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Abstract

The present work extends the recently
reported implicit analogue of MacCormack's
earlier widely used explicit method to external
axisymmetric laminar flows with strong entropy
gradients. The details of the "numerics" of the
implicit part are provided in a body-oriented
coordinate system with a moving outer (shock)
boundary during the transient part of the solu-
tions. The limiting values of the Courant number
are obtained when the shock boundary is treated
explicitly. The solution algorithm outlined
includes the treatment of the source term
associated with the equations in weak conserva-—
tion form. From the results obtained for two
sample problems, it becomes clear that accuracy
of predictions 1is, indeed, very good at higher
values of the Courant number. There is a
significant saving in overall computing time,
depending on the Courant number used and the flow
Reynolds number. These properties combined with
the simplicity of programing the implicit
analog may appeal to researchers for using
it in the analysis of 3-D flow problems.

Nomenclature
Cas Cp constants with values less than or
equal to unity
Cg skin-friction coefficient,
(2 py/Re) (3u/3n)y,
Cy heat-transfer coefficient,
(2 uy/PrRe) (3h/49n),
CN Courant number
c speed of sound, yyp/p
*
c constant in Sutherland's law of
viscosity, K
H nondimensional total enthalpy,
* %
H /U2
h nondimensional specific enthalpy,
* %
h /Ux?

i finite~difference point in s-direction
j finite-difference point in n-direction
k count of time steps

Mg freestream Mach number

M molecular weight of mixture

n coordinate direction normal to the

* %
body, n /Ry
Pr Prandtl number

* kK,
P nondimensional pressure, p /p, U,
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Re freestream Reynolds number,
* % 7 *
pcoUccRN Hoo
r body radius normal to the body axis,
* %
r /RN
s coordinate measured along the body,
* %
8 /RN
* X
T nondimensional temperature, T /T,
T: freestream temperature, K ’
*_ %
nondimensional time, t Um/Rg
* -
U freestsream velocity, m/s
u nondimensional tangential velocity,
* %
u /Uy,
* %
v nondimensional normal velocity, v /U,
o' = (u2 + v?)/2
a'! shock angle
B' =y-l
B) = r+ncosg
B mesh refinement parameter
E,g transformed coordinates along the body
surface
;,n transformed coordinates normal to the
body
ratio or specific heats
* *
shock standoff distance, ¢ /Ry
* %
K local curvature, /Ry, also time
step counter
A = 14+ ng
* %
u nondimensional viscosity ITRATS
*
Yoo freestream viscosity, N'B/m2
%, %
p nondimensional density, p /p,
*
Poo freestream density, kg/m3
T,; transformed time variable
6 body angle
Superscript
* dimensional quantity
Subscripts
o conditions at the axis of symmetry
w conditions at the wall
o0 conditions in the freestream

Introduction

Much progress has been made in the recent
past in developing computationally efficient
methods for solving the equations of compressible
viscous flow. Foremost among these methods are
the implicit time-dependent finite-difference
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techniquesliz’3 which are not subject to the
conventional stability condition of explicit
methods. " However, the application of these
techniques is frequently limited by the large
computer time per step, their programing
complexity, as well as severe accuracy criteria.
These limitations increase in severity in three-
dimensional flow analysis. In 1981, MacCormack
presented” an implicit analog of his earlier
widely used explicit method.® One of the basic
features of this implicit analog is that it
involves the inversion of only upper or lower
block bidiagonal matrices as opposed to the more
costly inversion of block tridiagonal matrices
needed in the existing implicit methods,!»2,3
The other major advantage with the method of
Ref. 5 is that with more complex problems, only
the explicit part of the code increases in
complexity. The implicit step, which is simply
the numerics to obtain enhanced stability with
larger values of the Courant numbers, is not
affected. Since it is easier to program the
explicit part even with the increased
complexities, the potential for this method is -
greatly enhanced, especially for the 3-D flow
problems. Moreover, running a program fully
explicitly can provide solutions for comparison
and check when the implicit analog is used.

This is an important feature for the accuracy
check not available with the other implicit
methods. The implicit part in the MacCormack's
new mﬁ.thods is merely an "add-on" to the explicit
part.

Recently, Refs. 6, 7, and 8 presented
solutions for internal flow problems whereas
Ref. 9 provided results for external transonic
flows with an integral formulation by using the
new implicit method. References 6 and 8 have
basically used the MacCormack's method in
Cartesian coordinates as presented in Ref. 5.
The results of Ref. 7 were obtained in more
general coordinates g(x,y), n(x,y) for a fixed )
outer boundary and Ref. 9 employed the Cartesian
velocity vectors in the solution vector. Except
for Ref. 8, the equations solved in these analy-
ses were of strong conservation form. Reference
10 has outlined a procedure for the governing
equations which appear in "weak" conservation
form. In this form the source terms, which are
introduced into the equations by coordinate
transformation and/or by turbulence modeling,
appear outside the derivatives of the conserved
variables.

In the present analysis, MacCormack's
implicit analog has been extended to external
axisymmetric laminar flows with strong entropy
gradients. The matrices involved in the
"numerics” of the implicit part have been
obtained in a body-oriented coordinate system
with a moving outer boundary. The limiting
values of the Courant number are provided when
the shock boundary is treated explicitly. The
method switches automatically from implicit to
fully-explicit mode whenever the time step, At,
satisfies the explicit stability condition. In
general, the method becomes implicit only in
regions where the gradients of the flow variables
are large and a refined mesh is needed for higher
accuracy.

" Analysis

Flow Governing Equations

The time-dependent viscous-shock-layer
equations employed in the present analysis can be
obtained from the unsteady Navier-Stokes
equations by keeping terms up to second order in
the inverse square root of the Reynolds number in
both the viscous and inviscid regions of the
shock layer. These equations, when represented
in the body-oriented coordinate system (see Fig.
1) for a perfect gas flow at zero angle of
attack, are expressed as

+i—+z—+Q=0

oU . M . AN ,
9t T 98 | Wn ) 0

where the vectors U, M, N, and Q may be obtained
by dropping the species—continuity equation and
taking the mass fraction of species and radiative
heat flux as zero in Eq. (1) of Ref. 11. These
vectors are also given in Ref. 12.

The following limiting form of the governing

equations is obtained at the -axis of symmetry by ]

differentiating Eq. (1) with respect to s and
taking a limit as s » O:

oU M N
5t '35 " am T %0 2
where the vectors U,, My, Ny, and Q, may

once again be obtained from Eq. (2) of Ref. 1l or
from Ref. 12.

The equation of state is given by

p = [RT /M2 loT (3)

and the laminar viscosity is obtained from the
Sutherland's law

3/2

wo= (O Ty )T (4)

Transformation to Computational Plane

The first of the two independent transforma-
tions employed maps the physical domain into a
rectangular region in which both the shock and
the body are made boundary mesh lines of the
computational region. This transformation is

tst,£=8,andn=1-n/5s,t) (5)
The transformed forms of Eqs. (1) and (2)
are
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N= (p Nt M s + N nn)/J’ Q= For n odd
U = Uo/‘.‘[’ Mo = Mogs/‘I (Explicit part: ﬁk 'ﬁk
= - - - = A A :
= £ > 1 nk
No = (Uont + Mons + Nonn)/J’ Qo Qo/J AU: = -AT <—it%4i + +Ai’ ) - AT
| n
Here, J is the transformation Jacobian given
as Implicit part:
- - - A aa k
J = 3(t,8,0) 3 @ I -4t 2| |K|i,j « ot | —
P: :28)
1,3
and Es denotes 3£/3s, and so forth. . N
A 2Q
The computation region is next mapped to <01 - At _* |§'k_ . + AT B
another plane to allow higher resolution through |An| i,j o
the viscous layer near the surface. The second i,j
transformation 1s K
- A’I'Ji ;
- ’
1n Ei%
=T,E=2£ 8- T =k | oKFT
T:TE:EBndY]" (9) B =
’ s n %> \Ui,j U+ 5Ui’j
(‘
Explicit rt:
With this transformation, the final forms of Xplic pa
Eqs. (6) and (7) become:
! A ﬁk+1 A EE+1
30 . aN , oN , = SKFT - 4,3, -i,]
ao t Rt o = = - + = At
3t + FY3 + n + Q 0 (10) AUi,_‘] AT AE an
& s & Implicit part:
3U° aMo aNo -
—_—t =+t = 11
Tt T T e =0 an \ o \ET
- k+1 A
where I+ AT IZE1 'Z'i i e + AT —
c: ¢ : al
s - s - - i’J
U=U/J, M=M EE/J
s \KFI
5T om = = a_ 3Q
N=08n-/3,83=0/3 x[1 + at |— 'Blkir « + AT 3
Im‘l 1,3 ab
and i,j
8 ~k—+T
o, =0,/ & - M gs/3 = a0
N, = Nn~/3, § = /7 skl I = G =
o o'n %= % \Ui,j = (1/2) (Ui,j + 1,3 +6Ui’j )

Here, once again, J is the transformation
Jacobian given as

I a(T 33 ’Yl) 26 1
J o= 2ol (12)
anEm  wmdY < B2~ )

Elements of the Numerical Integrgtion Method

Since the numerical integration method
has been adopted from Ref. 5, the development of
the method presented here for a body-fitted
coordinate system with the moving outer boundary
will not contain the details provided there. The
method outlined here will provide details more
specific to the problem being analyzed. Equation
(10) may be integrated in time by the following
implicit predictor-corrector set of finite-
difference equations:

%4,3
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And for n even

rExplicit part:
sk sk
A M AN
g - - 1,3 + 1:j> - gk
AUi,j AT ( AE + An At Qi,j
Implicit part:
s \k
A 9Q
4 I+ AT |Z§] |K|§’j o + AT ﬁ
P: U i,
A YA
x[1 - ar X §|k e 4o |2 ST
A 1,3 £Yil 1,3
|an] 1,3
k
- %
sam sk Hm
= 14
g Ui’j U+ 5“1,j (14)
(hxplicit part:
K+T k+T
Aﬁli+l = -AT __._A+ﬁi’j + &L - A-rs[i.H:
% | AE an i,3
Implicit part:
(328
A T 3Q
) I-~at IK%' IK|1 RS ——%
- ’
C: ] 1,3
KFT
A_ Q) "
|1 +a7 |— |§|E¢T « +ar|— Ninghh
|AY] ' 1,3 a'i’] i:j
i,]
KT
= AUi,j
sk+1 sk sKFT sk+]
g Ui,j = (1/2) (Ui»j + Ui,j + GUi’j)

where the source terms Qqand Qg represent

parts of the total source identified with the
coordinates ¢ and n, respectively, as discussed

in Ref. 10.

in Ref. 12,

Q4 and g are provided in
Appendix A.

Based on the definition of Q given

It may be noticed from Eqs. (13) and (14)
that the order of differencing has been reversed
in the streamwise direction (while retaining the
same order in the direction normal to the
surface) for both the predictor and corrector
steps between consecutive time steps. Further,
in these equations, (A;/Af) and (A4/An) are
one-sided forward differences and (A_/AE) and
(A_/An) are one-sided backward

differences. 151 and |B| are matrices with
positive eigenvalues and are related to the

Jacobians A = (oM/30) and B = (aﬁ/aﬁ), respec—
tively, and I is the unit matrix. The dots in
the implicit steps indicate that the

difference operators (A4 /lAgl), Ay / Anl),
etc., apply also to all faltots to the'right.

Both predictor and corrector congist of two
parts: the explicit part solves the governing
equations subject to restrictive explicit
stability conditions; the implicit part removes
these conditions by numerically transforming the
equations into an implicit form.

The Jacobians A and B are related to the
Jacoblans A/ = 3M/3U and B = 3N/3U by

o A
A=Tg +3E +BE
(15)

e
|}

A
Ing +3mng +Bn,

where g, = 3£/5t, Eg = 3E/38, &, = 3&/3n,
Ng = an/at, Ng = 3n/38, and Npn = Bn/an-

The Jacobian matrices A and B are provided
in Appendix B. In the definition of these

matrices u and v are the contravarient velocities
obtained from

& u
u—§t+xgs+v£n

v +2, 4
v nt X-ns Vnn

Now, the integration method contained in the
finite-difference Eqs. (13) and (14) can be

simplified if the matrices A and B are
diagonalized. Knowing the eigenvalue matrices

Lod
Ap and Ag for Z and B, respectively, these
matrices are diagonalized as:

- !
X = 5. Ay §E
(16)
= N | "
B=3S
n Ay n

where §€ and %n are the eigenvector matrices
of X and B and §Eland gglare the inverses of




8; and §n, respectively. The complete
definition of these matrices is glven in

Appendix C.
The diagonal matrices A, and Ag in Eq.

(16), formed from the eigenvalues of A and B,
respectively, may be written down as:

[ & ]

Al 0 0 0
AA = 0 %52 0 0 (17)
0 0 a3 0
| o 0 0 aAd
~ -
951 0 0 0
AB = 0 GBZ 0 0 (18)
0 0 033 0
i 0 0 0 oB‘J
where
Oa1 T U Opp = Ut 04y = U, 0y, = u-d
8 N ] 8
°B1 =v, ch = v, °B3 = vig, OBA = v~g
with

a-= °l/<€s/“2 + (52

g = CV(nS/A)Z + (n))2

The matrices lZl and lfl appearing in Eqs.
(13) and (14) may how be foérmed by replacing the
matrices Ap and Ag by positively-valued

diagonal matrices Dy and Dg. The matrices

'K' and 'ﬁl are thus defined as

%-1
|Z| 5 D, §£
(19)
s RS | I
|B| = Sn Dy Sn
where
D, = max (|AA| +3, I, 0.0)
(20)
DB = max (|AB' + ;B I, 0.0)
and
2% £\
5 a2V 5 2| _ Ag
A T paE <A Y e
(21)

: [
= 2v
>'B BZh

5 = max{d L y_x_}
with v max{3 Re * Re Pr
The constants G, and Cg are related to

the Courant number used for explicit stability.
The Courant number, CN, is related to the maximum

time step At permitted in the n—direction, for
example, through the Courant-Friedrichs-Lewy
(CFL) criterion

4n

At < CN
5 2vu_ )8 2
|VI teg+ pRePran ( A) + nn

Here CN is less than or equal to unity for an
explicit stable solution.

(22)

Following Ref. 10, a procedure can also be
outlined for obtaining the Jacobians (3Qs/3U)

8 o ‘ N, o8 "
and (8Qg/3U) of the source term Q=Q4 + Qp)

with respect to ﬁ. Justification of this
procedure is provided in Ref. 10.

L]
BQA
Let ¢A = AT —
ouU
(23)
2q
and ¢B = AT 3
o
We now define the scalar matrices l¢A| and
|¢B| as follows
EAREI
]<»B' =4y I (24)
Here ¢, and ¢p are obtained from®
¢A‘Z max (aAb - AT ;A’ 0.0)
5 - 5 (25)
5 > max (qBo AT ope 0.0)
with
~ AT I
q, ={max 3 (oA + AA), 0.0}
) max
& AT [ (26)
9y ={max Zﬁ'(oB + AB), 0.0}
[¢) max
and
Py = m;x 'AAJI
ij=1,2,3, 4 (27)
Pp = max iy |
where AAJ is the jth eigenvalue of (aQA/aﬁ)
etc. o and ¢ in Eq. (26) are
obtaine3m§§om Pmax
o = max |o
Boax 3 oy |
=1 2 3, 4 . (28)
o = max |o
Bmax 3 l le




and oaj and opj are defined following

Eq. (18), whereas XA and iB are given by
Eq. (21).

The Constants Cj and Cg appearing in
Eq. (21) are assigned a value of 1/2 in Ref. 5.
However, if the time step AT in the expressions

for ;A and :B is a local minimum, a value of
up to unity may be used for Cy and Cg to
speed up the calculations.

Solution Algorithm and Boundary Conditions

As shown in expression (20) for the diagonal
matrices Dy and Dg, their elements are
non-negative. Whenever the elements become
negative, they are replaced by zero. This
implies that the CFL condition, Eq. (22), is

satisfied and matrices lKl and £§J become null
matrices. For this case the implicit portion of
the scheme contained in Egs. (13) and (14) will
be bypassed. For the flow regions where the CFL
condition is not satisfied, the implicit parts in
Eqs. (13) require the solution of upper-block
bidiagonal system of equations for the predictor
step and the solution of lower-block bidiagonal
system of equations for the corrector step, etc.
The integration scheme, for the case where the
CFL criterion is not satisfied, can be illustrat-
ed by solving the predictor part of Eq. (13) as
detailed in the subsequent paragraphs.

In this algorithm we replace the matrices
9s and ¢p (defined in Eq. (23)) by the scalar
matrices_’oAl and |¢B| provided by Eqs. (24)
and (25).

Ay

Let sﬁ:’j =(1 - At I-A-n-' IBI‘;,J .+ l¢:1,j')

sk+1
X GUi’j

then, the predictor step becomes
At =ik k sk
I+ ,— JA + |® sU = AU
( |A£| ' 'i,J l Ai,jl) i,j A 1,3

+ I%a 'ZILI,:} 5ﬁ:+1,1 (29)

an upper-bidiagonal equation and the solution can
be obtained for each j by sweeping in the
decreasing i direction.

*
After obtaining Gﬁi’j for all 1,j, then
At mik k ~KFT ak
<1 + fon| PBles l¢Bi,j|>6 1,3 7 80,4

sTFL (30)

+ I_ﬁ—:]_l |§|l;,j+1 1,j+1

This equation is also upper-bidiagonal and is
solved for each i by sweeping in the decreasing j

direction. This gives 63&1} for all 1i,j. Then

sKFL sk ~K¥FT
Ui,j = ui,j + GUi,j etc.

For understanding the present method, let us
examine the procedure for solving the block-
bidiagonal Eq. (30) for the n-—coordinate or
j—direction. If we define

Wy - ol |'§FT\'| |i|:.j+1 Gﬁfjrﬂ (31

the Eq. (30), after some matrix multiplication,
may be written as

k -1
skF1 s=-1 k Atk
sU =(8 (1 + I + — D
1,3 < n )1,1{ #3470 [an] “1,1}

g k
x( “)1.3 E o

where we have substituted for"il from Eq. (19)
and employed the relation '03' ="¢gl for the
scalar matrix '03'. :

The integration procedure in the implicit

part begins with the vectors ﬁk, , glven for
all i =1, 2, +oo, T and j = 1, 2, eus, J;

*
Gﬁi’j given for all i = 2, 3, ..., I-1 and j =

2, 3, ¢esy J=1 and 'ili’J Gﬁi’} given for all

i=2,3, vo., I-l. The quantity 'ﬁl‘i‘,j s”ulf'JI

represents the flux of change that'cfosses the
top mesh boundary. If this boundary is located
in the far flowfield or if the mesh is stretched
so that At satisfies the local explicit stability
condition (22) at the mesh points near the

boundary, as in the case of the test problems to
be discussed later, this flux 1s set equal to

zero. Otherwise, it should be suitably specified
from the boundary conditions.

Following Ref. 5, the solution algorithm may

now be summarized for each i and for j = J-1,
J=2, essy 3, 2 in the following seven steps:

(|an|/a7)

ok 1,§+1
R ",) ([an ‘7_At)-i-%_j

x (l%:TI )i,j+1 1Bl4,541 sﬁu

s \k
2) X -(sn)i’j LA

) _ { k sk
3) D, max IABij|+AB,

s ’ " 0.0}




X

k -1
3

k
(1 + I+
*s | 1,3 P4,

1,3

5) 60y 1 =( E;I)k’j 1

6y, =

IAn

»J

k
6) Z, = D Y

> (fimp )y BIE. o0 - (%)), (&

The matrix inversion of step 4 is trivial
because the matrix Dg is diagonal. The
solution at grid point (i,j) is obtained at step
5, and the flux to be used at grid point (i,j-1)
is obtained at step 7. In computational plane

JAn|)1 L+ = <lAn|)i’j IAnI and, if global
nimum time step is used, (AT)j, j41 =

(at)4 ,j = At. For this case Wj .3 in step 1
is obtained from

sk AT ™ skt T
W, = + = |B sU,; .
370,50 [an] (B, 341 6% 341
However, if a local minimum time step is employed
in the computational plane (with (|An|)i 41 =
(lAnI), Wy may be obtained from

(at)
¥ i,j
Wo =80 5+ D

i,j+1

i

x (& 3]s
IAn')i’j_H 1,341 °T1,5+1

For the boundary condition required at the
solid wall boundary, the computed end flux terms

l lauf_;, are saved for use as boundary condi-
idn £or the corrector step that sweeps away from
this boundary in the increasing j-direction.
Using the reflection principle for the wall
placed between the first and second grid point,
the starting flux for the corrector step is
obtained from

I Ii =k+l R—T

1 90; E| |12

where

0
0
1
0

OO M
OO
OO0

This condition ensures that the net mass,
tangential momentum, and energy fluxes trans-
mitted across the wall vanish and that the net
transverse momentum at the solid wall remains

' zero between KFT and k+l time steps.

In the present work the Courant number
employed in the g-direction was always less than
unity due to the large mesh size employed in that
direction. Accordingly, purely-explicit boundary

conditions are used in the §-direction, implying

he end fl i sTEFT 1 ~kFT
gUi ;netc.u:otizm:eloll 1n féc I ﬁis case

the’ mplicit part in the E-direction is bypassed.

The explicit boundary conditions employed
are no slip at surface, no surface mass transfer,
a specified wall temperature, and pressure at the
wall is assumed to be equal to the pressure at
the adjacent grid point in the normal direction.

The Rankine-Hugoniot relations are employed
for the explicit outer-boundary conditions to
obtain flow properties immediately behind the
shock. These relations in the body-oriented
coordinate system are provided in Ref. 13. The
flow conditions along the supersonic downstream
boundary are obtained by extrapolation from the
upstream grid points.

Artificial Damping

A fourth-order damping?“ is used in the
explicit part of the corrector step in Eqs. (13)
and (14) for obtaining stable solutions over a
large number of time steps. The following
damping term is used in both the predictor and
corrector steps with the implicit parts:’

& “xll}k

() 1y S

This term is evaluated during step 3, of the
solution algorithm given in the previous section,
using the first element of the vector X.
Accordingly, Dg in step 3 1s obtained from

K k xk Kk
Dg =max“AB |+ ijI+Ti’j

N 1 0.0}

As steady state is approached lxll approaches
zero and the added term vanishés.

Discussion of Results

The numerical method presented here has been
applied to two test problems, both involving the
analysis of viscous-shock-layer equations in the
body-oriented coordinate system. These two
examples are taken from Refs. 12 and 15 and
provide fairly severe viscous-shock-layer flow
fields for testing the present method. The main
difference between the two test problems is that
the first one (taken from Ref. 12) is character-
ized by a reference Reynolds number (based on
nose radius and freestream conditions) with a
value of about 1.57 x 105, whereas the second
problem15 has a reference Reynolds number around
1.23 x 10°, The flow conditions of Ref. 15 are
considered typical of the Jovian entry
conditions. The reference Reynolds number
mentioned here is related!® to the mesh Reynolds
number and provides a criterion by which the mesh
near solid-surface boundaries may be refined.

Problem 1 - (Ref. 12)

Probe geometry: 45° half-angle
sphirically—blunted cone with a nose radius
(RN") of 0.222 m.




Jovian atmosphere: Hydrogen-helium mixture
(0.90 H, + 0.10 He) under perfect-gas conditions.

Other flow field parameters: M, = 43.84,
To® = 145K, Po” = 1.27 x 19‘“ kg/m®,
T,* = 4000K, Y = 1.224, Rg" = 3593.6
J kg™! k!, Re = 1.567 x 10°, Pr = 0.72.

Problem II - (Ref. 15)

Probe geometry: 44.25: half-angle sphere~
cone with a nose radius (Ry") of 0.352 m.

Jovian atmosphere: Orton nominal atmosphere
of hydrogen-helium mixture (0.895 H, + 0.105
He) under perfect-gas assumption.

Other flowfield parameters: M, = 43.76,
Tw® = 151.2 K, po® = 4.966 x 10~ kg/m?,
T, = 4022,80 K, y = 1.217, Ry* = 3737.45
J kg=! k1, Re = 1.227 x 10°, Pr = 0.72.

Through the transformations of Eqs. (5) and
(9), the physical domain, shown in Fig. 1, is
transformed into a computational domain with
equally spaced grids in both the directions,
along and normal to the body surface. Parameter
g in Eq. (9) controls the amount of grid refine-
ment desired near the wall in the physical
domain, with values near 1 giving the largest
amount of refinement. However, the mesh refine-
ment 1s done only to the point at which the mesh
Reynolds number reaches the order of
unityloﬂle. At this point, diffusion and
convection processes are equally resolved. To go
beyond this point to smaller mesh sizes and hence
to lower mesh Reynolds numberst, one would arrive
at a mesh scale at which diffusion dominates.
For such problems, more complex and time-
consuming methodsf»l’3 involving tridiagonal-
inversion procedures should be used. In the
present calculations, the value of g was chosen
to obtain the mesh Reynolds number!® of order
unity and pat/p(an)? was kept less than 1/2 to
avoldany possible steady-state solution
dependence on At. This was done by reducing the
time step near the end of the calculation. The
damping coefficient!" ¢ used with the explicit
part was also reduced with the reduction in AT so
as to permit comparisons between the solutions
having similar amounts of artificial damping.
The damping term associated with the implicit
part goes to zero as steady state 1s approached.

The various results presented here have been
obtained for the values of the Courant number
(CN) ranging from 1 to 15. The maximum value of
the Courant number, which may be used without the

tAs pointed out in Ref. 10 also, there is a
restriction in the present method on the manner
in which, for example, At and An go to zero in a
mesh-refinement procedure. The restriction
requires that pAt/p(An)? remain bounded as At and
An + 0. With this restriction, At ~ p(An)?/y ~
O(An)z. This limitation on At is a nuilsance
which one would like to avoid. However, this is
the price paid for using a simple bidiagonal
laversion in place of the more complex
tridiagonal-inversion procedures for the viscous
terms.

specification of boundary values for the implicit
part near the shock, i8 limited by the relation

[CB(Atz)n-ns]
EAtz)n-O

where Cg has also been used in Eq. (21) and can
have a value of unity or less. The local minimum
time step near the surface (Aty)p.p, used in

the above relation, depends on the mesh size
employed there. Therefore, in this case where
the shock is treated explicitly and the mesh size
near the surface is established by requiring that
the mesh Reynolds number be unity, there would be
an upper limit on the value of CN which may be
used with the present method. However, this is
not a limitation of the method. 1f the shock
boundary can be treated implicitly, values larger
than the limiting value of the Courant number
indicated here may be used. 1In fact, the present
method 1is unconditionally stable if the flux

CN < 0.75

boundary condition 15165 (see paragraph following
Eq. (32)) can be evaldated implicitly. It
represents the implicit part of the boundary
conditions. Its evaluation by such means as
lagging in time, etc. will limit the stability of
the present method to smaller Courant numbers as
experienced in Refs. 6 and 7.

Figure 2 gives various time steps which may
be employed at a given body station. The time
step shown by curve 2 has been used for CN <
1 (employing the explicit method“), whereasmﬁurve
4 has been employed with the implicit analogb for
CN>1. Time step At; shown by curve 2 is defined
as

Aty = (1 - 0.0025 oty j =1, 2, «eey 100

where Aty is the local minimum time step shown
by curve | and j is the mesh point counter with a
value of 1 at the wall (n=0) and a value of 100
just behind the shock. 1f a very large value of
the Courant number 18 used with the implicit
analogue, a time step shown by curve 5 would
result and cause the calculations to go implicit
from the wall to the shock. The global minimum
curve 3 and the fully-implicit curve 5 have not
been used in the present work and are included
for illustration only. It becomes clear from
this figure that, for finer mesh resolution near
the surface, larger values of the Courant number
can be used without needing to specify the
shock-boundary condition implicitly.

A 101x15 mesh size has been used in the
present computations with 101 mesh points in the
direction normal to the surface. The mesh points
along the body were evenly spaced at Af(zAs)
values of 0.1963 for problem 1 and at A{ values
of 0.1597 for problem 1I. The solution is
considered as converged to the steady-state value
when the following criterion is satisfied:

. \K k=50 . \K *
“axim“m ‘ L{ey)t = ()t ll(cn)i' <e;
where ¢* = 0(107%) and Cy is the
nondimensional heat-transfer coefficient defined
as




c-f&zzn)
H ~ PrRe (an

The convergence test given here is for CN=10 and
is made every 50 time steps; for CN=1 it is made
every 500 time steps, etc.

During the analysis. it was found that the
quality and stability of the solutions improved
if the order of differencing along the streamwise
direction is reversed from one time step to the
next time step in both predictor and corrector
steps as given in Eqs. (13) and (14).

The solution algorithm outlined in this work
includes the treatment of the source term in the
implicit parts of the method. However, in the
results obtained here, the source term in
implicit parts of Eqs. (13) and (14) was

neglected, implying that At(3Qa/4U) and

Ar(aan/aﬁ), etc, were small enough. The
observation of Ref. 8 in this regard appears to
be true for the two problems treated here. The
physics of the problem is contained in the
explicit parts of Eqs. (13) and (14) and the
source term is retained there. Dropping the
source term from the numerics contained in the
implicit parts of these equations does not seem
to affect the results appreciably. The inclusion
of the source term in the implicit part as
outlined here is likely to increase the
computational time per time step by an estimated
5 to 10 percent.

The computed results for problem I are given
in Figs. 3 to 5. These figures contain results
for Courant number (CN) of 1 and 5 with the mesh
refinement parameter g having a value of 1.1.
The CN=1 results are those of Ref. 12 and have
been recomputed here. The two factors outlined
earlier prevented obtaining results for higher
values of CN. The requirement of keeping the
mesh Reynolds number around unity did not allow
further mesh refinement, whereas the specifica-
tion of the shock boundary condition explicitly
with the given amount of mesh refinement did not
permit the use of higher values of CN for this
problem.

Figure 3 shows the shock stand-off distance
along the body surface. There is a very good
agreement between the two values predicted by
using CN=1 and 5 over the entire body surface.
The velocity and temperature profiles of Fig. 4
show a similar agreement, the comparison being
somewhat superior over the spherical portion
(Fig. 4(a)). The comparison between the
predicted values of skin-friction and heat-
transfer coefficients and surface pressure for
CN=1 and 5 is given in Fig. 5. Once again, the
various distributions compare very well at the
two CN values.

Figures 6 through 8 contain results for
sample problem II. As pointed out earlier, the
reference Reynolds number in this case is almost
an order of magnitude larger than the one for
problem I. Accordingly, a finer mesh (B=1.02)
can be employed here, still keeping the mesh
Reynolds number of order unity. This allows the
use of a higher value of Courant number without
going implicit all the way up to the shock.

Thus, results in this case have been obtained for
the value of Courant number as large as 15. The
shock stand-off distance of Fig. 6, as well as
the velocity and temperature profiles of Fig. 7,
compare quite well at various CN values. Once
again, the comparison is superior over the
spherical portion (8=0.32) of the body. Figure 8
also shows good agreement between the distribu-
tions of skin-friction and heat-transfer coeffic-
ients and surface pressure employing three values
of the Courant number.

The results presented here have been
obtained on the Control Data CYBER 203 vector-—
processing computer. The explicit part of the
method is fully vectorized. The increase in
computing time due to the addition of implicit
part is about 70 percent. Typically it takes
about 3.0x107° s per mesh point per time step for
the explicit part using the local minimum time
step.tt With the addition of the implicit part,
this time increases to about 5x10~° s. Two
factors which influence the computing time in the
present case are the partial vectorization of the
implicit part and the extent to which the
implicit part is called if the shock boundary is
treated explicitly. However, even with the
increased computing time per time step, the total
computing time is reduced significantly. In case
of problem II, for example, the total computing
time is about 6 times less at CN=15 as compared
to the computing time at CN=1 with the mesh
refinement parameter g having a value of 1.02.
For a higher mesh resolution near the surface, a
larger value of the Courant number may be used
while still treating the shock explicitly. This
would reduce the total computing time even
further when compared to the computing time at
CN = 1. The mesh refinement, however, is done
only to the point where the mesh Reynolds number
would be of order unity or so for the reasons
explained earlier.

Concluding Remarks

In the analysis presented here, the
recently reported implicit analog of MacCormack's
earlier widely used explicit method has been
extended to external axisymmetric laminar flows
with strong entropy gradients. The details of
the “"numerics” of the implicit part are obtained
in a body-oriented coordinate system with a
moving outer (shock) boundary during the
transient part of the solutions. The implicit
analog is unconditionally stable if the boundary
conditions are also specified fully implicitly
(i.e. without the lag of 1/2 or 1 time step). In
this work, the inmer (wall) boundary for the
implicit part was treated through the reflection
concept as suggested in the original presentation
of the implicit analog by one of the present
authors (RWM)., The outer (shock) boundary was
treated explicitly in order to avoid the
specification of this boundary condition
implicitly and to keep the computational
algorithm simple. Thus, the present results do
not contain any approximation about the treatment
of the boundary condition which may affect the

T1The same computing time per mesh point per time
step for the explicit part is required if the
global minimum time step is employed. However,
the total computing time in this case is
increased by a factor of about 2.5.



stability of the implicit analog other than the
Courant number limitation. The limiting values
of the Courant number are provided when the shock
boundary is treated explicitly. The solution
algorithm outlined includes the treatment of the
source term present in a weakly conservative

system of equatioms.

For the results presented here, the
number in the coordinate direction along
surface was 0(1l), but the Courant number
direction normal to the body, because of
mesh-point spacing needed to resolve the

Courant
the body
in the
the fine
viscous

boundary layer at the body surface, varied from 5

to 15 depending on flow Reynolds number.

A

detailed comparison of various results obtained
with different values of the Courant number (CN)
shows that the accuracy of predictions is quite
good at higher values of CN. There is a signifi-
cant saving in the overall computing time even

Appendix A:

though the computing time per time step increases
by about 70 percent with the inclusion of the
implicit part. The code developed for the
implicit analogue on the Control Data CYBER 203
computer was essentially an "addition” to the
earlier explicit code. The coding of the
implicit part is not affected much with the
increase in complexity of the explicit part.

This may have special appeal in the analysis of
3-D flow problems.

Acknowledggent

The authors are thankful to Dr. A, Kumar of
NASA Langley for many helpful discussions during
the course of this work.

Source Terms SA and 63

Based on the definition of the total source term Q given in Ref. 11,

aA and 53 identified with the coordinates £ and n, respectively, are

defined as:

ASing
B1
ASing , o 1 u, 1 3n du wug, k2
3 8, (pu“+p) +-§1[31Kpuv + iE»BIKE " pASing + —_Xig_]
A n
1 (A1)
=-—_ ASing
13 —-———-81 puv
A8inb
H
B
Cosbd
8 Apv
= Cosb ul a_n_ i\_l_ HuK
Qg B, MPY *Re; o an * ARel
L cons (42)
- 8
JJ N Alp + ov3) + = [-slnpuz ~ p(ACos8 = g;k)]
Cosd w1 9n dh , yul 8n du , pu
A[DVH"' -:—-:—+——————+ ]
8, PrRe an an Re 5 an an ARe
where
an 28 1 - +1\" "
e (o) s -l - [65) 4]
an 2n(8—_-1-> B® - n

and the transformation Jacobians J

J = a(;’gn;) . 3 = a('l'ygs'ﬂ)
3(t,s,n) ° a(T,E,m
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Appendix B: Jacobian Matrices A and §}

The Jacobian matrices A and B are obtained from

Et ES/A En : 0
3+ o8 3 gy Vg |- 8 [0
B e PR T Ut (-8 T B - S YU, | Y &g
B=l s a'B'E, + VE, T Eg ~BTUEL u+ (1-8ve, | 8, (B1)
- 2 2 3 2 o
(Bt +g7lf Grro) 3 | Greag, @+DE
' - [iad ] - e b B'E
+ ug Et ug'u + vB gt v 'u t
n
n 8 n 0
t ~ n
~ tq & ' '
B | w4 a'B'n, + v, %ns - B'un, v+ (1-*)wn | B8'n, [(B2)
o 2 2 n 2 w
(S )I-8at + 7] Gr+a) & | Grtang B+
+ug'n, - ug'v | +ven, - vB'V |- B'n,

where ¢ = V-yp/p is the speed of sound, o' = (u2+v?)/2, and B' = (y-1).

Appendix C: Matrices §E, §E1, §n’ and %;1

The matrices EE’ §g1, §n, and %;lare given by

AL us' ' _ 8!
c? c? c? c
2 2 2
3 a'g’ -%—(u-ﬁt) :—Ee - ug' %En—ve' 8’
§ = (C1)
13 (ucgn— VCES/A) __c £ e
od pd °n Apd 5S 0
z 2 2
D I S T e
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) L o B
2c2 2¢2
2 : 2 '
c - L&
(v +3 £g) e (u ad Eg)
¢ 2¢? Tdba 2¢?
2 2
C C
v +=¢£) (v -=<¢&)
1|, d °n £ ¢ —a2 ke
£ 2c2 Ad "e 2c?
2 e
[a' + 55 (Bg))) c v la' - =5 (u-g))
d 2
o' '—d- (—ugn +x €s) 2
2¢2 2c
1 1
A + =
+ %" 28"
| - '8’ ug' ' -8B
c? c? c? c?
(Vcns/A - uen ) c c
_ —n = 5oz Ms 0
g Pg Pg N (<3°4 (c3)
n B c2 s Cz c2 ' '
a'8! = =g (v | g ng - us' —g 'n T VB 8
2 o2 2
a'g’ +-c—é-(v-nt) “3gMs TU' | gy~ V8 B!
B ug' 1 1 N
1 c? 2¢2 2¢?
2 2
[ C
" gg.nn (u + e ns) (u - ig'ns)
2¢2 2¢2
2 2
[ [
+._. - —
1. _pe . (v 2 n,) (v g n,) ca
n Ag s 2¢? 2¢2
2
vt 4+ & (5~ v & (%-
, e v, , [a' + 2 =11 | [ r (v=n))]
a _E' x s ", 2 2
2¢c 2¢
1 1

If it is assumed that the outer boundary (which is shock in the present case
and moves with time during the transient part of the solutions) 1s fixed,
for example for the internal flow problems, then ne and &, are

identically zero and Eqs. (Cl) through (C4) reduce to those obtained in

Ref. 7 for a flat surface (A=1). It may be mentioned that for obtaining the
expressions provided here certain columns and rows of Eqs. (12) and (13) of

Ref. 7 need to be multiplied and divided by (pay 2) and a change in their
order i1s required.
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Fig. 2 Definitions of various time steps at the
stagnation point for Problem II and
Courant number (CN) of 5 and mesh
refinement parameter g = 1.02.
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