adequate error channel secondary pattern crossover. When the
error horn spacing is fixed so that the error horn secondary pattern crossover
is at the first null (or on the main offset beam), the sum horn aperture

size is such that large spillover past the subreflector is incurred. In order
to make the sum horn larger (to reduce spillover), the error horn spacing must
be increased resulting in a crossover on the first sidelobe. Generally,
crossover on the first sidelobe or beyond has been avoided because of the
sensitivity of the lTow-level sidelobes to various factors, including reflector
distortion, frequency change and blockage. The sensitivity of tracking
performance to reflector distortion is especially important for spaceborne
antennas.

A Five-Horn Cassegrain feed has been developed for the TDRSS 4.8-meter
deployable antenna, which uses the up-taper of the dual shaped reflectors in
conjunction with a special error horn design to produce a stable tracking
crossover on high-level sidelobes. This permits use of a larger sum horn and
greater spillover efficiency.

The error horns are rectangular with the narrow dimension in the plane of
the associated tracking crossover. Because the error horns have a much broader
illumination in this plane than the sum horn, the up-taper which produces
uniform reflector illumination (maximum gain) for the sum channel results in a
highly inverted distribution for the error horns, and hence the desired high
sidelobes.

I11. Antenna Performance

Orbital antenna gain performance is predicted both with loss budgets and
with a composite computer math model. Although the composite math model
provides a more accurate prediction, the loss budget has a diagnostic advantage
in that the significance of the various components is revealed by inspection.

The loss budget for the 4.8 meter antenna is shown in Table I. The defocus,
roughness, and pointing error losses are based on the budgeted worst case
distortions. The mesh reflectivity loss is based on measured values for the
gold-plate. Radome loss uses calculated flat-plate approximations and measurements
on similar radomes. The blockage loss is based on the aperture biockage
resulting from the feed support structure. The feed related losses are based on
measured range test results with the breadboard feed.

The defocus, roughness, and pointing error values for the reflector are

E4
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calculated analytically. The pillow effects result from a natural phenomenon.
Due to the pretension of the mesh and the doubly curved parabolic surface, the
mesh tends to "pillow" toward the focal point. This phenomenon is described

by the partial differential equations of membrane theory. The secondary
drawing surface technique significantly reduces this error but the mesh

between tie points still bulges toward the focal point, forming small "pillows"
between adjacent tie points.

The largest source of surface tolerance is the manufacturing (or setting)
tolerance. This error source represents the physical ability of technicians
to adjust the surface and is also constrained by the time available to make
iterative settings. Typically 2 to 3 iterations are required to achieve this
precision.

The thermal distortion effects of the reflector and feed support are
determined using analysis techniques. Cord creep results from a slight permanent
preset of the quartz cords when they are initially pretensioned. Preconditioning
of the cords can be accomplished if this source of error becomes significant.
Dryout shrinkage error results from changes in the dimensions of the GFRP ribs
and feed support when moisture absorbed by the GFRP outgasses in the orbital
environment. Both the cord creep and GFRP dryout error have been verified by
element tests of these materials.

Other Pertinent Antenna Data is shown below:

Weight: 53 Tbs.

Diameter: 16 Feet

Stowed Volume: Cylindrical:  31-inch diameter, 100-inch length
Interface: 18-inch, 3-bolt circle
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DEFOCUS
ROUGHNESS

MESH REFLECTIVITY
BCALLOP LOSS
RADOME LOSS
BLOCKAGE

FEED LOSS§

VEWR
SPILLOVER-TAPER

100% GAIN
NET GAIN
SPEC

MARGIN/MEASUREMENT

TOLERANCE

ORWCIMAL P25 ™)
OF POCY QUALITY
Table I. Antenna Loss Budget
2,025 2.2 2.3 11.7 14,0 13,75 14,0896 15,121
- - - 0.11 0,16 0.15 0,18 0,19
0.01 0.0} 0,01 0,36 0,51 0.49 0,58 0,60
0,03 0,u3 0.03 0,46 0,53 0,53 0.57 0,58
0,23 0,21 0,23 0,19 0.19 0.19 0,19 0,19
0,05 0,65 0,05 0,20 0.20 0,20 0,20 0,20
0.22 0,22 0,22 0.22 0,22 0,22 0,22 0,22
0.58 0,58 0.6} 0.50 0.30 0.30 0,30 0.30
0,15 0.15 0.15 0,10 0.9% 0.05 0,05 0,05
1.78 1,95 2.24 .11 0,72 0,72 0.72 0.72
3,05 J.22 3.54 3.25 2,88 2,85 3,01 3,05
40,08 40,80 41,18 55.31 56.87 56,72 57.41 57,54
37.03 37.5 37.64 52,06 53,99 53.87 54,40 54,49
36.0 36,8 36.8 50.0 52.8 52,6 53,6 53.6
1.0 0.8 0.8 2,1 1,2 1,3 0.8 0.9
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A WIGH STRENGTH, TORSIONALLY RIGID,
DEPLOYABLE AND RETRACTABLE MAST FOR SPACE APPLICATIONS
Lamont DiBiasi and Richard Kramer

ABSTRACT

The era of retrieving and/or servicing satellites in orbit has
mandated that extendable elements, such as these used to deploy solar
arrays, thermal radiators, communications antennas, instruments and
numerous other appendages have inherent in their design a highly reliable
retraction capability, Throughout the past year a structural mast has
been developed which during and after full deployment produces a supporting
structure with the characteristics of a high bending moment capability,
high stiffness and, particularly important for instrument deployment, a
high degree of position repeatability and torsional rigidity. These
features have been accomplished while providing an easily retractable mast
with a high life cycle capability. Since these properties are consistent
throughout the full range of deployed lengths, partial deployments of
retractions can be utilized for check-out, balance, fine tuning or whatever
other reason may be deemed necessary for operation modes or spacecraft
stabilicy.

INTRODUCTION

The mast, shown in Figures 1 & 2 to be discussed is of a triangular
cross—section and is formed by the interlocking of three identical strips
of material along their common edges. The interlocking of the edges is
achieveu by a meshing of a series of socket-type inserts permanently
attached to rolled tabs alternately spaced along the length of each strip
of material. Since all the edges are locked internal to the deployment
mechanism, a fully formed mast with full mechanical properties is always
being subjected to any induced loading. In the stowed configuratiomn, the
material is unlocked and therefore it is very flexible. This allcws great
packaging freedom since the three separate storage spools of material can
be located remote and in any orientation with respec* to the locking
station within the mechanism. The packages for a given mast can therefore
range from a long cylindrical configuration to a flat rectangular one.
This paper will cover the design requirements, design philosophy, fabri-
cation methods and test methods and results for a specific model mast,

*Fairchild Space Company, Germantown, Maryland 20874-0811
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Reply to Alin of

National Aeronautics and ! SA
Space Administration i
Goddard Space Flight Center

Greenbelt, Maryland
20771

127

Dear ___:

The NASA/Goddard Space Flight Center plans to issue in the Fall of 1982 a
Performance and Interface Document (PID) entitled "Electro-Mechanically
Steered Antenna Systems for TDRSS Users,"

The document is intended to provide general performance capabilities and
interfacing information to prospective TDRSS User mission programs which

are in early studies and design phases. Since there have been a number of flight
capable designs completed and tested, it is our intent to publish as appendices
inputs from those organizations that have designed, built and tested systems
that are adaptable to missions other than those for which they were intended.

Therefore, the purpose of this letter is to solicit from you the essential
electrical, mechanical and thermal performance and interface data on the
flight systems units you consider applicable. Should you not have delivered

a complete system the applicable four major subassemblies (antenna, gimbals,
mast and drive electronics) can be supplied.

The government will not be responsible for costs incurred or interpretaticons
of your inputs. We view these data are readily avaiiable and are or can be
easily assembled in your desired format. The information is requested on
nine 8 1/2" x 11" pages maximum including drawings and pictures.

It would be appreciated if your response describes, as @ minimum, the ‘ollowing
list of items:

a. The hardware actually delivered, or to be delivered.
b. The estimated ultimate performance/interface capability cf the basic

design approach for both command-pointed and autotrack operational systems.
The range of reflector sizes (or other directional antenna configurations) the



gimballs are capable of handling for low earth orbiting spacecraft should be
included. Achievable overall pointing accuracies should be included as well as
the suitability and adaptability to Delta and Shuttle vehicle launched missions.

We would appreciate your response within 3 weeks of the receipt of this
letter. To assure no translation errors, should your response need be
transposed for printing purposes, we will send you a draft of your inputs
for editing corrections. Two weeks will be allotted for this process.

| thank you for your consideration and cooperation. We believe that issuance
of this PID will mutually benefit both industry and government in assuring
that the best electromechanical steered antenna systems to match missions
requirements will be selected based on performance and economic
considerations.

Should you desire to further discuss this request please call me at
301-344-9067.

Sincerely,
Original Sigued Ly

Richard P, Hockensmith
Microwave Instrument and
RF Technology Branch
Instrument Division
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