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INTRODUCTION

This project applied modern theories of turbulence and fluid mechanics

to astrophysical phenomLna. Of special interest were periodic events on

the surface of the sun. Research and papers written during the grant are

summarized below.
1

1. STELLAR STRUCTURES

Streamers in the solar corona are thought to be caused by structures

in the underlying magnetic field. However, we have found that most expanding

gases will form streamers and expand non-uniformly. There must be a. retarding

force (such as gravity in the case of the solar wind) and the expansion must

be subsonic.
t

Our work on this problem was presented ac an APS meeting. The abstract

is enclosed as Appendix A. The paper titled "Natural Inhomogeneities in an

Expanding Gas" is Appendix B. We showed that the expanding gas had a linear

instability to initiate streamer formation, but 	 were unable to use turbulence

to find a non-linear limiting process for the instability.

2. TURBULENCE IN A MAGNETIZED PLASMA

The Orr-Sommerfeld equation governs growing instabilities in a fluid

boundary layer. Its solutions determine the Reynolds number at which

'	 turbulence develops. We have added a magnetic field and electrical resistivity.

r.
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This problem applies to plasma physics (fusion research) and to several

astrophysical situations. In particular, the interior of the sun has

boundary layers between regions of magnetic plasma flowing in opposite

directions. It is possible that turbulence in these boundary layers

could have a characteristic frequency that leads to observable phenomena

on the sun i s surface.

Appendix C is titled "Onset of Turbulence in a Magnetized Boundary Layer."

We found that a higher Reynolds number is needed to start turbulence in the

presence of a magnetic, +°'eld becauY.e energy is required to bend the field

lines attached to the fluid.

3. COSMOLOGICAL TURBULENCE

Appendix D is titled "Phase Coherent Turbulence in the Early Cosmos."

Turbulence in fluids has prefered frequencies and eddy sizes. If the

cosmological gas was turbulent shortly after the big bang, then galaxies Gould

have been formed by turbulent eddies. This hypothesis is still open becrluse

the Reynolds number is very high in astrophysics. It is not clear how to

extrapolate from laboratory experiments at Re < 10 6 to astrophysics at

Re >1014
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Appendix A

Abstract Submitted
Fri

for the Washington Meeting of the 	 OF POOR QUALITY

American Physical Society
fip-;,g..,May 3.
_Qa=2 - Anril 1980

Physical Review
	 Bulletin Subject Heading

Analytic Subject Index
	 in which Paper should be placed

Number	 95.	 Astrophysics

Bulletin of the American Physical Society 25 0 597 (1980).

Coronal Structures without a Magnetic Field*
M. A. CROSS, Grambling U. and J. A. JOHNSON III,
Rutgers U. --It is believed that structures in the
atmosphere of the sun are controlled by the background
nagnatic field. We show that coronal streamers can be
formed without a magnetic field. If theta dependence
is kept-in the Navier —Stokes equations for the solar
wind, then a density enhancement will grow. This growth
is followed in the non—linear equations until a streamer
is formed. viscosity stops the streamer's growth when
there is a large difference in speeds inside and o'uts'ide
of the streamer. The viscosity needed to reproduce
observed streamers is compared with the classical
viscosity.

*Supported in part by NASA grant NAG-8002

Submitted by

A A. Pohns 1 III:
Department o Physics
Rutgers University
Piscataway, N. J. 08854
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Appendix B

Natural Inhoraogeneities in an Expanding Gas
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Mark A. Cross	 OF pOC)R QUALIV

Department of Physics, Grambling State University

Grambling, LA (USA) 71245

Joseph A. Johnson III
k

a

Department of Physics, The City College

of The City University of New York

New York, New York (USA) 10031
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ABSTRACT	 }+is

Using classical fluid mechanics and a latitude dependent

hydrodynamical model, we find that unmagnetized perturbed flow

evolves into high and low density regions. The growth

mechanisms for density enhancements are discussed along with a

new nonlinear numerical solution for their large amplitude

development.

*work supported in part by NASA grant NAG 8002 and NSF grant 	 !.
ter;

SER-810430.
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Examples of expanding gases occur in many astrophysical

events, e.g. the Big Bang, novae, stellar winds, and planetary

atmospheres. These processes are usually modeled with a

restriction to spherically symmetric hydrodynamics. It is

impossible for such models to produce structures whose

parameters depend on latitude and longitude. The structures

actually formed in these expanding gases range from galaxies on

fiche cosmic, scale down to streamers and bursts on smaller

iscales. Some of these structures might be formed by

hydrodyne,mic processes alone. In this paper we study the

characteristic structures that might evolve from the

unrestricted Navier--Stokes equations. Two hypotheses are

investigated: "The expanding gas would still have structures

even if there were no magnetic field," and "Any subsonic

expanding gas might break up into structures."

Stellar streamers are now thought to arise from the regions

in stellar atmosphere where collisional phenomena predominate

(Kaplan, Pikelner, and Tystovich, 1974). In such regions, a

hydrodynamical approach is appropriate for the analysis of the

evolution, of density perturbations (Lemaire 1978). This

approach should be particularly relevant o those stars with

weak fields or to stellar atmospheres for which the onset-of

amplified fluctuations is only weaky dependent on the strength
4

of the local magnetic field. By way of illustration, the

calculation will be applied specifically to the solar corona

4	 because its parameters are well known and because it has a
it

j	 subsonic region.	 We shall use . solar parameters, even though
4,

{	 the model is not applicable to the solar corona

T. 2 	
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where the magnetic field dominates, of course, the parameters

c,An easily be changed as new data become avi.lable to apply to
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other astrophysical situations.	 OF POOR QUAL17Y
The existence of streamers ir. an expanding gas shows that

spherical symmetry is broken when random density perturbations

grow and become stable configurations. Ignoring explicit time

dependence (as is the convent°c. ), the latitude dependent

Navier-Stokes equations are

	

ar(nur
2
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where: n is the total particle density; m is the average mass

per particle;	 u is the	 radial speed;	 v is the latitude

component of velocity; (TC) and (VI) symbolize thermal conductivity
r

and viscosity terms respectively; and the transport

coefficients are	 (Scarf	 and Noble,	 1965)	 r( = 8.3 x

10 -17/	 gm/cm-sec, D =r/mn, K = 6 x 10-9-1- X/2.
2

erg/cm-sec-K for our purposes. 	 Details of the thermal

conductivity and viscosity terms may be found in Yuan 	 (1967),

Linear Treatment.	 (See Cross and Blockwood	 1974.)	 The	 zero

order unperturbed	 solution ignores theta dependent terms in
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eqs. (1)	 (4). We add a perturbation (indicated by the

subscript 1) which peaks at angle &o with width Z : at

00 , (an/a 0:^) = - (nl /')^2.),

('b- n/0) = 0 with similar forms, for T and u perturbations.

The fourth function v is zero at 00 but has nonzero av/ a&

since the perturbed pressure (from n  and T 1 ) causes

sideways expansion away from 1110. 
For a rapidly growing

perturbation, we assume a small radial scale length, i.e.

la n l/ a r) = o4, nl ^) (n l /r) . Equations (1) - (4) in linear

form without viscosity, diffusion, o; thermal conductivity are:

«^-tn r +«Y1U11 f-ChM	 (5)

n c a ^/a e) = C k/m r ee l ) C Y1 1 T + v T,)	 (7)

respectively. The gravitational term which would have appeared

in eq. (6, has been dropped because it is much smaller than the

pressure term; thermal energy is comparable to gravitational

' energy (kT ve Gft/r)	 but the perturbed pressure should have a

steep gradient. That	 is,	 (dn l /dr)	 = o<n l 	(nl/r).

v,
^•,, Eliminating T1 and both components of velocity from eqs.	 (5)

-	 (8) , and assuming mu 2 /, ,e.5kT/3,	 produces	 ot-= 1/rt or
{k

n (r, B•) _	 n	 . (a) r l/'4^	 Since	 'Z,	 is	 the	 width of the

^i -4- i
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perturbation, narrow perturbations or streamers will grown

n	 faster as they are convected outward by a stellar wind.

Physical Mechanism	 The density perturbation grows because

of interactions between eqs. (5) - (7). Ignoring the

temperature change in an isothermal corona reduces the radial

momentum eq. (6) to

du	 ORIGINAL PAC-7 (rV"

d r+	 ^,,,^ Lk,n
	 OF POOR Q4.9Ai^9 "Y"	 (9)

that,is, fractional change in velocity is proportional to the

fractional change in density. Recall that kT >> mu d below

about 5 Re	 thus velocity changes have the larger magnitude

below 5 Ro• Eq. (9) also shows that changes in

density make a pressure gradient which drives the velocity.

When the continuity equation is applied to a small volume

at a fixed position in the corona, one sees a density

enhancement convected upward into the volume by the stellar

wind. This makes a locally higher pressure which is smoothed

out by sideways expansion out of the volume governed by eq. (3).

As the density enhancement passes through the volume, it los,:.-s
M,

flux due to sideways expansion. The particle flux nur2

becomes successively smaller after passing through volume

elements at successively' larger r. The only way to both

decrease the flux and also satisfy eq. (9) is for the speed to

decrease and the density to increase, i.e., for the density

enhancement to grown.

t
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Nonlinear Numerical Solution,	 Models of expanding gases

a usually assume initial conditions at one radius and then eqs,

(2),	 and	 (4)	 are numerically integrated to solve for n, 	 u

and T at other	 radii.	 We add eq,	 (3)	 and the G. component of

velocity,	 V,	 to this process.

Recall that the solar wind has a critical point at the

supersonic transition where 5kT/3 , m U.'.	 Whang,	 Liu and

Chang	 (1966)	 have shown that the singularity can-be avoided by

retaining the second order terms 	 2'	 in the viscosity teams

of eq.	 ( 2) and	 ?^Z/W'	 in the thermal conductivity terms in

eq.	 (4).	 For this reason the numerical work 	 reported here was

done with eqs.	 (2)	 and	 (4)	 rearranged to use second order

radial derivatives.

'
-

Equation	 (1)	 was left at first order in 	 an/Br	 by ignoring

diffusion on	 the	 right	 side.	 Finally,	 in eq,	 (3)	 it was

assumed that the viscous term	 a24/ar'`	 was unimportant and

could be approximated numerically from changes in 	 X,4 1^-r at

previous	 (lower)	 radii.	 Therefore eq.	 (3)	 was kept	 in the },

( first order form for	 av / ar	 as written above.
The	 functions of (?. were calculated on grids of	 30 to	 180

points equally spaced in latitude from 0 0 to 90°.	 Symmetry

about the equator	 (at 90°)	 was assumed.	 The original

pressure was preserved by using both a density perturbation

n l and a temperature perturbation T l/T° _ -n l/n o .	 The

numerical	 solutions used eqs. -	(1)	 -	 (4)	 to calculate the

radial derivatives at all points in the theta grid at a

ORMNAL MCC- ES
OF POOR QUALITY
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starting radius. Then these derivatives were used to find the

functions at a higher radius. Vie made the u6ual check of

Pbanging the radial step size; starting from a large radial

step, the step was decreased until the solution was independent

of step size.

The perturbation was a Gaussian in latitude. Other initial

conditions were typical of solar wind models. Figure 1 shows

the total pratitcle density plotted three times as the solutions

precede outward in radius. We see that a density perturbation

grows as it is convected outward. Figure 2 showo the history

of the amplitude of the central maximum relative to the two

minima on either side. Data f rom: the numerical solution are

plotted in this figure and compared favorably with the curve
02^

(amplitude) ^-, r , with	 5.7 ° . Notice that the 5.70

wide Gaussian would also be a reasonable fit to the peak in

Figure 1 (c). 'Since the initial perturbation has a Gaussian

form, the short wavelengths in a Fourier decomposition of the

perturbation should predominate and give the growing structure

an increasingly narrower width. (See the lineargrowth rate

derived above.) The results shown in Figures 1 and 3 confirm

the expected behavior with the peaks getting progressively

narrower and the distance between the centrL,1 maximum and-the

two minima on either side gradually decreasing.

We have not determined the ultimate nonlinear development

of these radial streamers. Neither have we provided a

J mechanism which^ pre'vents their angular widths from decreasing

.4
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indefinitely until they are unobservable. However, it is easy

to speculate that a ri pgnetic field and turbuletico wou2.d

complete the model which has just been introduced. The main

effect of an imbedded magnetic field on the instability

presented here would be that of making it difficult for

particle, to cross field lines. This would limit the

transverse velocity and slow the growth of the instability.

Furthermore, this convective instability produces neighboring

streamers with very different radial speeds. The high rate of

shear should lead to a transition to turbulence. The effective

transport coefficients would then increase above the laminar

flow values and thereby limit the ultimate evolution of the

amplitude and width of a streamer.

Nonetheless, we have shown that the perturbed expanding gas

might evolve into alternating streams of high density/low speed

and low density/high speed regions from pur ply hydrodynamical

considerations. This or ►set mechanism would apply to any

appropriate astrophysical environment to the extent that

hydrodynamic boundary conditions are.applicable in an

underlying collisional atmosphere. Whenever the expanding gas

is subsonic, perturbations will grow into radially oriented

structures.
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Figure captions

Figure 1. The evolution of the latitude, profile of a

streamer-like densiA.y perturbation. (a) Starting

conditions: At r = 1.3 x 10 11 cm, T = 1.45 x 10 6 K, u =

1.4 x 10 6 cm/sec, n = 5.1 x 10 6 cm -3 , dT/dr = -2 x

10 -6 K/cm," and A n = (0.1) n exp (0. _9,0) 2/(l0° )I	 (b)

Density profile at r = 1.4 x 10 11 cm,	 (c) Density

profile at,r = 1.66 x 10 11 cm. The particle density is

n, the solar latitude is 0- and r is radial distance drom

the center of the sun. The smooth curves are the results

from the numerical solution.

Figure 2. The evolution of the amplitude of a solar

streamer. 4n/n _ (n Max - n min ) /(0.5)(nmax*nmin).
The results from the numerical solution are given by the

symbol x; the dashed curve is a plot of A n/n = (0.00.22)6

( r/1011 1/le where 'r- = 0.1 rad (=5.7 0  .

Figure 3. The evolution of the width of a streamer. The

width, 6-	 , is defined as the angular width at half of the

central maximum in the perturbation.
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ABSTRACT

When the Orr-8ommerfeld equation is derived for a conducting

fluid with an imbedded magnetic.field, the first appearance of

amplified perturbations occurs at a higher Reynolds number than is

expected without the field.

*Work Supported in part by NASA Grant Nag 8002 and by NSF Grant

S ER -810430.
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OF POOR QUALITY
Solutions for th4 parr-Sommerfeld equation which determines the

stability of small disturbances in neutr&I laminar flow past a wall

are well known l . Above a critical Reynolds number the

disturbances grow and eventually develop into turbulence. However,

solutions for the analogous problem of boundary layer flow in a

magnetic field have not been achieved. In this case there should be

important implications for both astrophysical 2 and fusion3

research since, at the present time, the impact of turbulence on the

transport properties of magnetized media is not well understood. In

this paper we have extended the Orr-Sommerfeld equation to the case

of a weakly perturbed magnetic field in a resistive Blasius boundary

layer.

The coordinate system is shown in Figure 1. The field is

parallel to the flow so it has no effect on the unperturbed flow.

We derive the new Orr-Sommerfeld equation using standard notation 

where the zeroth and first order functions and the stream function

are defined by
--%	 .a	 --%

Uo = (Uo ( y ). Of 0 ); Bo= (B0) 0. 0 ); bl(X.y) =(bx. by , 0)

u l ( x . y ) = ( U l f v l , 0); Y= ^ Me	 L41ul- d.y ;V=
	

(l)

in which V^ and -P are the wavenumber and frequency of the disturbance.

If both b  and u l are of the form f (y) exp i( oA. x - -p t) then

the magnetic field equation leads to

-	 bx =• ym C-- ^2. ay ) bx t goz C^ u,) -- u o ,^ a bx + by ay ^o

6 Y = ^m L- ^l +^y) b + u oX ^ O^ V^ -^ o ^-^ by 	(2)
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in which tJ ^,,/o"fc; v- and /-,c, are respectively the conductivity and

magnetic permeability. Introducing the stream function, eq. (3)

becomes

...	 3 b	 , ^m (,^ o^z y + h r^ ) 
._ t4. o ti d. ^, ^^- (3o x d2cp

^ y	 (4)

From conservation of momentum one finds

C a a^ t ^.^T)w =	 VP+	 C.^7^13 )X^3 +^7 Z V	 (5)
^	 f	 P

Taking the first order x and y components of (5).

,^► 13 u, + L( p ,^.	 .^. V, d y ^(o = — I x̂ f', t L (- d zut 
^u^

„ ^
(6)P

Y

,'	 r

l

P	 PlI`

By eliminating the pressure between (6) and (7) and using the stream

function, one achieves

^i. N '' -' d a^ 1 '^'^ c
	 e "'L of T K 6 T (, a uo

L
^

^^ 6 +ti d D^^ +y (-oly^ + 7^ 

d2 ^ u -(Q ► v1

OIL
(,	 y	 l	 (s)

P

^s
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The dimensionless variables are:	
OF POOR QUALITY

LQ

L3 q

1•

where d is the width of the boundary layer, R  is the magnetic

Reynolds number, NA is the Alfven number, and Um is the fluid

velocity at y = ob	 We drop the use of bars and assume that all

symbols after this refer to dimensionless variables. Equations (4)

and (8) become

6, + 6," /R

(10)

^Q r ` of	
-'

..	 1^^ d	 us -'	 L0	 ^ 2 ^. ^Q	 cg	 Le 1	 (^	 (1 l a) a

^►^	 A Y	 Y
(11b)

where the prime notation means	 d	 ate/

The left side of eq. (11)	 is the usual Orr-Sommerfeld equation.
r

The right side is our new result.	 It shows that the first order

magnetic perturbations in the boundary layer approximation simply

add a new term that depends on the Alfven number and the magnetic

Reynolds number.

 -4 -
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As Rm---^O there is no new effect because the low conductivity

permits particles to freely flow across magnetic field lines.

in order to solve these equations, we have altered the method of

Mack i to include our equations (10) and (11). At y -00:

_^y	 _ ^y
u o Cop ) = I ^	 q of. e.	 ;	 by C4e	 ('12)

Two analytical solutions are known in the free stream far from the

wall. The first, called the inviscid solution, has c= co, in eq.

(12) . This requires by =cc^^/ i (a. -P ) in eq. (10) . The second

"viscous" solution has 9) c4 exp (-py) with )o z = CV,1. f.% RU--P)
when there is no field. We find P when B 0^0 by first eliminating b

between equations (10). and (lla). The result is linear in v and

can be solved to yield a cubic equation for p as a function of
i

, R, Rm , and NA from w>ich p is obtained numerically.

The boundary conditions at y = 0 are:

it

h

[^	 o^ _ cp = 6?7 — 6y /	 d y	 °' (13) .^r

Mack's method of solution consists of beginning with an initial

estimate of oC, and -P and then numerically integrating the two known

solutions from y . = c4	 toward y = 0.	 The eigenvalues	 of and 
P 

are

altered until a linear combination of the two solutions fits the y = 'S-

0 conditions. Our solutions reduce to Mack's in the limits R m --^ 0

and Bo 0.

-5-
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We have solved for the wave number c>l,	 as a function of y?i R,

Rm , and NA .	 (This is called the space-amplified case, i.e. a

perturbation at frequency 73 grows spatially at the rate exp (io(x)

as it is convected along the boundary.) 	 The dimensionless frequency

parameter F =	 /R remains constant as a perturbation is convected

along the boundary layer. 	 (Schlicting4 ).	 Figure 2 presents the

region of instability in the F-R plane for comparison purposes.

inside the curves,	 o( i is negative and perturbations will grow.

he curve for Rm = 0 reduces to the non-magnetic case investigated

by ethers.

Next we consider changes in the magnetic energy density measured

by NA .	 When by<4 T , eq.	 (llb)	 i.t linear in	 CP and the

+ quantity (Rm/N2) reduces to a single parameter. 	 in Table i

we keep this parameter constant. 	 The eigenvalue	 o^	 is nearly

constant for the entire range.	 The growth rate oti is constant for

NA 44 1.	 in Figure 3 we compare a set of critical Reynolds numbers

(that is, the minimum Reynolds number at which perturbations will be
r

amplified) with a corresponding set of magnetic Reynolds numbers.

Notice that the curves of Figure 2 shift toward higher R with

increasing conductivity and the curves of Figure 3 show that the

flow will require a new and larger Rbefore perturbation's areC
K	 ;,

amplified.	 For example:	 given the fluid parameters Rm = 1 and R s

= 1300, turbulence could not develop if the magnetic energy density
s	 ,

F
were greater than B 2/P v2	 .1.

Thus, as the energy in the magnetic field approaches the kinetic

energy of the flow, its influence becomes increasingly important

^i



through the inhibiting effect of the magnetic field on the

amplication of stochastic fluctuations. Specifically, in the

presence of a magnetic field, a conducting fluid experiee;ces an

increasing delay (i.e., the critical Reynolds number increases) in

the onset of turbulence.

3
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FIGURE CAPTIONS

Figure 1.	 Coordinate oystem for the Orr-Sommerfeld Equation. A

viscous fluid flows past a semi-infinite wall,. The

fluid has an imbedded magnetic field.

Figure 2.	 Neutral stability curves for disturbances in mg gnetic

laminar flows. F = -P/R is the frequency of the

disturbance. The imaginary part of the wavenumber is

negative inside the curves indicating that

disturbances will grow in space. The changed values of

the magnetic Reynolds number, R  are; a;=0;b,

Rra=0.05 '. C, R 	 0.1.

Figure 3.	 Critical Reynolds number (Rd for turbulent onset as

a function of the magnetic Reynolds number (Rm).

The leftmost curve, a, shows the case for magnetic

energy density, (B2//.Pv2), 10 times the kinetic

energy density; the center curve bis for magnetic

energy equal to kinetic energy; and for the right

curve, c, the magnetic energy is one tenth of kinetic

Energy.

pp . 456-488 (1979).
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Table Caption

Table 1. Sensitivity of Solution Eigenvalues to Changes in
Magnetiq Energy Deniity. 2 I^ere2 R = 1280; -P = .0768; F=?I/R
6 X 10 -"; and (NA ) - = B j .pv I
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TABLE I

(NA ) 

-2	
R 	 o{ r	 oC^

1000 0001 .228487 .177975 x 1 -4
100 .001 .228487 .1776 x 10 -

10
5

.01

.02
.228487 .1739 x 10-4

-4.228485 .16976 x 10
-41 .1 .22848 .1368 x lg

.5 .2 .228474 .97 x 10-

.2 .5 .228474 -.3086 x 10-5

.1 1 .22842 -.2460 x 10-4

.01 1 .227665 -.0005188

.005 20 .22662 -.001248
0 0 .23056 -.0087454
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in collisional fluids and plasmas, reaction-diffusion
	 Y

instabilities arise because of an inhibition of dispersion by

a temporally competitive non-equilibrium process l . A use of

the Klimontovich formulation has predicted the recently observed

reaction distortions in unperturbed bursting nonequilibrium flow

at transition to turbulence 2 . The use of a reaction-diffusion

mechanism provides a good qualitative explanation of this

effect 3 as well as the soliton-like turbulent bursts found in

collisional shock fronts . Tn this paper, tae shall explore

the implications of this mechanism for the early condensation

of galactic matter.

First, Jeta reconsider the role c-:hick thermal fluctuations

might have played in the formation of galaxies. Classically,

one begins with a balance between the gravitational instability

and pressure oscillations for an inhomogeneity of mass M in a

universe of total initial chaos. The limits on the strengths
s

of the initial inhomogeneities are set by the observed degree of

isotropy in the microwave gackground. A critial mass i,s derived 5 . MJ,

whose evolution in time is summarized in Figure 1, from which

is derived a minimum undamped mass not in disagreement with

present observations. These same arguments can show that

the preferred galactic shape should be pancake rather than spherical

and can give a good qualitative relationship between the final

radius of a gafaxy, its total original mass, 	 -beginning)

and its total angular momentum.

When • total initial chaos is removed, the source;of instabilities

in the early cosmos become the same as that of any fluid of come•"•,•a.U1e

U `i
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thermodynamic parameters. Thus, the onset mechanisms are

determined by the natural evolution of appropriate local

scales and the development of natural Local instabilities

in the case of the collision dominated epoch. In this context,

therefore, natural thermal instabilities (rather than the

artificially imposed hierarchy derived post hoc) can generate

turbulence. Furthermore, if the front of the evolving cosmos

can be treated as a tangential discontinuity, then the recent

discoveries concerning the application of 0;r-Sommerfeld

techniques to transition at discontinuitijes with natural

instabilities can be appli.ed6.

' Consider turbulent eddies which are locally subsonic in the

radiation era.	 Their importance to the growth of turbulence

is determined by the local Reynolds number. 	 If we ignore magnetic

effects,	 this relationship between characteristic turbulent time

and critical Reynolds number is shown in Figure 2 for typical

cosmological values.' By . comparing these results with Figure 1,

we see that the onset of turbulence is delayed substantially beyond

the classically derived times; 	 the local Reynolds numbers are

.; too low.	 Thus,	 this new model predicts that galactic condensation

was much later than is usually thought, well into the matter-dominated ^t

era. r

Ne:{t consider turbulent eddies which are locally supersonic

K: in the matter-di nated era. 	 Since the turbulent intensity is

}.f still quite 'small,	 the onset mechanisms are still determined by

the techniques from, incompressible turbulent theory. 	 At

i transition,	 the energy of the turbulence is6ntirely contained in
r	 ^

r

*1

t
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the phase-coherent turbulent bursts, 	 lio^,:ever,	 sinco, 	t11r. universe

is continuing to expand, nonturbulent regions arohxpnrirnoing

Z	 onntinuous decrease in local Reynolds numboi , 	nn(I	 ai • r^	 thorefore

incroas,ingly unlikely to produce turbulent	 fluctuations

are amplified.	 This	 forces a reinterpretation of	 thr^ mr,"111ing

of a	 new M.,	 Niiz.,,	 it should represent a maxillAlin as well 	 as	 a

minimum on the typical galactic size, in accordance with observation.

However,	 the condensing turbulent bursts interact with the surrounding

sea of gases;	 these interactions produce, due to the naturally

probabilistic characteristics, a variety of inhomogenieties.

This variety,	 in turn,	 leads to the taxonomy of galaxies ranging

from the elliptical to the various spiral types to the irregular

shapes.	 Nonetheless,	 the frozen in feature of the spiral arms

isA resonable consequence of evolution with minimum surrounding

cea interaction and fixed initial turbulent parameters.
7t,/

-Sp_v-o_1::,,^.new consequences can be determined. 	 (1)	 The class

or spectrum of galaxies which evolved during the early epoch must

be complete.	 New galaxies will, 	 if they are produced	 result

fro+B ntirely different physical phenomena. 	 (2)	 If the pre-

sently observed galaxies all developed during the early epoch

at or near the critical Reynolds number, then an upper limit

3
on the "missing mass" of the universe can be calculated. 	 That

is,	 in this model given the size of a typical galaxy, 	 the total

mass of the universe is no linger a free parameter. 	 3J-S3-n C-(F-

these---cnset .-mechanisms . -imply a distortion of reaction processes,

t 4l substant.i&l differences in the , distribUti0h of nuclear .matter

must exist between galatic and intergalatic space. 	 Specific-
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quantitative predictions are being calculated and will bn reported

in a papor to follow,
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