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SUMMARY

This investigation is intended to improve the numerical practicality of a matched
asymptotic expansion approach for the computation of unsteady three-dimensional
airloads on a helicopter rotor. The original method as suggested by Van Holten has
previously been evaluated and proven to be a comprehensive and accurate analysis for
flight conditions conducive to linear flow phenomena. This effort to decrease the
computational requirements of the original analysis utilizes a discretized representation
of the doublet strength distribution and helical streamlines. The continuous variation of
the doublet strength has been approximated by piecewise constant or piecewise
quadratic distributions, and the helical trajectory of a fluid particle has been
approximated by connected straight line segments. As a direct result of these
simplified representations the computational time required for the execution of a
typical flight condition has been reduced by an order of magnitude with respect to the
requirements of the original analysis. Airloads which have been computed using the
discretized method for a two-bladed model rotor and a full-scale four-bladed rotor are
in close agreement with measured results and airloads from the original asymptotic
analysis. For conditions characterized by significant rotor/wake interaction the
piecewise constant representation requires a reduced azimuth spacing to maintain
acceptable accuracy.

INTRODUCTION

The problem of estimating airloads on helicopter rotor blades can be approached
by a variety of approximate methods. One such approach, put forward by Van Holten
(refs. 1-4), uses an acceleration potential description of the flow field and a matched
asymptotic expansion technique. Under the assumption of incompressible potential flow
the unsteady three-dimensional airloads on a rotor blade in forward flight are calculated
to a consistent order of approximation in terms of the aspect ratio.

A study has been conducted (ref. 5) to examine the theoretical basis and
computational feasibility of the method, and to evaluate its performance and range of
validity by numerical comparison with experiment and other approximate methods. The
study concluded that, within the restrictions of linear theory (i.e., small disturbances),
the Van Holten approach does lead to a valid description of the rotor flow field and a
systematic determination of the airloads on the rotor blade. It was also found for flight
conditions involving significant blade/wake interaction effects, the agreement between
computation and measurement is poorer than in other cases.

The analysis in Van Holten's approach leads to an integral equation for the blade
doublet strength distribution (eq. (8), ref. 5). This is solved using a collocation
technique, which consists of assuming the unknown function to be made up of a
combination of suitable spanwise modes and azimuthal harmonics, and satisfying the
integral equation at an equal number of points distributed over the rotor disk. The
result is a set of linear, simultaneous algebraic equations. However, setting up the
equation at any collocation point requires integration with respect to azimuth of the
individual assumed mode combinations. This numerical integration makes up the bulk of
the total computation required for the solution. Under conditions of low forward speed
and low inflow (when a larger azimuth range must be covered with a finer integration
step) and/or a larger number of blades, the computation time is significantly increased.
As an example, for a two-bladed rotor at an advance ratio of 0.3, the computer program



takes about 250 seconds to execute on a CDC 6400 computer. For other conditions, the
time would vary approximately in direct proportion to the number of blades and in
inverse proportion to the forward speed (advance ratio). In addition, when interaction
effects are judged to be significant (possible even at moderate to high forward speeds),
a smaller integration step will have to be used.

It would therefore be desirable to seek a simplified computational scheme for the
basic asymptotic approach that would lead to significantly lower computation time
without sacrificing any of the essential features of the asymptotic method. One
possibility is to consider the analogous situation in the vortex representation of rotor
wakes. In the vortex approach, the continuously varying bound circulation on the blade
generates a wake in the form of a helical vortex sheet of continuously distributed
trailing and shed vorticity. Calculation of the induced velocity due to such a wake
would require double integration over the wake surface, which can be time-consuming.
In practice, this problem is often overcome by assuming that the variation of the blade
bound circulation over the span and the azimuth takes place in discrete, finite steps.
This results in a wake of discrete trailing and shed vortex elements. Since the velocity
induced by a straight vortex element can be analytically expressed, the induced velocity
due to the entire wake can be written as a summation of analytical expressions
representing the contribution of individual trailing and shed vortex elements. This
results in considerable reduction of computational time over the exact numerical
integration.

It appears that a similar simplification could be achieved by approximating the
continuous variation of the doublet strength distribution in the asymptotic approach. It
is the purpose of the current study to develop a discretized representation for the
asymptotic method and compare its performance with the original computational
scheme and its results with measured data for the flight conditions considered in
reference 5. This report describes the details of the simplified scheme and discusses
the computational results. Detailed analytical expressions are presented as Appendices.

SYMBOLS

A aspect ratio

a coning angle

a.,b. blade flapping coefficients

B number of blades
b,c semi-chord and chord, repsectively
c. .,c2-,c.,- coefficient of piecewise quadratic representation (eq. (Al) )

d distance between fluid particle and collocation point

dn,d.,d~ coefficients of quadratic expression for d in terms of 9

d distance between fluid particle and point on the chord at the same
spanwise location

d Q,d i jd 2 coefficients of quadratic expression for d in terms of 0

F7,F-, terms appearing in the regular part of the near field solution (eq. (E 5) )



G.,G. ,G. harmonic coefficients in the Fourier expansion of e in terms of Y.
J Jn Jn (eq. ( E D ) b

g function representing the doublet strength distribution along the blade,
and the basic unknown in the problem

g. value of g at the beginning of the j span wise segment

I. i integral expression for the common part, Appendix B

L i integral expression for the far field, Appendix B

I. i integral expression for the near field, Appendix B

L total lift on one blade (eq. (E 10))

H lift per unit span, sectional lift, (eq. (E 7) )

M moment of lift distribtuion about the rotor hub (eq. (E 11))

m sectional pitching moment about quarter-chord, positive nose-down
(eq. (E 8) )

p perturbation pressure

R f t > R i root and tip radius of blade, respectively

R.,R coefficients of linear expression for r, in terms of 0 (eq. (B 2) )

r radial distance between fluid particle and collocation point

r, spanwise location of fluid particle

r, spanwise location of collocation point

rO' r l ' r2 coefficients of quadratic expression for r in terms of 0

r. midpoint of j spanwise segment

s blade spanwise coordinate

s. spanwise location of the beginning of the j spanwise segment

As- length of j spanwise segment

Uj local effective freestream speed

v. simple momentum induced velocity

w induced velocity component in the z direction
Aw incremental contribution to w

X'y'Z I rotor coordinate systems (fig. 1)

V Vzb )

- 12 2, V x + y



x chordwise location of center of pressure (eq. (E 9))

X.,X coefficients of linear expression for x, in terms of 6 (eq. (B 2))

Y-,Y coefficients of linear expression for y. in terms of 8 (eq. (B 2))

Y blade inertia coefficient for flapping (Lock number)

e linear blade twist, root pitch angle-tip pitch angle

6 azimuth position with respect to reference blade, (Y, - Y. )

9 collective pitch angle at blade root

X nondimensional rotor inflow, ya + v.

u nondimensional rotor forward speed

£ R0'R1
p air density

()), n. plane elliptic coordinates

X meridional angle in cylindrical coordinates

Y. azimuth position with respect to downwind reference line

Y. azimuth position of collocation point

A Y. azimuth separation of j blade from reference blade

fi rotor angular velocity

DISCRETIZED ASYMPTOTIC REPRESENTATION

The essential features of the asymptotic approach are retained in the discretized
representation, i.e., the blade pressure field is obtained in composite form as the sum of
far field, near field and common part expressions in such a way that the composite field
reduces to the near and far field solutions in the near and far field regions, respectively.
In view of the approximations being considered, it is not known if it would be consistent
to retain the terms of O(1/A ) that are present in Van Holten's analysis (ref. 1). For the
sake of simplicity in computation these terms are dropped in the present study,so that
the discretized representation is of O(1/A), comparable to standard lifting-line
formulations.

The approximations to be introduced are:
(1) The continuous variation of the unknown blade doublet strength distribution

over the range of blade span and azimuth is replaced by simple, piece wise continuous
functions over suitable subintervals of span and azimuth.

(2) The helical trajectory of a freestream fluid particle relative to the blade is
replaced by a series of connected straight line segments.
Over the azimuth, the doublet strength variation is assumed to be piecewise constant,
i.e., its value is constant over each subinterval of azimuth. Over the span, it is
approximated by a piecewise constant or a piecewise quadratic variation, the latter
providing a more accurate spanwise representation at the cost of more complicated
algebra. Appendix A describes the manner in which these representations are



formulated, while typical representations are illustrated in figures 2(a) and 2(b).
The basic problem is the calculation of the vertical velocity induced on the blade

by its pressure field, as given by the relation

o- f

The rotor coordinate systems are shown in figure 1 and ¥. is the azimuth position of
the reference blade. The blade pressure field is written in composite form as

p = p, + p - pv Kfar *near ^common

By appropriate construction and matching (ref. 1), all three components can be
expressed in terms of the doublet strength distribution along the lifting line.

In Van Holten's analysis, the far pressure field is the field of a dipole line along
the quarter-chord location and is expressed as a series of associated Legendre functions
in terms of prolate spheroidal coordinates. The near pressure field is the local two-
dimensional field of the section and is expressed in plane elliptic coordinates. The
common part corresponds to the behavior of the far field solution in the near field or,
equivalently, that of the near field solution in the far field. With the form of the
pressure field established, the induced velocity is calculated by numerical integration of
the composite pressure gradient, for which purpose the above expressions are
convenient. In fact, one of the merits of Van Holten's approach is that the composite
pressure field is given by a direct expression free of integrals, so that the induced
velocity calculation requires only one numerical integration.

However, these expressions are not convenient for the purpose of applying the
proposed approximations. To O(1/A), the far field is the field of a dipole line along the
blade midchord location, and can be written as the spanwise integral of a distribution of
three-dimensional doublets. If the approximations described above are introduced, it is
found that the calculation of the induced velocity due to the far field reduces to a
double summation (over spanwise and azimuthal segments) of fairly simple integrals
that can be analytically evaluated. Likewise, the near field is written as the integral,
over the chord, of a two-dimensional doublet distribution, of strength proportional to
the surface pressure differential. The chord is divided into a suitable number of
segments over each of which the pressure differential is assumed constant, at its
average value on that segment. With this simplification, the induced velocity due to the
near field also becomes a double summation (over chordwise and azimuthal segments) of
analytical expressions. The contribution of the common part, which is the field of a
single two-dimensional dipole, presents no problems. The complete details of the
various steps pertaining to the above calculations are presented in Appendices B and C.
Appendix B describes the result of approximating the trajectory and also presents a list
of integral expressions to be used for the induced velocity calculation. Appendix C
derives the summation expressions for the induced velocity due to the far field, common
part, and near field, for both the piecewise constant and the piecewise quadratic
representation of the doublet strength variation along the span. Appendix C also
demonstrates that the expressions derived for the far field and the common part
correctly cancel in the vicinity of the blade, thus verifying their asymptotic character.

In summary, the effect of the discretized representation on the problem is to
reduce the induced velocity integration of equation (1) to a summation of analytical



expressions. The normal velocity boundary condition is then applied by setting this
induced velocity equal to the normal velocity on the blade surface due to blade motion.
The form of this equation is given in Appendix E (eq. (E 2)). The unknowns to be solved
for are the discrete values of the doublet strength at the spanwise segment midpoints,
at discrete azimuth locations. However, for final presentation as output, the discrete
variation with azimuth would have to be fitted by an interpolation curve. This is
accomplished by substituting into equation (E 2), for the azimuth variation of each
midpoint value, a harmonic interpolation formula given by (E 3). It must be noted that
this does not imply a continuous azimuthal variation in the induced velocity calculation,
since the doublet strength is still held constant over each azimuth segment. The
advantage of the substitution is that the interpolation coefficients are obtained directly
and available for calculation of output data at desired azimuth locations. Expressions
for the various quantities calculated for presentation as output are given in Appendix E.

Examination of equation (E 2) shows that the near field induced velocity contains
a contribution from the regular solution, proportional to the blade motion parameters.
If these parameters are considered known, this contribution should be taken together
with the blade normal velocity term. However, if any or all of the blade motion
parameters (collective pitch, coning angle, cyclic pitch coefficients) are considered
unknown, additional equations must be generated to solve for them. This can be done by
using the following conditions:

(1) Azimuth average of the total lift due to all blades should equal the known
rotor thrust.

(2) Flapping moment equilibrium should exist about the rotor hub.
If only first harmonic flapping is considered, the second condition yields three equations
(zeroth harmonic, first harmonic cosine and first harmonic sine components). These
additional equations are also listed in Appendix E, for the piecewise constant and
piecewise quadratic representations.

DISCUSSION OF RESULTS

The discretized representations which have been incorporated in the analysis have
been numerically evaluated to ascertain their potential accuracy. All analytical details
of this evaluation are presented in Appendix D. Figure 2 illustrates the piecewise
constant and quadratic representations of the spanwise distribution of doublet strength
for a typical condition.

For the near field chordwise approximation, an airfoil with a steady two-
dimensional pressure distribution is considered. The induced vleocity of a fluid particle
travelling parallel to the chord is calculated for various vertical distances from the
airfoil. The calculation is performed using both the exact solution and the
approximation. The results are tabulated in Appendix D (table Dl) and plotted in figure
3. It can be seen that the approximations with three segments and five segments
across the chord are acceptably close to the exact solution, even at very small vertical
distances. This simple example shows that, as far as the induced velocity calculation is
concerned, even a relatively crude representation of the surface pressure distribution is
sufficient.

For the spanwise approximations of the far field solution, a finite wing is
considered with a spanwise distribution of a form which is typical of a rotor blade
distribution. The induced velocity due to this distribution is calculated for a fluid
particle travelling parallel to the chord, at various spanwise locations and vertical
distances. The calculation is performed using the exact solution as well as the
piecewise constant and piecewise quadratic approximations with three and five



spanwise segments. The results are tabulated in Appendix D (tables D2 and D3) and
plotted in figure 4. With the three segment model, it can be seen that both
approximations deviate from the exact solution when close to the wing, the deviations
being more marked near the loaded tip and generally greater for the piecewise constant
representation. With five segments, the piecewise quadratic representation is nearly
identical to the exact solution while the piecewise constant results still show significant
deviation very close to the wing. It may be noted that the exact and approximate
results tend to merge with increasing distance from the wing, as is to be expected. It
may also be noted that the results for different spanwise locations tend to merge with
increasing vertical distance.

Airload computations have been carried out for the same experimental cases
considered in reference 5, viz, (1) a two-bladed teetering model rotor at forward
speed/tip speed ratios (y ) of 0.08, 0.15, 0.29 (ref. 6), (2) a four-bladed articulated full-
scale rotor tested in flight, at y =0.06, 0.13, 0.29 (ref. 7), and (3) the same four-bladed
rotor tested in a wind tunnel at y = 0.29, 0.39, 0.45 (ref. 8). The geometric and flight
conditions are listed in table 1, which is reproduced from reference 5. The measured
results are compared with computations using the piecewise constant (p.c.) and
piecewise quadratic (p.q.) representations, as well as Van Holten's computational
scheme. Before proceeding with a discussion of these comparisons, some comments
regarding the computations are in order. In the original scheme, the numerical
integration is carried out with a 5-point Gauss-Chebyschev rule over a suitable
subinterval of azimuth, to be properly chosen for accurate computation. In the
discretized representation, there is no numerical integration but a choice has to be
made with regard to a suitable azimuth subinterval over which the trajectory is
straightened. In both cases, the smaller the azimuth subinterval chosen, the more exact
are the computations. In order to keep the computation economical and at the same
time achieve some of the accuracy of small azimuth spacing, the procedure adopted is
to use a "normal" spacing whenever the fluid particle is not close to the blade and a
"reduced" spacing whenever it is close to a blade. Reference to figure 1 shows that the
trajectory locations at which the fluid particle is directly over a blade are
characterized by x. = 0. For each collocation point (r, , Y, ) these azimuth positions
are determined in advance using equation (B 1). Durir?g tne azimuth integration (or
summation), a reduced spacing is used in the vicinity of these locations. In the
computations carried out here (unless otherwise mentioned) the normal and reduced
azimuth intervals used were 15 and 5° for the Van Holten scheme and 30 and 10 for
the discretized representation. Although results of computing with the original scheme
were reported in reference 5, these results were recomputed for the present study using
normal and reduced spacing as above, and with spanwise collocation points at
r/R. = 0.30, 0.55, 0.75, 0.85, 0.95. Due to these changes, some differences will be noted
between the curves presented here and the corresponding ones in reference 5, but the
differences are generally small with one exception which will be pointed out later on.
For the discretized representation five spanwise segments were used, with end points at
r/R, = Rn/R., 0.5, 0.7, 0.8, 0.9, 1.0, and five chordwise segments with end points at
x/b = - l.T), -0.9, - 0.6, 0.0, 0.5, 1.0.

Results for the variation of total blade lift as a function of azimuth position for
Case 1 are shown in figure 5. It can be seen that for all three forward speeds, the
results of the discretized representation are quite close to the original scheme, with the
p.q. representation being generally a little closer than the p.c. representation.

For Case 2, the results are illustrated in figure 6 and, as may be anticipated from
the computations reported in reference 5, there is greater variation here, mainly for
y= 0.13 and y = 0.29. At y = 0.13, the original scheme results in a considerably wavy
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distribution which is not seen in the results of the discretized scheme, especially with
the p.q. representation which remains close to the measured curve except near the
advancing blade position. At u - 0.29, there is once again a deviation near the
advancing blade position, with the p.c. results being particularly bad in this region. The
p.q. results are generally close to the original ones. However, both results from the
discretized scheme tend to overestimate the lift in the disk trailing edge region (around
Y = 0°).

The results for Case 3 are presented in figure 7. It was observed in reference 5
that the original results showed a tendency to overestimate the lift near the downwind
azimuth position and correspondingly underestimate it near the upwind position. This
tendency is also present in the results from the discretized representations. This may
be due to the increasingly important effect of radial flow (along the blade span) in these
regions at moderate to high forward speeds. The influence of radial flow is primarily on
the spanwise development of the blade boundary layer, increasing with forward speed,
and must be accounted for empirically. Otherwise, the p.q. results are acceptable and
show the same trend as the measured curves. However, the p.c. results show
particularly significant deviations for u = 0.29 and u = 0.39, near the advancing blade
position and in the disk trailing edge region. It was noted earlier that the changes made
in the original scheme produced only small variations with one exception. This
exception is u = 0.39 of Case 3. Comparison of figure 19 of reference 5 with figure 7(b)
of the present study reveals that the latter variation is much better, particularly in the
absence of the large peak near the disk trailing edge that is present in the former. This
difference is surprising, at first glance, because the changes made do not seem that
important. Apart from using a constant azimuth spacing, the original version of the
computational scheme also used spanwise collocation points at r/R. = 0.40, 0.55, 0.75,
0.85, 0.95, differing from the present version only in the innermost point. Both
programs use the zero lift condition instead of the normal velocity boundary condition
at a collocation point whenever the local effective freestream speed UT< 0.1.
However, if r/R. = 0.4 is used, there is a collocation point near the retreating blade
position that has \J~ - 0.105, which is small yet large enough to escape the zero lift
condition. It is apparently this particular point that is the source of the trouble, for
when it is replaced by another collocation point with U~> 0.2, the resulting distribution
is quite regular (like figure 7(b) of the present study). This situation does point out the
need to use care in the choice of collocation points (avoiding those points with small
positive values of UT) and use of close azimuth spacing in those cases where
interference effects are significant.

Spanwise distributions of sectional lift, at various azimuth positions, are plotted in
figure 8 for u = 0.29 of Case 1, and in figure 9 for U = 0.29 of Case 2. General
comments on these curves are much the same as those made for the original scheme in
reference 5. Agreement is acceptable as long as the measured curves do not show any
sharp variations, as in the case of close interaction with a tip vortex. When sharp
variations do occur, they are not evident in the computed curves. There is also general
deviation from the measured curves in the tip region. In addition, the falloff to zero at
the tip is better with the piecewise quadratic represenation, presumably because it
provides a better approximation to the actual curve than the piecewise constant
representation.

In discussing the total lift variations it was noticed that the p.c. representation
led to particularly significant deviations for three flight conditions , viz, u = 0.29 of
Case 2, y = 0.29 and u = 0.39 of Case 3. To test the possibility of improvement with
smaller azimuth spacing, these three cases were computed again with a constant



azimuth subinterval of 5 and the results are shown plotted in figures 10 to 12. It can
be seen that there is considerable improvement in the results for the p.c.
representation, while the p.q. results are only slightly changed. This is a clear
indication that, for flight conditions involving significant interaction effects, the results
from the p.c. representation are sensitive to the azimuth spacing used and should be
calculated with a small spacing.

Since the primary objective of this investigation is to improve the numerical
practicality of the original asymptotic execution time requirements, it is essential that
these requirements be examined. Table 2 presents results suitable for comparison of
the different representations for two typical rotor configurations. In addition to the
original continuous representation suggested by Van Holten and the piecewise constant
and quadratic representations of this study, there is also presented data for the
segmented lifting line model with a discrete vortex wake. This was the only linear
method considered in reference 5 which provided airloads of an accuracy which could be
compared with the asymptotic method. It can be observed from table 2 that the
piecewise constant representation reduces the execution time requirement of the
original continuous representation by a factor of seven. A reduction to almost one fif th
is attained for the piecewise quadratic simulation. As indicated in the table, these
figures are based on computational azimuth intervals of 30° normal and 10° reduced
spacing. In cases where much shorter intervals are required for the piecewise constant
representation the computational requirements are proportionately increased as
illustrated in Table 2. It should be noted that the computational efficiency of the
piecewise constant representation is equivalent to the less comprehensive segmented
lifting line with a discrete vortex wake when the azimuth intervals are the same.

TABLE 2. - COMPARATIVE COMPUTER EXECUTION
TIMES FOR TYPICAL CONDITIONS

Computational
azimuth intervals,

normal/reduced

Method of
analysis

CDC 6400
execution time,

sec

Case 1 u = 0.29

15°/5°

30°/10°

Original continuous

Discrete vortex wake
Piecewise constant
Piecewise quadratic

231

30
33
49

Case 2 u = 0.29

15°/5°

30°/10°

5°/5°

Original continuous

Discrete vortex wake
Piecewise constant
Piecewise quadratic

Discrete vortex wake
Piecewise constant
Piecewise quadratic

467

60
65

100

265
265
415

10



CONCLUDING REMARKS

The asymptotic approach developed by Van Holten is a suitable method for rotor
airload calculation, within the scope of linear theory. However, in spite of the fact that
only a single numerical integration is required to calculate the induced velocity,
significant computation times may be required under certain conditions. It is possible
to reduce the computation time by making two approximations, viz, replacing the
continuous variation of the doublet strength distribtuion along the blade span by a
piecewise continuous variation, and replacing the continuous helical trajectory of a fluid
particle by a succession of connected straight line segments.

In the present study, such a discretized representation has been developed for the
asymptotic method, using either a piecewise constant or piecewise quadratic variation
of the doublet strength along the span. Computations have been carried out for the
case of a two-bladed, teetering model rotor and a four-bladed, articulated full-scale
rotor, and the results compared with both measurement and the original computational
scheme. In general, when interaction effects are not significant, the simplified scheme
agrees well with the original results, with the piecewise quadratic representation being
slightly better. When interaction effects are significant, the piecewise constant scheme
yields poor results but is found to improve upon using smaller azimuth spacing, while the
piecewise quadratic scheme continues to compare well with the original results.
Computationally, the discretized representation shows considerable improvement over
the original scheme; under conditions where interaction effects are not significant, the
piecewise constant scheme requires only about one-seventh and the piecewise quadratic
scheme about one-fifth of the computation time required for the original scheme.

11



APPENDIX A

PIECEWISE CONTINUOUS REPRESENTATIONS

The continuous variation of the dipole strength function, g, over the blade span is
approximated by dividing the span into 3 segments and replacing the actual curve by a
series of simpler curves, continuous over each segment but discontinuous at the segment
boundaries. The points marking the spanwise division are labeled s., j = 1,2,. . .(3+1)
with s. being the root and s, . the tip of the blade. Points r., j = 1,2. . . .3 denote
the midpoints of the segments, where the boundary condition of normal velocity is
applied. The length of a segment is As-, j = 1,2. . . 3 and this is allowed to vary along
the span, generally being chosen smaller near the tip to achieve a better representation
of the rapid variation of blade loading.

The simplest representation is a constant value over each segment and this is
shown in figure 2. The spanwise variation can be represented much better with a
second-degree curve over each segment as illustrated in figure 2. However, setting up
such a piecewise quadratic representation involves more complicated algebra, the
details of which are given below.

The quadratic curve is constructed to satisfy the following requirements: (1) at
the midpoint, r., it must have the actual functional value, g(r.), (2) at its end points, s.
and s. ., it must equal the values on the adjacent segments, (31 at its end points, it must
also equal the slopes of the adjacent segments. It must be noted that, for the segments
at the ends of the blade, the curve is allowed to go to zero at the root and the tip,
without any constraint on the slope at these points. Since each curve requires 3
constants for its definition, a total of 3 3 constants must be determined from the
available conditions, which are listed below.

Number of equations for midpoint values = 3

Number of equations for end point values = 3+1
(including zero values at root and tip)

Number of equations for end point slopes = 3-1
(excluding root and tip)

This "adds up to a total of 3 3 equations, so that it is possible to set up a piecewise
quadratic approximation which is completely determinate.

The curves will have to be determined in terms of the midpoint values and
segment locations. To begin with, the slope conditions are ignored and the end point
values assumed known. If C,., C^-i C,. denote the constants for the j curve, the
conditions to be satisfied are * * *

C + C <; 4. P <! - CT\«^ • • T \** *\ • O • T V^") * O • — fL •

lj 2J J 3j j &j
2

C.. + C_. r. + CQ. r. = e(r.)lj i\ } Jj j ° j

Clj + C2j s j+l + C3jVl = gj+l

which can be solved to give

12



,. = 2 [risj gM

V ( A l )

c3j =

Now the slope conditions can be used to climate the end point values g.,
j = 1,2. . . (3+1). At any end point, say s. ,, the equality of slopes leads to '

C,. + 2 Cv s. . = C, . . + 2 C, . . s. ,2j 3j j+1 2,j+l 3,j+l j+1

which, on substitution, becomes

.)g. + 3(l/As. + l /As j + 1)g j + 1 * d/As j+1)g j+2 = *[g(r.)/As.

for j = 1,2. . . (3-1) (A 2)

This tridiagonal system of (3-1) equations can be solved by the following recursive
scheme, which consists basically of the forward elimination and back substitution of the
Gaussian elimination method.

2 =

Y2
 =

l/As2)

1)Ms1 + g(r2)/As2]

(j = 3,4. . . ,3-1)

(A3)

gj = Yj - (j = 3-1,3-2. . .2)

13



This determines the (J-l) end point values in terms of the J midpoint values, so that the
quadratic components C.., C--, C.,. are completely defined. Within a segment, the
f i m/^-firni /~ar* Ho ii/i-i-H-on ac^ ' 'function can be written as

g = GI. + C2j s + C3j s2

-2(s-s.)(s-s j + 1)g(r.)] /As^ (A*)

Calculation of the total blade lift and the moment about the hub requires the
spanwise integral of g and its moment about the hub. These integrals are given below.

Piecewise constant representation:

r 'I g(s) ds = X!
J j=l

> AS.

f
J
S

Piecewise quadratic representation:

(A 5)
1 J

g(s) s ds = X! g(r;) r;A s.

1 3
g(s)ds = E

(A 6)
-.

f g(s)sds = ELs.g. + sj+1gj+1 + *r.g(r.)jAs. / 6



APPENDIX B

TRAJECTORY APPROXIMATION AND
LIST OF INTEGRALS

The helical trajectory of a freestream fluid particle, ending at a collocation point
(r, /R., Y, ) on a reference blade, relative to the axes fixed to the j blade, is given
by ?he lollowing equations.

VR1 = (rbc

yfa/R1 = X0

rb/Rl = (rbc

u 0 s i n ( 0

cos (0 + A40 + y0 cos (0

AY.)

+ A Y.) ,

(Bl)

where 0 = (Y. - ¥. ) is the azimuth relative to the reference blade position and AY- is
the azimuth separation of the j blade from the first (reference) blade. For uniformly
separated blades,

AY. = 2 i r ( j - l ) / B

The approximation used here divides the continuous helical trajectory into a
succession of straight-line segments, each connecting the initial and final points of the
helical path over a subinterval of azimuth. The coordinates of each of these trajectory
segments can be written as

Xb/Rl = Xi + Xs 6

VR1 = Yi + Ys 6

rb/Rl = Ri Rs 6

> (B2)

If 0. and ©2 are the ends of the azimuth interval, the intercepts and slopes are given by

R,Xi = (xbl - RlXs l

Xs = ( x b 2 - x b l ) / R l ( 0 2 - 6 l )

Y. = 0

Ys = ^

Ri = ( r b l - R l R s 6 l ) / R l

Rs = (rb2 - rbl> ' Rl(62 *

(B3)

15



The integrals along the fluid particle trajectories which appear in Appendix C contain
the following expressions which are written in terms of the straight-line notation as

r2 = xb+ ^b = (ro + 2 r l 6 + r202)R2

where
r = Xo i

r, = X. X1 i s

Letting u = (s - r, )

2 2
s * Ys

d2 = r2 + u2 = (d -i- 2d,6 + d~62) R?o 1 i. 1

where - -
d = X^ + (s - R.)0 i i

d, = X. X - ( s -R. ) R
1 I S I S

d7 = X2 + X2 + R2

<b O O

dn = ( x - x b ) 2 + *t = ( d no + 2dnl0 + dn2 ̂  Rl

where

dn0 = (x - Xj)
2

dnl = - (x - X£) Xs

dn2 = Xs2 + Ys2

The primary advantage which has been achieved by introduction of the straight-
line segment approximation for the particle trajectories is evident in the above
"distance" expressions. It can be noted that they are all quadratic expressions in 9. As
a direct result the integrals of the pressure gradient which are described in Appendix C
can be analytically evaluated. These . integral expressions are listed below as
determined from reference 9. The symbolic parameter, t, is defined as

t = d + d9 +

16



Far field integrals;

T f _ f d6 Hn tli ~- J ~d -- âr

ede
d

- f d e f de
-J d(d - u) ~J dTdT

Jx7T|

~n)

(t + (R d-uYcD}
/ § £

| IV I

; t - (R.d - u

f f
yb = y0

e d e
d(d - u) "

xe

e d e
u)

','-',-3']
i f - i f
16 - 15 xe

'7
f »'»'

" 3 > - o
y -»• 07

tr2r

W ^v
XiX " «dr2
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v°
2R s(Ad+

tdVcT dr

A I i
XI3 - rl !7

r e de f 9 2 d i
~ J d(d - u) " J "dTciT

10 d(d

e + r_d_e_
-u)2 J d(d + u)2

r2tX.2

t(2u + r

11

9

d(d

d9 + C 9d 9

-u)2 + J d ( d + u )

= - (2d/r I3
f)
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, t . r_e^ . r _£L^
1 J d(d-ur J did* u)'

2(s - R.) I3

- r,

i C e3de f
13 = I .(. x2 + /^ d(d - u) >/

9 3 d9
./ . xd(d + u)

2(s - R)

r ede
~ J d(d + u)

£n[2d,t (d + u)] in t

2r,
tan

"{ f̂

19



f . f efd
5 ~ J dTdT

e_
u)

2-X.2(Xs
2 - Ys

2) _j ft - (Rsd - uVap]
6 + —-—i v ,—i tan < 1 „ -i—i 1

Rs) Rs + r2(s - R.)J

R ) in t

)} M-
' J r2

- + I -4i-u / d+u

= 2I/ + (s - R.) I/ - Rs I/

f f e d e T=J d^r + J
e_d_e
d+u

(s - R.) I - Rs

= 6 in(d + u) + R - X

20



Some of the above integrals are not valid for the trajectory segment which ends at
the collocation point for which X. = 0. For this circumstance the following integrals are
used.

-'•/*[¥] x. = o

t Xs
2 „ 2

* "« - !

R (s - R.)
d 1

| S - R : I

X. = 0

(s - R.) R. Jin X 2 - Y 2

-1-V[-
(d - 2(s - R.)

v?:

'21
X. = 0

r/e|s-R.|

21



Common part integrals

22

C -~ /
r

IXTA] tan"

fde= J 4

= (rt + r26 + r2 r2 1^) / 2X.2 X2 r2

c _ red'
3 = J r*

j v- i*0d9
13

- (1 + 21-j r2 I2
C) / 2r2 r

2

fe^de
= J S

(r0 r
2 I2

C - 6) / r2 r
2

-f
e3de

= (An r - r1 1^ - rQ r2 l£ - T2



6 - r

= (63 - 3ro r
2 I^c - 4rj r2 I/) / ^ r2

For the special case where X. = 0

= 0

I C

X. = 0

X. = 0

X. = 0

= - l / 3 r 263

2r 202

= - i / r 2 e

I6
C | = 6 / r 2

6 'x. = 0 2

Near field integrals;

d9
d 2

n

—rr— i tan"

23



ede

e2de

93d9'

n

= <e - 2 2dn2



APPENDIX C

INTEGRATION OF PRESSURE FIELD

The composite pressure field of the blade, to O(1/A), can be written from
equations (6) and (7) of reference 5 as

9 9
/~» D I r*»*"D *" I I *-'i o*"D

P 36 tv . L P i 6 t v . | J L p i i t v
[ P.. 1 |~n r\ • "I rrdip (1 - Q R sin y

0 2 D 2 + 2A n2D2 r/R. * 'p ft R, J L o ft R i 1 J L

1)F3)e-Tlsin<|,J

sin &
"I" _A,2 cos

^S0 (F2 * (rb/R

for points within the blade span, and for points outside the span

pft R!

The corresponding sectional lift is

£L_ _ PdiP (c D
2 -p — 99 ^^ 'T-* ^ _ £*t-\ £•

p f t 2 R j " A L p n 2 R 2
(C2)

The integration of the far field, common part and near field terms (bracketed
separately on the right hand side_ of equation (C 1) above) will be discussed for the
piecewise constant and piecewise quadratic schemes.

Far Field

To O(l/A), this is the field of a dipole line located along the blade midchord and
can be expressed as the integral of point dipoles distributed along the line.

1
 a dfc/Rj)

f ~^T3 3
J p JTR^ (d/R^

•-^w / (C3)

2 2 2 2where d = x. + y, + (s - r.) . Using integration by parts, this can also be written as
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"dip (1-0 (yb /Rl>
2 2 f -2.J 3s

(s -

n Rl

provided g goes to zero at the root and tip. The azimuth variation of g is approximated
by a piecewise constant variation over each sub-interval of azimuth, while the spanwise
variation is represented by a piecewise constant or a piecewise quadratic variation, as
discussed in Appendix A.

Piecewise constant representation. -

<VRi>
'far

d(s/Rj)

(r/R,) 2 s=s.
J

The function g. which varies with azimuth will have a constant value over the i
azimuth subinterval that will be denoted by g... The velocity induced by the far field is
given by '

e.
wfar = (1 -£) y r „ f

'J J (r2d)/R

s.

s.
(C5)

where u = s - r, . The integration will be easier if the derivative can be taken out of the
integral and this is done as,

wfar
flR,

( 1 - E )

2 2 2 2
where now d = x, + (y, - y ) + u . Noting that

de
s.

s.

i
- u) " d(d

i _ i
+ u)J

26



the integration can now be evaluated using the integrals listed in Appendix B with
y , / R . = X0 > where X is the inflow ratio.

6:

I*' i+1 (r
b - yj u/Ri

d)

6;

6-.i+l

Carrying out the differentiation and letting y -»• 0, the induced velocity is obtained as

. E E

where, for i ^ 1,

(C6)

p.c.
If + X IfJ^ + X V

6:

6 .

s.

s.

Here, the azimuth index i is set up so that 0j = 0 is the collocation point on the blade
and the trajectory ranges over - °° <6 <0. For i = 1, the trajectory segment has one end
on the blade and the unit induced velocity is expressed as

( A w far>. .

p.c.

ij

(1 - £) Tf
4 A 21

6

0

s.

s.

Piecewise quadratic representation. - For this case, it is more convenient to
express the field of the dipole line in its second form (eq. (C 4)). Using the
representation of Appendix A as

'far (1 - ,/R,
s.r Uds/R

27



'far (1 -£)

pn Rl

'3j

The induced velocity can then be written as

wfar
flR, -

(C2j + C3 j R i + C3js/R] de

( c R ) - de

i+l

s.

(C7)

It may be noted that

f (yhd/r2) = (x2 - y5 d/r^ + y2 / r
2d

yb
2 d+u d-u ./ , \ ... vd(d + u) d(d - u)

Using this relation, and consulting the integrals listed in Appendix B, the induced
velocity can be expressed as

8i(rj>
(C8)
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where g-(r.) is the midpoint
interval, in terms of the qu

value of the j spanwise segment within the i azimuth
quadratic coefficients, equation (C 7) can be written for i

as

_i_ r* D J. /"•
= + C3j Ri + C3j

- X (C3j Rs). - A 2 l [ 3 ) / 2

6:

0.

s.

sj
and f or i = 1 as

far C3js/R1)1

<c3j

s.

s.

The quadratic coefficients can be expressed in terms of the midpoint and end point
values. In turn, the end point values can be expressed in terms of the midpoint values,
as shown in Appendix A, to obtain a final expression for the unit induced velocity of
equation (C 8). The expression is lengthy and will not be reproduced here.

Common Part

The common part is the pressure field to which the far field tends at points very
close to the dipole line, when it behaves essentially as a two-dimensional dipole
corresponding to the doublet strength at that spanwise location.

common _ _ (1-3
"

yb/R

pfi2R2
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The induced velocity due to the common part is calculated as

w r /P \common / 3 / common\ .« (/•>ion _ I
ftR, I 3(yK/Ri) V ^ o ^ D 2 /1 J b 1 v p ft R, /

oo

Piece wise constant representation. - Noting that

3 , , 2x ,2 2v /
/r ) = (x, - y,) /r3yb

 7b" ' - "b 'b

equation (C 9) becomes

9
wcommon _ (1 - Q ^ „ I V2 f d_0

O D "~ ~ "7 Aab Ix * ^ /V

^ i * ( X 2 - X 2 )
(r/R,)

The index j represents the spanwise segment within which the i trajectory segment
lies; in general, the trajectory segment may range over more than one spanwise
segment, in which case the azimuth interval must be subdivided so that each of the
subintervals lies entirely within one spanwise segment.

common v"* / . . \ " ' /_
« (C

where, from Appendix B,

e.
' ' 2

(Aw ) = - ^^ X. £ + 2X. X I? + (Xcommon . 2A L J 2 i s 3 s ei*i

Piecewise quadratic representation. - The spanwise variation of g is given by
equation (A 4) of Appendix A. The induced velocity is given by
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w

R s(2R.-r rs j + 1)C2 + Rs
2C3} + ̂  {(R. - s.) (R. - r.)

Rs(2Ri - r - s} C 2 +

where

ci =

c2 = (x2-

(X 2 -

Both g.. and g. . . can be expressed in terms of the midpoint values, and the induced
velocity can be^inally written as

wcommon
<C H>

Near Field

The near field is a distribution of two-dimensional dipoles along the chord, of
intensity proportional to the surface pressure differential.

near

- x

_ _ _

p fl2R2 " 7rRl -1 (x -
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where b is the semi-chord.
To make analytical integration possible, the chord is divided into K segments and

the factors Vl-x/l+x and YT-x are replaced by an average value over each segment.
The chordwise integration can then be carried out, resulting in

near ( 5 A x - x b ) / R l

2A l

where f, 2 2
p JTRJ

- sin k+1

(t>/2 - (si
A x,

Piecewise constant representation. -

wnear r'near

p«
2 2 d6

_
fik rV2 A R x - x ^ -xse

"X
d e (c 12)
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Here, the factor C^? + ^rb^RP F3 ^ls ta'<en to ^e a constant for each azimuth interval
i. Using the integra/s listed in Appendix A, the induced velocity can be written as

(C13)

where

i+1 k

"

p.c.

<'»near> 2A' * [• 2 +

6:

a

F_ and F^ contain terms proportional to blade motion, namely, 6 , a , a., b. and the
twist e . o o

Piecewise quadratic representation. - Here, the quadratic expression for the
variation of g over a spanwise segment is used and the induced velocity becomes

wnear
fl R, = E E

2a,

i k TT A s.

+ R s
2 n 2 } + g.>j+1 { (R. - s.) (R. - r.)

where

R ( 2 R - r - s ) n

S
( 2 R i - r j - s j ) n l + Rs"

"o + Rs(2Ri - sj -

i k TT A s.
<rb/Ri)F3]..
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e.

e.i+l

n, -V3]

i '3 -
e.

e.i+l

As before, the induced velocity expression can be symbolically written as

wnear IT \ P«Q-"II I \ K M

ar) jk J (C

Limiting Behavior

The behavior of the expressions for the far field and the common part, in the
vicinity of the lifting line, will be studied for both piecewise representations.

Piecewise constant representation. - It is sufficient to look at the expressions
used for the trajectory segment immediately adjacent to the collocation point on the
blade, viz, the segment with i = 1. Let the collocation point be located at the center of
spanwise segment m. The unit induced velocity for the far field can be written out in
full as below, for i = 1 (see eq. (C 6) ).

( A w fa r>lar
p.c. (1-0

s.

s.

As 6^0, ljf- - R.
Kl l

4- -R .

indicating that the first term in the expansion for d will give rise to a singular term,
which can be separated out.



Lim
6 + 0

[ J p.c. "I

£ ( A W fa r> «lij=l far Ij l j-l sing

(1-
7 7

5 D
R " iRl *

_
2A "2 e 8i m

since R- = r . Similarly, by looking at the behavior of the common part expression for
i = 1, it is found that (see eq. (C 10))

fc™0
( ^common*'

p.c.
g.5lm

since X. - 0. It can be seen that the two terms cancel each other exactly.
Piecewise quadratic representation. - In a manner similar to that above, the

singular part of the far field expression (eq. (C 8)) can be separated out.

Lim ^) 1
t"Vi=Jsing

?
j

(C2j + C3j R. + C3j

- R

-S- R

5 - -R. r

s.

s.

Now, C2j = g'(r.) -2(r j /R1)C3 j
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Using, this relation and carrying out the summation with j, it can be shown that the
above limiting expression simplifies to

Lim
6 -»• 0

far) 1

iJsing

(1-0

The limiting value for the common part (eg. (C 11)) can be shown to be

[ /w \ 1
A Lccgnmon)

\ "Kj / i=1J
Lim
6 •* 0

2A

Since

m

it can be seen that the singularities in the far field and common part cancel exactly.
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APPENDIX D

EVALUATION OF CHORDWISE AND SPANWISE
APPROXIMATIONS

To facilitate the analytical integration of the pressure field in calculating the
velocity induced on the blade, approximations are used for chordwise and spanwise
variations, as outlined in Appendices A and C. This Appendix attempts to evaluate the
accuracy of these approximations.

Chordwise Approximation

This consists of replacing the factors \l-x/l+x and Vl-x by their average
values over each chordwise segment. Since the first factor is the significant portion of
the chordwise pressure distribution, the following problem is considered. Calculate the
velocity induced by a steady, two-dimensional pressure distribution (proportional to
\l-x/l+x ) on a fluid particle travelling parallel to the chord, using both the exact and
approximate pressure distributions.

The (x, y) axes are centered at the midchord with the x-axis being parallel to the
chord. The exact nondimensional pressure field of the airfoil is given by

sin (t>_
2 cosh n+ cos <j>

where (n>4>) is an elliptic coordinate system with

x = cosh n cos <j>

y = sinh n sin <j>

If the trajectory considered extends from x = - 2 t o x = 2 a t a constant distance y, the
nondimensional induced velocity is given by

2
1 T sinh n cos $ + sinh n cosh n cos 2 <f> . ,_.

= - 2 / - 2 - — 2 - 2
_2 (cosh n-cos <))) (cosh n + cos <)>)
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This integral can be evaluated by numerical integration.
. Using the approximation, the average value of the pressure distribution over the

k chordwise segment is given by

i *k+1

*.. ,k+1
dx

- sin 9 k+ j + sin

where x, = cos 0, .

Pe(x

8Pe

a y

V =

,y) = J
2

f
IT

K

= - E
k=l

K

E
k=l

P
11~
k
TfII

K ki] A
T n T dX

L i P / 2 2
k=l k J (x1 - x) + y

Xk

Pk (x1 - x)
2n / , x2 2

(x1 - x; + y x

((x k + 1-x)2+y2(
ff n / \» 2 2 ?

( (xk - x) + y J

k+1

k

x= 2

x= -2

(D2)

Two approximations are considered: (1) three segments along the chord, A x, = 0.1, 0.9,
1.0; and (2) five segments along the chord, Ax, = 0.1, 0.4, 0.5, 0.5, 0.5. The results for
the induced velocity are listed in table D 1. Tnese results are also plotted in figure 3
and it can be seen that the approximate results are quite close to the exact results,
even down to a vertical distance of 1% of the semi-chord.
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TABLE D 1. - COMPARATIVE EVALUATION OF CHORDWISE APPROXIMATION

Vertical
distance,

y
.01
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
1.00

Exact

.5773

.5766

.5745

.5661

.5529

.5357

.5157

.4938

.4709

.4476

.4246

.4022

Three
segments

.5708

.5702

.5681

.5602

.5476

.5313

.5121

.4910

.4689

.4464

.4241

.4022

Five
segments

.5738

.5731

.5711

.5629

.5501

.5335

.5139

.4925

.4700

.4472

.4245

.4024

Spanwise Approximation

As discussed elsewhere, the span is divided into 3 segments, over each of which
the variation of the function g is replaced by a piecewise constant or piecewise
quadratic function. To evaluate this approximation, the following problem is
considered. Calculate the velocity induced by a finite wing on a fluid particle travelling
with the freestream flow past the wing, at various vertical and spanwise locations. The
nondimensional loading along the wing span is taken to be

with the z axis originating at one tip of the wing so that z = 1 represents the other tip.
This type of loading has resemblance to the typical loading on a helicopter rotor blade.

For a particle travelling with constant velocity in the x direction, at constant
values of y and z, the nondimensional vertical velocity induced by the wing may be
written as

2 I 1 -> I - Tj_ f ) j_ r c 2 \ i - r
= 4A J ) 3 y y / f 2 2 ;

xf I £ x +y + ( z - ?
2 "1 3/2"1
J

dx

4Av •J dx [pr^ir



x=x.

where d = 1/2[x2 + y2 (z -

The integral with respect to 5 can be numerically evaluated. The induced velocity can
also be calculated with a piecewise constant or piecewise quadratic approximation to g,
using integrals similar to those listed in Appendix B, but the details of these expressions
will not be written out here. For the calculation, x. = - 1 and x2 = 1, while the spanwise
division for the approximations was done with 2 models: (1) three segments along the
span, with A£- = 0.5, 0.3, 0.2; and, (2) five segments along the span, with A^ • = 0.5,
0.2, 0.1, 0.1, oh. The results of the calculations are shown in tables D 2 and D y where
the abbreviations p.c. and p.q. represent the piecewise constant and piecewise quadratic
schemes. These induced velocity comparisons are also plotted in figure 4.
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APPENDIX E

FINAL EQUATIONS AND OUTPUT QUANTITIES

The basic solution is for the spanwise and azimuthwise variation of the dipole
strength function, g. With the span divided into J segments, the value at the midpoint
of each segment is given the following harmonic representation over the azimuth.

G? sin Owb) ] ( E l )

In the present calculation, the above formula serves only as an interpolation.
The boundary condition to be satisfied states that the normal velocity induced at a

point on the blade by the combined pressure field of all the blades is equal to the normal
velocity due to blade motion. If w, denotes the normal velocity due to blade motion,
the boundary condition can be symbolically written as

w
b . . — I ^ ^ .8

(rbo'\o> = Ef E E Uwfar)no. of I i j ' p
blades

"nL'iJ <E

The contributions Aw can be calculated with either the piecewise constant or piecewise
quadratic spanwise representation, as described in Appendix C. The index j1 refers to
the spanwise segment within which the i trajectory segment is located (if the i
trajectory segment ranges over more than one spanwise segment, Aw must be summed
over these segments as well).

(E3)



.thwhere 4V- is any typical point of the i azimuth interval (e.g., either end or the
midpoint;.1 It must be noted that the collective pitch, coning angle and the cyclic pitch
coefficients are contained both in w. and in the near field contribution (Aw ), which
is proportional to the functions F^ and F,. These are defined below

w.

OR,

- R

cos

sin

sin

- 2b sin
J

(E5)

For presentation as output, the following quantities are calculated:
(1) azimuthwise variations of total lift per blade, aerodynamic moment about the

hub and spanwise center of lift location,
(2) spanwise and azimuthwise variations of sectional lift, pitching moment about

quarter-chord and center of pressure location,
(3) chordwise, spanwise and azimuthwise variations of surface pressure

differential. The expressions for these quantities are presented below.



Surface pressure differential,

pn2R^

where x is nondimensional with respect to the semi-chord.

Sectional lift,

I _ In r\l"__g_ (1 - C) /c

Pitching moment about quarter-chord,

_ r,
m - _ _J!— fi _Fr (F 4. _ P ) ^P 9)•) ii ~ i \l -*>i vr,j -t- 5- r..) (t. &)/ KI J

Center of pressure location (from leading edge), as a fraction of the chord,

x
= 0.25

Total lift per blade,

1
f S d/!b

p«2R2 Ul
1
A

+ T— % —^— a + 2 y 6 ( l - ? ) - a i ( l - C ) - 2 y el cosL*Z » 2 o L o 1 J

[2yaQ(l - 0 - b1 (1 - C2)] sin Vb + TzMb^l - 5)1 cos

(E 10)



Aerodynamic moment about hub,

1
M

p

- * (1 - rt f S !i. d(!i
R? " A V pfl 2R? Rl

+ |yao(l - ?2) - ~Y (1 - C3)] sin ^ + [y bj( l - £2) J

+ - y a j d - C ^ - ^ d + C ) s i n 2 ^ >

cos 2

( E l l )

Spanwise center of lift location,

1

The spanwise integrals of g, required in some of the expressions above, are given in
Appendix A.

If the collective pitch, coning angle and cyclic pitch coefficients are considered
unknown, additional equations are necessary. These equations are given below.

Piecewise Constant Representation

J T i 9 1 A CT'v-« _O . 1 /. c-Wl r A _ " I

j=i J J L J



12A 3?

j= l

Piecewise Quadratic Representation

In this case, the equations will also involve the values of g at the ends of spanwise
segments; however, these can be related to the central values, as described in
Appendix A. Let this relation be written symbolically as,

Jr .h

Then the equations are as follows.

j r 3 ^Ll As.



. h.. + s. . h.
] 1J 1+1 1

GC.~1
.) T-^1 \

'J As -I

As.
-±

6

= 0
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Figure 8. - Sectional lift versus spanwise location
for Case 1, /i = 0.29.

0,'i



Measured

ta
3
0)o.

c
a
a.

J!

Asymptotic

(e) Azimuth angle, 120°.

° Asymptotic (p.c.)

• Asymptotic (p.q.)

(f) Azimuth angle, 150°.

0 -2 A .6 .8 1.0 0 .2 A .6 .8 1.0

Spanwise location, r/R.

(g) Azimuth angle, 180°. (h) Azimuth angle, 210°.

Figure 8. - Continued.

65



Measured

_m
3
<Do.
l/>

L.

(0a.
V)

o
o

-1

Asymptotic

(i) Azimuth angle, 2^0°.

o Asymptotic (p.c)

• Asymptotic (p.q.)

(j) Azimuth angle, 270°.

0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

Spanwise location, r/R 1

(k) Azimuth angle, 300°. (1) Azimuth angle, 330

Figure 8. - Concluded.

66



Measured

0)
Q.

g
O

'+->
u

1

0

-1

Asymptotic

(a) Azimuth angle, 0°.

0 Asymptotic (p.c.)

• Asymptotic (p.q.)

(b) Azimuth angle, 30°

.2 .6 .8 1.0 •2 A .6 .8 1.0

Spanwise location, r/R 1

(c) Azimuth angle, 60°. (d) Azimuth angle, 90°.

Figure 9. - Sectional lift versus spanwise location
for Case 2, /x = 0.29.

67



Measured

(L)a.

ma.

c
o

-1

3

2

-1

Asymptotic

(e) Azimuth angle, 120°.

Asymptotic (p.c.)

Asymptotic (p.q.)

(f) Azimuth angle, 150°.

0 .2 A .6 .8 1.0 0 .2 .6 .8 1.0

Spanwise location, r/R 1

(g) Azimuth angle, 180°. (h) Azimuth angle, 210C

Figure 9. - Continued.

68



Measured

J3
i_
a.

I
<n

*

(0

o
+2
u

3

2

-1

Asymptotic

(i) Azimuth angle, 240°.

Asymptotic (p.c.)

Asymptotic (p.q.)

(j) Azimuth angle, 270°.

0 -2 A .6 .8 1.0 0 .2 .« .6 .8 1.0

Spanwise location, r/R 1

(k) Azimuth angle, 300°. (1) Azimuth angle, 330°.

Figure 9. - Concluded.

69



00
0)
•

o
n)

• -H

Ua

(0
+-•
CO

•4-"
V)

8

C C3
o „
|=L

l»O n)
UU
i

<u

00

apejq ij apeyq

70



0)

o

00
•-H

u
OJ
Q.
tfi

a
i->

I
(O

8

C C3

Q.

E 9$
O (0
UU

<u

op
il!

apejq jad u apcyq

71



O
O

O
f^
(N

O
J-
(M

O

(M

O
OO

oo
<u
•o

ao
(0

E
• -H
N

o
\o

^ o

00
c
'o
0}o.

(0
<->
c
(0
•M
IO

8

co
.2 n

O n)
OU

00

apcjq jad ij apBjq

72



1. Report No. 2. Government Accession No.
NASA CR-166092

4. Title and Subtitle

HELICOPTER ROTOR LOADS USING DISCRETIZED
MATCHED ASYMPTOTIC EXPANSIONS

7. Author(s)

G. Alvin Pierce and Anand R. Vaidyanathan

9. Performing Organization Name and Address

Georgia Institute of Technology
School of Aerospace Engineering
Atlanta, Georgia 30332

12 Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

3. Recipient's Catalog No.

5. Report Date

Mav 1983
6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

1 1 . Contract or Grant No.

NAS1-16817
13. Type of Report and Period Covered

Final Report
14. Sponsoring Agency Code

15. Supplementary Notes

The contract research effort which led to the results in this report was financially
supported by the Structures Laboratory, USARTL (AVRADCOM).
Langley Technical Monitor: John D. Berry Final Report

16. Abstract

This investigation is intended to improve the numerical practicality of a matched asymptotic
expansion approach for the computation of unsteady three-dimensional airloads on a helicopter
rotor. The original method as suggested by Van Holten has previously been evaluated and proven
to be a comprehensive and accurate analysis for flight conditions conducive to linear flow
phenomena. This effort to decrease the computational requirements of the original analysis
utilizes a discretized representation of the doublet strength distribution and helical streamlines.
The continuous variation of the doublet strength has been approximated by piecewise constant or
piecewise quadratic distributions, and the helical trajectory of a fluid particle has been
approximated by connected straight line segments. As a direct result of these simplified
representations the computational time required for the execution of a typical flight condition has
been reduced by an order of magnitude with respect to the requirements of the original analysis.
Airloads which have been computed using the discretized method for a two-bladed model rotor and
a full-scale four-bladed rotor are in close agreement with measured results and airloads from the
original asymptotic analysis. For conditions characterized by significant rotor/wake interaction
the piecewise constant representation requires a reduced azimuth spacing to maintain acceptable
accuracy.

17 Key Words (Suggested by Author(s))

Unsteady airloads, Helicopter rotor,
Potential flow, Asymptotic expansion

19 Security Qassif. (of this report)

Unclassified

18. Distribution Statement

Unclassified - Unlimited

Subject Category 02

20. Security Classif . (of this page) 21 . No. of Pages

Unclassified 76

22. Price

For sale by the National Technical Information Service, Springfield, Virginia 22161




