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ABSTRACT

This paper presents approximate analytic expressions for the emissivity

and absorption coefficient of synchrotron radiation of mildly relativistic

particles with an arbitrary energy spectrum and pitch angle distribution. From

these, an expression for the degree of polarization is derived. The analytic

results are compared with numerical results for both thermal and non-thermal

(power law) distributions of particles.

aAlso Department of Applied Physics
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I. INTRODUCTION

The formulas for evaluation of emissivity and absorption coefficient of

synchrotron radiation in the ultra-relativistic (synchrotron) and non-

relativistic (cyclotron) limits have been known for decades. 1,2. In the

intermediate energy range, however, no simple formula exists for an arbitrary

distribution of particles. Earlier Trubnikov 2 derived formulas for emissivity

and absorption limited to a thermal gas and convenient only for propagation

perpendicular to the magnetic field. As a result, the usual practice has been

to use lengthy numerical calculations 3,4.

In a recent paper s (referred to as Paper I, hereafter) we presented

simple approximate methods for evaluation of the frequency spectrum and

angular variation of the synchrotron radiation at high harmonics from an

(essentially) arbitrary distribution of particles in a given magnetic field. 'n

this paper, we shall use the same methods to calculate the emissivity and

absorption coefficient of the extraordinary and ordinary modes of synchrotron

radiation separately. Also, we will derive the degree of circular polarization

from these expressions. The general expressions presented in Sec. II were

derived for high harmonics of the cyclotron frequency which are the most

useful since the low harmonics are usually self-absorbed, absorbed by the

surrounding plasma, or suppressed by the Razin-Tsytovich effect. In Sec. III

we use the above results to find emissivity, absorption and polarization of

the radiation from particles with Maxwellian and power law e:Iergy

distributions. Here, through comparison with numerical results, we also show

that our formulas provide a good approximation even at low harmonics. In Sec.

IV we present a final summary.
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II. GENERAL RESULTS

Consider particles with charge e, mass m e, and distribution M ,Y) where 	 r

fdpdy is the numbe •: density of particles in the energy interval ( in units of

mec 2 ) from Y to Y + dy and with pitch angle cosine between {1 and u + dN.

The emissivity and absorption coefficients for the ordinary (+) and

extraordinary (-) modes at frequency v and at angle 8 with respect to the

magnetic field B are1,4^

010)
21te vb v	 °°	 1
------ -------	 dY d pf(u,Y) n+(e,Y,u,v)	 ,	 (1)

c vbsin20
1	 -1

V2K+(V,O)	
Ewa:

where

1	 w	 X J"( X ) 2

n+	 -----	 T+(cos0-S11)JD1(X) - (1 - opcos0) ---m
----	 8(y), (2)

T 2+ 1 m=1	 m

Ocose -11

w s - 81n[f(p,y) /0y2 )/ay + --------- -	 alnf(U,y)/3p ,	 (3)

BY2(1-u 2)1/2

mvb
y	

YV 
	 Sµcose), x = (VY/v b)5sin0 ( 1 -11 2 ) 1/2 , vb - eB /2mec . (4)

The quantity T represents the ratio of the major to the minor axis of

the polarization ellipse and, in general, is a complicated function of angle

931 v, vb , and the plasma frequency vp. The ordinary (+) and extraordinary

(-) modes are distinguished by their respective values of T, which in vacuum

or for v p /v << 1 are
i

,,	 f

	

T+ - -T--1 „ To	 E + (1 +E 2)^	 =V b  sine /( 2vcot^9)	 (S)
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u - Ocos8 in the integrand and multiplyi

i
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Note that for v/vb >> 1, the quantity << 1 and T+ -► tl	 except for a

small range of angles ( n/2 - 9) < vb/2 where E	 > 1.	 And in the limit	 9 -►

n/2,	 C -} -	 so that	 T+-► 00 and	 T--+ 0.

Since we are only dealing with the higher harmonics, 	 m is large and we

can replace the sum in equation (2) with an integral.	 This integral can then

be done using the 6- function. Also, since m is large, we can use the

Carlini approximation for the Bessel's function ash.

(1-z2)-114Zm	I1-(1-22)1/2)
	

h
J (mz)	 .---- 1/2	 Z2 s ............ 	 e2(1-z2)	 (6)
m	

(27rm)	 [1+(1-z )	 )

which is valid for (1-z2)-3/2/m << 1.

We evaluate the integrals to first order in this quantity.

Integration over Pitch angle

As can be seen from Eq. (6), the Bessel function and its derivative have

sharp maxima at u - 0cos6 and tend to zero rapidly at 11 a± 1. The rest of

the integrand is positive and var.-s slowly with u if the pitch angle

distribution of the particles is not extremely anisotropic. We use the method

of steepest descent to evaluate the integrals over p. The only exception to

this is the coefficient of J m(x) in Eq. (3) which becomes zero at u

= cos6/0. For a general cosh this will give rise to a secondary maximum whose

contribution is of second order in our expansion parameter. In particular,

for perpendicular propagation (cosh= 0) this term becomes zero at the

maximum of the function Zm. This gives rise to two maxima, each with a second

order contribution to the integral.

The use of the method of the steepest descent amounts to setting



Zmx 2 s (u--_') e2/u ^
u + 1

u2 . 1 + S 2Y 2 sin 2A	 (9)

u - T cosA 2
YOM	

Ysin 0
/0 +T2) .
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This means that most of the contribution to the radiation at an angle A

comes from particles with pitch angle cosines in a narrow range of the

order of (jrvb/v)1/2 centered	 at U - scosA.

This approximation is valid only for pitch angle distributions which are

not extremely anisotropic, i.e., distributions with Mnfft << v/V b [cf.

Paper I, Eqs. (7) and (19)]. Note that this enables us to drop the second

term in the expression for to in Eq. (3) so that the pitch angle dependence

becomes the same for j and ic.

Integration over Energy

The resultant integrand for integration over energy also has a sharp

maximum for particle distributions which fall rapidly with increasing energy

d
[e.g. , a power law f « (Y - 1) or a thermal distribution f a exp( Y/kT)].

Consequently, we can use the method of steepest descent to carry out this

integration also. This gives

3+	 2	 X j (Yo) f j (a0cosA ,Yo)
2 	 /v Y

	

ire vbv 
•uoY(A.Y0) 

[Zmx(to)
32vuo
  b o	 (7)

^ Y
v

L 
b

V2K±	 K(Y0)fK(a0cose'y0)

where

Xi-2 a Y 2 d 2 1nfi /dY2 - WydlnfI/dy
	

(8)



Note that all these expressions are evaluated at critical energy Y
0
 (and

the corresponding So and 
uo 2 . 1 + 0 2y2 sin 2 0), where most of the	

9

contribution to the integral comes from. There are two such critical
	

Y

energies; one For emission and one for absorption. These are obtained from

the transcendental equation; 	
ORIGIIy
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u l (u2 - 1)-1 + (1 - cot20/Y`)'%nz= -I)b /2vsin20)dlnfjsK/dy

(11)
° E/sine 8

Here and in equation (7) the function f j and fK are related to the

particle distribution f as

f  a f (ocos8 .Y) /y ,	 f  ' -0yd I f (0cos6 .Y) /BY 2 I /dy
	

(12)

In Eq. (8) the function W is a complicated function of u o and 6.

However, as shown in paper I, W can be approximated by the following simple

expression,

W a 3/2 + 1/(Y2 - 1),	 (13)
0

which is an excellent approximation in the entire region where equations (6)

to (11) are valid.

Ordinary and Extraordinary Modes

The emission and absorption coefficient of each mode is obtained by the

substitution of T+ in Eq. (7). Thus,. j+ and K+ become proportional to

Y+ evaluated at the respective values of the critical energy y., Since T+T-

- 1, it can be shown that

)f+ a (u2-2Toucoso + To 2 Cos 20) /Iy 2 sin"6 (1 + o2)I,

Y- ° (To 2u2+ 2T0ucos9 + cos 20)/[Y2sin 20(1 + %2)j.

6
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The total emissivity then becomes

tot ^+ + j- °C (Y+ + YT) ° (u2 + cos 2e) /Y 2 si.ne - 1+2 cot2e /Y2 	 (15)

in agreement with Paper I. Similarly, with the help of Eq. (5) the difference

of em issivities is given by

j- - j+ - Y- - Y+ - (2ucose/Y sine + ty(1 + C51/2.	 (16)

For v / vb>> 1 and away from the direction perpendicular to the magnetin

field,	 << 1 and To - 1 + C so that the ratio of j and K of the ordinary

to that of the extraordinary mode becomes

u - cose 2	 uo2 + cos 2 0
K.+/K_ - j+/ j_ - -o ----	 1 - 2C ---2------2 -	 (17)

uo cos8	 uo - cos 0

This approximation breaks down for (9 - 7r/2) < Y o/2v. As 9 -► n/2, u -* Y

To .= 2.E -Y °°	 and

Y+ -} (u - vb/v) 2 v 2 Cos 2 e/V2 2

(18)

Y_ -► 1 + 2vcot 2e/vbY	 .

In the limit e - it/2, Y+ m 0 and Y_ - 1. This, of course, means that for

evaluating the j + and K+ at e - n/2 one must consider higher order terms

which we have neglected. At e - 7t/2 the ratio Y +/Y_ is of higher order of

 our expansion parameter m-l(1-z2)-3/2 = uoYovb/v•

7
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1. Polarization
I

The polarization of the radiation can be obtained from the Stokes

parameters which are (cf. references 1 and 4)

jQ - [(,_T02)(j+-j_) + 4cosdTo (j+j_)
112

7(1 + T
0
2 ) ,

ju ^* 2sind(j
+ j_) 1/2

 ,	 (19)

jv - [2To(j+-j_) - 2cos6( 1-To2 )(j+j_)112]/(1+To2 ) .

With the help of Eq. (5) and using Eqs. (15) and (16) and if we define

Y+-Y_ (2ucos0 /y 2 sir- 28+V
P	 ----- = ---------------------	 (20)o 

Y++Y_ ( 14) 1/2(1+2cot26/Y2)

these become

jQ/j tot - [CPO + cos8(1
 - Po2)1/2)/(1 +02 )1/2 9

ju/itot 
3 sind ( 1 - po2 ) 1/2 ,	 (21)

j v/j tot ° [Po - 2cosd(1 - Po2 ) 1 /2&1/(1 + X 2 ) 1/2 .

Here 6 is the phase difference between the ordinazy and the

extraordinary modes. For a definite value of 6 the degree of Polarization P

2 + ^ u 2 + ^v 2)1/2/ tot = 1. However, for radiation from many particlesjQ1
in a large source with large Fazaday .rotation, the phase relations are

randomized so that the average values <sin6 > 	 <cosd> = 0. In this case jU =
3

0 and the degrees of linear, circular and total (elliptical) polarizati.,n are

simply

Plin " FP 
o/(1 + C2)1/2, Pcirc " Po/(1 

+ C2)1/2, Ptot = Pp .	 (22)

8



When v/vo >> 1 and C << 1, Plin « Pcirc and the radiation is circularly
polarized except near e n IT /2 where C-+ co and radiation becomes linearly	

Y
polarized. As evident from Eqs. ( 20) and ( 22) the degree of polarization	

1

decreases with increasing frequency (or the energy of the particles).
2. Summary

Eqs. (7) to (13) along with (21) and (22) give our results in their
general forms and are valid for all particle distributions which are not

extremely anisotropic. The results for the extremely anisotropic situation are

more complicated and were described in Paper I. The modification for

obtaining the emission and absorption coefficients of the two modes separately

and the polarization is similar to the modification described above. We will

not present these results here because of their complexity and.their limited

usefulness.

Given a distribution function subject to this limitation, the first step

is evaluaticu of the critical energies yo from Eq. (11). Then Eqs. (6) to (10)

and (12) and (13) evaluated at the appropriate yo s give the desired

results. The most complicated part of this procedure is the solution of Eq.

(11) for yo . It turns out that for most practical cases it is not necessary

to solve this equation.

In the next section we shall show how this step of the calculation is

simplified considerably for the two most commonly used particle distributions.

Before doing so we consider the asymptotic limits of these equations.

3. Asymptotic limi ts. Let us consider first the case when angle 6 is not

too small (i.e., radiation away from the direction of the field). Then in the

two extreme limiting cases, Eq. (11) simplifies 	 ,_P

OF PC` t

i) c << 1, Yo » 1, RoYo	 2/3c sin 0, W - 3/2;

(23)

ii) e >> 1,^0 « 1, Yo =	
2
	 4/ e , W	 c/k.

9
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The first case is realized at high frequencies and particle distributions

which are not extremely non-relativistic which is the case of interest here.

The second case is valid for non-relativistic particles and at low frequencies

and has limited usefulness except for a low temperature thermal gas.

III. EMISSIVITY AND ABSORPTION COEFFICIENT OF TWO COMMONLY USED
PARTICLE DISTRIBUTIONS

The two particle distributions we use as examples are i) the distribution

from a thermal gas, i.e. a Maxwelliau distribution in energy and isotropic

pitch angle distribution; and ii) the distribution with a power law spectrum

at high energies and with a slowly varying pitch angle distribution.

A. Thermal Spectrum

In this case, the distribution f 	 of particles at temperature kT (in

units of m e c2) is

f(u,y) - Ce-(Y-1)/ kT Y ( y2 _ 1 )1/2 ,	 (24)

where for kT ti 1

C ^-- (n/2) [27r(kT) 3 ) -1/2 (1 - 15 kT/8 + ...),	 (25)

and n is the number density of particles. From these and Eq. ( 12), it is

clear that kirk - f  - f/Y	 so that [as is evident from Eq. (11)) the

critical y is the same for both j and K and, in fact, according to Eq.
0

(7), j+ - kT +. We also find that

3

o0n(f/Y)-1	 k'ry	 d21n(f/y)	 -(y2 + 1)
-------- > --1 - ----- 	 --------_ - -----------	 (26)

d y	 kT	 yLl	 dye	 (Y2 - )2 .

10
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Using these equations we can calculate Y o and X from Eqs. (11) and (8)

respectively. As shown in Paper I, these expressions can be considerably

simplified. We find that the following expressions
OR1GtNRL PR3 rZ. E4
OF pppR QUALITY - -

(2VkT/Vb )(1 + 4. 5 vkTsin20'Vb ) -1/3 kT < j

(Yo - 1)

1(4VkT/3vbsin8)2/3	 kT 1

(27)

X 2	 (UT/Yo) ( Yo - 1)/(3 Y 2^ - 1) 	 kT ti 1

have the correct asymptotic limits in agreement with Eq. (23) and agree with

the exact results from Eqs. (8) and (11) to within 30% for most relevant

ranges of angles, frequencies and temperatures and better than 10% in the

majority of the interesting cases.

The above equations and Eqs. (7), (8), and (10) give a complete

description of the emissivity and absorption coefficient from a Maxwellian gas

at all temperatures and frequencies. They are valid for kT ti 1 because at

temperatures kT > 1 the use of the wethod of steepest descent for integration

over the energy becomes less accurate. However, the existence of the

extremely relativistic thermal gas is in doubt 8. On Fig.	 1 we compare the

total absorption coefficient K ° K+ + K _ obtained from these relationships

with numerical results from Lamb and Masters3 . As evident, our analytic

results give excellent agreement t,) the detailed numerical results even at low

harmonics. A more detailed comoe.rison with similar results was presented by

Harsh and Dulk8.

In the two limiting cases described in the previous section, these

equations are considerably simpler. The interesting case, e << 1 corresponds

to v kT/vb » 1, Yo a 4vkT/3'Vbsin0, so that

11

r

L	 ^	 ^



1/3
v

j + M v2kTK	 (23/2ne2vb/3c)C'vkT/v,.` exp -- ---	 b	 Y

	

V sin0 N"	 +

(28)

Yt an 1 + 2 ( 3Vbsin48/4vkT ) 1/3	 M.IGNAL Pr'ac (9
OF POOR QUALITY

Similarly, the degree of polarization becomes P e (48vbsin'8 /vkT)1/3

B. Power Law Energy Spectrum

Power law spectra are commonly used spectra in astrophysical problems and

in other problems when the tail of the Maxwellian distribution begins to

deviate from the exponential form. Usually power law spectra are defined with

a low euvrzy cut-off. To avoid such discontinuities and the divergence of the

number of particles, we assume a spectrum of the form

n(d - i^	 1
f(µ Y) - +----^ 	 ( Y - I)/ C W g(µ),	 g({t'du - 1	 (29)

EC
-1

Here 
c  

plays the role of the low energy cutoff (in units of m ec 2). For

energies much greater than cc the spectrum is a power law with index -_

but it tends to a constant value at lower energies. The particles can be

classified ' as ultra-relativistic or non-relativistic if cc >> 1 or cc << 1.

We are interested primarily in cases with cc = 1.

For distributions which are not highly anisotropic (i.e. ding(u)/dp <<

v/vb), we can carry out a calculation similar to that for a thermal gas. From

Eqs. (12) and (29) we find that

d	 2y2- 1
a	 3	 (30)

c

so that the quantities Y2 and X-2 in Eqs. (8) and (11) can all be calculated

for exact evaluation of the emissivity and the abso:ptior, coefficient in Eq.

(7).

As shown in Paper I for semi -relativi s tic particle energies, e c Z 1, and

for v hb »1 all these complicate d expressions can be simplified

s
12



ccusiderably. This is because it turns out that the high energy asymptotic

limit of Eq. (23) provides a good approximation throughout most of the

relevant ranges of frequency and angle 0. In this limit Eqs. k29) and (30)

give

Soto = X24v/(3vbsin9), )C2 	 2+ a for K
	

(31)

Values of yo obtained from this simple expression agree to within 30% of

the exact values derived from Eq. (11) for 1 Z c c Z 0.5 and sin g > c^ .	 Note

also that in this limit the exact form of the energy distribution is not

important as long as it tends to a power law f Q y-d at high y. In the

extreme-relativistic limit v >> V 	 and yo >> 1, substitution of Eq.

(31) into Eq. (7) gives

(3C 2 v (G+1) sin6/4v) (a-1) /2 a (all) /2
3 + (V '0)	 ^7re 2 V sinO	 c b

b	 (32)

)/ ( ^2)
v2K+(v,8)	

4c	 (3e^vb(a+2)sin0/4v)
a/2 —( a+2 2

e—e'---1.
c l/

Note that in Lhis limit Y+ = 1 + 2 cot9/y0 so that the ratios of

K /K+ = j_/j + _ (1 + 4 cot9/Yo)

	
(33)

tend to unity with increasing frequency. 	 This, and the dependence on v/Vb,

%ad 6 of Eq. (32) is identical to the results for emissivity obtained from

ultra—relativistic expressions.

It is interesting that with a quite different method and approximation

we have obtained the same expression. The reason for this agreement can be
2-3/2

seen by examination of the expansion parameter (1 — z ) 	 /m	 uo oVb/v.

which in this limit is equ-A to 4/[3(1 +a)] or 4/[3(2 +S)]. For d > 3 the

E
13	
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expansion parameter is less than 0.3 which, although not extremely small,

nevertheless is less than unity. Thus, for an ultra-relativistic expression

more accurate than 30% to 50%, one must include higher order terms in our

analysis.

For extremely non-relativistic particles, that is, for C  << 1, the above_

expressions are valid as long as vbd/ v << 1. For the unlikely case of V b 6 / v

>> 1, we find that Yo = 1 and So - v /vb d. Substitution of this in (7)

gives the emissivity identical to that expected from a thermal gas if one

identifies cc
 
16 with the temperature kT (cf. Paper I).

In Figs. 2, 3 and 4 we compare results obtained from substitution of Eqs.

(30) and (32) in Eqs. (7) and (20) for j+, 
V2 K

+ , and P, at 0 s 60o and

d = 4 with the results of numerical integration kindly provided by Marsh and

Dulk8, who used a power law spectrum with a sharp cutoff at EC= 1.02.

The values for j+ and K+ are within 60% at high frequencies and the

approximation is better at higher V/v b. The polarization looks better at

lower frequencies (although it still is better than 50% even when P is small

and errors can be magnified). Also our results are (nearly) systematically

higher than the numerical Hsu is at high harmonics, which could be the effect

of higher order terms. However, the percentage error never exceeds 30% for

v/vb Z, 6 .

IV. SUMMARY

Using a simple method of integration developed previously, we have

derived expressions for the emissivity, absorption coefficient and

polarization of synchrotron radiation for an arbitrary distribution of

particles.

Equations (7) to (13) and (21) give our results in their most general

form. And we find that Eqs. (8) and (11) can be simplified considerably, as

ORIGINAL F'M:	 C5
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in Eqs. (27) for a Maxwellian distribution and in (31) for a power law

distribution.

Our results do agree with previous analytic results, and they give good

approximations to detailed numerical results. Although our results were

derived for high harmonics, they give good agreement down to lower harmonics:

to v = 6Vb for j+, to V = IOVb for K+ , and to even lower harmonics , v

2Vb, for the total j and K.	 These results are limited to pitch angle

distributions which are not extremely anLsotropic and energy spectra that

decrease rapidly with increasing energy. They also are only applicable for

emissivities and absorption coefficients away from the direction of the

magnetic field lines.

Our equations are intended for semi-relativistic particles, but they also

give excellent approximations for the extreme non-relativistic and ultra-

relativistic particle distributions.
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FIGURE CAPTIONS

Figure 1. The total synchrotron absorption for a thermal source at e m n/2

for kT a 0.04 (20 keV electrons). Points are from analytic expressions; the

solid lines are numerical results of Lamb and Masters3

Figure 2. Synchrotron emissivity of each mode divided by magnetic field B and

total particle number N. Log Q + /BN) vs Log ( v /v b ), at 0= 60 0 , 6 = 4.

[j+ in units erg(cm 3 sec sterad H ) -1 .^ The ordinary mode has been

shifted down by a factor of 10 for clarity. The solid lines are numerical

results of Dulk and Marsh (private communication). The 0's are our analytic

results.

Figure 3. Same as Fig. 2 except for the absorption coefficient v 2 K + in units

of erg sec ! ( cm3 sterad)-l'

Figure 4. Degree of Circular Polarization vs Log (v/v b) in the limit

4- 	 Circles from Eq. (22). Solid line from numerical results.
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