General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
May 25, 1983

NASA Technical Officer, Dr. John Dietrich
SN2
NASA JSC
Houston, Texas
77058

Dear Dr. Dietrich:


Sincerely,

JOSEPH V. SMITH
Louis Block Professor
of Physical Sciences

cc NASA Scientific and
Technical Information Facility

K. Miller
Final Technical Report
Mineralogy and Chemistry of Planets and Meteorites
Joseph V. Smith, Principal Investigator
The University of Chicago
Chicago, Illinois 60637

Brief Summary

The 15-year grant spanned the Apollo program for study of lunar samples, and this summary covers the data collection and the interpretation with respect to the mineralogy of meteoritic and terrestrial samples. Full technical reports were submitted each July of the grant, and the research program continues now under grant NAG 9-47. Briefly, the key conclusion is that the Moon underwent a series of melting episodes with complex crystal-liquid differentiation. It was not possible to determine whether the Moon melted completely or only partially. The origin of the Moon is still unresolved, but all simple models can be rejected. The stage is now set for a systematical geochemical and geophysical survey of the Moon. At the end of the grant period, emphasis was moved to meteorites in order to sort out their interrelationships from the viewpoint of mineral chemistry. Several parent bodies are needed for the achondrites with different chemical properties. Exploration of Mars is required to test ideas based on the possible assignment of shergottites, nakhites and chassignite to this planet. Early rocks on the Earth have properties consistent with a heavy bombardment and strong volcanic activity prior to 4 billion years ago. The overall general conclusion is that the space program lead to a new scientific discipline, and that the early results on planetary mineralogy provide a firm basis for future exploration.

Bibliography

A list of titles is appended. Reprints were sent yearly with the annual reports. Publication still in press will be notified in a report dated August 1983 for grant NAG 9-47.


266. Smith, J.V. (1979). Towards the chemical composition of the Earth. The Compass of Sigma Gamma Epsilon 56, 47-68.


