General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Design Procedures for Fiber Composite Structural Components: Rods, Columns, and Beam Columns

Christos C. Chamis
Lewis Research Center
Cleveland, Ohio

Prepared for the
Thirty-eighth Annual Conference of the
Society of the Plastics Industry (SPI)
Reinforced Plastics/Composites Institute
Houston, Texas, February 7-11, 1983
DESIGN PROCEDURES FOR FIBER COMPOSITE STRUCTURAL COMPONENTS:
RODS, COLUMNS, AND BEAM COLUMNS

Christos C. Chamis*
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

Step-by-step procedures are described which can be used to design structural components (rods, columns, and beam columns) subjected to steady state mechanical loads and hygrothermal environments. Illustrative examples are presented for structural components designed for static tensile and compressive loads, and fatigue as well as for moisture and temperature effects. Each example is set up as a sample design illustrating the detailed steps that can be used to design similar components.

1.0 INTRODUCTION

The design of fiber composite structural components requires analysis methods and procedures which relate the structural response of the structural component to the specified loading and environmental conditions. Subsequently, the structural response is compared to given design criteria for strength, displacement, buckling, vibration frequencies etc. in order to ascertain that the component will perform satisfactorily.

Though there are several recent books on composite mechanics available (refs. 1-6), none of these books cover design procedures in sufficient detail to be used for designing fiber composite structural components. Herein sample designs are presented in step-by-step detail to illustrate procedures for designing structural components such as rods, columns and beam columns as well as other similar components. This is accomplished by assuming a cross-section for the component and then checking to verify that it meets all the specified design requirements. In this respect the section selected is not unique. In describing the sample designs, it is assumed that the reader has some familiarity with mechanics of materials and fiber composites. The data used in the sample designs are typical for the composites summarized in Table 1. For other designs, comparable properties need to be used. Allowable stress as used herein denotes fracture stress. The safety factor is included in the specified load or in the fatigue stress.

The specific sample designs include hanger rods, columns and beam columns. The loading conditions include static and cyclic loads and hygrothermal (moisture and temperature) environments. Limiting design requirements considered include, stresses, displacements, fatigue life, combined fatigue with static stresses, creep, buckling and frequencies. The numerical calculations are rounded to three significant figures, in general.

*Aerospace Structures and Composites Engineer.
The notation used is defined in each sample design and summarized under NOTATION. Some repetition is unavoidable for the sake of keeping each sample design as self-contained as possible. The sections, sample designs (SD) and steps are numbered for ease of reference. The concepts and most of the equations used are from references 7 to 13 which provide general background information, appropriate description, justification and/or correlation with experimental data.

Collectively, these sample designs provide illustrative examples which are described for the first time.

2.0 COMPOSITE HANGER RODS

Hanger rods are structural components usually with circular cross section designed to support axial tensile force (Fig. 1a). The tensile force (loading condition) can be: (1) Static; (2) Static with superimposed axial tensile fatigue; and (3) Creep (under sustained tensile load). We will present sample designs for each of these loading conditions.

SAMPLE DESIGN 2.1

structural component:	hanger rod with circular cross-section, 2 ft long
specified load component:	50 000 lb axial tension
axial displacement limit:	2-percent of length at design load
safety factor:	2 on the specified load
composite system:	Kevlar-49/epoxy unidirectional composite with 0.54 fiber volume ratio

Design procedure: Hanger rod designed to meet stress and displacement requirements at design load.

Step 1. Design variables: rod cross-section area

Step 2. Design load (P_d): safety factor times specified load, or $2 \times 50,000 \text{ lb} = 100,000 \text{ lb}$

Step 3. Composite Material Longitudinal properties (Table 1):

- Modulus $E_{ll} = 12.2 \text{ mpsi}$; Strength $S_{llT} = 172,000 \text{ psi}$

Step 4. Rod cross-section area

$$A_c = \frac{P_d}{S_{llT}}$$

$$A_c = \frac{100,000 \text{ lb}}{172,000 \text{ lb/sq in.}}$$

$$A_c = 0.581 \text{ sq in.}$$
Step 5. Rod diameter

\[
d_C = \left(\frac{4A_c}{\pi}\right)^{1/2}
d_C = \left[4\left(0.581 \text{ sq in.}\right) / \pi\right]^{1/2}
d_C = 0.861 \text{ in.}
\]

take \(d_C = 7/8 \text{ in. diam} \)

Step 6. Check displacement limit. The rod displacement at design load is

\[
U_C = \text{design load/rod axial stiffness, } P_d/K_a = \frac{P_d I_c}{E \xi 1 I_c}
\]

\[
K_a = E \xi 1 I_c / I_c
\]

\[
K_a = 12 \times 200 \times 000 \ (\text{lb/sq in.}) \times \frac{0.601 \text{ sq in.}}{24 \text{ in.}}
\]

\[
K_a = 305 \ 508 \ \text{lb/in.}
\]

\[
U_C = 100 \ 000 \ \text{lb/305} \ 508 \ \text{lb/in.}
\]

\[
U_C = 0.327 \ \text{in.}
\]

\[
U_C < 2 \text{ percent } I_c
\]

\[
0.327 \ \text{in.} < 0.02 \times 24 \ \text{in.}
\]

\[
0.327 \ \text{in.} < 0.48 \ \text{in.}
\]

Therefore, the designed composite rod is 7/8 in. diameter Kevlar 49/epoxy unidirectional composite which and satisfies both stress and displacement requirements at design load. The rod would weigh about 0.84 lb (based on \(p = 0.058 \ \text{lb/in}^3 \)).

SAMPLE DESIGN 2.2

structural component: \(\text{hanger rod with circular cross-section, 2 ft long (same as SD2.1)} \)

specified load: \(\text{cyclic axial tensile load with maximum amplitude of 20 000 lb} \)

axial displacement limit: \(\text{1 percent at maximum amplitude} \)

safety factor: \(\text{2 on maximum fatigue stress amplitude} \)

rod fatigue life: \(\text{survive 10 000 000 cycles} \)

composite system: \(\text{Kevlar 49/epoxy unidirectional composite with 0.54 fiber volume ratio (same as SD2.1)} \)

Design procedure: \(\text{Hanger rod designed to meet fatigue life and displacement limit at design maximum load amplitude} \)

Step 1. Design variables: \(\text{rod cross-section area} \)
Step 2. Design load:

Step 3. Composite material longitudinal properties (Table 1):

Step 4. Determine Fatigue stress allowable for Kevlar composite:

\[
\frac{S_N}{S_{11T}} = [1.0 - 0.03 \log N]
\]

\(S_N = \text{Fatigue stress to be determined}\)
\(S_{11T} = \text{Static tensile strength} = 172,000 \text{ psi}\)
\(N = \text{Number of cycles} = 10,000,000 \text{ or } (10^7)\)

\(S_N = (1.0 - 0.03 \log 10^7) \times 172,000 \text{ psi}\)
\(S_N = [(1.0 - 0.03(7)) \times 172,000 \text{ psi}\)
\(S_N = 136,000 \text{ psi}\)

And the fatigue stress allowable is:

\(S_{NA} = S_N/2 = 136,000 \text{ psi}/2\)
\(S_{NA} = 68,000 \text{ psi}\)

Step 5. Rod cross-section area

\(A_c = P_{max}/S_{NA}\)
\(A_c = 20,000 \text{ lb}/68,000 \text{ psi}\)
\(A_c = 0.294 \text{ sq in.}\)

Step 6. Rod diameter

\(d_c = (4 A_c/\pi)^{1/2}\)
\(d_c = (4 \times 0.294 \text{ sq in.}/\pi)^{1/2}\)
\(d_c = 0.612 \text{ in.}\)

take \(d_c = 5/8 \text{ in. diam.}\)

Step 7. Check displacement limit. The rod maximum displacement will occur at maximum cyclic load amplitude (neglecting damping and inertial effects).

\(u_c = P_{max}/K_a\)
\(K_a = E_{11}A_c/\ell_c\)
\[K_a = 12 \, 200 \, 000 \, \frac{lb}{sq \, in.} \times \frac{0.307 \, sq \, in.}{24 \, in.} \]

\[K_a = 156 \, 000 \, lb/in. \]
\[u_c = 20 \, 000 \, lb/156 \, 000 \, lb/in. \]
\[u_c = 0.128 \, in. \]
\[0.128 \, in. < 0.01 \times 24 \, in. \]
\[0.128 \, in. < 0.240 \, in. \]

Therefore, the designed composite rod is 5/8 in. diameter unidirectional Kevlar - 49/epoxy, and satisfies both the specified fatigue stress and displacement requirements. This composite rod would weigh about one-half lb. The static tensile load capacity of this rod is about 52 800 lb (0.307 sq in. x 172 000 psi) which is about 2.6 times the maximum allowed cyclic load of 20 000 lb for the 10 000 000 cycles. Stated differently, the cyclic load carrying capacity of this composite rod is about one-third of its corresponding static strength for a fatigue life of 10 000 000 cycles at a cyclic load stress of 65 150 psi amplitude and "zero" mean stress.

SAMPLE DESIGN 2.3

structural component: Guy rod of circular cross-section, 40 ft long

specified load: 10 000 lb axial static tensile force for 10 yr of service and subjected to a cyclic load of 5000 lb at 1/10 cps (Hz)

displacement limit: 0.1 percent creep at 10 yr

safety factor: 2 on axial load and 2 fatigue stress allowable

composite system: S-glass/epoxy, about 0.72 fiber volume ratio

Design procedure: Guy rod designed to survive 10 000 lb tensile for 10 yr with a cyclic load of 5000 lb and a maximum creep displacement of 0.1 percent at 10 yr

Step 1. Design variables: rod cross-section area A

Step 2. Design static load (Pd): safety factor times axial static tensile load or 2 x 10 000 lb = 20 000 lb

Step 3. Composite material properties, Table 1:

- fiber volume ratio = 0.72
- density \(\rho = 0.077 \, lb/cu \, in. \)
- modulus \(E_{11T} = 8.8 \, mpsi \)
- Tensile strength \(S_{11T} = 187 \, 000 \, psi \)
- creep parameters (estimates)
Step 4. Determine fatigue stress allowable:

\[\frac{S_N}{S_{\text{allT}}} = [1.0 - 0.10 \log N] \]

\[N = \frac{1}{10 \text{ sec}} \times \frac{3600 \text{ sec}}{\text{hr}} \times \frac{24 \text{ hrs}}{\text{day}} \times \frac{365 \text{ days}}{\text{yr}} \times 10 \text{ yr} \]

\[N = 3.154 \times 10^7 \text{ cycles} \]

\[S_N = [1.0 - 0.10 \log (3.154 \times 10^7)] \times 187000 \text{ psi} \]

\[S_N = 46700 \text{ psi} \]

And the fatigue stress allowable is:

\[S_{N_{\text{A}}} = \frac{S_N}{2} = 46700 \text{ psi}/2 \]

\[S_{N_{\text{A}}} = 23400 \text{ psi} \]

Step 5. Rod cross-section area:

The rod cross-section area is determined from the equation of the normalized Goodman Diagram (graphical representation of the combined cyclic stress (\(\sigma_{\text{cyc}}\)) and mean design stresses, fig. 2 (ref. 12; also ref. 14, pg. 890).

For this sample design:

\[\frac{\sigma_{\text{cyc}}}{S_{\text{NA}}} + \frac{\sigma_d}{S_{\text{allT}}} = \frac{P_{\text{cyc}} / A_c}{S_{\text{NA}}} + \frac{P_d / A_c}{S_{\text{allT}}} \]

and

\[A_c = \frac{P_{\text{cyc}}}{S_{\text{NA}}} + \frac{P_d}{S_{\text{allT}}} \]

where:

\(P_{\text{cyc}} = \text{cyclic load} = 5000 \text{ lb}\)

\(P_d = \text{design load} = 20000 \text{ lb}\)

\(S_{N_{\text{A}}} = \text{the fatigue stress allowable} = 23400 \text{ psi}\)

\(S_{\text{allT}} = \text{the static tensile strength} = 187000 \text{ psi}\)

\[A_c = \frac{5000 \text{ lb}}{23400 \text{ (lb/sq in.)}} + \frac{20000 \text{ lb}}{187000 \text{ (lb/sq in.)}} \]

\[A_c = 0.213 \text{ sq in.} + 0.107 \text{ sq in.} \]

\[A_c = 0.320 \text{ sq in.} \]
Step 6. Guy rod diameter

\[d_c = \left(\frac{4A_c}{\pi}\right)^{1/2} \]
\[d_c = \left[4 \times \frac{0.320 \text{ sq in.}}{\pi}\right]^{1/2} \]
\[d_c = 0.638 \text{ in.} \]

Take \[d_c = \frac{3}{4} \text{ in. diam.} \]

Step 7. Check the creep displacement at the end of 10 yr assuming that only the design static load contributes to creep. The creep displacement is given by:

\[u_{cr} = \varepsilon_{cr} l_c \]
\[\varepsilon_{cr} = \text{creep strain at the end of 10 yr under the sustained stress} \]
\[l_c = \text{the composite guy rod length in inches} \]

The creep strain is approximately given by:

\[\varepsilon_{cr} = \frac{\sigma_d}{E_o} \left(1 + t^n \frac{E_o}{E_t}\right) \]

\[\sigma_d = \text{Sustained axial stress} \]
\[\sigma_d = \frac{20000 \text{ lb}}{(\pi/4)(3/4 \text{ in.})^2} \]
\[\sigma_d = 45300 \text{ psi} \]
\[E_o = E_{41} = 8800000 \text{ psi} \]
\[n = 0.16 \]
\[E_t = \text{time dependent modulus} \]
\[E_t = 200000000 \text{ psi} \]
\[\varepsilon_{cr} = \frac{45300 \text{ lb}}{\text{sq in.}} \times \frac{\text{sq in.}}{8800000 \text{ lb}} \left[1 + 0.16 \left(\frac{8800000}{200000000}\right)\right] \]
\[\varepsilon_{cr} = 0.00548 \text{ in./in.} \]

And the corresponding creep displacement is:

\[u_{cr} = \varepsilon_{cr} l_c \]
\[u_{cr} = 0.00548 \text{ (in/in)} \times 40 \text{ ft} \times \frac{12 \text{ in}}{\text{ft}} \]
\[u_{cr} = 2.63 \text{ in} \]
\[u_{cr} \ll 1 \text{ percent } l_c \]
\[2.63 \text{ in} \ll 0.01 \times (40 \text{ ft} \times 12 \text{ in/ft}) \]
\[2.63 \text{ in} < 4.80 \text{ in.} \]
Therefore, the designed composite guy rod is 3/4 in. diameter S-glass/epoxy unidirectional composite and satisfies the specified static axial load, the cyclic load and the creep displacement. This guy rod would weigh about 16 lb (density x volume). The static fracture load of the composite guy rod is about 82 600 lb which is about four times the design static load.

It is important to note that creep calculations described here were based on Findley's simplified equation and estimated material property time constants N and E (ref. 12). These calculations are to be used only as a guide. Appropriate creep tests must be conducted for evaluating actual case final designs.

Another important point to note is that the sustained stress was assumed to be the stress due to the design static load. For this sample design, the design static load is 20 000 lb which is 33 percent greater than the combined axial static load (10 000 lb) and maximum cyclic load (5000 lb), and provides a conservative estimate on the 10-year creep displacement.

3.0 COMPOSITE COLUMNS AND BEAM COLUMNS

Tubular structural components are frequently used to support axial compressive forces (Fig. 1b). The compressive forces (loading conditions) can be (1) static; (2) static with superimposed compression-compression fatigue; and (3) tension-compression (bending) fatigue combined with axial static load. We will describe sample designs for each of these loading conditions.

SAMPLE DESIGN 3.1

structural component: thin tubular member 1.5 ft long and 3 in diam max.
specified load: 100 000 lb axial compression
axial displacement limit: 2 percent of length at design load
safety factor: 2 on specified load
composite system: graphite-fiber/epoxy unidirectional with 0.60 fiber volume ratio

Design procedure: Tubular compression component designed to meet (1) stress, (2) displacement, and (3) buckling requirement at design load

Step 1. Design Variables: (1) tube diameter, (2) tube thickness, (3) specific composite system
Step 2. Design load (Pd): safety factor times specified load, or 2 x 100 000 lb = 200 000 lb
Step 3. Composite Material longitudinal properties select AS graphite fiber/epoxy (AS/E) as a trial composite material.
(Table 1): Modulus:
$E_{11} = 16.0 \text{ mpsi};$

$E_{22} = 2.2 \text{ mpsi};$

$S_{11C} = 180,000 \text{ psi};$

density $\rho_k = 0.060 \text{ lb/cu in.}$

Step 4. Tube cross section area

$A_c = \text{design load/compression strength} \ (P_d/S_{11C})$

$A_c = 200,000 \text{ lb/180,000 lb/sq in.}$

$A_c = 1.111 \text{ sq in.}$

Step 5. Tube diameter and thickness

$A_c = \pi t (d_o - t)$

take $t = 1/8 \text{ in}$

then $d_o = A_c/\pi t + t$

$= 1.111 \text{ sq in} + 0.125 \text{ in.}$

$d_o = 2.954 \text{ in.}$ or

take $d_o = 3.00 \text{ in.}$ which is the maximum allowed

Step 6. Check displacement at design load

$u_c = P_d/K_a$

$K_a = E_{11} A_c/l_c$

$E_{11} = 16 \times 10^6 \text{ psi}$

$A_c = \pi t (d_o - t)$

$= \pi (0.125 \text{ in}) (3.00 - 0.125) \text{ in.}$

$A_c = 1.129 \text{ sq in}$

$c = 1.5 \times 12 \text{ in.} = 18 \text{ in.}$

$K_a = 16 \times 10^6 \text{ (lb/sq in.)} \frac{1.129 \text{ sq in.}}{18 \text{ in.}}$

$K_a = 1,004,000 \text{ lb/in.}$

$u_c = \frac{200,000 \text{ lb}}{1,004,000 \text{ (lb/in.)}}$

$u_c = 0.199 \text{ in.}$

$u_c < 2 \text{ percent } l_c$

$0.199 \text{ in.} < 2 \text{ percent } 18 \text{ in.}$

$0.199 \text{ in.} < 0.36 \text{ in.} \text{ O.K.}$
Step 7. Check tube buckling load (assume pinned ends (ref. 14, pg. 570))

\[P_b = \pi^2 E_{4411} \frac{I_c}{C^2} \]

\[E_{4411} = 16 \times 10^6 \text{ psi} \]

\[I_c = \pi \left(d_o^4 - d_i^4 \right)/64 \]

\[d_o = 3.00 \text{ in.} \]

\[d_i = 3.00 - 2 \times 0.125 = 2.75 \text{ in.} \]

\[I_c = \frac{\pi}{64} (3.00^4 - 2.75^4) \text{ in}^4 = 1.169 \text{ in}^4 \]

\[I_c = 1.5 \times 12 \text{ in.} = 18 \text{ in.} \]

\[P_b = \frac{\pi^2 (16 \times 10^6 \text{ psi}) \times 1.169 \text{ in}^4}{18^2 \text{ sq in.}} \]

\[P_b = 570 \text{,000 lb} \]

\[P_d < P_b \]

\[200 \text{,}000 \text{ lb} < 570 \text{,}000 \text{ lb} \]

\[200 \text{,}000 \text{ lb} < 570 \text{,}000 \text{ lb} \]

Therefore, the designed composite thin tube is 3.00 in. outside diam. with 1/8 in. wall thickness. It satisfies the stress and displacement design requirements at design load and has about 300 percent of the buckling load design requirement. The tube would weigh about 1.22 lb.

SAMPLE DESIGN 3.2:

structural component: tubular column, 3 ft long, 10 in. maximum outside diameter

specified load: (1) 10,000 lb static compression (2) 5000 lb maximum amplitude cyclic compression – compression load.

axial displacement limit: 0.5 percent of column length at design load and maximum amplitude of cyclic load

safety factors: 2 for static load 2 on fatigue stress allowable

column service life: 1,000,000 cycles

composite system: T300-graphite fiber/epoxy unidirectional composite with 0.70 fiber volume ratio
design procedure: Tubular column designed to meet combined static and cyclic stress, displacement and buckling requirements

Step 1. Design variables: (1) tube diameter, and (2) tube wall thickness

Step 2. Design static load (P_d): safety factor for static load times specified load 2×10^4 lb = 20 000 lb

Step 3. Composite Material
 longitudinal properties
 (Table 1):
 $E_{11} = 26.3$ mpsi
 $S_{11C} = 247 000$ psi
 $\rho_L = 0.058$ lb/cu in.

Step 4. Determine compression fatigue stress allowable:

 $S_N = [1.0 - 0.1 \log N] \times S_{11C}$

 And the compression fatigue stress allowable is the fatigue stress divided by the safety factor or:

 $S_{NA} = S_N/2 = 98 800/2$ psi
 $S_{NA} = 49 400$ psi

Step 5. Column cross-section area:

 $P_{ cyc} = cyclic load = 5000$ lb
 $P_d = design load = 20 000$ lb
 $S_{NA} = fatigue stress allowable = 49 400$ psi
 $S_{11C} = compression strength = 247 000$ psi

 $A_c = \frac{P_{ cyc} + P_d}{S_{NA}} \times S_{11C}$

 $A_c = \frac{5000 \text{ lb}}{49 400 \text{ (lb/sq in.)}} + \frac{20 000 \text{ lb}}{247 000 \text{ (lb/sq in.)}}$

 $A_c = 0.101 \text{ sq in.} + 0.081 \text{ sq in.}$
 $A_c = 0.182 \text{ sq in.}$

Step 6. Tubular column diameter and thickness

 $A_c = \frac{\pi t (d_o - t)}{t} $
 $d_o = tube outer diameter$
 $t = tube wall thickness$

 Assume $t = 1/8$ in.

 $d_o = \frac{A_c}{\pi t} + t$

\[d_0 = \frac{0.182 \text{ sq. in.}}{\pi x 0.125 \text{ in.}} + 0.125 \text{ in.} \]

\[d_0 = 0.588 \text{ in.} \]

The tube cross-section area is adjusted to 5/8 in outer diameter with 1/8 in. wall thickness.

- Step 7. Check displacement at combined design load with maximum cyclic load

\[(P_d + P_{cyc}) \]

\[u_c = \frac{(P_d + P_{cyc})}{K_a} \]

\[K_a = \frac{E_{11} A_c}{l_c} \]

\[P_d + P_{cyc} = 20,000 + 5000 = 25,000 \text{ lb} \]

\[E_{11} = 26.3 \text{ mpsi} \]

\[A_c = \pi \left(\frac{d_0^2 - d_i^2}{4} \right) = \pi \left(\frac{0.625^2 - 0.375^2}{4} \right) \]

\[A_c = 0.196 \text{ sq. in.} \]

\[l_c = 3 \text{ ft x 12 in./ft} = 36 \text{ in.} \]

\[K_a = 26,300,000 \text{(lb/sq in.) x 0.196 (sq in.)/36 in.} \]

\[K_a = 143,200 \text{ lb/in.} \]

\[u_c = \frac{25,000 \text{ lb}}{143,200 \text{ (lb/in.)}} = 0.175 \text{ in.} \]

\[u_c \leq 0.5 \text{ percent } l_c \]

0.175 in. \(\leq 0.005 \times 36 \text{ in.} \)

0.175 in. \(< 0.18 \text{ in.} \) O.K.

- Step 8. Check tube buckling load (assume pinned ends)

\[P_b = \frac{\pi^2 E_{11} I_c}{l_c^2} \]

\[E_{11} = 26.3 \text{ mpsi} \]

\[I_c = \frac{\pi}{64} \left(d_0^4 - d_i^4 \right) \]

\[I_c = \frac{\pi}{64} \left(0.625^4 - 0.375^4 \right) \text{ in}^4 \]

\[I_c = 0.00652 \text{ in}^4 \]

\[l_c = 36 \text{ in.} \]
To increase the buckling load to 25,000 lb \((P_{d} + P_{cyc})\) and greater, \(I_{c}\) must be increased by about 20 times. The easiest way to achieve this increase is to increase the tube outer diameter at least 2.5 times.

Assume \(d_{o} = 1.5\) in. and \(t = 0.20\) in.

\[
I_{c} = \frac{\pi}{64} (1.5^4 - 1.1^4) \text{in}^4
\]
\[
I_{c} = 0.177 \text{in}^4
\]

\[
P_{b} = \frac{\pi^2}{36} \times 26,300,000 \text{(lb/sq in)} \times 0.177 \text{in}^4
\]

\[
P_{b} = 1310 \text{lb} \ll 25,000 \text{lb} \quad (P_{d} + P_{cyc})
\]

Step 9. Check design load and fatigue stresses. Since the tubular column dimensions were changed, the stresses need be checked again in order to determine the new stress margin.

The design load stress \((\sigma_{d})\) is:

\[
\sigma_{d} = \frac{P_{d}}{A_{c}}
\]
\[
P_{d} = 20,000 \text{ lb}
\]
\[
A_{c} = \pi t (d_{o} - t)
\]
\[
A_{c} = \pi \times 0.20 (1.5 - 0.20) \text{in}^2
\]
\[
A_{c} = 0.817 \text{ sq in.}
\]
\[
\sigma_{d} = 20,000 \text{ lb/0.817 sq in.}
\]
\[
\sigma_{d} = 24,500 \text{ lb/sq in.}
\]

The fatigue stress \((\sigma_{cyc})\) is:

\[
\sigma_{cyc} = \frac{P_{cyc}}{A_{c}}
\]
\[
P_{cyc} = 5000 \text{ lb/0.817 sq in.}
\]
\[
\sigma_{cyc} = 6100 \text{ lb/sq in.}
\]

Check combined stresses (Goodman Diagram)

\[
\frac{\sigma_{cyc}}{S_{NA}} + \frac{\sigma_{d}}{S_{11C}} \leq 1
\]

13
Therefore, the designed tubular column is 1.5 in. outer diameter with 0.20 in. wall thickness. The tubular column satisfies all the specified design requirements: (1) less than 10 in. diameter, (2) combined stress, (3) maximum displacement, and (4) buckling load. The static compression fracture load is about 202,000 lb which is more than 8 times the combined design load and maximum cyclic load. Also the fatigue life of the tube is about 4 times greater (1,000 versus 0.222) than the fatigue stress for one million cycles. The column as designed would weigh about 1.7 lb. The tube dimensions of 1.5 in. outer diameter and 0.20 in. wall thickness are relatively small and amenable to the pultrusion fabrication process. The critical design requirement is the buckling load which is controlled by the tube bending stiffness E_{ILC}.

It is generally the case that structural members designed to meet buckling (elastic stability) design requirements satisfy other design requirements with wide margins. It is possible to obtain a more economical design by selecting a tubular column with a larger diameter and a smaller wall thickness. In this approach the tube would need to be sized to meet local buckling and column (Euler) buckling simultaneously.

SAMPLE DESIGN 3.3:

structural component: thin tubular beam column 5 ft. long and 5 in. maximum outer diameter (fig. 1c).

specified load:
- 1) 20,000 lb axial compression
- 2) 10,000 lb cyclic bending load applied at the center at 3 cycles per second (Hz)

design specified limit requirements:
- 1) static design load stresses (less than allowable)
- 2) fatigue stresses (less than allowables)
- 3) buckling load (greater than design load)
- 4) midspan maximum displacement (.7 percent of length)
- 5) fundamental frequency (5 times cyclic load frequency)

composite system: T300-graphite fiber/epoxy unidirectional composite with 0.70 fiber volume ratio

safety factors:
- 1) 2 on axial compression load
- 2) 2 on fatigue stress allowable
Design procedure:

Tubular beam column designed to meet design specified load and limit requirements

Step 1. Design variables:
1) tube diameter
2) tube wall thickness

Step 2. Design static load (P_d):
safety factor for static load times specified load or P_d = 2 x 20,000 lb
P_d = 40,000 lb

Step 3. Composite material longitudinal properties (Table 1):
E_{II} = 26.3 mpsi
S_{II}_{IT} = 218,000 psi
S_{II}_{IC} = 247,000 psi
S_{II}_{ID} = 9800 psi
S_{SB} = 14,000 psi (S_{SB} = 1.5 S_{II}_{ID})
\rho_{c} = 0.058 lb/cu in.

Step 4. Fatigue stress allowables:
1) tension fatigue S_{NT} = [1.0 - 0.02 Log N] x S_{II}_{IT}
2) compression fatigue S_{NC} = [1.0 - 0.10 Log N] x S_{II}_{IC}

Step 4a. Number of cycles (N) for 10,000 hr service life

\[
N = \frac{3 \text{ cyc} \times 3600 \text{ sec} \times 10,000 \text{ hrs}}{\text{sec/hr}} = 108 \text{ million cycles (1.08x10}^8\text{)}
\]

Step 4b. S_{NT} = [1.0 - 0.02 log N]S_{II}_{IT}
\[
S_{NT} = [1.0 - 0.02 \log (1.08x10^8)] \times 218,000 \text{ psi}
\]
S_{NT} = 183,000 psi
S_{NTA} = S_{NT}/2 (2 is the safety factor on fatigue stress)
S_{NTA} = 91,500 psi

Step 4c. S_{NC} = [1.0 - 0.10 log N] S_{II}_{IC},
\[
S_{NC} = [1.0 - 0.10 \log (1.08x10^8)] \times 247,000 \text{ psi}
\]
S_{NC} = 48,600 psi
S_{NCA} = S_{NC}/2 (2 is the safety factor on fatigue stress)
S_{NCA} = 24,300 psi

Step 5. Beam column cross-section area. Since the compression fatigue stress allowables are relatively low, assume that this controls the design. The cross-section area for static compression with cyclic compression can be expressed as:
A_c = \frac{P_d}{S_{11C}} + \frac{M_{\text{cyc}} C}{S_{\text{NCA}} (I_c/A_c)}

P_d = 40000 \text{ lb}

M_{\text{cyc}} = P_{\text{cyc}} l_c/4 \text{ (maximum moment at center of beam column, fig. C)}

M_{\text{cyc}} = 10000 \text{ lb x 60 in.}/4

M_{\text{cyc}} = 150000 \text{ lb in.}

S_{11C} = 247000 \text{ psi}

S_{\text{NCA}} = 24300 \text{ psi}

C = d_0/2

I_c = \pi (d_0^4 - d_1^4)/64

A_c = \pi (d_0^2 - d_1^2)/4

A_c = \pi (d_0 - t)

First trial — Assume that d_0 = 5 \text{ in.} \text{ and } t = 0.50 \text{ in.}, and solve for A_c by trial and success.

A_c = \pi \times 0.50 \text{ in.} \times (5.0-0.5) \text{ in.}

A_c = 7.07 \text{ sq in.}

I_c = \pi (5.00^4 - 4.00^4) \text{ in}^4/64

I_c = 18.1 \text{ in}^4

C = 5.00 \text{ in.}/2

C = 2.5 \text{ in.}

7.07 \text{ in}^2 \geq \frac{40000 \text{ lb}}{247000 \text{ psi}} + \frac{150000 \text{ lb in. x 2.5 in.}}{24300 \text{ psi x (18.1 in}^4/7.07 \text{ in}^2)}

7.07 \text{ in}^2 \geq 0.162 \text{ in}^2 + 6.03 \text{ in}^2

7.07 \text{ in}^2 > 6.19 \text{ in}^2

Second trial — Assume d_0 = 5.00 \text{ in.}

A_c = 6.19 = \pi (d_0^2 - d_1^2)/4

\frac{d_0^2}{\pi} - \frac{4 \times 6.19}{\pi} = 5.00^2 \text{ sq in.} - (4 \times 6.19) \text{ sq in.}

d_1 = 4.14 \text{ in.}
\[I_c = \pi \left(d_0^4 - d_i^4 \right) / 64 \]

\[I_c = \frac{\pi}{64} (5.00^4 - 4.14^4) \text{ in}^4 \]

\[I_c = 16.3 \text{ in}^4 \]

\[I_c / A_c = 16.3 \text{ in}^4 / 6.19 \text{ in}^2 = 2.63 \text{ in}^2 \]

\[6.19 \text{ in}^2 = \frac{40 \ 000 \ lb}{247 \ 000 \ \text{psi}} + \frac{150 \ 000 \ lb \ \text{in} \times 2.5 \ \text{in.}}{24 \ 300 \ \text{psi} \times (16.3 \ \text{in}^4 / 6.19 \ \text{in}^2)} \]

\[6.19 \text{ in}^2 = (0.162 + 5.86) \text{ in}^2 \]

\[6.19 \text{ in}^2 = 6.02 \text{ in}^2 \]

Third trial – decide on 5.00 in outside diameter with 0.45 in wall thickness. For these dimensions:

\[A_c = \pi t (d_0 - t) \]

\[= \pi (0.45 \text{ in}) (5.00 \text{ in} - 0.45 \text{ in}) \]

\[A_c = 6.43 \text{ in}^2 \]

\[I_c = \pi \left(d_0^4 - d_i^4 \right) / 64 \]

\[I_c = \pi (5.00^4 - 4.10^4) \text{ in}^4 / 64 \]

\[I_c = 16.8 \text{ in}^4 \]

\[I_c / A_c = 16.8 \text{ in}^4 / 6.43 \text{ in}^2 = 2.61 \text{ in}^2 \]

Step 6. Check stresses:

Step 6a. The maximum compression stress is:

\[\sigma_c = - \frac{P_d}{A_c} - \frac{M_{\text{cyc}} C}{I_c} \]

\[P_d = 40 \ 000 \ \text{lb} \]

\[M_{\text{cyc}} = 150 \ 000 \ \text{lb in.} \]

\[A_c = 6.43 \text{ in}^2 \]

\[I_c = 16.8 \text{ in}^4 \]

\[C = 2.50 \text{ in.} \]

\[\sigma_c = - \frac{40 \ 000 \ \text{lb}}{6.43 \text{ in}^2} - \frac{150 \ 000 \ \text{lb in.} \times 2.5 \ \text{in.}}{16.8 \text{ in}^4} \]
$\sigma_c = -28,500 \text{ psi or } 28,500 \text{ psi compression. and the margin of safety (MOS) is:}$

\[
\text{MOS} = \frac{S_{k11C}}{\sigma_c} - 1.000
\]

\[
\text{MOS} = \frac{247,000 \text{ psi}}{28,500 \text{ psi}} - 1.00 = 7.67 \text{ O.K.}
\]

Step 6b. The maximum tensile stress is:

\[
\sigma_t = -\frac{P_d}{A_c} + \frac{M_{\text{cyc}}}{I_c}
\]

\[
\sigma_c = -\frac{40,000 \text{ lb} + 150,000 \text{ lb in x 2.50 in.}}{6.43 \text{ in}^2} \quad \frac{16.8 \text{ in}^4}{16.8 \text{ in}^4}
\]

\[
\sigma_t = 16,100 \text{ psi}
\]

\[
\text{MOS} = \frac{218,000 \text{ psi}}{16,100 \text{ psi}} - 1.00 = 12.5 \text{ O.K.}
\]

Step 6c. The maximum interlaminar shear stress is at the beam column center (ref. 14, pg. 349).

\[
\sigma_s = 2.0 \left(\frac{P_{\text{cyc}}/2}{A_c} \right)
\]

\[
\sigma_s = \frac{2.0 \times 10,000 \text{ lb}}{2 \times 6.43 \text{ in}^2}
\]

\[
\sigma_s = 1560 \text{ psi}
\]

and MOS = \[
\frac{14,000 \text{ psi}}{1560 \text{ psi}} - 1.00 = 7.97 \text{ O.K.}
\]

Step 7. Check fatigue stresses:

Step 7a. Static compression with cyclic compression

\[
1.000 \frac{\frac{\sigma_c}{S_{k11C}} + \frac{\sigma_{\text{cyc}}}{S_{\text{NCA}}}}{S_{k11C}}
\]

\[
1.000 \frac{\frac{P_d}{A_c} + \frac{M_{\text{cyc}}/I_c}{S_{\text{NCA}}}}{S_{k11C}}
\]
1.000 > 6200 psi/247 000 psi + 22 300 psi/24 300 psi
1.000 > 0.025 + 0.919 = 0.944 O.K.

Step 7b. Cyclic tension only (tensile part of the bending cycle)

\[
1.000 > \frac{M_{cyc} C}{I_C} \frac{P_d}{A_C} NTA - \frac{P_d}{S_{x11T}}
\]

1.000 > \frac{22 300 psi}{91 500 psi} - 218 000 psi

1.000 > 0.244 - 0.028 = 0.216 O.K.

Step 8. Check buckling load:

The buckling load of this beam column assuming pinned ends is:

\[
P_b = \frac{\pi^2 E_{x11} I_c}{4 L_c^2}
\]

\[
E_{x11} = 26 300 000 psi
I_c = 16.8 \text{ in}^4
L_c = 60 \text{ in.}
\]

\[
P_b = \frac{\pi^2 \times 26 300 000 \text{ lb/in}^2 \times 16.8 \text{ in}^4}{60 \times 60 \text{ in}^2}
\]

\[
P_b = 1 210 000 \text{ lb}
\]

\[
P_b > P_d + P_{cyc}
\]

1 210 000 lb > (40 000 + 10 000) lb = 50 000 lb

and MOS = \[
\frac{1 210 000 \text{ lb} - 1}{50 000 \text{ lb}} = 23.2 \text{ O.K.}
\]

Step 9. Check maximum displacement:

The maximum displacement at the beam column (fig. 1C) midspan is given by (ref. 15, pg. 5):

\[
w_{\text{max}} = \frac{P_{cyc}}{2P_d^2} \left[\tan \frac{\lambda L_c}{2} - \frac{\lambda L_c}{2} \right]
\]

\[
P_{cyc} = 10 000 \text{ lb maximum cyclic load}
P_d = 40 000 \text{ lb axial compressive design load}
\]
\[\lambda = \left[\frac{P_d}{E_{\xi11} I_c} \right]^{1/2} \]

\[E_{\xi11} = 26.3 \text{ mpsi} \]
\[I_c = 16.8 \text{ in}^4 \]

\[\lambda = \left[\frac{40,000 \text{ lb}}{26.3 \times 10^6 \text{ lb/in}^2 \times 16.8 \text{ in}^4} \right]^{1/2} \]

\[\lambda = 0.00951/\text{in.} \]

\[w_{\text{max}} = \frac{10,000 \text{ lb}}{2 \times 40,000 \text{ lb} \times 0.00951/\text{in.}} \times \tan \left(\frac{0.00951 \times 60 \text{ in.}}{2} \right) \]

\[w_{\text{max}} = -3.68 \text{ in} \]

\[| -3.68 | \text{ in} < 7 \text{ percent} 60 \text{ in}. \] (absolute value sign)

\[3.68 \text{ in.} < 4.2 \text{ in. O.K.} \]

Note this relatively large quasi-static mid-span displacement is acceptable since (1) it reaches this magnitude at short times, and (2) the inertial properties were not accounted for in the calculations. In the absence of the axial load, \(w_{\text{max}} = 0.101 \) in which is relatively insignificant.

Step 10. Check fundamental frequency:

The fundamental frequency (\(f \)) for a beam column with axial compression load is given by (ref. 16, pg. 455):

\[f = \frac{\pi^2}{l_c^2} \frac{E_{\xi11} I_c}{\rho_c A_c} \]

\[l_c = 60 \text{ in} \]
\[E_{\xi11} = 26.3 \text{ mpsi} \]
\[I_c = 16.8 \text{ in}^4 \]

\[\rho_c = \frac{\rho_e}{g} = \frac{0.058 \text{ lb}}{\text{in}^3} \times \frac{1.0}{32.2 (\text{ft/sec}^2) \times 12(\text{in/ft})} = 1.50 \times 10 \text{ lb}^{-4} \text{sec}^2/\text{in}^4 \]

\[A_c = 6.43 \text{ in}^2 \]
\[P_d = 40,000 \text{ lb} \]
Therefore, the designed tubular beam column is 5.0 in. outer diameter with 0.45 in. wall thickness. This beam column satisfies all the specified design limit requirements: (1) quasi-static stresses, (2) fatigue stresses, (3) buckling load (elastic stability), (4) midspan maximum displacement, and (5) fundamental frequency. This beam column would weigh about 33.4 lb. The diameter of the tube (5.0 in.) and the wall thickness (0.45 in.) are relatively small and amenable to the pultrusion fabrication process. It is interesting to note that compression fatigue stress controlled the design of this beam column. Once this was satisfied, the other specified limit design requirements were satisfied with wide margins of safety. For example, the estimated static fracture loads (ultimate loads) of this beam column are: (1) 1 590 000 lb compression, (2) 1 401 740 lb tension, (3) 1 465 000 lb in bending moment, and (4) 1 210 000 buckling load. The tubular beam column design would be tested for all these conditions as well as fatigue, midspan displacement and frequency in order to verify the design in actual design practice.

4.0 HYGROTHERMAL EFFECTS

The hygrothermal environment (moisture and temperature) affects the composite material properties which are controlled by the resin (ref.7). These properties are: (1) longitudinal compression strength, (2) transverse tension and compression - moduli and strengths, and (3) intralaminar and interlaminar shear-moduli and strengths. Thermal expansion coefficients and moisture expansion coefficients are also affected by the hygrothermal environments (refs. 11 and 13). In the sample design, we only consider the hygrothermal effects on compression strength and compression fatigue.

SAMPLE DESIGN 4.1:

structural component: thin tubular member (beam column) 5 ft long, outer diameter and 0.45 in wall thickness

specified load: 1) 20 000 lb axial compression
2) 10 000 lb cyclic bending load at 3) cycles/sec applied at midspan
service environment: 1) 0.8% percent moisture in the composite 2) 120°F temperature
design specified limit requirements: compression – compression fatigue
composite system safety factors: T300/epoxy unidirectional composites with
0.70 fiber volume ratio/
1) 2 on axial compression
2) 2 on fatigue stress allowable
design procedure: check beam column area sufficiency for the environmental effects and modify as needed.
Step 1. Design variable: wall thickness
Step 2. Design static load: safety factor times specified load:
2 x 20 000 lb = 40 000 lb = \(P_d \)
Step 3. Composite material properties at room temperature dry
\(E_{11} = 26.3 \text{ mpsi} \)
\(S_{11C} = 247 000 \text{ psi} \)
\(\rho_k = 0.058 \text{ lb/in}^3 \)
conditions (Table 1): \(T_{GD} = 420^\circ \text{ F} \)
Step 4. Compression fatigue stress allowable
Step 4a. The compression fatigue stress with hygrothermal effects is given by (Ref. 10)
\[
\frac{S_{NC}}{S_{11C}} = \left(\frac{T_{GW} - T}{T_{GD} - T_0} \right)^{1/2} - 0.1 \log N
\]
\(T_{GW} \) = the glass transition temperature of the wet composite.
If not known, it can be estimated by (ref. 13):
\(T_{GW} = (0.005 M_k - 0.10 M_k + 1.0) T_{GD} \)
\(M_k = 0.8 \text{ percent moisture (service environment)} \)
\(T_{GD} = 420^\circ \text{ F} \) (glass transition temperature of dry composite)
\(T_{GW} = [0.005(0.8) - 0.10(0.8) + 1.0] \times 420^\circ \text{ F} \)
\(T_{GW} = 390^\circ \text{ F} \)
\(T = 120^\circ \text{ F} \) (service environment)
\(T_0 = 70^\circ \text{ F} \) room temperature
\(N = 1.08 \times 10^8 \) cycles (SD3 step 4a)
Step 4b. Substituting these numerical values in
\[
\frac{S_{NC}}{S_{11C}} = \left(\frac{390^\circ \text{ F} - 120^\circ \text{ F}}{420^\circ \text{ F} - 70^\circ \text{ F}} \right)^{1/2} - 0.1 \log (1.08 \times 10^8)
\]
\[
\frac{S_{NC}}{S_{11C}} = 0.075
\]

\[
S_{NC} = 0.075 \times S_{11C} = 0.075 \times 247,000 \text{ psi}
\]

\[
S_{NC} = 18,500 \text{ psi}
\]

\[
S_{NCA} = \frac{S_{NC}}{2} = \frac{18,500}{2} \text{ psi} = 9,250 \text{ psi}
\]

This compression fatigue stress allowable is about 40 percent of that determined in SD3 Step 4c. This means that the moment of inertia \(I_c\) must be changed by about 2.5 times.

Step 4c. The new moment of inertia is changed by changing the outside diameter keeping the \(d_o\) at 4.1 in.

\[
2.5 \ I_c = \frac{\pi}{64} (d_o^4 - d_i^4)
\]

\[
d_o = \left[d_i^4 + \frac{64 \times 2.5 \ I_c}{\pi} \right]^{1/4}
\]

\[
I_c = 16.8 \text{ in}^4 \text{ (SD3, Step 5)}
\]

\[
d_o = \left[4.1^4 + \frac{64 \times 2.5}{\pi} (16.8) \right]^{1/4} \text{ in.}
\]

\[
d_o = 5.81 \text{ in.}
\]

\[
t = \frac{(5.81 - 4.10)}{2} \text{ in.} = 0.855 \text{ in.}
\]

Step 4d. Select 6.0 in. for the outside diameter and 1 in. wall thickness

\[
d_i = d_o - 2t
\]

\[
d_i = 6.0 - 2 (1.00) \text{ in.} = 4.0 \text{ in.}
\]

\[
I_c = \frac{\pi}{64} (d_o^4 - d_i^4)
\]

\[
I_c = \frac{\pi}{64} (6.0^4 - 4.0^4) \text{ in}^4
\]

\[
I_c = 51.1 \text{ in}^4
\]

\[
A_c = \frac{\pi}{4} (d_o^2 - d_i^2)
\]

23
\[A_c = \frac{\pi}{4} (6.0^2 - 4.0^2) \text{ in}^2 \]

\[A_c = 15.7 \text{ in}^2 \]

Step 5. Check fatigue stresses at the hygrothermal environmental conditions

\[1.000 \frac{\sigma_c}{S_{\text{CHT}}} + \frac{\sigma_{cyc}}{S_{\text{NCA}}} \]

Step 5a. \[\sigma_c = \frac{P_d}{A_c} = \frac{40000 \text{ lb}}{15.7 \text{ in}^2} \]

\[\sigma_c = 2550 \text{ psi} \]

Step 5b. \[S_{\text{CHT}} = \left(\frac{T_{\text{GW}} - T}{T_{\text{GO}} - T_o} \right)^{1/2} x S_{L1C} \text{ (longitudinal compression with hygrothermal effects)} \]

\[S_{\text{CHT}} = \left(\frac{390^\circ F - 120^\circ F}{420^\circ F - 70^\circ F} \right)^{1/2} x 247,000 \text{ psi} \]

\[S_{\text{CHT}} = 217,000 \text{ psi} \]

Step 5c. \[\sigma_{cyc} = \frac{M_{cyc}}{I_c} \]

\[M_{cyc} = 150,000 \text{ lb in. (SD3, Step 6a)} \]

\[C = 3.00 \text{ in} \]

\[I_c = 51.1 \text{ in}^4 \]

\[\sigma_{cyc} = \frac{150,000 \text{ lb in.} \times 3.00 \text{ in.}}{51.1 \text{ in}^4} \]

\[\sigma_{cyc} = 8810 \text{ psi} \]

Step 5d. Combined condition

\[1.000 \frac{\sigma_{cyc}}{S_{\text{CHT}}} + \frac{\sigma_{cyc}}{S_{\text{NCA}}} \]

\[1.000 \frac{2550 \text{ psi}}{217,000 \text{ psi}} + 8810 \text{ psi} \]
Therefore, the designed tubular beam column is 6.0 in. outside diameter with 1 in. wall thickness. The tubular beam column to satisfy the fatigue stress requirements in the specified hygrothermal environment is considerably larger than that in SD3.3. It would weigh about 55 lb. The result of this sample design is significant in that it indicates that fatigue stresses at very high cycles (10^6) combined with hygrothermal environments are severe design conditions. Actual designs for such conditions need to be based and verified on relevant experimental data. These data may well show that the fatigue degradation coefficient of 0.1 (0.1 log N) may be too severe. For example, a fatigue degradation coefficient of 0.07 will increase the fatigue stress allowable to about 39 000 psi which is about 1.5 times the fatigue stress allowable of 24 300 psi in SD3.3. Step 4c and would result in a considerably lighter tubular beam column. It is important to keep in mind that this sample design was selected to illustrate the steps to account for combined hygrothermal environmental effects with static compression and fatigue. It was also selected to demonstrate that data for composites are needed for very high cycle fatigue (10^6 cycles).

Though the sample designs described were unidirectional composites, the design steps remain the same for similar components made from angleplied laminates. Laminate properties must be used. These may be obtained by the procedures described in references 8, 9, and 11.

5.0 CONCLUDING REMARKS

Sample designs were worked out in detail for three structural components: (1) hanger rod, (2) tubular column, and (3) tubular beam column. The loading conditions considered in these sample designs include static and cyclic. The environmental conditions included room temperature and hygrothermal 0.8 percent moisture at 120°F. Design limiting requirements considered include: (1) static strength, (2) fatigue, (3) combined static and fatigue in both room temperature and hygrothermal environments, (4) displacements, (5) creep, (6) buckling, and (7) frequencies. The composite materials considered were: (1) Kevlar/epoxy, S-glass/epoxy, AS/epoxy and T300/epoxy. All composites were made from unidirectional materials. The step-by-step design procedures used were selected to illustrate the significant aspects of the design process and to provide samples to be followed for designing more complex components. The composite data used in the various sample designs are typical for the respective composite systems and should be used only for preliminary designs.

6.0 REFERENCES

7.0 NOTATION

\(A_c \) structural component cross-section area

\(\text{AS} \) AS-graphite fibers

\(C \) distance from reference to outer surface used to calculate bending stresses

\(d_c \) component diameter

\(d_i \) inner diameter

\(d_o \) outer diameter

\(E_\text{ER} \) unidirectional modulus—numerical subscripts denote direction

\(E_o \) time-independent modulus for creep calculations

\(E_t \) time-dependent modulus for creep calculations

\(f \) frequency

\(I_c \) component bending moment of inertia

\(K_a \) axial stiffness

\(l_c \) component length

\(M_{\text{cyc}} \) cyclic moment

\(M_\text{w} \) moisture, percent by weight

\(\text{MOS} \) margin of safety

\(N \) number of fatigue cycles

\(n \) time exponent for creep calculations

\(P_b \) buckling load

\(P_{\text{cyc}} \) cyclic axial load

\(P_d \) design load

\(P_{\text{max}} \) maximum load

\(\text{SD} \) sample design

\(S_{\text{A1IT}} \) longitudinal tensile fracture stress

\(S_{\text{A1IC}} \) longitudinal compression fracture stress

\(S_{\text{SB}} \) interlaminar (short-beam) shear fracture stress

\(S_N \) fatigue stress

\(S_{\text{NA}} \) fatigue stress allowable

\(S_{\text{NC}} \) compression fatigue stress

\(S_{\text{NCA}} \) compression fatigue stress allowable

\(S_{\text{NT}} \) tensile fatigue stress

\(S_{\text{NTA}} \) tensile fatigue stress allowable
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>use temperature</td>
</tr>
<tr>
<td>T_{GD}</td>
<td>glass transition temperature, dry conditions</td>
</tr>
<tr>
<td>T_{GW}</td>
<td>glass transition temperature, wet conditions</td>
</tr>
<tr>
<td>T_0</td>
<td>reference temperature</td>
</tr>
<tr>
<td>T300</td>
<td>Thornel 300 graphite fiber</td>
</tr>
<tr>
<td>t</td>
<td>thickness or time</td>
</tr>
<tr>
<td>u</td>
<td>axial displacement</td>
</tr>
<tr>
<td>u_{cr}</td>
<td>axial creep displacement</td>
</tr>
<tr>
<td>w_{max}</td>
<td>maximum lateral displacement</td>
</tr>
<tr>
<td>ε_{cr}</td>
<td>creep strain</td>
</tr>
<tr>
<td>λ</td>
<td>defined by $\lambda = [P_d/E_{11}]^{1/2}$</td>
</tr>
<tr>
<td>ρ_c</td>
<td>density</td>
</tr>
<tr>
<td>σ_c</td>
<td>compressive stress</td>
</tr>
<tr>
<td>σ_{cyc}</td>
<td>cyclic stress</td>
</tr>
<tr>
<td>σ_d</td>
<td>stress due to design load</td>
</tr>
<tr>
<td>σ_t</td>
<td>tensile stress</td>
</tr>
<tr>
<td>σ_s</td>
<td>shear stress</td>
</tr>
<tr>
<td>Properties</td>
<td>Symbol</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>1. Fiber volume ratio</td>
<td>k_f</td>
</tr>
<tr>
<td>2. Density</td>
<td>ρ_L</td>
</tr>
<tr>
<td>3. Longitudinal thermal coefficient</td>
<td>α_{11}</td>
</tr>
<tr>
<td>4. Transverse thermal coefficient</td>
<td>α_{22}</td>
</tr>
<tr>
<td>5. Longitudinal modulus</td>
<td>E_{11}</td>
</tr>
<tr>
<td>6. Transverse modulus</td>
<td>E_{22}</td>
</tr>
<tr>
<td>7. Shear modulus</td>
<td>G_{12}</td>
</tr>
<tr>
<td>8. Major Poisson's ratio</td>
<td>ν_{12}</td>
</tr>
<tr>
<td>9. Minor Poisson's ratio</td>
<td>ν_{21}</td>
</tr>
<tr>
<td>10. Longitudinal tensile strength</td>
<td>S_{11L}</td>
</tr>
<tr>
<td>11. Longitudinal compressive strength</td>
<td>S_{11c}</td>
</tr>
<tr>
<td>12. Transverse tensile strength</td>
<td>S_{22L}</td>
</tr>
<tr>
<td>13. Transverse compressive strength</td>
<td>S_{22c}</td>
</tr>
<tr>
<td>14. Intralamellar shear strength</td>
<td>S_{12S}</td>
</tr>
<tr>
<td>15. Longitudinal moisture coefficient</td>
<td>a_{11}</td>
</tr>
<tr>
<td>16. Transverse moisture coefficient</td>
<td>a_{22}</td>
</tr>
</tbody>
</table>
(a) Composite hanger rod,
(b) Composite tubular column,
(c) Composite beam column.

Figure 1. - Schematic of composite structural components.

Figure 2. - Normalized Goodman diagram.