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1.Introduction 

A number of surveys have been conducted around airports 

to study the relationship between the level of exposure to 

aircraft noise experienced by people living in the area and 

their annoyance with it. A two-stage sample is commonly 

adopted, selecting a sample of clusters at the first-stage 

and then a sample of individuals within selected clusters at 

the second stage. Most airports have maps of noise contours 

which are often used for stratification at the first stage; 

generally a disproportionate stratified sample of clusters 

is drawn, oversampling those in the high noise areas. Often 

all individuals in a selected cluster are assumed to 

experience the same noise exposure, which may therefore be 

measured by a single set of physical measurements in each 

sampled cluster. 

In the simplest case, the regression coefficient for 

the simple regression of annoyance (y) on noise level (x) is 

the quantity of interest. Frequently annoyance is regressed 

on several noise-related independent variables, in which 

case the ratio of regression coefficients is often of 

interest (as with the noise and number index NNI). The 

issues addressed in this report are (1) the method of 

calculating standard errors for the estimated regression 

coefficients and for the ratio of estimated regression 

coefficients with a clustered two- or three-stage sample 

design and (2) the optimum way of allocating the sample 

across the stages of the sample design. 
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2. Regression Model 

One approach to the specification of the regression is 

to take the regression coefficient in the population sampled 

as the quantity of interest. 

coefficient is 

This population regression 

N 
B = L(X i - X)(Y i - Y)/L(Xi - X)2 

for the population of size N. Under this approach, B may be 

estimated by 

n n -)2 b = LW,(X, - i)(y. - Y)/LW,(X, - x 
1 1 1 1 1 

where i = IW,X'/LW" Y = 
111 

inversely proportional 

LW,y'/LW, and w. 
1 1 1 1 

to individuals' 

are weights 

selection 

probabilities. Then the standard error of b may be 

estimated by techniques such as balanced repeated 

replication or jackknife repeated replication (Kish and 

Frankel, 1970, 1974). These techniques can take full 

account of the disproportionate stratification and 

clustering in the sample design. 

The attraction of treating the quantity of interest as 

a parameter of the finite population (B) is the avoidance of 

the model assumptions required for standard regression 

analysis. However, the consequence of not making such 

assumptions is that the sample estimator b estimates B only 

for the specific population sampled, and cannot be readily 
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applied to other populations. For the problem under study, 

the aim is to estimate a more general parameter, applicable 

to a wide range of populations (i.e. populations around a 

range of existing and proposed airports). For this reason, 

some regression model seems essential. 

The assumptions made with the standard linear 

regression model y. = eo + ex. + e· are that E(ei) =,0, 
1 1 1 

V(ei) = 0
2 and Cov (ei,e k) = 0 for i ¢ k. Under these 

assumptions e may be estimated by 

n n -)2 b = L(x. - i)(y. - Y)/L(X. - x 
1 1 1 

(1) 

with i = Lxi/n and Y = LYi/n. The variance of b is 

V(b) -)2 - x 

with this model the x's are considered fixed by the design. 

The choice of x-values affects the magnitude of V(b), but 

the above formulae apply whatever values of x are chosen. 

From the sampling perspective, the x's are mainly determined 

by the disproportionate stratification, and the formulae 

automatically reflect this aspect of the sample design. To 

the extent that the sampled x's are not fixed by the design, 

the formulae may be treated as conditional on the x's 

obtained. 

While the standard regression model readily 

accommodates the effect of disproportionate stratification 

by x, it does not suitably reflect the clustering in the 
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sample design. The clusters used in sample designs almost 

always exhibit some degree of homogeneity with respect to 

the variables under study, and this homogeneity has also 

been found to occur with regression residuals. The 

consequence of this homogeneity is that the assumption 

Cov(ei,e k) = 0 does not hold for individuals i and k in the 

same cluster. To handle this feature, the model may be 

extended to 

y .. = a + ax. + a· + e .. 
1) 0 1 1 1) 

where the subscripts (i,j) refer to individual j in cluster 

i, and ai is the cluster effect of cluster i. The ai are 

random effects with E(ai) = O. Under the further assumption 

E(ai1x) = 0, or Cov(ai'x) = 0, b in (1) remains unbiased for 

a, but equation (2) no longer holds for the variance of b. 

It should be noted that estimators of a that are more 

efficient than b are available for this model: however, for 

simplicity, we will consider only the simple estimator b. 

3. Variance of b 

With the double subscript notation the estimated 

regression coefficient b in (1) may be expressed as 
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b = ~~(X1' - x) (y •. - Y)/~n. (x. - x)2 
1) 1 1 

= ~~(X1' - X)y •• /~n. (X. - x)2 
1) 1 1 

= ~n. (X. - x)y./~n.(x. - x)2 
1 1 1 1 1 

where there are n i sampled individuals in cluster i and 

y. = ~y .. /n .• 
1 1) 1 

Conditional on the xi's, the variance of b is then 

Under 

V(e .. ) 
1) 

Thus 

the 
2 

= ce ' 

model of 
2 = 0 , ex 

y .. 
1) 

= a + ax. + a· + e· . o 1 1 1) 

v(y.) = V(ex. + e.) = o~ + (02/n .) 
1 1 1 "'" e 1 

V(b) = ~nf(xi - x)2(0~ + o~/ni)/[~ni(xi - x)2]2 

with 

= {02~n?(x. - x)2/[~n.(x. - x)2]2} + {02/~n.(x. - x)2} (3) ex 1 1 1 1 ell 

In the special case when the same subsample size is taken 

from each cluster, n· = il, V(b) 
1 

reduces to 

[ 2 + 
a 

x)2 v(b) = (o~/il)]/t(xi - (4) °ex 

= [(o~/a) + (o~/n)]/o~ (5) 

2 a 
- x)2/a and a where Ox is defined as ~(x. is the number of 

1 

sampled clusters. 
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Defining the intra-class correlation coefficient for 

the clusters as the proportion of the variance of the y .. 
1) 

condi tional on the xi that is accounted for by. the cluster 

effect, i.e. p = O~/(o~ + o~), V(b) may be alternatively 

expressed as 

222 where a = a + a • ex e 
An estimator of V(b) may be 

estimates 02 and ex 
quantity o~ may be 

A2 2 
0e for 0ex 

estimated by 

(6) 

obtained by substituting 

and o~ in (3) or (4). The 

the residual mean square 

from a one-way analysis of variance of the y-values by 

clusters, that is by 

where n is the total sample size and a is the number of 

sampled clusters. Then o~ may be estimated by 

o~ = [II(Yij - bo - bx i )2 - (n - 2)0~]/[A(a - 2)] 

2 where II(y .. - b - bx.) is the residual sum of squares 
1) 0 1 

from the regression of y on x, bo is the sample estimate of 

the intercept eo' and A = (n 2 - Inf)/n(a - 2) (for A, see 

Anderson and Bancroft, 1952, Section 25.2; Snedecor and 

Cochran, 1980, Section 13.7). 
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4. Optimum subsample size, n 
In this section, we consider the optimum allocation of 

the sample between the first and second stages of the 

sample. We assume that the same subsample size n is taken 

from each selected cluster; the results obtained can also be 

applied as an approximation to situations where the 

subsample size varies to a small extent between clusters, in 

which case n represents the average subsample size. We 

assume a simple cost model of the form C = aCa + nc, where 

Ca is the cost of including a cluster in the sample, c is 

the cost of including an individual, and n = an is the total 

sample size. 

For given 2 
ox' the optimum choice of n that minimizes 

V{b) for fixed total cost C may then be readily obtained 

from the Cauchy-Schwartz inequality as follows. 

V{b) and 

Write 
2 

C = l;Yi' 

where Y1 = ~aCa and Y2 = Inc. Then the product V{b).C is 

minimized when 

(x 1 /y 1 ) = (x 2/Y 2) 

i.e. when 
°cx/a/Ca = °e/n~c 

- {oe/ocx> (Calc) 1/2 (7) or nopt = 

This result can be equivalently expressed in terms of the 

cluster intra-class correlation as 

• (8 > 
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5. Example 

A study of traffic noise was carried out with a sample 

of n = 2933 cases in a = 53 clusters (Langdon, 1976). Of 

the 2933 cases, 2881 provided responses which are analyzed 

here. The average number of respondents per cluster is thus 

n = 54.358; the cluster sizes varied markedly, from the 

lowest of 20 respondents to the highest of 109 respondents. 

The dependent variable for the regression is the answer to 

the question "How do you feel about traffic noise here?" 

(the end points of the scale are labelled "definitely 

satisfactory" and "definitely unsatisfactory") and the 

independent variable is the noise level (24 hour Leq dB(A». 

The regression coefficient is b = 0.07971. 

The following sums of squares <SS) and degrees of 

freedom (d.f.) were obtained for the regression of annoyance 

on noise level: 

Source 

Regression 

Residuals 

Total 

d.f. 

2879 

2880 

SS 

293.1871 

10200.1250 

10493.3121 



9 

The analysis of variance of the annoyance scores by 

clusters yielded the following results: 

Source 

Clusters 

Residuals 

Total 

d.f. 

52 

2828 

2880 

SS 

1525.0925 

8968.2196 

10493.3121 

From these results the following analysis of variance table 

for the regression residuals is constructed: 

Residuals d. f. SS 

Between clusters 
51* after regression 1231.9054 

Within clusters 2828 8968.2196 

Total regression 
residuals 2879 10200.1250 

* Note that one degree of freedom is used 

The residual variance 

residual mean square, 

O~ is estimated by 
A2 

i.e. 0e = 3.17122. 

MS E(MS) 

24.15501 A 2 + 
°a 

2 
°e 

3.17122 0
2 
e 

for the regression. 

the within clusters 

The expected value 

of the between clusters after regression residual mean 

square is AO~ + o~, where A = (n2 - tnf)/nd and d is the 

degrees of freedom for the between clusters after regression 

residuals. An approximate value for A is the average sample 

size per cluster, n = 54.358. With n = 2881, tnf = 174,571 

and d = 51, the exact value of A is 55.302. using this 

exact value, 
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a~ = (24.15501 - 3.17122)/55.302 

= 0.37944 

and 0.1069 or 10.7%. 

A 

With p = 0.1069, from (8) 

Values of nopt for various ratios of Calc are given below: 

A 

sample 

where 

x, 

In? = 
1 

calc 5 10 20 30 40 50 

- 6 9 13 16 18 20 nopt 

variance estimate for b is obtained by substituting 

estimates in (3) • Using 

2 -)2 In?x? - - 2 + i 2In?, In. (x. - x = 2xIn.x. 
1 1 1 1 1 1 1 

In. (x. -)2 (n - 1) 2 - x = 1 1 Ox 

-x = 70.5917, Ox = 4.0026 is the standard deviation of 
222 Inix i = 869,779,520.5, Inix i = 12,303,941.25 and 

174,571, the following results are obtained: 

2 -) 2 In. (x. - x = 
1 1 

-)2 In. (x. - x = 
1 1 

2587392.84 

46139.92346. 

Substituting these values and a! and 0; from above in (3) 

gives 



1 1 

v(b} = (46.11601 + 6.87305) x 10-5 

= 5.2989 x 10-4 • 

The estimate of the variance of b from the standard 

regression analysis is 7.6788 x 10-5 , so that ignoring the 

cluster design underestimates the variance by a factor of 

6.90. This factor corresponds approximately to the 

multiplier [1 + (n - l}p] = 6.70 in (6). 

Note that an approximate variance estimate for b is 

obtained by assuming n. = n and using equation (5). 
1 

Then 

v*(b) ; 5.1558 x 10-4 • This value is fairly close to that 

obtained above, even in this case where the ni are subject 

to substantial variation. This approximate variance 

estimate is 6.70 times as large as the estimate of the 

variance of b from standard regression analysis: this factor 

is the multiplier [1 + (n - l}p] = 6.70. 

6. Extension to regression with two independent va~iables 

We turn now to a linear regression of y on two 

independent variables x and z, both of which are constant 

within clusters: 

Yi = ao + axxi + azzi + ei 

Under the standard assumptions that E(ei) = 0, 

and Cov(ei,ek} = 0 for i + k, ax and az may be estimated by 
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bx = {l;(zi - Z)2l;(Xi - x)(Yi - y) 
- l;(x. - x) (zi - Z)l;(zi - z)(Yi - y) }/6 

1 
(9) 

bZ = {l;(Xi - X)2l;(Zi - Z)(Yi - y) 
- l;(x. - X) (Zi - z)l;(Xi - X)(Yi - y) }/6 

1 
( 10) 

where 6 = l;(x i - X)2l;(Zi - z)2 - [l;{X i - x){zi - z}]2. 

Under this model the XIS and z's are considered fixed by the 

design. The choice of combinations of x and Z values 

affects the precision of the estimators. 

Consider the estimators bx and bz under the model 

( 11) 

where a· 1 
is the cluster effect of cluster i, which is 

assumed to be a random effect with E(a·} = O. 
1 

Under the 

further assumptions that the ai are uncorrelated with the 

XIS and the z's, bx and bz remain unbiased for ex and az • 

Since bx and bz are of the same form, simply with x and z 

interchanged, it will suffice to obtain the variance of one 

of them, say bx • Using the double subscript notation and 

letting the sum of squares of the z's be 

and the sum of cross-products of the z's and the x's be 

l;~(xi - x){zi - z) = l;ni(xi - x)(zi - z) = Sxz' bx may be 

expressed as 
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bx = [SZZLL(X i - X)y .. - SXZLL(Zi - Z)y • . ]/ll 
1) 1) 

= l:l:[(Szz(Xi - X) - Sxz(Zi - Z) ]y •• /ll 
1) 

= Lni[Szz(xi - X) - Sxz(zi - z) ]Yi/ll 

= Ln.C·Y·/ll 111 

where Ci = Szz(x i - x) - Sxz(zi - Z). 
Conditional on the XIS and z's, the variance of bx is 

then 

Under 

Thus 

the 
2 

= °oe' 

model given by 

V(oe· + e.) 
1 1 

( 11) with 2 V(e .. ) = 0e 
1) 

222 222 V(b ) = [0 Ln.C. + ° Ln.C.]/ll x oe 1 1 ell 

In the special case when ni = 0, V(bx ) reduces to 

and 

(12) 

( 13) 

Defining the intra-class correlation coefficient for the 

clusters as h 0
2 2 2 

were = 00e + 0e' 

expressed as 

( 14) 

In order to obtain the optimum subsample size, n, it is 

useful to express Lcf and 112 in terms of the variances of x 

and z and the covariance between x and z, which are defined 
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as O~ = L(xi - x)2/a , 

= L(xi - x)(zi - z)/a. 

o~ = L(zi - z)2/a 

Using this notation, Szz 

and 
- 2 = naOzl 

LC~ = n2a2L[o~(xi - x) - °xz(zi - z)]2 
1 

= -2 3 4 2 n a (Ozox -
2 2 2oz0xz 

+ 2 2) 
°xzoz 

-2 3 2 2 2 2 = n a Oz(oxoz - °xz) 

and 6 2 = n4a4(o~o~ - O~z)2 

Substituting these values in (13) gives 

where 

The form of 

regression with 

l' 2 A rep aClng ox' 

V(bx ) = A[(o~/a) + (o~/n)] 

2; 2 2 2 A = Oz (oxoz - 0xz)' 

V(bx ) in (15) is now the same as 

the single independent variable 

It therefore follows that the 

of n is given by equations (6) or (7),. namely 

( 15) 

that for the 

in (5) , with 

optimum value 

nopt = (oe/oa) (Ca/c) 1/2 = [(1 - p)/p]1/2[Ca/c]1/2. (16) 

2 Note, however, that 0e is now the residual variance from the 

multiple regression. This residual variance can in general 

be e,xpected to be smaller than that for the simple 

regression, and hence the value of -nopt will also be 

smaller. Since the formula for nopt depends only on p and 

the cost ratio, it is the same for both regression 

coefficients, i.e. the optimum allocation is given by (16) 

whether ax or az is being estimated. 
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In order to estimate the variance of bx ' first note 

that ~nicf = ~ni(zi - z)2~, so that V(bx ) in (12) may be 

written as 

22222 - 2 = (0 ~n.C./6 ) + (0 ~n.(z. - z) /~) ex 1 1 ell 

where In~C~ and ~ may be computed as 
1 1 

In~c~ = [In.(z. - z)2]2In~(x. - x)2 1 1 1 1 1 1 
+ [In. (x. - X)(Z. - z)]2In~(z. - z)2 

1 1 1 1 1 

( 17 ) 

- 2~n. (z. - z)2~n.(x. - X)(Z. - z)~n~(x. - x)(z. - z) 11 11 1 11 1 

6 = ~n. (x. - x)2~n. (z. - z)2 - [~n1' (xl' - X){Zl' - z)]2 
1 1 1 1 

The variance of bx can then be estimated by substituting 

sample estimates of o~ and o~ in (17). As with the simple 

regression (p. 6), o~ may be estimated by 

Then, noting that the regression sum of squares now has two 

degrees of freedom, 0
2 may be estimated by a 

(With a multiple regression with K independent variables, o~ 

may be estimated by 

02 = [~~(y .. - y .. )2 - (n - K - 1) 0e2]/)..(a - K - 1) a 1) 1) 

A 

where Yij = bo + ~bkxki are the predicted values from the 

regression.) 
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7. Ratio of two regression coefficients 

with aircraft noise surveys one common analysis is to 

run a regression of respondents' annoyance with aircraft 

noise (y) on the levels of noise (x) and numbers of the 

noise events (z) to which they are exposed. The level of 

noise and number of noise events may be combined into a 

noise and number index (NNI). For this purpose the ratio of 

the regression coefficients, t = bz/bx ' is needed. This 

section demonstrates that the optimum choice of -n (assumed 

constant for all clusters) for estimating t is the same as 

that given in equations 8 and 16. The results in this 

section are derived using two slightly different 

applications of the Taylor's series expansion method for 

obtaining large-sample approximations to the variances of 

complex statistics. 

First Application 

Using the notation of the previous section, bx may be 

expressed as LniCiYi/~' and bz may be similarly expressed as 

Ln.D.Y·/~. Thus 
111 

t = Ln.O·Y·/Ln.C.y. 
11111 1 

(18) 

Treating t as a function of the random variables Yi' the 

approximate variance of t for large samples may be obtained 

from the Taylor's series expansion method. From this method 

the approximate variance of t is equal to that of its linear 

substitute, t*, where 
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and (ot/OY1') is evaluated at y. = E(Y·) = Y., say. 1 1 1 
Now 

Thus, in general, under the model given in equation (1), 

Assuming a constant subsample size, -n. = n, 
1 

( 19) 

Vet) = E(ot/OYi)2a (o2/n )[1 + (n - l)p] (20) 

= K(02/n )[1 + (n - l)p] (21) 

where K = aE(ot/oYi)2. This equation is of the same form as 

(6) with o~ replaced by 11K. Thus, providing K is not a 

function of a or n, the optimum value of n for estimating t 

is the same as that for estimating b, i.e. the value given 

by equation (8). 

The following derivation demonstrates that K does not 

depend on a or n. First, from (18) with ni = n it follows 

that 

= {(tC.Y.)D. - (ED.Y. )C.}/(EC.y.)2 11111 1 1 1 (22) 

so that K is 
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tC? -2 3 2 2 2 2 = n a oz(oxoz - °xz) 1 

tD? -2 3 2 2 2 2 = n a 0x(oxoz - °XZ) 1 

l:C.D. -2 3 2 2 2 = - n a 0XZ(OXOZ - °XZ) 1 1 

and Oyz = l:(Y. - y) (zi - z) /a -= tY. (z. - z)/a 
1 1 1 

l:(Y. y) (Xi x)/a l:Y. (x. x)/a °Yx = - - = -
1 1 1 

All the terms in the numerator of K'have a common factor of 

n4a 8 and the denominator has this same common factor. On 

cancellation of this factor, K is seen to be a function only 
2 2 -of ox' oz' 0xz' 0Yx' Oyz. Thus K does not depend on n or a. 

2 2 Given values of ox' 0z' 0xz and estimates of 0Yx' Oyz' 

and an estimate of V(t) can be obtained by 

substituting these values and estimates in equation (19) 

using (ot/oYi) from (22). 

Second Application 

An alternative approach for obtaining V(t) is to start 

with ~he Taylor expansion of the ratio t = bz/bx. Thus 

(23) 

where T = az/ax and C(bx,bz ) is the covariance of bx and bz • 

From (15) 

V(bx ) = o~[(o~/a) + (o~/n)]/(o~o~ - 0xz)2 (24) 

and 2 2 2 2 2 2 V(bz ) = 0x[(oa/a) + (oe/n)]/(oxoz - 0xz> (25) 

The covariance term is obtained from 

~ 
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with .other terms in the summation being zero since 

C(Yi'Yj) = 0 for i + j. Expressions for bx and bz are 

bx = [o~~(xi - x}Yi - 0xz~(zi - z}Yi]/a(o~o~ - o~z) 

(26) 

Substituting (24), (25) and (26) in (23) gives 

v(t) 

v( t) 
(27) 

A variance estimate v(t} is obtained by substituting sample 

estimates 02 , A2 t 
ex °e' 

parameters in (27). 

for the respective unknown 

The accuracy of the approximate variance of the ratio 

t = bz/bx obtained by the Taylor expansion method depends on 

the coefficient of variation of the denominator of the 
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ratio, i.e. CV(bx ) = ~V(bx)/Bx. A CV(bx ) of less than 0.2 

and preferably less than 0.1 is required if the Taylor 

expansion method is to produce a satisfactory approximation 

of V(t). (It should be noted that a low CV(bx ) also ensures 

that the bias of t is negligible). A check should be made 

that the estimated coefficient of variation 

cv(bx ) = ~v(bx)/bx is less than 0.2; if this condition is 

not satisfied, the Taylor expansion variance estimate should 

not be used. In any case, if this condition is not 

satisified, the utility of the index t should be critically 

examined. 

For the first application of the Taylor expansion 

method, the equivalent condition is that the coefficient of 

variation of the denominator, i.e. CV(Ln.C·Y·), 
111 

small, less than 0.2 and preferably less than 0.1. 

8. The case of variable x in clusters 

The previous sections have assumed that 

should be 

x. 
1 

is a 

constant value within a cluster. We now consider the case 

where x takes different values within a cluster, individual 

j in cluster i having a value xij • The regression 

coefficient B is assumed to be the same within each cluster. 

In this case the treatment of the simple regression 

discussed in section 3 is modified as follows. 

The simple regression coefficient is now given by 
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(28) 

with t; .. = (x .. - x). The variance of b is then 
1) 1) 

2 2 2 V(b) = 0:·1:·t;· .V(y .. ) + 1:·1:1:·.t.kt;· ·t;·kC(y. ·'Y·k)}/(1:1:t;··) 
1 ) 1) 1) l)T 1) 1 1) 1 1) 

where C(Yij' Yik) is the covariance of Yij and Yik. 
2 2 Now V(y .. ) = 0 + 0 

1 J ex e 

and c(y .. , Y·k) = E[y .. - E(y. ·)][Y·k - E(Y·k)] 
1) 1 1) 1) 1 1 

= E[(ex
1
· + e· ·)(ex· + e· k )] 

1) 1 1 

2 
= °ex 

Thus 

This formula is the generalization of (3): substituting 

- in (29) yields ( 3 ) • x· . ': x. = x. 
1) 1 1 

In order to examine the optimum subsample size, 

consider the with n i 
- Denoting the proportion of case = n. 

the variance in x explained by the clusters as 

2 - - -)2 n = n1: (x. - x /L1: (x .. 
1 1) 

-)2 - x , 

the variance of b is given by 

or 

V(b) = [(0~n2/a) + (o~/n)]/o~ 

V(b) = (02/n )[1 + (nn 2 - 1)p]/0~ 

(30) 

( 31) 

(32) 



22 

These formulae are the same as equations (5) and (6) except 

that O~ is replaced by o~~2 in (5) and n is replaced by n~2 

in (6). Thus by redefining x in Section 4 to be 0 ~/Ia, the 
a 

optimum value of n is obtained directly as 

(33) 

or equivalently as 

nopt = [(1 - p)/p]1/2[Ca/c]1/2(1/~) (34) 

Note that if ~ = 1, i.e. -x .. = X. 
1) 1 

for all j , then nopt 
reduces to that obtained in Section 4. If ~ = 0, i.e. the 

cluster means for x are all the same so that the variability 

in x is all within the clusters, nopt = n, with only one 

cluster being sampled. 

9. A three-stage design 

In this section we consider a three stage sample 

design. At the first stage a primary sampling units (PSU's) 

are selected; next n. 
1 

second stage units (SSU's) are 

selected within PSU i; and finally n .. 
1J 

elements are selected 

in second stage unit j in PSU i. The regression model with 

a single independent x-variable extends to 

(35) 

where ai is the cluster effect of PSU i and ~ .. 
1J 

is the 

cluster effect of SSU ij. The a. and ~ .. are random effects 
1 1 J 

with E(a.) = E(~ .. ) = 0, 
1 1 J 

2 2 2 2 
E(ai) = 0a' E(~ij) = o~, and 
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E(cx
1
·lx) = E(o· ·Ix) = O. The x-variable is assumed to be 

1) 

constant within a SSU, and the regression coefficient is 

assumed to be the same within each PSU. 

The simple regression coefficient may be expressed as 

x)y .. 
_ 1)~ 

- X 

where ~ .. = (x .. - x). Then 
1) 1) 

V(b) = 
2 2 (- ) -LLn .. ~ .. V y.. LLLn .. ~ .. n·k~·kC(Y··, Y1'k) 
1J 1J 1J + 1J 1) 1 1 1J 

2 2 2 2 (LLn .. ~ .. ) (LLn .. ~ .. ) 
1J 1J 1J 1J 

( -) 2 + 2 (2/ ) v y.. = 00'. 0 r + 0 n·· 
1J u e 1J 

and cov(Yij' Yik) = E(cxi + 6ij + eij)(cxi + 0ik + eik) 

(36) 

(37) 

(38) 

= O~ for j + k. (39) 

Thus 

V(b) = 

= 

222 o (LLn .. ~ .. + LLLn .. ~ .. n·k~·k) 
0'. 1) 1) 1) 1) 1 1 

2 2 ( LLn .. ~ .. ) 
1 J 1 J 

O~LL n?~? 2 2 o LLn .. ~ .. e 1) 1) + u 1) 1) + 
2 2 (LLn .. ~ .. ) 

1) 1) 
2 2 (LLn .. ~ .. ) 

1J 1J 

2 2 o L ( Ln .. ~ .. ) cx 1) 1) 
2 2 (LLn .. ~ .. ) 

1J 1J 

+ 

222 
OrLLn .. ~ .. 

u 1) 1) + 
2 2 (LLn .. ~ .. ) 

1J 1J 
2 LLn .. ~ .. 

1 J 1 J 

(40) 



24 

Consider now the case where the same number of SSU's is 

taken from each PSU, n. = d, and the same number of elements 
1 

is taken from each SSU, -n .. = n. 
1) 

The V(b) in (40) reduces 

to 

2 2 
V(b) 

o~tO:1;ij ) 
+ = (Il:I;~ .)2 

1) 

Denoting the variance of 

2 
ax = 

and the proportion of 2 
ax 

112 = 
( - -)2 dl: xi - x 

= 
( X

-) 2 l:l: x· . -
1) 

V(b) may be expressed as 

2 2 
0 0 °e + 2 - 2 Il:I; .. nl:l:I; .. 

1) 1) 

x as 

l:l:(x .. 
1) 

- i)2/ad 

explained 

2 l:(l:1; .. ) 
1J 

2 ' dl:l:1; .. 
1) 

by the PSU's as 

[0~Tla2 o~ o~] 2 
V(b) = + aa + adn lax 

(41) 

(42) 

(43) 

(44~ 

-To determine the optimum values of nand c, consider 

the simple cost model C = aCa + adcd + nadc, where ca is 

cost of including a PSU, cd is the cost of including a SSU 

and c the cost of including an element in the sample. 

For given 2 the optimum choice of nand d that ax, 

minimize V(b) for fixed total cost C can be obtained from 

the Cauchy-Schwartz inequality as follows. Write 

V(b) l:V·/n. l:u? where V1 
222 V2 

2 2 = = = O~Tl lax' = °o/ox, 1 1 1 

V3 
2 2 ad, = adii, and write = °e/ox' n1 = a, n2 = n3 
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minimized when u./w. = constant. 
1 1 

kd~ Ie I(nad) 

nopt = (cd/c)1/2(Oe/O~). 

This 

(45) 

The condition also requires that (u 1/w 1) = (u2/w 2 ), i.e. 

that 

(Oan/ox/a) 
ka~ 

so that dopt = (ca/cd)1/2(o~/noa) (46) 

The optimum values of "opt and dopt given by (45) and (46) 

may then be combined with the constraint of the total cost C 

to determine the value of a. 
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