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ABSTRACT

A numerical study of the response of aircraft wings to atmospheric

gusts and to nuclear explosions when flying at subsonic speeds is presented.

The method is based upon unsteady quasi-vortex-lattice method, unsteady

suction analogy and Pad6 approximant. The calculated results, showing

vortex lag effect, yield reasonable agreement with experimental data for

incremental lift on wings in gust penetration and due to nuclear blast

waves.
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9
NOMENCLATURE y

Ai = coefficients of Pad6 approximant

AR = wing aspect ratio

Bi = coefficients of partial fraction of Pad6 approximant

bn = local span at the section containing the transducer as

shown in Fig.	 17(b)

c = reference chord

c* = semichord length of the airfoil

C(k) = Theodorsen function

Cc(k) = generalized Theodorsen function

C l = two-dimensional oscillatory lift coefficient

Cl o = two-dimensional steady state lift coefficient

Cm = oscillatory pitching moment due to sinusoidal gusts

F = Fourier transform

F (k) =	 C(k)[Jo(k) -iJ,(k)l + iJ,(k)

h(s) = impulse lift function due to nuclear blast

Jo(k),	 J1(k) = Bessel functions of the first kind

k
a

= w c / U , reduced frequency

k' = k/ 0.61, effective reduced frequency

L = Laplace transform

L = oscillatory lift distribution

L(k) = in-phase component of oscillatory lift coefficient

L 11 (k) = out-of-phase component of oscillatory lift coefficient

M = freestream Mach number

r = ik, Laplace transform variable

s = Ut/c* or Ut/c, non-dimensional distance parameter

S = reference wing area

vii



= time coordinate

= L I M +iL"(k), oscillatory lift coefficient due to

sinusoidal gusts

= freestream velocity

= 1- T(k), [see Eq. (30)]

= vertical velocity component of the vortex sheet simulat-

ing the airfoil in gust field

= amplitude of wa

= we / U

= vertical velocity component of gust

= amplitude of vertical velocity component of gust

= wg* / U

= vertical velocity component of a sharp-edged gust

= x/c* or x/c, non-dimensional x-coordinate

= x-coordinate of wing leading edge

= reference point for gust phase

= distance penetrated into a step gust, [see Fig. 17(b)]

= Cartesian coordinate system [see Fig. 11
1

= angle of attack

= J1-^

= root of the polynomial in the denomenator of Padd

I
approximant, which is always real

= delta function

= blast intercept angle (see Fig. 20)

= freestream density

= phase difference (in degrees) of oscillatory lift

= indicial lift due to step gusts

= radian frequency associated with the gust wavelength

t

T(k)

U

U(k) + iW(k)

wa

wa*

wa

wg

wg*

wg

wa

R

xle

xR

xn

x,z

a

Ri

6(t)

e

A

Cs)

W
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1. INTRODUCTION
	 t

Estimation of the response of an aircraft due to atmospheric gusts

has been the subject of numerous investigations from the viewpoint of

producing useful data on the induced aerodynamic forces for the design of

active control systems for gust alleviation.

In theorectical analyses, the change of lift and moment on a wing

passing through a sharp-edged gust was first calculated for incompressible

two-dimensional flow by Kdrm gn and Sears with simple mathematical formulae

(Ref. 1). Miles (Ref. 2) extended the calculations to a travelling gust

field, i.e., sharp-edged gust moving either downstream or upstream rela-

tive to the airfoil. Drischler and Diederich (Ref. 3) presented results

for a wide range of wings in both incompressible and compressible flows.

Meanwhile, the response of an airoil entering a harmonic gust field was

first introduced by Sears (Ref. 4). Murrow, et al. (Ref. 5) provided many

numerical results of lift and moment for finite wings moving through a

harmonic gust. Giesing, et al. (Ref. 6) also furnished some good sug- 	 P

gestions in computing the oscillatory lift and moment. One notable method,

called the Doublet Lattice Method (DLM) which was originally developed by

Albano and Rodden (Ref. 7), was later improved to become a very useful

tool in unsteady aerodynamics (Refs. 8, 9).

For the general harmonic analysis, the atmospheric gust was con-
1:i

sidered as a random set of discrete gusts. Response had been predicted

most commonly with the assumption that the vertical component of gust
J

varied along the flight path, but did not vary along the span. This

assumption was adopted by most researchers because the associated compu-

tations were less extensive than those for the more general cases of

1



random gusts. It may not be sufficiently accurate -for very large aircraft,

but it should provide useful data for most configurations.

Besides all these numerical calculations, not much experimental work

appeared to have been done or to be available. Roberts and Hunt (Refs. 10,

11) made a series of measurements of transient press l4res on a narrow delta

wing of AR= 1.2 due to vertical gusts, and Patel presented some experi-

mental results for a couple of delta wings (Ref. 12) and other types of

wings (Ref. 13) in harmonic gust fields.

In current aerodynamic research, the vortex flow phenomenon is

drawing much attention because it offers significant contributions to

aerodynamic characteristics on low-aspect-ratio wings with sharp or thin

edges. For these types of configurations, the pressure distributions due

to the leading-edge vortex separation are drastically different from those

given by the conventional linear theory. The complex flowfield also makes

it more difficult to predict aerodynamic forces accurately. Most of the

aforementioned unsteady aerodynamic methods are based on the linear theory,

and can not predict the leading-edge vortex effect. Although Atta, et al.,

(Ref. 14) developed an unsteady lifting-surface method with vortex flow

by using the unsteady vortex-lattice method, no application to various

gust problems has been presented and the computing cost is expected to be

very expensive.

In this report, an unsteady lifting-surface method from reference 15

will be used to calculate the lift and pitching moment due to sinusoidal

gusts for several wing planforms. The calculated results are compared with

other theories for the attached flow and with experimental data for vortex

flow. In calculating the response of a wing to a sharp-edged gust, Carrick

(Ref. 16) developed a relation between the oscillatory forces due to flight

2
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through continuous harmonic gusts and the indicial forces due to sharp-

edged gusts. Ir,,tea, of Fourier transform taken by most other theories

in handling this reciprocal relationship, the present method will use Padd

approximant to represent the harmonic response and Laplace transform will

be used to calcula O the indicial functions. The problem formulation and

computed results are presented in the following chapters.

For many years, military personnel have been continously interested

in the prediction of the response of an aircraft resulting from a nuclear

blast wave. Kalman AviDyne (Ref. 17) did a series of experiments to mea-

sure the blast pressures on a rigid highly sweptback wing at high subsonic

speeds. McGrew, et al. (Refs. 18, 19) recently used the DLM to develop a

nuclear blast response computer program for wing-body configurations. Yet

the method is valid only for the attached flow. The present method, based

on the unsteady suction analogy, will be used to demonstrate the capabili-

ty of predicting the nuclear blast response involving the vortex flow.

Some results in simulating experimental data in reference 17 will be shown.

q

i
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2. MATHEMATICAL FORMULATION

2.1 Two-Dimensional Gust Penetration

Consider that a thin airfoil moving with a velocity U, enters a

region of atmospheric gust with velocity, distribution wq normal to the
direction of motion (see Fig. 1). The boundary condition requires that

the total vertical velocity due to the gust and the vortex sheet simulat-

ing the airfoil must vanish:

wg + wa = O;	 for z= O, -c* _< x _< c*, 	 (1)

where wa is the vertical velocity component of the vortex sheet, x,z are
the coordinate systems attached to the airfoil and c* is the semichord

lent.th of the airfoil.

To solve a simple harmonic gust problem, the following expression

is used to specify the sinusoidal gust:

wg (x ) t) - -̂ w9 
*eiwIt-(x /U)] 	

(2)

where wg* is the amplitude of wg and w is the radian frequency associated

with the gust wavelength. Substituting into Eq. (1) and canceling out

the time factor e iWt , Eq. (2) leads to

wa*(x) = - we e-iwx/U
	

(3)

By way of introducing the reduced frequency, k = we*/U, Eq. (3) then be-

comes

s	 wa* ( x ) _ - v,* e-ik(x/c*)
!: x

S..

(4)

t,

V

4
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It ir. convenient to divide both sides by U and use the expression x = x/c*
	

Y

as the non-dimensional x-%oordinate,

wa* = - wg* e- i kx

U	 U

i.e.,	 wa _ „ wg 
a -iltx
	

(5)

where wa=wa*/U and % = wg /U.

8	

Using Eq. (5), the exact lift distribution for incompressible flow

can be shown to be (Ref. 20),

L = 2TrpUc*wg{C(k)[Jo(k) - W i (k)] + iJ 1 (k)} e iwt 1	(6)

where C(k) is the Theodorsen's function, Jn(k) and Ji(k) are Bessel func-

tions of the first kind. For compressible flow, C(k) will be replaced by

generalized Theodorsen's function** Cc(k) and all other terms in Eq. (6)

remain the same.,
	 P

Furthermore, the lift caused by an arbitrary wg can be calculated

from Eq. (6). For a sharp-edged gust striking the leading edge of the

airfoil at t =0,  the boundary condition is

0,
	 x>Ut-c*.

wg =
	

(7)

Wog
	

X < Ut - c*.

**The generalized Theodorsen's function was generated by Mr. Chung-Hao Hsu

in his earlier work for calculating lift on wings due to step change in

angle of attack.

5
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Then, wg can be represented by the Fourier integral,

W9 =

	

	 Ef(W)aiwt dw,(8)

27r

which can be inverted into

00

f(W)	 J -
00

 wg e -iwt dt.	 (9)

Since wg =0 for t < x U* , Eq. (9) can be shown to be, by following

the Fourier transform of a constant (Ref. 20, p.287),

f(W) _( 00	 wo a - i 4 ►t dt
J x+c*

U

woe -iW(x+c*) / U
(10)1 

Substituting Eq. (10) back into Eq. (8), the boundary condition for- the

sharp-edged gust becomes

x
e	 - 

G* - 
^ )

wg	
27r 1iW(t

	
U

00	 i W-	
dW

o	 00 
e ik(s - X — 1)

wT	 .	 ik	
dk,	 (11)

where s= Ut/c* is the non-dimensional distance parameter. The airfoil
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lift due to the harmonic gust (Eq. (5)) is given by Eq. (6). Therefore,

for the step gust based on Eq. (11), the lift can be calculated as

L = pUc*wo
_ 

00 {C(k)[Jo(k) - Ui(k)) +iJif k)} eik(s-1)dk.
	 (12)

	

 00	 ik

From Eq. (12), the non-dimensional lift development due to a step

gust, ^(s), is given by

L = 2TrpUc*woq)(s),	 (13)

0,11 . wi th

CS) =
I

Co 
{C (k) [Jo"(k) - iJ I (k)I + iJ l (k)} eik(s- 1 ) dk. 	 (14)

	

00	 i k _ 

Let	 F(k) = C(k) [Jo(k) - iJ l (k) ]+iJ i (k), then

_ 1	 F(k)e ik(s-1)dk
(s)	

27 r	 ik

1	
Co	 ()	 - ikF k e	 e i ks 

d k.	 (15)

	

_ Co	 ik

As k is always greater than or equal to zero, Eq. (15) can easily be

	

r	 inverted to

v
F(k) 

-ik=('

	^	 J	
u(s)e-iks ds^

ik	
o 

or

{	 F(k) e -ik = ik r	 (s) a -iks ds.	 (16)

	

?^	 J1	 O

	

f	
7



Let r = i k . Then,	 ORIGINAL AG  IS
OF POOR QUALITY

00
F(k) e -r = r r V (s) a -rs 

ds
a

	= r L { ^(s) },	 (17)

^(s) = L 1 { F(kr e	 }^	
(18)

where L { ^(s) } is the Laplace transform of ^(s).

Hence, the indicial lift function can be obtained from the inverse

Laplace transform involving the amplitude of lift distribution due to a

sinusoidal gust.

2.2 Three-Dimensional Gust Penetration

Now consider a rigid thin wing travelling at speed U through an

infinite array of harmonic gusts with vertical velocities wg, uniformly	 r

across the wing span. The boundary condition is similar to that for a

two-dimensional sinusoidal gist;

wa = - wg
 e -ik(x-xR ) / c ,	 (19)

where k again is the reduced frequency with a reference chord length c,

and xR is a reference point for the gust phase.

Following reference 21, the oscillatory lift force due to the har-

monic gust (Eq. (19)) is

L(t) = PUwgS { L' (k) + iL"(k) } e iwt ,	(20)

8
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where S is the reference area of the wing, and L'(k), L"(k) are the in-

phase and out-of-phase components of the dimensionless lift force.

Next consider a wing entering a sharp-edged gust. Again the

boundary condition is very similar to Eq. (7),

0,
	 x > Ut + xle'

wg =
	

(21)

wo,	 x < Ut + x l e,

where xle is the x-coordinate of the leading-edge of the wing. From Eq.

(20), one can determine the indicial lift function representing dimen-

sionless lift development due to a step gust, Cs),

L(s) = p Uwo S ^ ( s ),	 (22)

with

Cs) = 2I	 CO ( L1(k) ik

iL"(k) )e iks
dk.	 (23)

f_

Let

T(k) = L'(k) + iU'(k),	 (24)

1 f 00

CS) = 21r	 Tik) e iks dk.	 (25)
_CO

With the same procedures from Eqs. (15) - (18), ^(s) can be obtained from

the inverse Laplace transform involving the dimensionless lift distribu-

tion due to a harmonic gust,

V(s) = L-1 { T(
r
k) }.	 (26)

9
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Y

To be able to calculate the inverse Laplace transform indicated in

Eqs. (18) and (26), it is convenient to express T(k) and F(k)e -r as closed-

form functions of r. In any lifting-surface computation, T(k) or F(k) are

calculated only at a finite number of k's. These values can then be in-

terpolated by Padd approximant as suggested by Vepa (Ref. 22). Following

Vepa, an (N,N ) sequence of Pade approximant to approximate T(k) in three-

dimensional case and F(k)e -r in two-dimensional gust can be written as,

M`.	 T(k) = 1 - ( N,N 1, F(k)e-r = 1 - ( N,N 1,	 (27)

( N,N ] =

	

	
AorN + A10 -1 + .. + AN-lr

,	
(28)

rN + A NrN-1 + ........ + A2N-1

where Ai are the coefficients of Pade approximant.

For N = 3 and use T(k) as an example,

T(k) = 1 -

	

	
Aor 3+ A i r e + A2r	 (29a)r3+ A3r2+ A4r + A5

and for N = 2,

TM = 1 - Aor2+ Air	 (29b)

r2 + A2r + A3

Let

1 - T(k) = V(k) + iW(k). 	 (30)

From Eq. (30), it follows that for N = 3,

10
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V(k) + iW ( k) =	
Ao ( ik )3 + A i (ik)2+ A2(ik)

(ik) 3 + A 3 (ik) 2 + A4(ik) +As

Eq. (31) can be expanded and separated into real and imaginary

parts respectively to give,

real part:

A l k2 - A3Vk-A4Wk+AsV+ Wk' = 0,	 (32a)

imaginary part:

Aok i - A2k - A 3 Wk + A 4 Wk + AsW - Vk 3
 = 0.	 (32b)

Normally, more values of k's are chosen to calculate T(k) than the

number of unknowns Ai in Eq. (32a) and (32b). Therefore, a least square

technique to be described next is used to determine Al's.

2.4 Least Square Technique

The least square principle is based on the requirements that Ai's

are determined by minimizing the sum of squares of errors:

sum= L	
of Eq. (32a)) 2 +	 (L.H.S. of Eq. (32b))? (33)

1	 1

where M is the number of k's of which T(k) is calculated by any existing

lifting-surface  theory.

At a minimum, all the partial derivatives with respect to Ai's,

such as aSum/aAo, @Sum/@A1,••••-•, asum / M i , must vanish. These condi-

tions result in i+1 equations for i+1 unknown coefficients Ai's. Thus,

Ai 's can be solved from Eq. (33) with M different lift values at corre-

sponding k's.

(31)
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2.5 Tndicial Lift Function	
OF POOR

After all coefficients of the Pad6 approximant are determined, Eq.

(29a) can be rewritten as,

TM = 1 - r	
Aor2 * A i r + A2	

(34)
r3 + Aar2 + Aar + As

By partial fraction method, Eq. (34) leads to

T(k) = 1	 3 
^B	

(35)
r	 r - i 	 r-pi

where Si is the ith root of the polynomial in the denomenator of Eq. (34)

and Bi is the corresponding coefficient of partial fraction in Eq. (35).

Based on Eq. (26), the indicial lift function ^(s) can be obtained

by applying the inverse Laplace transform to Eq. (35),

3

CS) = 1 - L B i e Sys.
1

2.6 Nuclear Blast Response

Calculation of the lift development of a thin wing encountering a

nuclear blast wave will follow the same way as in computing the sharp-

edged gust ,response. No major change has to be made except the boundary

condition. The shock wave induced by the nuclear blast is assumed travel-

ing at sonic speed. Thus, an impulse function d(s) is used instead of the

unit step function in the gust response condition (Ref. 24),

wg = woS(t - x U
xle ).	

(37)

12
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where U is the magnitude of the vector sum of the shock wave velocity and

the freestream velocity. Eq. (9) now becomes,

0

f(w) -	 w06(t - x 
Axle ) 

e -iwtdt

= w e-iw( x - *0
xle ).	 (38)

o 

Comparing Eq. (38) with Eq. (10), the main difference is the factor "iw"

in the denomenator of Eq. (10). This also follows from the fact that the

impulse is equal to the time derivative of the step input. Hence,

F{ h(t) } = iwF{ A(t) } ,	 (39)

where h(t) is the unit impulse, A(t) is the step function and F { } is

the Fourier transform.

Rewriting Eq. (25) for the impulse response, it follows that,

00

h(s)T(k) e iks dk,	 (40)
_CO

or,

h(s) = L-1 { T(k) } .	 (41)

The Padd approximant used for the indicial response analysis re-

mains applicable, except the inverse transform calculation has changed.

For example, N= 2 Pade approximant can be written as,

T(k) = 1 -	
Aor2 + Air

r2 + A2r + A3

e

13



= 1 - 
CAo +	

(A,- AoA 2 ) r - AoA3

l

r2 + A 2 r * A3

2	 Bi= 1 - Ao -	 rr _SS•	 (42)

i=1	 ^

From Eq. (41), the impulse lift function h(s) can obtained,

h(s) = L-1 { T(k) }

2
(1 - A )8(s) - i Z B i a Res .	 (43)
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3. NUMERICAL RESULTS AND DISCUSSIONS

3.1. Gust Penetration

3.1.1. Sinusoidal gust problem

The lift development due to a harmonic gust is calculated by the

computer program based upon the unsteady quasi-vortex-lattice method de-

veloped by %an (Ref. 23).

For a thin airfoil, 30 vortex elements are used in the computation.

The steady state two-dimensional lift values are simply calculated by the

equation C lo = 2Tr/S, where $ M is the freestream Mach number. The

computed results are compared with Sears' for incompressible flow and with

Graham's for several different Mach numbers at reduced frequency 2. Both

comparisons, showing good agreement, are tabulated in Tables I and 11.

The three-dimensional unsteady aerodynamic program of reference 15

is then revised to account for the gust response. The present attached

flow results of lift and moment for a delta wing of 75 0 sweep at M = 0.4

are compared in Figs. 2 and 3 with those calculated by a kernel function

method (Ref. 5).

Results of calculation will also be compared with experimental data.

In references 12 and 13, a gust tunnel which could generate a sinusoidal

vertical gust was used to measure the oscillatory lift and moment on two

delta wings of AR=1 and 2, and several other commonly used wing planforms.

The tests were performed for all wings at two mean freestream velocities

of 12.43 and 20.00 m/s. However, the oscillatory gust waves convected
u

downstream with a velocity of 0.61 of the mean freestream velocity. This
r

would indeed influence the gust wavelength, i.e., the frequency parameter.

Thus, in the present calculations based on gust moving with the freestream

15
P:
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velocity, an effective frequency (k'= k/O.61), as suggested by Patel, wi11 	 g

be used in the following comparisons.	
Y

In Fig. 4, test data for a rectangular wing of AR= 6 (Ref. 13) are

compared with two sets of theoretical results. It is seen that the pre-

sent theory agrees well with Graham's (Ref. 24) in the predicted in-phase

component of the oscillatory lift. )0 phase lag is underpredicted and

both theories overpredict the lift amplitude.

To demonstrate the vortex flow effect, a delta wing of PR =1 is used

to compare with Patel's data (Ref. 12) at a= 0 and 12 degrees in Fig. 5.

The present theory predicts well the lift amplitude at both angles of at-

tack. At a= 12°, the phase lag is also adequately predicted by the pre-

sent theory. On the other hand, the phase lag at a = 0
0
 is not accurately

predicted. In seeking the reasons for these deviations, several points

should be noted:

(1) At a= 0 degree, the attached flow prevails. It is of interest

to compare the present results with the doublet-lattice method (Refs. 8,9)

for this delta wing of PR= 1 . In Fig. 6, agreement between the present

results and doublet-lattice method's is excellent in lift amplitude and

phase angles.

(2) As depicted in reference 12, force measurements were made re-

lative to the undisturbed freestream gust at the root 2/3rd chord point.

Another point at the gust tunnel exit was also used as a reference. It

is not known whether the conditions at the exit point were disturbed once

the test model was placed in the tunnel.

(3) Also, Patel indicated in reference 12 from test data that the

incremental lift due to vortex lift contribution was important in magni-

tude only with no measurable contribution to phase angles. However, the

16
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present theory shows that this is approximately true only with respect to

some reference points [i.e., x R at Eq. (19)]. This is illustrated in Fig,

7 with the root midchord {point and wing apex as reference points. There-

fore, the results by the present theory very much depend on the precise

location of the reference about which the phase angle is calculated,

At any rate, reasons for the discrepancy in the predicted phase

angles at a =0 degree for the delta wing of AR =1 are still unknown at

the present time.

rr
t

3.1.2. Pade approximant

4	 Two different sequences of Padd approximant are constructed here

to fit various freestream conditions. For airfoils in compressible flows,

Padd approximant with N= 3 in Eq. (27) (called Pad4 A6) is used. On the

other hand, Padd approximant with N= 2 (called Pade A3) is used for air-

foils in incompressible flow and also for three-dimensional conditions.

These choices are made through numerical correlations. The corresponding

matrices for deciding the unknown coefficients Ai in Eq. (28) are present-

ed in Appendix A.

The good agreement between the calculated results from the unsteady

QVLM and by Pade approximant for a thin airfoil in the harmonic gust is

shown in Fig. 8 for incompressible flow, Fig. 9 for Mach 0,5 and Fig. 10

for Mach 0.7. The oscillatory lift for a delta wing of PR = 1.2 to be used

for calculating step gust response is shown in Figs. 11 and 12 for upward

i.
1

and downward gust respectively.

Most other theories use Fourier transform to handle the reciprocal

relationship between the oscillatory and indicial lift forces. So they
S

need harmonic lift values at a large number of different frequencies.

u_

ff

^^	 17
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But the number of k required by the present method is only 7 (including

k= 0), and the indicial lift results, which will be seen in the next sec-

tion, still show good accuracy.

3.1.3. Indicial lift function

The indicial lift results performed by using the inverse Laplace

transform described in the preceding chapter will be presented. First,

for a thin airfoil passing through step gusts in incompressible and com-

pressible flows, Fig. 13 shows plots for Kiissner function, and Figs. 14,

15 exhibit	 the indicial lift at Mach 0.5 and 0.7. Good results have

been expected because of the accurate approximant shown in last section.

The exact solutions are calculated through the data in Table 6-2 of refer-

ence 20. From Fig. 16, it is apparent that the compressibility effect

decreases the rate of lift build-up in two-dimensional flow.
r

f	 Second, in thin wing gust penetration, for lack of experimental

force data to make a direct comparison, some pressure data (Ref. 11) will

be employed to compare the trend produced by calculated total lift.

The configuration of the delta wing used in reference 11 is shown

in Fig. 17(a). The model wing was carried along a straight railway track

on a rocket-propelled sledge, through the efflux from an open-jet wind

tunnel blowing across the track. The velocity of the sledge was 180 ft/

sec., the tunnel efflux velocity was 47 ft/sec., and the model was at zero

angle of attack. For measurew-ts of transient pressure, four transducers

were positioned at locations being 0.3, 0.4, 0.5, 0.6 root chords aft of

the apex, and along a line at 75% semispan [see Fig. 17(a)]. In accord-

ance with figures in reference 11, the indicial lift is plotted against/

local distance parameters x n/bn in comparing with pressure values through

18
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transducers A, B and C, where xn and bn are defined in Fig. 17(b). 	 r

Fig. 18 shows theYmilar trend between measured transient pressure

and the calculated indicial lift for both upward and downward sharp-edged

gust. It is seen that the development of a gust-induced gain of lift is

very gradual.	 On the contrary, the gust-induced loss of lift occurs

relatively instantly. In the calculations, the vortex lag described in

reference 15 is assumed to be present if the lift is increasing and there

is no vortex lag if the lift is decreasing. lhis assumption appears to be

reasonably accurate for the leading-edge vortex flow. This can also be

seen from Fig. 19 which illustrates the comparisons among the vortex flow

and potential results. There is some significant difference for the up-

ward gust while the trend is quite close in the downward gust condition.

3,2. Nuclear Blast Response

The unsteady aerodynamic program of reference 15 is again used to

calculate the nuclear blast responses of aircraft flying at high subsonic

speeds.	 A

Reference 17 is the only obtainable test data which can be used to

check the leading-edge vortex separation effect, predicted by the present

method, on aircraft nuclear blast response. The sideview of a thin wing

intercepted by nuclear blast waves is shown in Fig. 20. Fig. 21 shows the

test model which consists of a swept wing of 67 0 leading-edge sweptback

angle with a nose and partial fuselage section. In the test, the model

was mounted on a high speed dual rail rocket sled at an initial angle of

attack of 3.20 . The sled, travelling at Mach 0.76, was intercepted pro-

gressively by blast waves from sequential detonation of charges of TNT

with the blast intercept angle e = 20 0 (see Fig. 20). Twenty pairs of

19



pressure transducers were installed on the left wing half to measure the

blast-induced pressures.

For the purpose of correlation with the test model, a semiwing used

by the present method is illustrated in Fi g , 22. For such a configuroclon,

the concept of augmented lift is included in the present calculation. The

definition for the characteristic length is adopted from reference 26. With

negative augmented vortex lift, the vortex lift effect may not be as strong

as expected even the leading-edge sweptback angle is 67 0 for the test model.

Fig. 23, reproduced from reference 17, shows the pressure variation

measured by transducer 13 which was positioned at half semispan and along

quarter chord line. Like DLM, the present theory underpredict the blast-

induced incremental pressure loadings because the nonlinear vortex effect

is not included in the calculation of pressure differential. The present

z
theory, being based on unsteady suction analogy, can only demonstrate the

vortex effect by the variation of total lift or moment. Fig. 24 shows the

comparison of vortex flow with attached flow for impulse lift. It is evi-

dent that the vortex lag decreases the rate of lift decay after the blast

intercept.

There are several factors which must be mentioned in connection with

Figs. 23 and 24:

(1) The blast amplitude is determined by peak material velocity

(gust) behind the shock front and is assumed invariant throughout the

present calculation.

(2) In the experiment, because of different locations of transducers,

the blast intercept time (time at the shock arrival) is different for each

transducer. In the present calculation, the coordinate origin is set at

the apex of the wing, so that the intercept is exactly at s=0 as

20
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shown in Fig. 24. However, to correlate with the test data, a shift has

been made in Fig. 23.

(3) The steady state lift value is used for all time parameters

less than zero since there is no incremental lift or pressure differential

values for s < 0 in the present analytical results.

For a more significant vortex lift effect, the impulse lift on a

delta wing of AR= 2 at Mach 0.5 intercepted by a blast wave with the same

intercept angle as that in Fig. 20 is considered. The initial angle of

attack is assumed to be 15 0 and the peak blast-induced angle of attack

is assumed to be an additional 15 0 . The attached-flow oscillatory lift

can be well represented by a P ad6 approximant as indicated in Fig. 25.

However, with the vortex lift effect included, the Pade approximant

,h

fails to approximate the calculated results accurately as shown in Fig.

	

r	 26. Because of this reason, the calculation of impulse lift for this
x

delta wing was not successful; and hence, the results are not presented.

here.

A
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4. CONCLUSIONS AND RECOMMENDATIONS 	 9 '
Y

An unsteady lifting-surface computer program based on quasi-vortex-

lattice method along with leading-edge suction analogy ha. been developed

to estimate the oscillatory air forces on wings of general planforms in

gust flow at any frequency. Padd approximant and Laplace transform have

made it practical to convert the oscillatory air forces to indicial air

forces.

Both the experimental data and other theoretical results are used

to check the accuracy of the present calculations in attached flow and

with vortex lift effect. It is shown that the present method can accu-

rately predict the oscillatory and indicial lift on wings in different

gust fields. Also, the phenomenon of the gust-induced gain of lift being

very gradual and the gust-induced loss of lift occurring relat'vely ab-

ruptly can be explained by the presence or absence of vortex lag effect.

The present program is extended to account for the nuclear blast

response as well. Though there is no lift data available at this time,

the trend for the vortex lag is clearly seen from the comparison between

the attached flow and vortex results predicted by the present method.

The following points should be noted to improve the efficiency

and capability of the present method.

(1) In the present calculations, 72 vortex elements were used for

half wingspan - 6 in the chordwise direction and 12 in the spanwise di-

rection. It is recommended that 40 elements (e.g., 4 in the chordwise

direction, 10 in the spanwise direction) could be used in lieu of 72 for

small reduced frequencies; thus, the size of the aerodynamic influence

coefficient matrice could be greatly reduced.

22



(2) The present method can only deal with nuclear blast locations

being on the plane of symmetry, i.e., the X-Y plane. For more general

blast orientations, the present method should be extended to calculate the

aircraft wing response of the blast waves coming from any arbitrary direc-

tion, since an asymmetric condition can always be treated as a combination

of a symmetric and an antisymmetrical conditions.

(3) Among the existing approximation schemes for the unsteady aero-

dynamic loads, Karpel's approximant (Ref. 28) provides better accuracy than

Pade" s. It is suggested the present method should include more than one

approximant to meet different gust and blast conditions.
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Table I. Oscillatory lift* on an Airfoil in Sinusoidal
Gusts at M = 0.

Present Method Sears'
**

k 01r/010 Cli/Clo 01r/Olo 01i/Olo

0.02 0.96289 -0.07484 0.963 -0.075

0.04 0.92403 -0.11449 0.924 -0.114

0.06 0.88697 -0.13923 0.887 -0.139

0.08 0.85266 -0.15457 0.852 -0.154

0.10 0.82126 -0.16348 0.821 -0.164

0.20 0.70156 -0.15964 0.702 -0.160

0.40 0.56789 -0.08494 0.568 -0.085

0.60 0.48837 -0.00490 0.488 -0.005

R 1.00 0.36865 0.12594 0.369 0.126
J

2.00 0.08158 0.26796 0.082 0.268

t

*Olr and
C1i	 are the in-phase and out-of-phase components.

**Sears' results are copied from reference 27.
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Table II. Oscillatory Lift on an Airfoil in Sinusoidal
Gust at k = 2.0.

Present Method	 Graham's

M C 1 r Ali C 1 r C 1 i

0.0 0.5126 1.6836 0.5125 1.6837

0.2 0.6925 1.7473 0.6955 1.7441

0.4 1.1535 1.5960 1.1511 1.5953

0.5 1.2773 1.3139 1.2774 1.3138

0:6 1.2138 1.1104 1.2139 1.1102

0.7 1.2192 1.0113 1.2152 1.0085

0.8 1.1881 0.8921 1.1838 0.8897

0.9 1.1516 0.7986 1.1486 0.7961

The results correspond to w, = 1 in Eq. (4).

Graham's results are taken from reference 23.
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APPENDIX A Coefficient Matrices of Padd Approximation with Least Square

Techniques

ORIGINAL PAGE 19
1. Padd A 6 (3,3)	 OF POOR QUALITY

zk6
	0	 -Ek 
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2.	 Padd A 3(2,2)
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i
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Fig. 2 Generalized oscillatory lift for a 75° delta wing due to 
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wing due to harmonic gusts with wg = 1 at M= 0.4; pitching axis

at root midchord point.
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Ô
r

r"

c^



~
 

1.
" 

J +=>
 

W
 

~
 
~
 

=
-"

'"
 

':"
' .. 

~ 

1.
0 

w
(s

) 

0
.8

 

0
.6

 

0
.4

 

0
.2

 

0
.0

 ,
,
~
-
,
 

o 

¥.
:t
;:

~.
..

.:
..

..
-:

:.
;.

",
 

~
 

1/ f; 

if
' <

:
:
-
:
~
.
 

~
 

.?
" 

-;
?'

 

.p
 -::

;;-
-;;

;.-
:::

:--
:::

:--
=

-
:
;
:
:
:
;
-
~
~
 

f 
P

re
se

n
t 

T
he

or
y 

E
xa

ct
 S

o
lu

ti
o

n
 

5 
10

 
15

 

~
 ~
 ---

----
-

--
-

20
 

25
 

s 
30

 

0
0

 
-
. 
-,

 
". "'

..,.
 

-c
i2

5 
0

· ...
. 

-
~
 

O
""
~ 
~
 

;
o

r
 

.0
 ~
1
 

C
 

,.
. 

~
 !

""
; 

!:
!:

 1 
-
j.

..
"
 

-
<
~
 

F
ig

. 
14

 
In

d
ic

ia
l 

li
f
t 

fu
n

ct
io

n
 f

ro
m

 a
 s

ha
rp

-e
dg

ed
 g

u
st

 o
f 

a 
th

in
 a

ir
fo

il
 
a
t 

M
=

O
.S

. 

-- .,. 

. 
-



URIOINAL FAC K3

OF POOR QUAi.V.

°o
M '^

4J

N r...
^r

L
N rCt

m

C

r0

4-Od
N 4J

C
Q7

'L7v
o^b
v
CILs.
rts

N
f0

r-
0 

4..O

r.•1 C
O

41
u
C
O
4-

4—
n ^r

r4

r-
b,r-
u

,r.
't7
CH

r

O
r -1

1.0
O

Ch

C
N
°

o
°

Lo
r-1

44



45

C)

Ln

CD
cli

Lo
r--4

C)
r-I

Lo

N
	 9 

O

C)	 C=)

44
W
O

cu
Q1

10
QJ

C.

ro

ro

S.

49
I-

' r-
ro

ro

0

4 ► o
U r—
C 4-

4-
4-3
4-

0
L'I

ro CL
.r- E
u 0

u

U

O

L'i
C

ji

Ski

9	 Op	 19	 d:
r-I	 C)	 CD

OF POOR QUAMY

9	 t.

Y



TRANSDUCER

-o

Co =30"

:,

^i!

b = 18" ----

k

y `n
Y

ORIGINAL PiAG'2 M
OF POOR QUALITY

Fig. 17(a) Gereral configuration and transducer positions of the

test model in reference 11.

46



Of

TRAN

GUST LEADING EDGE

Fig. 17(b) Definitions of the local span and distance parameter

penetrated into the vertical gusts.

47
,t

9
Y

R

OR1GIAIAL p	 p.`^

OF POOR QI1P%Li'ry

xn

k.

z`

is is

tP

iy 't

i

^J



lj m
ORIGINAL PA(,';"', .
Of POOR QUALITY

4-
0

O N co
C) O O C)

(U
Lo 'o

0 ro
4-
0

5= 4-)

0 (31 .0
4-) u
(A

a

0 4- V)
ai	 C-1 u

ai F- 4-J

F-O
4-3

M	 fu
4-) CY)

Qj
>

cli

a 0 4'-

00 D N r-
4-)
u

4-

-p
> 4-

0

> 0
>> u

>	 >
-J C)

O
C9 C) 4-
C) C) •C) C)

4-)
(0 4-) ra

0- 00 N
tD

py	 IF

LL

48

st

A



9 ► ®Y

ORIGINAL PAfi ;*^ ES

OF POOL; QUALIVc +J

o a
ca t^

	

O	 N	 Ct	 lL^	• 	 00

	

p	
O	 C:) 	 C) O

v	 C9	 CD d'	 N
r1 C)

O

'C7

^ b 4J

CL
N 3 N

= cz

O
r1

Lo

C
.G

,Cd. \C
X

M

'C7
N

'r

C

N 0

O
r-1

O
e-I ( j

O
O
O

49



ORIGINAL PA0.24 M

-o	 OF POOR QUALITY

b

r- +J^ NO O
C] CS

O	 N	 e}:	 l0	 O	 O
O	 O	 O	 O	 O	 r-#

t

4

Lo

C
.0

d' C
X

'O
QJ

M ^
4r

C
OV
ON r-4

. I-u-

O
3 O	 O lD d	 N	 O

O O O	 O	 O

ro
s..

N 3 N

S

qs

50
F4

F



U
1

 
I
-
' .. 

-+ 
-

1
.0

 (
 

~
 

.p
(s

) 
0

.8
 
~
 

/ 

U
pw

ar
d 

\ 
/ 

G
us

t 
I 

I 

0
.6

 
h 

l 
/ 

0
.4

 r:
 \ 

\ 
/ 

0
.2

 
I-

1"
. 

\ 

0
.0

 o 

-
....

....
....

.. / 
V

or
te

x 
Fl

ow
 

P
o

te
n

ti
al

 
Fl

ow
 
-
-
-

5 
10

 
s 

0
.0

 

1 0.2
 o o
w

m
'la

rd
 

G
us

t 

1 
0

.4
 

i 
0

.6
 

-I 
0

.8
 

1
.0

 
15

 

F
ig

. 
19

 
In

d
ic

ia
l 

li
f
t 

fu
n

ct
io

n
 f

o
r 

a 
d

e
lt

a
 w

in
g 

o
f 

JlR
 =

 1
.2

 e
n

te
ri

n
g

 i
n

to
 v

er
ti

ca
l 

g
u

st
s 

a
t 

M
= 

0
.1

6
 . 

0
0

 
"'!

! 
:,,:

r 
iJ

 ~
; 

0
:-

; 
a 

~-
; 

:::
J 
i~
 

,r
;~

 
f:

' 
~ 

, 
<

 
} 

.!':
. 

u 

--'
 

."'
-

eo
 .

. 
" 

~
 
. .

., • 
"I

 
"
'-

'-
: --



Q
N
U
C
O
N
J=

•r

O7
C
,r.
>
O
E

O

3

4J
Nr
r

(O

N

Q
N
U

J	 N
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