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ABSTRACT

An analysis and survey with conjecture supporting a preliminary
data base design is presented. The data base is intended for use in
a Computer Image Generator visual subsystem for a rotorcraft flight
simulator that is used for rotorcraft systems development, not train-
ing. The approach taken was to attempt to identify the visual
perception strategles used during terrain flight, survey environ-
mental and image generation factors, and meld these into a prelim-
inary data has? design. This design is directed at Data Base
developers, and hopefully will stimulate and ald their efforts %o
evolve such a Base that will support successful simulation of terrain

flight operations.



FOREWORD

This report was prepared for the United States Ammy
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contract NAS2-10934 and was accomplished in a 16-month
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1.0 Introduction

An effort to define out-the-window imagery needs for Nap-of-the-
Earth (NOE) flight simulation has been completed.

The background for this study lies partly in the Army's commitment
to advanced rotorcraft for future military missions. In implementing
this commitment, the Army has concluded that it is the interest of
the government to use NASA simulation facilities to aid in the develop-
ment of advanced rotorcraft. To this end, the Army and NASA have
entered into an agreement to modify existing NASA simulation facilities
to include tlie capability of conducting NOE flight research.

The needs for the visual simulation subsystem for this facility
are difficult to meet because of the large fields of view utilized and
high ground detaill characteristic of the NOE flight env.ronment. A
concept has emerged, however, that promises to meet this goal. It
utilizeds a head-directed area-of-interest in which a relatively small
fileld-of-view is maintained before the pilot's face. The purpose of
this study is to define the imagery needs for this field-of-view and
the corresponding data base used to generate it, using a computer-
generated-imagery (CGI)-based system.

The initizl part of the effort concentrated on evolving ‘the method
to be used in defining the imagery. Subsequently, a preliminary data
base was created that is suitable for producing pictures using CGI
hardware currently under development.

The rest of this report is organized into sections corresponding
to the elements of the study arproach. These elements are briefly

summarized in the following paragraphs.



Flight within the Nap-of-the-Earth involves flying behind and/or
below terrain features that afford masking from threat forces. It
requires a tradeoff between masked tim; and speed. Generally, a slower
speed permits more masked time. Because the crew workload is so high,
visual scanning activity is theorized to be a key factor in determiring
imagery needs. The suspicion is that "there is no time for sight-
seeing," and every pilot gaze has a purpose and is therefore related
to the pilot's problem of perceiving the visual cues that are relevant
to the successful progress of the flight. It is further theorized that
the combined flight dynamic capabilities of pilot and rotorcraft some-
how affect the visual scan activity. From a knowledge of the scan
activity, it is assumed that the reason for each gaze may be determined,
and then specific objects in the field-of-view can be defined that will
facilitate the necessary perception at that time.

Next, object counts, array and quality factors may be determined
for these gaze times considering the intended trajectory, real terrain
properties and image generation, and presentation systems characteris-
tics. If this process can be conducted for several typical but chall-
enging NOE flight operations (areas and tasks), the assumption is that
the result would be a preliminary data base map descriving typical
generation data such as object location, array, number and assoclated
appearance factors with corresponding statistics, such as edge or poly-
gon count.

This report descrihes the use of the method outlined above, in-
cluding the assumptions made, the verification offered, and some
preliminary research results to provide a description of a data base

suitable for image zenerators that will permit effective NCE flight
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simulation, i.e., that which preserves the control strategy, workload
and performance of real flight.

2.0 Probable Visual Scan Activity and Perception Strategies

The purpose of NOE flight is to make progress toward a local and/
or a longer range destination, while utilizing the terrain to enhance
survivability. The crew can consist of a pilot or an integratsd team
of at least pilot and co-pilot/navigator/gunner. In a multiple crew
rotorcraft, the pilot's duties are primarily to fly while receiving
navigational instructions from the co-pilot/navigator. Once a destina-
tion has been designated, the crew selects several routes that take
advantage of terrain features for masking, while permitting a speed
commensurate with the desired enroute time. If the averager speed falls
below that needed to arrive on time, the pilat may elect o "cut
corners", i.e., to ii~rease clearances in order to increase speed.
Increasing clearances ma, *ake place at other times also; for example,
to make a navigational survey, to facilitate communication, or to
attack or evade attacking enemy forces. To the pilot, therefore, the
primary visual task with respect to out-the-window imagery is to
search for, find, ani fly to suitable, immediate, i.e., close-by,
masked areas along the route. This must be done while maintaining
small, but safe, clearances from the immediate surroundings.

It 1s postulated that this task, as related to NCE flight, demands
the highest image detail requirement. If the detall needed to accom-
plish this task can be provided, then there is sufficient detail for

other phases where clearances are larger. In this study, therefore,
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we are concerned with the imagery corresponding to areas where small-
clearance NOE flight is probable.

2.1 Pilot Visual Scan Activity

The structure and possible functions of eye movements have been
studied extensively. While measuiement of eye movements in flight
is difficult, nevertheless, some results can be found in the litera-
ture. A survey of head and eye movements was made by the author, and
the results and a bibliography of references used is contained in
Ref. 1.

.Eye movements can be classified into two broad groups:

Saccadic movements, the rapid flicks which reposition the eye %o
a new gaze point. A gaze point in the visual field is one whose image
formed by the eye is placed on the fovea.

Vergences, glissades (pursuit) movements. These are the slower
movements used to track cbjects in the visual field.

The number of saccadic movements per second is roughly two, and
the duration of saccades is a function of their magnitude. For the
average saccadic movement of about eight degrees, the duration of the
movement is about 41 msec. Assuming that blinks of 100 msec. duration
occur osnce each second and could occur during either a saccadic or a
pursuit movement, the resulting time available per dwell for percep-
tion is about 400-500 msec. There is also the possibility that many
dwells in the same general area may be required, resulting in staring.

How migh% these dwell periods of roughly 4 second be distributed

over space and for what purpose? A clue to the answers to these ques-



tions may lie in the following factors:

1) The interactive kinematic performance potential of the rotor-
craft and pilot

2) The features in the immedlate surroundings

3) The basic mission motivations; 1.e., avoid catastrophic colli-
sions, move forward and remain masked

4) Pilot training

5) Physical state of the pilet

6) Ambient light conditions

The interplay of these first four factors and eye movements will
be shown in the followirg paragraphs:

During training, a rotorcraft pilot learns to judge the performance
potential of his craft and himself in many ways. For example, he learns
the horizontal distance in which he can stop in at a given speed, and
the minimum space within which he can turn. It is hypothesized that a
three-dimensional boundary exists for any given speed, weight and atmos-
phere (air density and wind) that defines the space available to the
pilot for maneuvering. This space is attached to the rotorcraft, but
is not rolled with it, and projects mostly forward in the direction of
movement. It 1s horn-shaped, with its sides being defined by the turning
radius, its top surface by pull-up acceleration, and i:i: bottom surface
by descent performance. The forward-facing open end of the horn may be
closed by the stopping distance boundary. Three examples of such a
boundary, for three speeds, have been computed and renditions of their
shapes (right side only) are shown in Figs. 1, 2 and 3, together with

the kinematic assumptions used in the calculations for each.
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The significance of these horn-shaped boundaries is that the space
within it, and only within it, is available to maneuver in with an
option to come to a hover at the forward face. This means that only
the terrain features that enter this space are of any consequence to
the flight progress, and indeed, any large object such as a hillside
that enters it and fills the space between its sides, spells an immi-
nent collision. There is another boundary of interest within the cae
described that is a forward extension of the rotorcraft's cross sec- |
tion, considering the prasenf velocity and acceleration of the rotor-
craft. Under acceleration, the latter boundary will extend forward
and curve, intersecting the surface defining the stopping or hover
boundary. This intersection defines the space where the rotorcraft
will surely be soon, if some immediate action is not taken. If taken,
the larger envelope defines the bounds of the possible places that the
rotorcraft may be placed. As viewed from the initial point (pilot's
eye point), the forward extremities of the boundaries define a field-
of-view map that is of great interest to the pilot. For sake of
reference, tho field-of-view plot of the larger boundary defining the
performance envelope will be termed the "envelope field," and the
smaller one, the "impact field." Figure 4 shows these fields plotted
for the corresponding houndaries defined in Figs. 1, 2, and 3. It
is logical to expect most »f the pilot gaze time to be concentrated
about equally in these two fields, with the remainder diverted to
outside navigational identifiers and inside displays. It is also
logical to expect the pilot to prioritize his outside gaze time,

mostly according to the nature of objects entering the envelope and
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impact fields.

Figure 5 contains a plot of typical envelope and impact flelds.

It also shows the hypothesized dwell time the pilot will spend in each
field, and the priority level he will give otjects in that fleld.
Priority level means that objects of higher priority will be fixated
before objects of lower priority.

Figure 5 is essentlally the hypothesized "set of rules" for deter-
mining the gaze patterns of pilots while flying NOE missions. Although
of secondary concern here, the dwell times of the navigator are thought
to be related to these boundaries, but complementary to those of the
pilot. For a gaze time distributed uniformly over the solid angle
visible from typical rotorcraft, the dwell times for navig;tors are
those shown in the adjacent boxes. In determining the gaze pattern
for a specific area, some note will be taken of experimental results
reported in the literature. If necessary, the saccadic duration time
as defined in Ref. 1 will also be used to account for transient times.

2.2 Perception Strategies

Because we learn to see, it is safe to assume that what we learn
are methods for integrating visual stimuli into visual cues or visual
interpretaticns. In the context of NOE flight, it is reasonable to
expect that pilots also learn to perceive the necessary information.
The more common methods thought to facilitate these perceptions may
be found in the literature (Ref. 2) and are briefly summarized in the
following table describing the basic mechanism, the input stimuli re-
quired, assumptions made, if any, an® he resulting visual cue.

The viewpoint here is that visual perception is essentially

.



information processing where the information is "encoded" in a spatially-
unique array of light patches. These light patches may assume a variety
of forms ranging from low-coherence texture* to high-coherence straight
lines, and having a wide range of intensities and color. The essential

| information believed to be extracted fgon the stimull are observer

position (orientation) in space, velocity, and surface characteristics.

*Texture. as a component of appearance (of an image) is a spa-
tial array of patches or spots with varying degrees of regularity in
their size, shape, arrangement, distinctness, color and brightness.
Texture gradients refers to systematic variations in the above

factors over space.
-13-
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TAELE I - SUMMARY OF PERCEPTION MECHANISMS

MONOCULAR STIMULI/CUE RELATIONS

MECHANISM STIMULI ASSUMPTIONS CUE(S)

1. LINEAR PERSPECTIVE: An.array of Objects are Shape of the
Conversion of apparent | constant-size all the same ! array and re-
size into relative objects size { lative orien-
distance and orienta- ! tation. Rela-
tionl ' tive distance

{ (distance of

{ observer rela-
i tive to object
| _size)

2. AERIAL PERSPECTIVE: Object con- Contrast i Distance relative
Conversion of object trast variation to visibility
contrast into rela- with atmos- range
tive distance pheric scat-

tering

3. INTERPOSITION: An array of Non-trans- Shape of the
Conversion of the occluded ob- parency array, relative
view of occluded Jects distance and
objects into | orientation
object array shape
and relative dis-
tance and orienta-
tion

4., SHADING: Shadows fall- Parallel Orientation
Conversion of ob- ing on the rays of sun- of observer;
ject shadow images object and/or | light orientation
into object shape, a nearby sur- of object
relative orienta- face relative to
tion and distance surface and

! sunjrelative
i distance

5. TEXTURE GRADIENT: Array of tex- | Texture prop- E Snape of the
Conversion of view ture on a sur- | erties invar- | surface ori-
of texture gradi- . face lant with dis-| entation and |
ent into shape and ! ! tance and ill-; relative dis-
relative distance ! umination . tance

6. APPARENT/FAMILIAR | Any object or | Object is the | orientation
SIZE:Conversion of ! array of ob- recognizable anl Sheslivte
the view of a fam- i Jjects entity it Aglnve

iliar object into
orientation and
absolute distance

appears to be




TABLE I , Cont'd.

=
MONOCULAR STIMULI/CUE RELATIONS
MECHANISM STIMULI ASSUMPTIONS CUE(S)

7. MOTION PERSPECTIVE, An array of The array is Shape of the
OPTIC FLOW, objects on a rigid surface,orien-
STREAMING, SHEAR: surface tation and
Conversion of absolute time
the apparent ang-
ular velocity of
objects into ob-

Jject array shape
orientation and
absolute time?

8. APPARENT/INTRINSIC An array of Intrinsic Shape of light
BRIGHTNESS:Conver- point lights brightnass of array,orienta-
sion of apparent each light is tion and rela-
brightness of point the same tive distance
light into relative
distance

BINOCULAR STIMULI/CUE RELATIONS
MECHANISM STIMULI ASSUMPTIONS CUE(S)

9. ACCOMODATION/ Any object Knowledge of Absolute dis-
CONVERGENCE entrance tance to object
Conversion of eye interpupillary
focus and conver- distance and
gence responses to focus relations
absolute distance

10. STEREOSIS: Con- An object Knowledge of Absolute dis-
version of dis- showing fea- entrance inter-| tance to object
parate retinal tures of pupillary dis-
images into an depth, e.g., tance
impression of sides
absolute depth

- ——

1

While linear perspective pertains to cues of depth using actual

or suggested lines that intersect in the background, the definition of

the mechanism should be expanded to include cues resulting from any




Table I, Cont'd.

Footnote 1, Cont'd.
coherent image containing lines that involve a geometrical interpre-

*ion. This broader meaning is assumed in the rest of the report.

2
Since the appearance of objects in a streaming optical flow

field is that of an array of objects of differ ing angular velocity
and angle, by comparing the two for an object, a sensation of time
to pass each object is the result. Distances of objects, there-

fore, are probably perceived in terms of the absolute time remain-

ing before passing them.

With the exception of motion perspective, it is easy to see the
bases for the monocular mechanisms in the physics of the visual world.
The proce ss that creates the visual world starts with illumination from
various sources such as celestial and man-made objects. The objects
being illuminated have characteristics of their own that modify the
incident light, such as content, reflectivity, absorptivity and shading.
The content can vary widely, ranging from complex objects with high co-

-16-




herence permitting linear perspective and interposition effects, to low-
coherence objects, such as brush, that are assoclated with texture
factors. The reflective and absorptive characteristics give rise to
color and intensity of reflection and shading, dependingon whether the
incident radiation is parallel or diffuse. Finally, as the light leaves
the objects on its journey to the observer's eye, the intervening atmos-
phere provides a myriad of additional effects permitting aerisl per-
spective.

Motion perspective stands out of this physical milieu, as it
appears to be able to convey depth information using the relative
motion between observer and object.

Besides these ten methods of integrating visual stimuli into cues
or interpretations, many pthor variations or combinations of the above
exist that invoive specialized stimull and assumptions. For example,
the simplest definition of linear perspective was included in the table;
however, linear perspective should encompass a wide range of line arrays
involving many complex but interpretable geometrical concepts and asso-
clated assumptions. Illusions occur when more than one set of assump-
tions are involved.

Note that most methods can provide cues as to shape, orientation
and relative scale (size). Only one of the monocular methods can provide
information about absolute scale or size (apparent/familiar size). This
apparent dearth of methods for perceiving absolute distance is probably
not true, and will be elaborated on later. Of the ten possible methods
described previously, only those associated with monocular effects are
considered useful, because binocular displays are not within the tech-

=) %a



nology that will be applied to the Army-NASA facility modifications.
This is not to say that binocular effects are unimportant to NOE flight.
They may be, especially at extremely ciose range, say five feet from the
tops of trees during a hover. Some insights into depth perception use-
fulness are given by Harker and Jones (Ref. 2).

Armed with the above concepts, a field study was made of a typical
region where NOE flight could be conducted. This was done in order to
galn insights into the perceptual strategles that could be used by pilots
flying NOE missions.

The area chosen was Henry W. Coe State Park, located about twenty
miles southeast of San Jose, California. The park is the former Coe
homestead, and comprises an area of roughly twenty square miles. Due
to relatively recent faulting, mountains have formed with ridges and
valleys running generally parallel to the California coastline. The
elevation of the peaks and valleys ranges from 3,000 feet to 2,000 feet,
respectively, with the maximum large-area slope observed being about
40°, The coastal climate assures sufficient rainfall to support Oak
and Madrone trees, Manzanita, a shrub, and a variety of grasses on a
soil cover deep enough that few rock outcroppings are visible. The
trees and shrubs are evergreen, but the grasses are seasonal, providing
a rich, green carpet in the Spring, and suddenly fading to a golden
brown about the middle of May. Cultural features are few. Besides
the old homestead buildings, now occupied by the Park Service, there
is a network of fire roads, hiking trails, campsites, and an occasional
remnant of a fence, corral and stock loading ramp. The weather is

usually sunny with clear skies and a variable visibility range. At
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these latitudes, the sun reaches a maximum altitude of 77° in sune, and
about 31° in December, so that in the winter, the steeper, northfacing
slopes are always shaded.

Tactically speaking, the area is accessible enough so that large-
scale battle operations could be carried out. The undulating nature of
the terrain would enhance survivability during NOE flight, because the
mumerous interconnected gullies and small valleys, with some tree and
shrub coverage, would provide a high degree of masking from hostile
forces occupying neighboring depressions or the ridge tops.

The area was examined and re-examined at various times between the
months of March through October, 1981, from the tactical, flight dynamic
and perceptual points of view. The data sought were typical contours,
slopes, tree and shrub size and distribution and appearance, cultural
feature appearance, shading, color and contrast. The intent was not to
examine the area to possibly mimic it as a NOE data base, but rather to
understand the elements of the underlying perceptual process involved in
flying over it. From the viewpoint of image generaticn, 4t is an area
of moderate detail, i.e., not as rich as a desert with numerous rock
features, but yet not as sparse asa snowscape. In many respects, the
area is similar to Fort Hunter-Liggett Military Reservation, about 80
miles south, where NOE flight operations by the Army are routine.
Therefore, it is to be expected that NOE flight in the Coe State Park
would not be umusually difficult. The park is used occasionally by the
National Guard for helicopter training exercises.

The important findings are summarized below:

1. Linsar Perspective - In densely-wooded areas containing stands

of Oak and Madrone trees and Manzanita shrubs, the appearance of the
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crowns is that of "clumps" of green against other "clumps" of a darker
or lighter green. Since the clumps vary widely in size, there is not a
strong impression of terrairv shape or depth. When individual ti.aks
could be seen against a background of grass, the impression was sironger.
In the few areas containing fence posts, dirt ro/ds and trails, the
usual commanding impression of snape and scale were evident. However,
roads and trails were generally occluded by trees and shrubs, and unless
viewed from nearly overhead, did not provide a strong impression of
terrain shape or size. Only when hill slopes were high erough to requirm
excavation for the road did any impression of shape or relative depth
result.

2. Aerial Perspecti.e - On most days examined, some impression of
relative depth could be gained by comparing the contrast among closer
features with that of more distant ones., The effect was apparent even
in small gullies and valleys. It was difficult tn calibrate, however,
so that the judgement of relative distance was inaccurate. It is an
excellent mechanism, however, for distinguiihing near objects, such as
trees, from more distant ones. The mechanism works at close range, pro-
vided that the visibility range is also short. For example, from a
ridge-top viewpoint, it was readily obvious that the tops of shrubs on
the nearby slope displayed higher contrast with their immediate neigh-
bor's shadows than did those on the opposite slope, even when the sun
appeared nearly overhead. It was not possible, however, to accurately
judge the width of the valley using only these stimuli,

3. Interposition - The appearance of dense clusters of trees and

shrubs on the sides of hills and in gullies was such that a low to
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moderate impression of hill shape was apparent. The low contrast (color
and luminance) between interposed trees and shrubs made the judgement of
relative distance difficult in these areas. In more sparsely-populated
hillsides and gullies, the impression of depth was moderate, as long as
the contrast was high enough that individual trunks and crowns could be
distinguished. This was especially true in the summer and fall months
when the dark browns and greens of the tree trunks and crowns contrast
with the background of light brow: grass.

~. Shading - At high sun elevation angles, shadows are small and
contrast highly with the brighter surroundings. For example, densely-
wooded slopes contained trees and shrubs of a wide variety of sizes and
shapes. This follage showed a random-appearing array of shadows, which
upon closer inspection were found to be due to the shadows of the lower
portions of the crewr=< of Oak and Madrone trees that were expoBed on the
slope. The result is a definitely noticeable increase in shadowing on
upward-going slopes, and conversely, a dacrease in shadowing on level
terrain or down-going slopes. This means that it could be expected that
the shadowing of densely-wooded areas will increase when viewed from over-
head, when sun elevation angles are high. It is not known whether this
effect would be present for grassy areas. If so, then grassy areas
should appear slightly darker when viewed from the same range, but a
higher vantage point. The shadowing at low sun elevatlon angles was
very apparent, and gave a deflnite impression of slope. Slopes at the
sun's elevation angle, or higher, revealed deep shadows that did not
change appreciably until the onset of twilight.

5. Texture Gradient - Texture gradients were sought in both open

-21-



and grassy and densely-wooded areas. Although "texture" assoclated with

. lighter or darker areas of grass, tree crowns and shrub tops was observ-

ed, no distinct gradients in these "texture" patterns could be detected.

This was a surprising »esult, and closer scrutiny revealed some interest-
ing patterns of light associated with illuminated vegetation.

The appearance of densely-wooded areas from an elevated viewpoint
is that of an array of light patches of varying shape and angular size.
This appearance is due to the shape of the tree crowns, i.e., the place-
ment of individual branches and leaves relative to their trunks, and the
variable spacing of the trunks themselves. Shrubs such as the Manzanita
also had a varied appearance because of their wlde range of shapes and
sizes. It was concluded that no texture gradients were observed, because
the texture element size varied too widely for the range of distances
1nvolvea.

This notion was briefly tested by examining photographs of areas
with easily-detected texture gradients. These photographs were of a
rippled pond, a flower farm, a row crop and an orchard. The obvious
texture gradients in these photographs suggest that for a gradient to
be visible, the texture element size, e.g., average distance across the
patch, should be nearly uniform for all patches. The texture element
size of wild vegetation is too non-uniform to reveal gradients with
distance. An exception to this exists for grass viewed at close rarge
1.52-15.2m (5-50 £t.). As long as individual blades of grass can be
seen, the impression of depth due to the texture gradient was present,

presumably because the grass was very nearly uniform in size.



6. Appaprent/Familiar Sige - The area was inapected for objecta

that ocould eatabliash the perception of terrain aise by the mechaniam of
apparent/familiar sise. Bealdes the obvious cultural featurea, i.e.,
the homestead buildings left by the Coe family, a variety of fence poata
and remnanta of corrala and atock loading ramps were found. The latter
give a atrong impresaion of scale, because the fence poata are nearly
uniform in height, ranging from four to five feet in height, with vari-
able cross-section, aa they were hewn out of the native treea., Other
kinda were alao found, for example, the familiar modern ateel barbed-
wire fence post with an "L" oroas-sectional shape. Although amall
(about 1" wide) in alue, they were alwaya found with an occaalonal crosa-
aectional wooden anchor poat whose croaas-section varied from four inchea
by foul inchea to twelve inchea by aix inchea.

Generally, the fencea were placed in the open areaa that are ault-
able for grasing. They seldom atood vertically, and thelr apacing was
variable. Although watering trougha ahould be commonplace in asemi-arid
grasing areaa, none were seen in Coe State Park. In aimilar areaa, how-
ever, the author haa aeen trougha varying from home-bullt typea to old
bathtuba, washtubs and cut-down ateel druma.

It waz auapected that a aenae of acale could be extracted by ob-
gerving the vegetation, l.e., the Oak and Madrone treea, the Mansanita
ahruba and the paature grassea, Further examination, however, revealed
a wide variation in the alpe and shape of the treea and ahruba, It waa
dAfficult to ldentify an "average tree" for any one locale, as they
appeared to grow according to the aupply of water and aunahine, the

a0il quality and the number of nelghboring competitora, For example,
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large Oak trees were found mostly in gullies and drainage basins, but
an occasional very large “"loner" could be seen on the top of a ridge
or hill.

The Madrone and Manzanita also grew to a wide range of siges and
shapes, e.g., four feet to sixty feet tall with a spreading, low crown,
to short, vertical ones., There was no obvious correlation between shape
and size. Also, it was difficult to observe a relative change in bear-
ing by observing a single tree or shrudb. They do not exhibit strong
agimuthal appearance changes, unless they are severely wind-blown.

The tall pasture grass appeared to be of nearly uniform height,
except on relatively steep (20-30°)alopoa. It was concluded that only
the few cultural features, i.e., fence posts, corrals and roads, gave
an initial impression of absolute size. When they were not visible,
it was difficult to judge the absolute sige of gulllies, small valleys
and ridges. Estimates were often lnaccurate by factors of two to three.

7. Motion Perspective - The area was negotiated on foot, there-

fore motion perspective was introduced slowly, over periods of minutes,
Surprisingly, a powerful sense of scale was introduced by simply walking
through an area such as a valley or gully. When nearer ridge tops could
be seen against very distant ones, the absolute size of trees and shrubs
on the near ridge could be easily and accurately estimated by walking a
short dlstance normal to the line-of-sight to the object in question.
When a distant background was not available, the impression of scale was
simply more difficult to extract. For example, the width of a small
valley could be estimated by selecting an object on each ridge that sub-
tended an angle ol 459 t5 the general direction of the valley cenie..
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Then, by walking down the valley until the objects stood abeam of the
observer, i1.e., the angle of each increased to 90°. the width of the
valley is then approxinately twice the distance walked.

After some time in the area, it was obvious that a sense of scale
became stronger,and more subtle stimuli-cue relations emerged. These
will be discussed later.

8. Apparent/Intrinsic Brightness - This effect was not present,
since the area was examined in daylight.

9.,10. Binocular Effects - These effects also were not explored,
because the author does not possess normal binocular vision. It was
observed, however, that individual leaves of trees and shrubs could
be easily distinguished sometimes, if their shiny side was oriented so
as to reflect sunlight to the observer. Normally, such details would
not be visible due to their low contrast, but because of their relative-
ly high reflectance, they stood out against darker backgrounds, giving
a "Christmas tree light" effect that should result in stereoptic stimu-
11 at distances of up to possibly 50 feet or more.

During the examination of Coe State Park, other perceptual mecha-
nisms were discovered that involve more abstract perceptual assumptions
and can result in the cues of absolute distance. It was noted that large
trees sway differently in the wind than small ones. Apparently, the
stiffness/inertia parameters of vegetation are such that they show the
familiar decrease in natural frequency with size. It was obvious that
a large tree or tree branch oscillated in the wind at lower frequencies
than did a small tree or shrub. The observation of "average frequency"

of oscillation in a wind could possibly be calibrated to yield the
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absolute size of the vegetation.

This observation immediately called to mind two other possible
mechanisms. These are based on gravitational effects and relate to
the appearance of falling objects, falling water{ or rising smoke and
fire. Since water and falling objects are scarce in Coe State Park,
and fire is prohibited, these effects were scrutinized only in theory.

The principle is simple. Since we know the gravitational acceler-
ation on the Earth's surface, we should be able to, with piactice, make
an absolute distance judgement by observing falling objects. An object
such as fruit falling to the ground will require a definite time period
to reach the ground. The observation of this time period and the apparent
angle of the trajectory shﬁuld theoretically be transformable into the
cues of absolute size and distance to the tree.

Similarly, the appearance of small waterfalls is different from
that of large waterfalls. The appearance of waves on lakes and the
open sea should also be transformable into cues of absolute wave height,
although the relations are complex.

Lastly, the appearance of smoke and fire is definitely size-
dependent. A large fire undulates slowly, but a small one appears to
flicker quickly. Large smoke puffs move differently than small ones.
Presumably, the fire and smoke apparitions are due to the scale effects
on thermally-induced buoyant forces relative to gravitational ones.

In summary, a search for the existence of "classical" perceptual
mechanisms in a portion of the natural world revealed a lack of the
corresponding stimuli. Although shape and orientation of the natural

environment could easily be extracted through the use of several of
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the mechanisms, an accurate judgement of absolute size could not.

With repeated exposure to the area and the use of motion perspec-
tive induced by walking through it, the impression of absolute size
began to emerge. In fact, it strongly appeared that some of the
classical mechanisms, such as linear perspective and narrow-band
texture, are associated mostly with cultural features. Furthermore,
the mechanisms of aerial perspective, shading, and interposition are
often absent or difficult to detect. The stimull for the mechanism of
apparent/familiar size is only readily found in cultured areas, and far
more difficult to detect in natural terrain. We are inexorably drawn
to the conclusion that pilots should not be able to perform NOE point-
to-point flight adequately over natural, random-appearing areas devoid
of recognizable features. But, this is a ridiculous conclusion, as it
is common knowledge that they can easily fly over unrecognizable terrain
that they have never seen before! Either our concepts of the "classical"
perceptual strategies are incorrect, or something else is being used.

The author believes that the latter is the case. The only re-
course is to draw the conclusion that the dominant perceptual strategy
used for NOE point-to-point flight is motion perspective augmented by
the use of other mechanisms, such as linear and aerial perspective, inter-
position, shading, texture and apparent/familiar size; if and when their
corresponding stimuli are available.

This means that pilots will be able to fly NOE over unrecognizable
terrain upon first encounter, but will find it easier if some recog-
nizable objects can be seen, or upon repeated exposure that allows

them to "calibrate" the area. They will experience more difficulty
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(and therefore increase clearances and/or slow down) over terrain which
lacks sufficient detall to induce motion perspective stimuli. Such
terrain can be snowscapes, sand dunes and open, glassy water, for
example. Obviously.difficulty would also be encountered as twilight
approaches, when the number of detectable objects decreases.

It m‘ stated earlier that the motion perspective mechanism can
only provide, at best, cues as to relative depth or distance. The
mechanism was examined from a mathematical viewpoint, however, and
this was found not to be true. In fact, the mechanism can provide a
"depth map" directly by observation of several objects in the visual
field. This is explained more fully in the next section, where the
results of a preliminary analysis of the motion perspective mechanism
can be found. The conclusions, statement of perceptual strategy, and
implications for imagery design follow.
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3.0 Preliminary Analysis of Motion Perspective
The first thorough description of motion perspective cues to

distance was provided by H. Helmholtz (Ref. 3), as cited by Harker and
Jones (Ref. 2). Although the subject has been extensively studied by
Gibson, et. al. (Ref. 4) and others, it has remained an odd sort of
mechanism thought to provide some cues to relative depth. The mecha-
nism has been associated with other names, e.g., optic flow, streaming,
monocular movement parallax, shear and motion parallax. All relate to
the basic idea that any visual field contains movement patterns dic-
tated by the relative motion between observer and the outside world.

Briefly stated, if relative motion can be characterized by two
quantities, a translational and a rotational motion vector that are
defined relative to coordinates in the outside world, then the appear-
ance of the outside world during such movements takes on definite
patterns. For pure translational movement toward an impact point, all
objects in the visual fileld will stream outwards from this point. For
a pure rotation, however, the pattern is circular, arching around
the point corresponding to the axis of rotation. As we move through
the fixed outside world, the vector combination of these two patterns
are impressed on the retinas of our eyes.

It is suspected that these patterns are learned and used by the
human infant following its first attempts at.hani. head and eye
coordination, and the reflex is further refined by the time it is
crawling and walking. It is probably very well-developed in the young
child, permitting it to move gracefully and perform amazing feats of
balance and locomotion.
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For persons who drive automobiles and fly aircraft, the subliminal
integration of the movement patterns of many objects in the visual field
into the visual cues of angular and translational velocity is probably
highly developed.

The integration of these patterns does not appear to depend on the
gaze point relative to the direction of movement or rotation, however,
it could be expected that the streaming patterns corresponding to trans-
lational movement are probably most accurately interpreted by the visual
sense when the gaze point is near (within 90° of) the impact point or
direction of translation.

The mathematical expression for the absolute angular velocity of

any object in the visual field is given below:

1) Angular movement:

W, = SlEH P a e = (1)

2) Translational movement:

V3
R SRR LR (2)

(*% = Apparent angular velocity of an object in the visual
field due to observer rotation. (rad./sec.)

-

Observer angular velocity (rad./sec.)

-
n

Angle between the direction of rotation and the direc-
tion to the object.

UJT = Apparent angular velocity of an object in the visual
field due to observer translation. (rad./sec.)

V = Observer translational velocity (ft./sec.)

= Angle between direction of translational movement and
direction to the object.

R = Distance from observer to object (ft.)
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The idea of motion perspective is that many objects in the visual
field will be sampled and the impressions will be integrated into the
perception of observer angular velocity and distance to the object. The
observer angular velocity perception process is straightforward, and is
demonstrated by re-writing equation (1) thus:

e % ------------ (3)

The observer's angular velocity is simply the apparent angular
velocity of an object divided by the sine of the angle between the direc-
tion of rotation and the direction to the object. The perception of the
angle (P) requires the sampling of several objects not near the axis of
rotation, so that the angla (P) of each may be determined.

The corresponding situation for translational movement requires some
interpretation. In this case; a similar re-writing of equation (2)

results in the following:

|0
n
o
-;‘1Q
&

The first interpretation can be seen by dividing R and V by D, a
characteristic dimension of the rotorcraft like its rotor diameter. The

new equation would be the following:

R/D = (V/D) §IDN}Q ---------- (5)

The formula implies that if the rotorcraft's velocity were known
in terms of rotor diameters per second (V/D), then the distance to the
object can be inferred (in terms of rotor diameters) if the angular
velocity of the object is observed and a sufficient number of object
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angular velocities are sampled ina order to perceive the angle § to each.
Seversl objects must be samplei in order to determine the observer's aim
point, so that the angle { may be determined from this point to each
object.

Tha second interpretation requires no knowledge of flight speed in
terms of a characteristic dimension D, but rather ylelds a direct per-
ception of distance to the object in terms of time to impact (assum-
ing the observer were traveling straight toward it). This mey be seen
by considering the left side of equation (4) as the time-to-impact,
namely R/V directly. This means that a depth map may be directly per-
ceived in terms of time-to-impact each object in the visual fleld by
sampling the angular velocity of each object and the pattern of move-
ments for several objects in order to perceive the a.ngleg to each.

The mathematics suggest that a minimum nmumber of objects must be
simultaneously seen in the visual field for the mechanism to work.
Zacharias (Ref. 5) provided a vigorous mathematical treatment of the
general equations in vector form, and has concluded that a minimum of
three objects is required in order to make ‘he number of equations equal
to the mumber of unknowns, thereby yielding a solution for the impact
time-depth map for those three ob jects, considering translation only.

To illustrate the use of the motion perspective mechanism in a per-
ceptual process, the following example is offered. Consider a rotorcraft
Pilot approaching a hill. For the saire of simplicity, let us make the
hill a two-dimensional one similar to one cycle in a corrugated roof.
Let us assume that two points will be placed on the surface, one above
the impact point, and one below it as shown in Fig. 6.
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FIG. 6 - Motion Perspective Parameters for the
Approach to an Inclined Flat Plane

The equation for the apparent angular velocity of each point is

given by the following equation:

W . v. s Ensw(§ -6,
LN SIN - - - (6

- Elevation angle of the point n

Slope angle of the plane containing points 1 and 2

< ma(\)
'

- Rotorcraft velocity (ft.sec.)

R, - Horizontal distance to slope (ft.)

Re-writing equation (6) for time-to-impact:
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Equation (7) is the key to the interpretation of the time-to-impact

depth map, since if T can be determinnd for the impact point, the time-
to-impact for any other point may be computed by the relation:

% w0 (8)

R, SIN “6n

The solution of equation (7) is straightforward. First, two points
are required as a minimum, so that an equation for the slope angle may
be formed from the two right components of equation (7), namely:

siN( § - 6,) _wr, STV G,
SING-0,) DT m‘di_

Equation (9) is solved for 5 following the observation of the angu-

(9)

lar velocities le tndUTz , and the angles 91 and 92; the result is
then used in equation (7) to compute the impact time T,

If a thiﬁ point is used, then it will be obvious that it should be
possible to define the time-to-impact depth map for a piane formed by
those three points. Hence the conclusion that, mathematically-speaking,
only three points are required io effect the perception of observer
orientation relative to the plane and time-to-impact to th: three points;
for that matter, any point in the plane, including the actual impact
point.

Some preliminary calculations were performed to see what the accur-
acy of the time-to-impact and slope argle estimates would be, assuming
errors in the perception of the sngular velocities Q-'Ti and &JTZ. and

their corresponding elevation angles 91 and 92 (relative to the
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impact point). A true slope of 32° and a time-to-impact of four seconds
were chosen for the calculations. The corresponding true angular veloci-
ties for two points, one at 91- -10° and the sacond at 92- -40°, were
also calculated.

The assumption was then made that the perceived angles (absolute
value) were too high by five per cent, and the perceived angular veloci-
ties (absolute values) too low by 10 per cent, ylelding a worst case based
on the minimum number of points and reasonable threshold errors. The re-
sults showed a perceived slope angle of 31.5 degrees, and a perceived
time-to-impact of 4.73 sec., approximately in error by -1.6 and 18.3,
per cent, respectively.

It could logically be expected that the use of more points would
only improve the accuracy in a way similar tﬁ-tho improvement in a celes-
tial navigational fix when more sightings are taken. In the motion
perspective case, the perceptual thresholds would be distributed about a
mean of zero, thereby making the distribution of impact time also clus-
ter about the true value. The use of many points, therefore, simply
averages out the error! Consider that the human eye has thousands of
receptors to apply to the sampling of perhaps hundreds, even thousands of
objects in the visual fleld. Perhaps one of the functlons of the many photo-
receptors in the parafovea of the eye 1s the sampling of object stimuli
so as to allow the accurate perception of movement using averaged percep-
tions based on the motion perspective mechanism.

Further thoughts on the subject of motion perspective have been
developed based on observations of scenes produced by computer-image

generators at the U.S. Alr Force's Aerospace Medical Research and Human
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Resources Laboratories and the Evans and Sutherland Computer Corp., and
by personal communications with Dr. Greg L. Zacharias of Bolt Beranek
and Newman Inc.

These thoughts are partly the result of an Air Force-funded research
effort to model visual and motion cue effects on pilot performance.
Since the detalled findings of that effort will include a rigorous analy-
sis of motion perspective, only the findings important to the present
work will be highlighted. '

First, on the analytical side, Zacharias has analyzed the motion
perspective mechanism applied to a randomly-distributed texture fleld
on a flat surface, and has found that the theoretical minimum number of
texture eleménxs required for the perception of self-motion is three for
translational motion only, and five for a combination of translational
and rotational motion. His analysis included imperfect (noisy) percep-
tions of texture element angular velocity, and consequently demonstrated
that the errcr in the perception of aim point (impact point) decreased
with an increasing mumber of texture elements. From the convergence
properties of the computer solution, he also infers that a number of
points greater than the theoretical minimum is required to obtain a
solution for estimated aim point; a typical value being twenty or more
texture elements.

Secondly, on the experimental side, insights into the question of
how many texture elements are required were gained by observing elec-
tronically-generated pictures of surfaces containing arrays of texture
élements or points. The eyepoint corresponding to these pictures was

moved through or over the texture field in order to see if the shape of
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the underlying supporting surface could be perceived. The surface shapes
more commonly investigated were flat and inclined to the direction of
translational movement or sections of two-dimensional sinusolds similar
to a plece of corrugated roof. The conclusion of the author is that,
for a given density of random texture, a certain amount of time was re-
quired to perceive surface shape. Zacharias stated it another way by
saying, "It is like solving the sampling theorem in three dimensions."
While the nature of the complex interaction between estimated surface
shape and observer velocity, time allotted for perception, surface shape
and surface decoration (texture density) is the subject of the Alr Force
work, a preliminary "best estimate" based on the observations is a mean
texture spacing of one eyeheight for a randomly distributed array on a
nearly flat surface.

One more point should be made about the perception of a t;énsla-
tional flow field under conditions of high rate rotations. The streaming
translational flow field seemed to disappear during high-rate rolls,
suggesting that a relatively stable retinal image i1s required to per-
ceive the impact time depth map and aim point information contained in

a translational visual field.
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4.0 Conclusions

1) Natural terrain contains few, if any, stimull that could be
integrated into visual cues of absolute sige., Those that are present
require specialiged kicwledge of the dis‘w=ibution of sige, shape and
appearance of vegetation, or of the dyncmic nature of falling water,
vegetation, smoke or fire.

2) Because pilots ar: able to fly rotorcraft and alrcraft at low
altitudes over natural tarraln devoid of cultural features, it is
concluded that upon first encounter, the primary perceptual strategy
in such areas is the us.. of motion perspective.

With repeated sxposure to the area, the appearance of consistently-
encountered objscts such as trees and shrubs is "calibrated" by the
piiot so fhat faster, more accurate judgements of distance, based on
the apparent/familiar size mechanism, may be made to supplement the
motion perspective cues, If avallable, the stimull for other mechanisms,
such as aerial perspective and shading, may be used.

Perceptual Strategy:

For low-level or terrain flight operations over natural terrain
devoid of cultural features, the primary initial perceptual mechanism
used is motion perspective. This 1s supplemented by other relative-sige
mechanisms such as aerial and linear perspective and the absolute size
mechanism, apparent/familiar sise, through a “"calibration" process akin
to acquiring "air sense" knowledge of the specific terrain.

The motion perspective mechanism used may be interpreted in two ways.
In the first, the observance of the absolute angular velocity of several
objects and their position relative to the impact point permits the

-138-



pilot to perceive a "time-to-impact" depth map of the visual field. In
the second interpretation, the pilot uses the same observations, tut from
a knowledge of his velocity in tems of a relevant vehicle dimension per
second; he perceives a depth map in terms of thia dimension. For rotor-
craft, the velocity could be sensed in temms of rotor diameters per
second, and the perception of depth in terms of rotor diameters,
The Int tion of Pe tual Strat d the Performance t
The pllot constantly reconciles his knowledge of “where he can go"
with his perceptions of "where he is going" and “what i1a out there" to
achieve the desired clearances and speeds, while allowing himself some
margins for safety. This means that he will superimpose a mental image
of the current performance envelope onto hia perceptiocn of the terrain
shape ahead, and adjust the controla s0 as to place hia futire trajec-
tory in place:u affording him desired clearances, masking, and adequate

safety margina. The performance envelope muat never be completely "filled

"

with terrain," as thls spells lmminent impact, dut yet to achleve close
clearances, the envelope muat be nearly filled. Since the region of
intense intereat la the envelope and impact reglona, the corresponding
eye fixations are concentrated in these reglonz where foveal vialon la
used to search for ldentifiable objecta and optimum placea to xo, and
peripheral vision complementa foveal viaion to mediate the perception of
surface shape and impact times. The corresponding eye movement activity
{a concentrated in the vehicle impact fleld and surrounding envelope
fleld which are dictated by a knowledge of the performance capability

of the pllot and vehicle.
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The relationships among workload, clearances and speed should be
affected by the nature of the terrain being flown over. Generally,
there is a direct relation between clearances and speed; a lower speed
being associated with smaller clearances. The associated workload, how-
ever, may vary with both speed and clearances. It should also depend on
the complexity of the terrain, a hilly terrain being more difficult to
fly over than a flat one. The nature and number of the features that
lie on the surface also should cauvse the workload to vary. Areas with
sparse, low vegetation under low, diffuse illumination should demand high
visual workléa.d. possibly even staring. Areas with many taller, more
differentiated features, such as loosely-spaced trees under direct illu-
mination with shadi:g effects, should be easier, since surface shape
perceptions should be possible in shorter times. Finally, areas with
cultural features that can be readily recognized or identified should
reduce workload further.
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5.0 Implications for Imagery Design

5.1 Philosophy
Because it is imperative that the visual cues presented to the pilot

and associated workload in the NOE simulator be similar to that in the
real world, the simulated scenes require that the visual scan pattern
(gaze point distribution and dwell times) and perceptual strategy also be
similar.

A case was made earlier, based on flight dynamic concepts, that the
pilot's gaze points are distributed mostly in the immediate impact fleld
from three to five seconds ahead, with nearly all the remiining fixations
contained in the surrounding envelope field. This field is comprised of
azimuth angles of approximately +60 degrees, and elevation angles of +30
and -15 degrees.

Furthermore, a case was also made, based on a review of perceptual
mechanisms and a survey of some terrain samples, that the only reliable,
i.e., always avallable, mechanism useful to the pilot for perceiving ter-
rain shape and depth is motion perspective. This is because the terrain
most likely to be overflown during NOE flight is natural, i.e., it
appears as randomly distributed incoherent patches of light attached to
the earth's surface with weak texture gradients. This kind of terrain,
therefore, offers few, if any, means of establishing distances by the
observation of familiar objects, and sporadic opportunities to use other
mechanisms such as aerial and linear perspective, shading and interposi-
tion.

5.2 A Case for Texture

If imagery for NOE flight simulation were composed only of texture
U41-



elements randomly-distributed on the terrain surface, the necessary per-
ceptions of terrain shape and depth would be made using motion perspec-
tive. This will work even if the distribution of texture element size
on the surface is so great that no obvious texture gradients are visible
during static viewing. There are areas of the earth's surface that have
this appearance; for example, highly-eroded canyons containing mostly
bare rock formations and individual rocks of many sizes and shapes.
Each rock is visible, depending on distance and illumination, but because
they vary so widely in sige, sliaje and color, they are unidentifiable and
called "trash" by some pilots. Distances to unidentifiable features are
extremely difficult to judge under static conditions, but while moving,
the observer can ascertain the underlying terrain shape and distance to
each feature using motion perspective, as long as enough of them are
visible. The question of "How much is enéﬁgh" is, of course, the main
question here.

A limited number of "observational tests" performed using various
computer-generated scenes has revealed a rough rule of thumb. This rule
states that for terrain shape and depth to be perceivable in a few

seconds or less, that the mean spacing of texture elements decorating

the terrain be one eyeheight* or less. This value of texture density
has been found ‘o be adequate in facilitating the perception of terrain
shape under dynamic conditions. The reader is cautioned that this esti-

mate is preliminary. The problem is complex, as the elements include

* An eyeheight is the distance between the pilot's eye and a point

on the terrain surface or feature directly below.
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the dynamic perception of terrain shape given a denaity of texture decor-
ation, the surface itself, and the observer's motion. There is consider-
able room for improvement of this estimate, and some suggen‘'ions of how
to do this are described in Section 5.4,

5.3 Suggested Imagery Detalls

In areas to be overflown, a texture decoration with a mean texture
element spacing of one eysheight is deemed a minimum texture level needed
to revsal surface shape using motion perspective. This means that a
spacing of five feet is adequate for areas where hovering operations,
including landing, are to take place. Over other areas where higher-
speed NOE flight is conducted, a spacing of 15-20 feet should be adequate.
The texture may be composed of irregularly-shaped polygons in the surface
of the terrain. The array sigse should appear random, as does natural
texture in the real world. This may be accomplished by using five differ-
ent sises of polygons where the ratio of the largest to the smallest is
about ten to one. (The size of a polygon is defined as the diameter of
a circle having the same area.) Such an array of texture elements should
begin to show texture gradients for dis‘ances greater than ten eyeheights,

The surfaces decorated as suggested above should be the most diffi-
cult to fly over at altitudes above ground level (AGL) of one mean tex-
ture element spacing or less. This s because considerable a .ention
must be pald to the streaming texture pattern in order to perceive the
surface shape ahead. The gase can be expected to be drawn to objects
near the impact or aim point, and dwell times may be loig, l.e., one-

half to two seconds. An amount of texture less than that suggested above
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should result in increasing workload and a reduction in height-holding
performance to where an impact is certain.

To make the areas easier to fly over, one would think that more
texture elements are needed. This is probably false, however, and the
adéition of more texture elements should not significantly reduce work-
load or improve height-holding performance. What should reduce workload
and/or improve performance is the addition of coherent objects that more
easily facilitate a static perception of terrain surface shape and
observer position relative to that surface.

The addition of vertical objects should also reduce workload and/
or improve height-holding performance. Vertical objects such as poles
or renditions of trees (tetrahedrons, triangles, etc.) permit a static
perception of height relative to the object height and orientation under
the assumption that the object is vertical. The perceptual mechanism
was pointed out by Harker and Jones (Ref. 2). The observer's eyeheight
relative to the vertical object's height 1s simply the ratio of the
vertical angle formed by the horizon and the bottom of the object to
the angle subtended by the object itself.* In order to fly just at tree-
top level, one has to only fly so as to maintain the treetops silhou-
etted agrinst the horizon. The perception is relatively easy to make,
but becomes increasingly inaccurate when the horizon line position is
occluded by nearby hills or trees, and consequently has to be estimated
by means other than direct viewing.

It should be remembered, however, that trees vary in height and

shape so that the use of tree renditions requires that they also vary

‘Valid only for a flat earth



in height and shape. This simply means that the use of closely-spaced
trees distributec Ain height will induce pilots to fly near the sur-
faco formed by the treetops, which forms a convenient and soft earth
reference. When trees are widely-spaced so that a rotorcraft can
pass between them, the eyeheight is probably perceived using the angle
subtenses previously cited, and the spacing between trees, by the use
of motion perspective., It is also obvious that actual trees do not
offer cues to relative azimuth (bearing) owing to the random appear-
ance of their crowns. Their "transparency," i.e., the fact that the
crown is not a solid mass, but a complex array of leaves and branches,
permits the detection of relative movement when viewing trees aligned
in depth against a bright background.

The use of trees and other vertical objects should ease the work-
load required to fly close to the ground or imp-ove height-holding
performance. They need not show changes with relative bearing, and
should be distributed in size and shape so that static perceptlons
of absolute size are difficult. As an example, a survey of a stand
of Oak trees conteining twenty-six specimens revealed variations in
height and maximum crown width of from 1.2m to 24.4m, and 1.2m to
17.1m (four to eighty feet, and from four to fifty-six feet), respec-
tively (see Fig. 7).

It is tempting to suggest that trees he distributed similarly to
texture, but trees are not uniformly distributed in nature. Since it
is desirable, from an image generation viewpoint, to use the minimum
number of features, the trees should be sparse like they are in semi-
arid regions. This means that they should be distributed mostly in

45-

T



o O
80" 2.4 .
FIG. 7
Height and Crown Width
for a Stand of 26 Oak
- Trees ORIGINAL PAGE IS
70 21.3 OF POOR QUALITY
60| 18.3
50| 15.2 ®
g
.
(]
E
40| 12.2
-
& .
% least squares fit
° 0| 9.1 ©
=
® width
20! 6.1
9 © C height
0l 31 o6’ o 10
@ s
© //
o (Meters)
L/ 3.1 6.1 9.1 12.1 15.2 18.3
10 20 30 4o 50 20|
Crown Width (Ft.)

46 -



gullies and valley floors with a few on ridge tops to help facilitate
ridge crossings. Also, it is not necessary that they be three-dimen-
sional or can be seen through.

Although an oléimato of the mean texture element spacing was made,
at this time it is not possible to determine an equivalent number for
vertical objects such as trees. A suggested starting point for tree
density is a value that results in a mean spacing of from three to
five eyeheights for vertical objects of average height equal to an
eyeheight.

As a final note, highly-coherent texture, such as a checkerboard
pattern, should ease workload and/or improve height-holding v»* = -
ance. The use of these features, however, is not recommend-. » '~ .se
they permit the use of the linear perspective and apparent/familiar
size mechanisms to perceive terrain shape. This is akin to the cues
provided by runways, orchards, row crops and vineyards, and should
result in lessening workload and/or improving height-holding perform-
ance.

5.4 Ways to Improve Imagery Need Estimates

Because terrain shape perception is dependent on shape itself,
surface feature appearance and distribution, and observer movement,
the numbers quoted are preliminary; they were obtained by simple
observational tests conducted by the author and lmage generator supp-
liers, and Air Force researchers who fit these tests into their busy
schedules using whatever hardware was available.

During these tests, a number of methods emerged that could be

the basis for more rigorous experiments into the subject of orientation
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and surface shape perception, and surface decoration. Four of these
experiments are outlined on the next page.

The following experiments are some of the ones used in the obser-
vational tests that led to the preliminary estimates. Many others are
possibls, particularly when one begins to think about a two-dimensional
surface that is representat.ve of actual terrain.
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1)

2)

3)

Title: HORIZONTAL APPROACH TO AN INCLINED FLAT SURFACE

Task: Pullup without striking the surface

Performance Measures: Eyepoint clearance normal to the plane
Vehicle Dynamics: Vertical incremental acceleration of 1.5 g's
for full deflection of a pitch joystick; speed, 10-100 knots
Surface: Flat, infinite plane; irclination 0-40°

Surface Features: Flat texture or vertical objects, or both
Field-of-View Shape and Size: Nearly square or'round. up to
five steradians, vehicle-referenced

Application: Terrain (contour) flight; low-level terrain follow-
ing, landing; straight-in autorotation

Title: APPROACH TO AND FLIGHT OVER A HILL

Task: Maintaln constant height above the surface

Performance Measure: Eyepoint height above the surface

Vehicle Dynamics: Same as above

Surface: Initially flat followed by a one-dimensional hill formed
by an inverted cosine function

Surfacc Features: Same as above

Field-of -View: Same as above

Application: Terrain (contour) flight; low-level terrain follow-
ing

Titles FLIGHT OVER AND THROUGH A DEPRESSION

Task: Fly into and out of a channel-like depression; fly into a
channel-like depression, turn, and continue down the channel center-
line

Performance Measure: Eyepoint height above the surface
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L)

Vehicle Dynamics: Same as above, except with coordinated roll/
turn capability. Roll joystick deflection commands roll rate
with a sensitivity of 1 radian/sec. for full deflection

Surface: One-dimensional depression formed by a cosine function
Surface Features: Same as above

Field-of-View: Same as above

Application: Same as above., Ridge crossing may be studied if
another cosine wave cycle is added to the first

Title: APPROACH TO TWO TREES

Task: Approach two tree lines followed by flight between, over, or
around them, depending on the observer's judgement that the vehicle
either can or cannot fit between them

Performance Measure: Same as above, and vehicle lateral clear-
ance from trees

Vehicle Dynamics: Same as above, except with velocity controlled
by pitch attitude permitting a deceleration to a hover

Surface: Flat; of infinite size

Surface Features: Texture, especially in the approach area. Two
tree-like features of unequal height, whose absolute size cannot
be perceived and that offer no cues to relative bearing
Field-of-View: Rectangular, 60° vertical angle by up to 180°
horizontal angle; a size of up to 6.28 steradians

Application: NOE flight




6.0 Preliminary Data Base Design
The following paragraphs contain a description qf a Preliminary

Data Base design that could be used in the image generation subsystem
of a rotorcraft research and development simulator.

The Data Base elements are based on typical missions, and the
intent here is to provide a starting point and guidelines for the
detailed design tasks. The sections that follow describe a typical
NOE mission and Data Base portions that could support such a mission,
together with some statistics that will aid the selection, sizing and

programming of the image generator.

6.1 A Typical NOE Mission
A typical air cavalry NOE mission has been planned and laid out on

charts showing map data for the Hunter-Liggett Military Reserv&tion in
Central California. Figure 8 glves an overview of the assumed battle
area with the following major data items:
1) The approximate latitude and longitude of one point
2) The approximate boundary between friendly and enemy-controlled
territory
3) Major physical features such as towns, major highways,
mountain ranges and valleys
4) The planned NOE flight routes
5) Approximate boundaries of three more detailed maps (Figures
9 a, b, and ¢)
Figure 9 a, b, and c show portions of the overview map. They are
based on a Defense Mapping Agency topographical map entitled, "Hunter-
Liggett Special"(Ref. 6). The contour interval is 6.1 meters (20 ft.)
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and the grid network is in blocks of one square kilometer each, with
North toward the top. The data are from several sources; the Geo-
loglical Survey, the Coast and Geodetic Survey, the Defense Mapping
Agency and the San Francisco District Englneers. The scale is
1/50,000. Additional maps of the area are the "Alder Peak" and
"Jolon" quadrangles available from the U.S. Geological Survey. These
maps are at a scale of 1/24,000 with a contour interval of 6.1 meters
(20 ft.), but with no grid.

Referring again to the overview map, Figure 8, it can be seen
that the hypothetical battle scenario centers around an enemy armor
advance down the Nacimiento Valley for an assrult on the town of Jolon.
Friendly forces massed to the Southeast plan « major counter-attack
from the South and East, supplemented by harassing attacks from the
mountains forming the Southern boundary of the Nacimiento Valley. Air
cavalry teams formed by several gunships, scout and utility helicop-
ters mass at the Tule alrstrip staging area. Their crews plan to
mount a synchronized attack on the advancing column from several van-
tage points in the mountains overlooking the valley. Also, they plan
to resupply advanced units placed in the mountains earlier.

The flight route begins with a combination of NOE and contour
flight to the Gabilan Impact Area. Since the terrain along the route
from the Impact Area to the Santa Lucia mountains is relatively flat
and open, the crews receiving the latest intelligence reports elect to
use low-level and contour flight to minimize exposure to enemy surveil-

lance units known to be operating on the San Miguelito Loop Road.
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Following entry into the Santa Lucia mountains just North of Burro
Mountain, the team leader is told there may be an enemy surveillance
and ground-to-alr missile site atcp a mountain labelled "2236." (Here-
after, a grid block containing a feature of interest will be denoted by
the grid coordinates forming its Southeast corner; the longitude grid
line first followed by the latitude gric line. Using this nomenclature,
the block containing mountain "2236" is 55-74.)

While attempting to pass around mountain "2327" (block 55-72),
the flight draws fire from an enemy site near "2236."

Cover is taken in the valley Southwest of 2327, while a revised
plan is drawn up to attack "2236." The attack is mounted from the two
attack positions located approximately one kilometer South and West of
"2236." The loops indicate the rotorcraft track, while engaging on
the enemy position. The enemy emplacement is taken and utility ships
land atop "2236" to emplace a surveillance unit. A pinnacle approach
is required to deploy observers.

The attack team resumes its original course toward the Nacimiento
Valley, rendezvousing at the attack branch intersections indicated by
"RP." The flight synchronizes its progress so that all gunships arrive
at their attack positions (indicated by loops) simultaneously. The
scouts acquire and designate the targets, and the gunships unmask and
fire their missiles at the column while jinking to avoid return fire.

The progress into and out of the attack areas is made using NOE
flight, due to the intense saturation of the overlying airspace by
enemy surveillance radiation and alr defense weapons.

Following the engagement, the flight regroups at the rendezvous
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points and returns to the Tule staging area using overwatch techniques
to guard against attack by enemy fighters that have been called in to
defend the armor.

The maximum ground track length for this mission is approximately
30 kilometers one-way. One hour is a reasonable enroute time consider-
ing the overwatching, synchronizing and contingency due to the enemy
emplacement. Therefore, an average speed over the route of between 30
and 50 knots can be expected. This is approximately a traverse of one
block per mimute. This means that at the fastest speed and a visibility
of one statute mile, that terrain ahead will become just barely visible
about one mimute before passage.

The mission described is considered to comprise a "skeleton" for
possible mission scenarios that may offer specific challenges to future
researchers interested in a particular weapon system topic. It is
offered as an example of how terrain can be used for cover and is com-
plex enough that specific variations may be added later. The area is
often used in such military exercises, and range equipment and map data

already exist to support operations there.

For the purposes of establishing gaming area statistics, it is
necessary first to define the areas around the flight routes that are
likely to be scanned by the pilot. We have already estimated that fix-
ations to the sides of the main track are likely to remain less than
1000 from dead ahead, or about +00m (+300 feet). If the visibility

is maintained at about 1,5 km. (one mile), no terrain on either side

.
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of the track will be visible beyond this range. Furthermore, since
most of the enroute track will be either in small valleys, gullles,

or against hillsides, not much of the terrain beyond the immediate hill-
tops will be visible. Passage by side canyons or gullies, however, will
be of great interest to the crews, because they are the areas where
surveillance radiation or weapons fire may emerge. In the battle

area itself, a larger gaming area will be necessary to accommodate the
many possibilities of enemy weapon placement.

These thoughts prompt one to think that the gaming area should
be comprised of two parts; a corridor leading to and from the battle
area, and a larger gaming area >ffering enough space to accommodate
future possibilities in hostile weapon arrangement and performance.
Also, these two areas should require the full gamut of terrain flight
operating modes, from low-level to NOE. The bLattle area should range
from flat to mountainous and be approachable from both low-lying, re-
latively flat and open areas, to and from mountainous areas.

With these thoughts in mind, a gaming area was chosen consisting
of a tessellated array of square kilometer blocks of terrain from the
Hunter-Liggett area to the Southwest of the town of Jolon. The boun-
daries of the mosaic are shown ia Fig. 10, together with a sketch of
the track. Note that the total area is 174 square kilometers, which
is equivalent to a square with a side of 13.2 km. or 8.2 miles.
Approximately half of the total area is mountainous, and about one-fifth

of it is considered to be held by hostile forces.
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6.3 Data Base Buildup Guidelines
The data base of a computer-image-generator is usually built up

of elementary geometrical forms., Edges and polygons are the most
commonly-used, although some curved features such as circles are
emerging in the "menus" of these generators. A certain amount of pro-
cessing time and assoclated software is required to form the image data
from a group of elements; hence the capacity of these systems may some-
times be expressed in terms of equivalent polygons or edges. Generally
speaking, a polygon is equivalent to between two and three edges. These
systems generally have an upper limit to the numbe:r of polygons or
edges that may be maintained in an active or on-line memory from which
the immediate picture is extracted, as well as a larger off-line memory
containing the rest of the data. As the eyepoint moves over the data
base, new data repreunt;.ng close objects may be brought into active
memory, while old data not needed anymore may be erased. In this way,
a level of density may be maintained if the data transfer rates can
keep up with the eyepoint movements. The reader is referred to Ref. 7
for a more detailed review of CGI.

The problem at hand is basically one of constructing a data base
that provides an adequate level of random-appearing image data for
low-altitude operations, while not exceeding generator capacity limits
or data transfer rates.

6.3.1 Polygon Fit

The first step in the bulldup of the data base is the creation
o1 » polygon array that fits the terrain. This is illustrated in Fig.
11. This is a magnified view of a portion of terrsin block 55-72 at
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a scale of approximately 1:5000, showing a portion of the mission
where a rendezvous is made, followed by an unmasking to survey hill
"2236." An array of polygons, consisting of mostly irregular tri-
angles on trapezoids,was fitted to the contour lines as shown. With-
in the limits of the graphical technique used, an attempt was made to
ensure that the maximum deviation of a polygon edge from its adjacent
contour line did not exceed 10 per cent of the local, average spacing
between contour lines. This suggests that the maximum elevation de-
viation of the polygon approximation from the depicted terrain should
also not exceed 10 per cent of the average local contour spacing. For
some of the larger spacings of this block, this results in a possible
error of as much as seven meters, or twenty-five feet. Of course, it
is not possible to verify this estimate without eievation data between
contours.

Similar polygon fits were made for blocks 55-73 and 55-74, and
the resulting total number of polygons and edges were counted for all
three. For the blocks in these mountainous areas, the average mumber
of polvgons and edges per square kilometer are 1,039 and 1,574, respec-
tively. For these analyses, an edge was counted only once, although it
was common to two adjacent polygons. The ratio of edges to polygons is
1.51. Multiplying this by two ylelds 3.03, which is indicative of the
fact that most of the polygons fitted were triangles with a small per-
centage having more than three sides. Polygons with more than three
sides, that are not trapezoids, are much more difficult to fit without
discontinuities in the resulting slevation, and are therefore avoided.

If the terrain outlined in Fig. 10 is fitted to the degree describ-
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ed by the preceding statistics, then the total number of polygons would
be 180,786, and the non-shared edges associated with these polygons
would mumber 547,782. Since the flatter areas would require fewer poly-
gons, the total could be expected to be less. At a peak density of
1,039 polygons per square kilometer, the total number of polygons and
non-shared edges within a circle of one statute mile radius are 8,454
and 25,616, respectively. For an instantaneous horizontal field-of-
view of 120°, it could then be expected that a maximum of 8,539 poly-
gons and 25,872 associated non-shared edges might be potentially visi-
ble. If the eyepoint moved over the data base at a speed of 100 kts.,
then 62.5 seconds would be required before a completely new circle of
data would be visible. This suggests a maximum data flow rate of 135
polygons/sec., or 410 edges/sec.

6.3.2 Texture

In order for the polygon approximation terrain to be visible and
its shape perceived, 1t must be "decorated" with at least an array
of texture elements dense enough to support the timely perceptions of
impact and passage limes from low altitude using motion perspective.
This has been estimated to be a density that maintains an average spac-
ing between texture elements of one eyeheight. This suggests that the
mean spacing in hover areas should be 1.52m (five feet) and about 4.6m
(15 feet) in areas to be overflown at speeds up to 100 kts. Further-
more, in order to provide weak texture gradients, the texture element
size (diameter of a circle of the same area) should vary. Five differ-
ent sizes are suggested, where the ratio of the largest to the smallest
is ten to one. This form of texture should start to show a gradient
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for distances ranging beyond ten eyeheights. The approximate total
number of texture elements per unit area are .l$3/m2 (.Oh/ft.z) and
.048/m2 (.Oobh/ft.z) for the hover and fly-over areas, respectively.
At the latter fly-over density, approximately seventeen million texture
elements would be contained within a circle 1.6 km (one mile) in radius.
It is suggested that hover densities be used at rendezvous points,
attack areas, the starting point, and the pinnacle of "2236." Density
transition should be gradual, being accomplished within a linear dis-
tance of from 10 to 20m (33 to 66 feet).

6.3.3 Vertical Objects (Trees and Shrubs)

In Section 5.3, a value for tree density was given. This was a
density that results from a mean tree spacing of between three and five
eyeheights. For hover areas, this is a mean of between 4.6m (15 ft.)
and 7.6m (25ft.). For fly-over areas, this value is between 13.7m
(45 ft.) and 22.8m (75 ft.). At the higher fly-over density of
.0053/m2 (.ooou9/ft.2, 13.7m, or 45 ft. spacing), a total of 43,300
trees would be contained within a circle 1.6 km. (one mile) in radius.
As was pointed out in that section also, the trees and shrubs are found
mostly in gullies, and are distributed in size and shape.

6.3.4 Distribution and Contrast

If the suggested densities of objects are to be maintained up to
distances of 1.6 km. (one mile), the number of texture elements or
tree/shrub-related polygons required is large (seventeen million, and
over 40,000, respectively). Since typical capacities of Computer Image
Generators are about 4,000 polygons (processed from the on-line memory
providing image data for the current image), it is obvious that these
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levels of "decoration" are excessive.

In order to remain within reasonable capacity limits and still
maintain an adequate density level, the elements will have to be dis-
tributed more effectively, particularly when it is realized that part
of the available polygon capacity will have to be devoted to mission-
specific objects, such as tanks and other cultural features. One
solution to this problem is to limit the radius about the eyepoint
within which the required density is maintained. It was estimated
earlier that the immediate radius-of-concern to a NOE pilot extends
only to 168m (550 ft.) at the highest speed (100 kts). If a texture
density is maintained within this radius, that yields a total number
of elements within it, of say 2,000, what is the resulting mean tex-
ture spacing? It is 6.65m (21.8 ft.). If this spacing were used,
it could be expected that pilots will fly at eyeheights of this value;
since flight below this level begins to reveal sparse ground detail.
However, flight at a mean eyeheight of 6.65m (21.8 ft.) probably does
not result in significant unmasking and workload reduction. There-
fore, to start with, this level of mean texture spacing is a good way
to stay --ithin capacity limits.

The second suggestion is to decorate only gully areas with trees
and shrubs with a mean spacing of 13.7m (45 ft.).

The third suggestion is to model the terrain with fewer polygons.
If the polygon fit is made to a contour array with a contour interval
of 12.2m (40 ft.) instead of 6.im (20 ft.), then the polygons required
within a given radius will be approximately one-fourth of that required
with the smaller spacing. It should also be remembered that the poly-
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gon spacing will be larger, i.e., fewer polygons will be needed to
approximate relatively flat terrain.

To illustrate the above points and demonstrate an example of poly-
gon allocation, the relation between the number of elements N, mean
element spacing S, and element density D was plotted in Fig. 12 as a
function of R, the radius of the included circle. Two points are shown
representing the choices of fly-over texture and terrain polygons. Re-
ferring again to Fig. 11, the detailed diagram of block 55-72, a hypo-
thetical eyepoint has been represented by a 3mm (0.12 inch) circle
within the loop forming the abort maneuver of the rotorcraft, while
being fired upon from mountain "2236." A circle about this point has
been drawn with a radius of 550m (1,804 ft.). Within the area formed
by this circle,‘the following elements are contained:

TERRAIN - 1,000 polygons at a mean spacing of 3im (102 ft.)

approximating the terrain out to a radius of 550m
(1,804 ft.)
FLY-OVER TEXTURE - 2,000 irregular polygons forming a fly-
over texture array with a mean spacing of 6.7m
(21.9 ft.) out to a radius of 150m (492 ft.)
VERTICAL OBJECTS (Trees/Shrubs) - 448 polygons (7 polygons/
tree or shrub) or a total of 64 trees or shrubs
decorating three areas of 4,000 m® (43,000 ft.%)
each at a mean spacing of 13.72m (45 ft.). These
areas are approximately 20m by 200m (65.6 ft. by
656 ft.) in size and are placed at the areas label-
led "A," "B" and "C" in Fig. 11.

-67=



FIG. 12

Included Circle Radius (R, Meters)
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HOVER AREA TEXTURE - 97 irregular polygons forming
a hover area texture array within an area approxi-
mately 15m by 15m (49 ft. by 49 ft.). The mean
texture element spacing is 1.52m (five ft.), and
the area 1s located at the rendezvous point marked
"hover" in Fig. 11.

CULTURAL FEATURES (Targets, Roals, etc.) - 455 polygons devoted
to mission-related features such as missile fire,
sensor imagery, roads, wires poles or spent ord-
nance.

The total number of polygons included in the above analysis is
4,000. For a field-of-view that is 120° wide by 50° high, whose
center is aimed at a heading of approximately 300°. it could be ex-
pected that approximately 1,330 polygons would have to be processed
from on-line memory in order to form a picture from the loop area van-
tage point. This value is considered to be one of the worst cases that
calls on the image generator to process a relatively large mumber of
polygons. The corresponding densities of features and radius of
"decoration" are considered marginal to support close NOE flight simu-
laticn, and where possible, ways should be sought to increase the radius
of coverage. Although the texture in the above case is represented by
polygons, it is hoped that texture can be introduced into current CGI
systems without encroaching into their polygon processing capacity.
Also, it should be remembered that the texture element recommendations
imply that the surface texturing obeys the laws of linear perspective.

At the radii suggested, some thought will be necessary on the
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development of innocuous blending at the edge. At the relatively close
range of 150m (492 ft.) for fly-over texture, and 550m (1,804 ft.) for
terrain polygons and vertical objects, some form of object contrast
function must be selected and applied to these features so that they
will not appear to "pop in" or "pop out" of the scene at the "radius
of decoration." An obvious way to handle the terrain and vertical
object polygons is to simply limit the visibility to 550m (1,804 ft.).
The fly-over texture could be handled differently. Since all polygons
forming the terrain and texture will be smooth-shaded, i.e., their
edges will not appear sharp. Instead, the luminance transition across
each edge will be performed smothly, 1.e., over a perceptible distance.
The contrast* level at an edge of a terrain polygon pair will necessar-
ily reflect the result of diffuse illumination similar to the appear-
ance at dusk under a low overcast with haze and ébme fog that limits
the visibility to 550m (1,804 ft.) Under these conditions, typical con-
trast levels are 0.5 to 1.0. Under the same conditions, a lower con-
trast fly-over texture, when viewed at a distance of 150m (492 ft.),
will have its contrast reduced to one-third of its maximum value due

to aerial perspective (assuming an exponential decay of contrast with
range). If the maximum contrast of the texture is made low to begin
with, say 0.2 or less, then the contrast will fall to 0.33x0.2 = ,066
at a range of 150m (492 ft.). At this range and contrast, eliminating
the texture beyond 150m in a linear fashion, spread over about 10m

(32.8 ft.), may well be innocuous.

*Contrast 1s defined as the higher luminance minus the lower lumi-
nance (or color difference) divided by the lowest luminance or "average"

color. =90-



A final note will be made regarding the distribution of image
details in a head-directed field-of-view. It is likely that such a
field format will be comprised of three separate fields arranged hori-
zontally, each subtending a field of approximately 60° vertically by 40°
hrrizontally. This means that the center field will be viewed using
foveal vision; however, the two side fields will be viewed using only
peripheral vision. One of the aims of this effort was to gain an
insight into the level-of-detail that would be necessary in the two
side fields relative to that in the central one. Thc hope here was to
ralse the possibility of using image generators for the two peripheral
fields that modelled the terrain at, say, one-tenth the level-of-detail,
'as does the central field generator, thereby saving generation costs.

A potential problem with this scheme, however, is the transition of
imagery details at the two boundaries between the central and peri-
pheral fields. For example, as a feature moved from the high-detail
field into the lower-detail one, a feature such as a surface section
containing twenty texture elements would switch to one with only two.
The central question here is "Would this switching be innocuous or dis-
tracting to the pilot?"

To attempt to answer this question, a peripheral vision testing
apparatus was assembled and used in tests with two subjects. The
device presented a static display of random numbers approximately one
degree high that were presented at a rate of one per second. The sub-
Jects were asked to fixate and read these numbers. While doing so,
they were told to observe a 2 x2° square target that started at the

number disrlay and moved horizontally outward. At a preset eccentri-
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city,* the square target, a 10 by 10 checkerboard (100 squares total)
was switched to a blank one of the same luminance as the average checker-
board luminance. The luminance of the checkerboard/blank targit was
varied, as was that of the background screen. The subjects were asked
if they could detect, with their peripheral vision, whether the tar-
get had switched to a blank one. The boundary defining the contraat*
above which the switching could be detectsd was defined as a function
of switching eccentricity. The target horizontal sweep rate was set

at 10° per second. The contrast level above which switching could be
detected was found to be about 0.15 for a switching eccentricity of
35°. The curve extrapolated to a contrast of .08 for an eccentricity
of 20°. These contrast valuss are so low that a preliminary conclusion
from these brief tests is that the eye's peripheral detection potential
is so high that such a dual-level-of-detall scheme will result in
noticeable distractions to the pilot. For this reason, a variable-
detall area-of-interest display of this kind is not recommended unless

further testing can verify some potential benefit.

‘Angle between the target and the central random number display
+Ta.rgat luminance minus background luminance, divided by back-

ground luminance

~e
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