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SlxvMARY 

This in-depth review of oxidational wear starts with an attempt 

to clarify the terminology used by tribologists when discussing wear. 

It then deals with the role of oxide films in the wear of metals as it 

has become revealed to us over the past 50 years or so. Special 

emphasis is placed on the development of the Oxidational Wear Theory 

between 1956 and 1975. The heat flow analysis for some typical 

tribological situations is then described in terms of its use for 

calculating surface temperatures. The main impact of this part of the 

review; however, is to show that heat flow analysis provides an inde- 

pendent method for checking the surface models used in explaining 

oxidational wear rates. It is shown that the values of the Arrhenius 

Constant for oxidation during mild (i.e., oxidational) wear are not the 

same as for oxidation in an oxidizing atmosphere (such as in a furnace), 

The wear of metals at elevated temperatures is reviewed and an oxida- 

tional wear theory proposed for such conditions. The effect of partial 

oxygen pressures upon oxidational wear is also discussed. Finally, 

the likely future trends of oxidational wear in the 1980's are briefly 

indicated. 
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NCMENCLATURE 
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h = Heat transfer coefficient between cylindrical exposed 
surface of pin and the air (W.rn -2.K-1) 

hl%! = Removed layer thickness [EQ. (2)] (m) 

K = Probability of producing a wear particle at any given 
asperity encounter 

K' = Probability of producing a wear particle per revolution 
of disk in a pin-on-disk wearing system 

Kd = Thermal conductivity of disk material (W.m-l.K-l) 

Ki 
= Thermal conductivity of the insulator (W.m-l.K-l) 

KO 
= Thermal conductivity of the oxide (W.m-l.K-l) 

KS 
= Thermal conductivity of steel (W.m-lK-') 

L = va/2xd = speed parameters 

Ll 
= Length of pin exposed to the air between the pin holder 

and the disk (m) 

L3 
= Distance between thermocouples recording temperatures 

Ta ami Tb (m> 

M = 12Ki/(KsRt Iln(Ra/Rt)11'2 (m-l) 

N = Number of asperities in contact beneath the pin 

NNu = Nusselt number 

NRe = Reynolds number 

Nd = Number of contacts within annulus of width (d) upon the 
disk 

n = Number of contacts/unit area of both pin and disk 

w21 = Partial Oxygen Pressure of the ambient atmosphere around 
wearing system (Pa) 

pm 
= Hardness of materials used for pin and disk (N.mm2) 

B = Oxidational Activation Energy for parabolic oxidation 
(Jmol-1) 

R = Molar Gas Constant (J.mol -1 K-l) 
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Temperature recorded by thermoco@e at pin surface 
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distance (L3) along the cylindrical surface of pin 
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Bulk temperature of surface [according to Blok [40] 
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and the disk ("C) 
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Temperature at a distance x(m) along the pin from the 
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Time (s) 

Total time a wearing particle is at the contact temperature 
(Tc) before removal as a wear particle (s) 

Time of an established (equilibrium) wear rate during 
a wear experiment (s) 
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Thermal Diffusivity of the metal of the disk = Ks/(psc).(m2/s) 
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1. WEARTERMINOLOGY 

1.1 Introduction 

Tribology is a subject which has suffered from a lack of precision 

over the terms used to identify its various constituents. Even the word 

"Tribology" itself has different connotations, according to the various 

authorities connected with the subject. The Jost Committee [1], in its 

report to the British Government in 1966, was responsible for the intro- 

duction of the word into current usage, although the prefix "tribe" had 

been used for some time before that date, to denote properties connected 

with rubbing. The Jost Committee's definition for "Tribology" is the 

study of the interactions between surfaces in relative motion and the 

practices related thereto". Scott [2], in his paper presented at the 

Conference on The Fundamentals of Tribology in Cambridge, Massachusetts, 

in 1978, uses “the science and technology of lubrication, friction and 

wear" as his definition. The Jost committee's definition is vague 

(perhaps deliberately?), so as to encompass the many complex interactions 

and practices involved. This vagueness, however, has led to a prolifera- 

tion of terms to identify the interactions involved in Friction and Wear. 

Only in the already well-established "related practices", namely Lubrica- 

tion, has there been some measure of agreement over terminology, mainly 

through the use of the so-called "Stribeck Curve" [3] for delineating the 

various lubrication regimes. 

Although some vagueness is apparent in the literature available on 

frictional processes (for instance, the relation between plastic deforma- 

tion, elastic deformation and the frictional energy required to move one 



surface relative to another), at least there is agreement amongst 

Tribologists regarding the terminology of Friction. This is not so for 

Wear. Often the words "adhesive wear" and "mild wear" are used inter- 

changeably, even though it is clear that adhesion plays a very small role 

in mild wear. The differences between "severe wear", "scuffing wear", 

"delamination wear" and "adhesive wear" are not at all obvious, even to 

the experienced Tribologist. An attempt will be made, in this review, 

to bring some unification to the terminology of Wear, especially as 

regards the classifications, laws, mechanisms and theories of wear. 

Although some of this unification is based on the author's own views 

expressed in a previous publication [4], it also takes account of the 

views of both Tabor [S] and Ludema [6], expressed in their reviews of 

'Wear" and "Scuffing" respectively. 

1.2 The Classifications of Wear 

A "classification" is a means of describing a group of phenomena 

which have at least one feature in cormnon, whether those phenomena be 

the various families of birds in Ornithology, the seven crystal systems 

in Crystallography, or the various classes of wear in Tribology. All 

the birds in the finch family have the same beak structure; all the 

crystals in the monoclinic system have at least one axis of rotation 

which leaves the crystal looking exactly the same for 180" rotation 

about that axis; and all the various manifestations of a given wear 

classification should have at least one observable characteristic, in 

conrmon, possibly contact resistance or final surface topography. Quite 



often, in scientific endeavor, classifications are made where there is 

insufficient experimental or theoretical knowledge to propose laws or 

theories respectively. Classification is the first step towards the 

eventual scientific description of a phenomenon. 

Although there have recently appeared some new classifications 

of wear according to the type of wear particle (Bowden and Westcott [7]), 

they are strongly related to the classifications proposed by Burwell 

and Strang [8] and Archard and Hirst [9] in 1952 and 1956 respectively. 

As will be seen later, Burwell and Strang envisaged seven wear classes 

whilst k-chard and Hirst envisaged only two. It is clear that some 

attempt should be made to reconcile these two classification systems, 

as a necessary preliminary step to formulating a definitive wear theory. 

Tabor [S] and the author [4] have proposed similar modifications to 

these systems. The following is a distillation of their ideas as regards 

a more viable system of classification than either Burwell and Strang [8] 

or Archard and Hirst [9]. 

Essentially, the author [4] maintains that the Archard and Hirst [9] 

classifications of mild and severe wear are the most basic and easy to 

apply to any wear situation, since they are entirely phenomenological. 

Because of the every day usage of the words 'mild" and "severe", it is 

not always appreciated that these classifications are based on (i) measure- 

ments of contact resistance (severe wear is characterized by low contact 

resistance whereas mild wear provides surfaces that give mainly high 

contact resistance); (ii) analysis of the wear debris both as regards 

size and composition (severe wear normally consists of large, =lO mm -2 



diameter, metallic particles, whereas mild wear debris is small,,10-4 nun 

diameter, and has been produced partially by reaction with the ambient 

atmosphere or fluid); and (iii) microscopic examination of the surfaces 

(severe wear leaves the surfaces deeply torn and rough whilst mild wear 

produces extremely smooth surfaces, often much smoother than the original 

surface finish). It must be emphasized that these classifications do not 

specify a range of wear rates for each class of wear. Under certain condi- 

tions, it is possible for mild wear processes to occur at a rate equal 

to severe wear processes for the same combination of materials. In general, 

however, the severe wear processes are often two orders of magnitude more 

effective at removing material from the sliding surfaces, especially close 

to the transition loads found to occur in the dry wear of steels [lo]. 

The term "wear rate" is itself slightly misleading. As used by 

most Tribologists, it means the volume of material removed from a surface 

per unit sliding distance of that surface with respect to the surface 

against which the relative motion is occurring. Typically, wear experi- 

ments in which wear rates can readily be measured involve one of the pair 

presenting a much smaller area over which wear can occur than the other 

member (which is normally the moving surfaces). Hence although, for 

combinations of the same material, the wear rate of the moving surface 

may be the same as for the stationary surface, the removed volume comes 

from the whole of the wear track. Quite clearly, track wear rates are 

much more difficult to measure by the normal distance transducer methods 

favoured by most wear researchers. Molgaard [ll] has pointed out that 

such asymmetrical sliding pairs will have very different heat flows from 



the frictional sources of heat at the interface into each member. This 

will affect surface temperatures and possibly the wear. He suggests that 

all experiments should be made with symmetrical pairs, such as two annuli. 

Experimentally, however, this geometry has been found to be a difficult 

one with which to deal. Hence, the continued preference for the pin-on- 

disc geometry by most Tribologists researching into wear. Provided 

allowance is made for the different heat flows in such geometries, it 

is probably as relevant to practical wearing situations as the mating 

annuli. The volume removed per unit time is a less fundamental quantity 

than that removed per unit sliding distance (since it involves the speed 

of sliding). Any heating effects due to different speeds can be allowed 

for in the heat flow analysis. 

Having given an account of the mild and severe wear classifications 

of Archard and Hirst [9], let us consider the grounds for maintaining 

that most of Burwell and Strang's [8] classifications are special cases of 

the simpler classifications of mild and severe wear. Their first class 

was assigned the name "Adhesive Wear". This title clearly implies a 

mechanism of wear, namely one involving adhesion between the surfaces, 

and was probably proposed with the Bowden and Tabor [12] cold-welding 

mechanism of friction in mind. Burwell 'and Strang [8] envisage parts 

of each surface being pulled off by adhesive forces. These fragments 

are then transferred to the opposite surface, where they either break 

away to become wear particles or they return to their original surface 

in a "back -transfer" mechanism. It is pertinent to ask, how does one 

know that a given pair of surfaces has actually worn in this way? 
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Optical microscopy will reveal rough surfaces have been formed, but not 

whether transfer or back-transfer has occurred. Radioactive tracer 

experiments have been used to test for transfer and back-transfer, but 

such experiments are difficult to perform. Recent work by Eiss and 

Warren [13], where they used Neutron Activation Analysis to investigate 

the early stages of the wear of polychlorotrifluorethylene, has shown 

it to be possible to follow a transfer wear process step by step, 

but the effort was prodigious. The expense involved in investigating 

the mechanisms behind the "Adhesive Wear" classification is not justified 

when it is clear that it is no different from the more readily assigned 

classification of "Severe Wear". 

This is a good point at which to introduce the unification proposed 

by Tabor [S], since he maintains that wear can be classified as (i) Adhe- 

sive, (ii) Non-Adhesive, and (iii) A mixture of both. For the present, 

we will be concerned only with Adhesive Wear. Tabor [5] mainly considers 

clean, unlubricated surfaces in which, under normal load, the atoms at 

some points will be in contact and thus interatomic forces will come 

into operation. Some adhesion will occur at these points and the force 

to break the interfacial junctions so formed is primarily responsible for 

the frictional force. Tabor [S] discusses the nature of the atomic forces 

at the interface; how the interface deforms under the action of a pull-off 

force (for adhesion itself) or a tangential force (for sliding); and 

how the junction itself ruptures under shear. These factors are clearly 

important in establishing a quantitative model for Adhesive Wear, since 

they will affect the amount of surface material removed during sliding. 



As yet, there has appeared no theory of Adhesive Wear expressing the wear 

rate in terms of these factors, but it would seem to be an approach with 

some promise, especially to scnne bright young surface analysts, with their 

new techniques such as Auger and X-Ray Photoelectron Spectroscopy, looking 

for practical applications of their instruments! 

Ludema [6], in his recent review of "Scuffing" and "Run-in" and the 

function of surface films, particularly oxides, makes no reference to any - 

of the previous classification schemes, although it is clear he sees 

"scuffing" and "run-in" as two related forms of wear in a wide spectrum of 

other wear forms. Ludema [6] does not accept Dyson's [14] definition of 

"scuffing" as "gross damage characterized by local welding between the 

sliding surfaces". He suggests a more general definition, namely "scuffing 

is a roughening of surfaces by plastic flow whether or not there is material 

loss or transfer". By this definition, Ludema [6] can now include the 

microscopic initiation of surface failure as well as the more conventional 

manifestation of severe damage and wear loss (such as is often seen in 

4-Ball Machine experiments). Ludema [6] does not see adhesion as being 

the only requirement for scuffing, although he does accept that the 

initiation of scuffing must involve plastic flow at one asperity. 

The present author considers that both Tabor [S] and Ludema [6] 

have brought about some clarification of the mechanisms and initiation 

of what he (the author) considers to be "Severe Wear". It is maintained 

that there would be no contradiction in terminology if the terms "Adhesive 

Wear", as used by Burwell and Strang [8] and Tabor [S], and "Scuffing", 

as used by Dyson [14] and Ludema [6], were considered to be slightly 



different forms of "Severe Wear", as defined by Archard and Hirst [9]. 

The differences could possibly lie in the relative amount of adhesive 

and non-adhesive contact, which could be interpreted as being equivalent 

to saying that the differences lie in the relative amounts of plastic 

and elastic deformation which occurs between contacting surfaces. If one 

assumes that "severe wear" involves plastic deformation and "mild wear" 

elastic deformation, then one can see how all the various forms of wear 

described by Burwell and Strang [S] and Tabor [S] as well as "Scuffing" 

and "Run-in", as proposed by Ludema [6], should in principal, be describable 

in terms of relative dominance of either severe or mild wear in any given 

situation. 

Unfortunately, it is difficult to specify the effect of relative 

proportions of mild and severe wear upon the observable characteristics 

of contact resistance, composition and size of wear debris, and the 

topography of the worn surfaces (although this could be the subject of 

future research!). Another, and perhaps more important, problem is that 

all the classification systems other than Archard and Hirst's [9] involve 

the classifier knowing the mechanisms of wear [4]. A full discussion of 

how the various classifications can be reconciled can be found in reference 

4. For the sake of brevity, an attempt is made in Table 1 to summarize 

the main conclusions of that discussion, and also include the recent 

classification systems proposed by Tabor [S] and Ludema [6]. 



Table 1: Canparison of the Various Classifications of Wear 

- _-._ ~- 

Burwell 4 
Strang [8] 
__~ ---~- 
Adhesive 
Wear 

Corrosive 
Wear 

.~ 

Surface 
Fatigue 
(Pitting) 

Abrasion 

Fretting 

Cavitation 

Erosion 

Non-Adhesive 
Wear 

Mixtures of 
Adhesive and 
Non-Adhesive 

I Wear 

Quinn 
141 

Severe Wear 

Mild Wear 

Mechanisms of 
mild and severe 
wear 
(See Section 1.4) 

It is possibly unfair to Ludema to include his "run-in" classifica- 

tion as being equivalent to corrosive or mild wear alone. Clearly, he 

envisages some surface fatigue and abrasion being involved in obtaining 

run-in surfaces, as well as chemical interaction to form protective films. 

Nevertheless, it would seem that "Scuffing" is one form of adhesive or 

severe wear and "run-in" is essentially corrosive or mild wear. It is 

interesting to note that Tabor sees no difference between Adhesive and 

Corrosive Wear. Obviously, controversy still exists over Wear Classifica- 

tion, especially over Quinn's [4] placing all other types of wear under 
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the category 'Mechanisms of Wear", and this will be discussed in Section 

1.4. It does seem, however, that it is generally agreed that there should 

be a simpler classification than that proposed by Burwell and Strang [8]. 

1.3 The Laws of Wear 

The laws of wear are a comparatively recent [1950] description of the 

general wear behavior of surfaces which interact during relative motion. 

They should be compared with the well-established Laws of Friction, which 

were first discovered by Leonardo da Vinci in the 15th Century. In fact, 

they are very similar, since both the wear rate and the force of friction 

are proportional to the normal applied load and both are independent of 

the apparent area of contact. However, the proportionality of wear rate 

with load is only true provided the nature of the surfaces does not change, 

i.e., provided the composition and topography of the surfaces remain 

essentially unaltered. Apart from this, the similarity is most striking, 

leading one to believe that, since the friction laws have been "explained" 

in terms of plastic deformation [12] and elastic deformation [15] of surfaces, 

it will only be a matter of time before the wear laws are also explained 

in these terms. It is almost certain that in the experiments undertaken 

to validate the plastic deformation hypothesis of friction, oxide films 

or other surface contaminants were not present, i.e., the plastic deforma- 

tion hypothesis of friction is only applicable to surfaces exhibiting 100% 

severe wear. The proof of Archard's [15] elastic theory of friction is 

most unsatisfactory, being based on a model polymer surface sliding at 

very low speeds on a tool steel flat surface. Hence the "explanations" 
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of frictional force so far produced may be less universally valid than the 

supporters of these explanations realize. 

1.4 The Mechanisms of Wear 

The "explanations" of frictional forces during sliding, mentioned 

in the last section, must clearly have some relevance to the "explanation" 

of wear. In other words, both friction and wear must occur by related 

"mechanisms". We have seen how plastic deformation seems to be strongly 

involved in the Bowden and Tabor [12] theory of friction, whereas elastic 

deformation was the basic mechanism of Archard's [15] theory of friction. 

It is reasonable, therefore, to expect plastic deformation to be a 

dominant factor in Severe Wear (in what follows, we will use this 

classification to stand for what But-well 4 Strang [8] and Ludema [6] 

call "Adhesive Wear" and "Scuffing" respectively). Similarly, elastic 

deformation should be dominant in Mild Wear [or Corrosive Wear [8] or 

"run-in" wear [63. Because of this, it is difficult to see how adhesion 

can be involved in mild wear [as proposed by Tabor [S]]. Let us consider, 

in more detail, what are the mechanisms of, firstly, mild wear and, 

secondly, severe wear. 

Mild Wear clearly involves reaction with the environment, in 

particular with the oxygen in that environment. It is not always 

appreciated that mild wear can occur even under wet lubricated conditions 

due to the large amounts of air absorbed and entrained in all typical 

lubricants. If the lubricants contain "extreme-pressure" or "anti-wear" 

additives, it is likely that the dominant reaction will be between the metal 
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(or its oxide) and the additive. Most typically, however, mild wear 

involves reactions between the surface and any ambient oxygen, that is, 

mild wear occurs through an Oxidational Wear Mechanism. This mechanism 

has evolved gradually over the past 20 years [16,17,18,19,20] and can 

best be summarized as follows: 

In the initial (severe wear or scuffing) stages, the surfaces 

achieve a measure of conformity, so that the real area of contact consists 

of several comparatively large areas, each of which is about the size to 

be expected from the Bowden and Tabor [12] plastic deformation theory, 

namely, of the order of (W/p,), where W is the normal applied load and pm 

is the Brinnell Hardness (expressed in units of stress). At any given 

instant one of these areas bears most of the load. It then expands (in a 

manner similar to that proposed by Barber [Zl]) so as to become a plateau 

of contact and remain the only region of contact until it is removed by 

wear. If the sliding speed is comparatively slow, or the loads are so 

light, that frictional heating is negligible, then the expansion of the 

contacting plateau will not be sufficiently large for it to be the 

preferred contact region. Furthermore, the rate of oxidation of the 

contacting plateau will not be very different from that of the remainder 

of the surface for the very low "hot-spot" temperatures (i.e., excess 

over general surface temperature) under these conditions. This is, of 

course, essentially describing a mechanism for severe wear and we will 

return to this aspect again in a later paragraph. 

Given a sufficient amount of frictional heating, however, the 

contacting plateau will oxidize preferentially to the other plateaux 

and the remainder of the surface. It will oxidize, during contact with 
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the opposing surface, at a temperature (Tc) normally well in excess of 

the general surface temperature (Ts). The existence of these plateaux 

has been proved by many investigators (for example, see references [18, 

22, 231. They are extremely smooth with fine wear tracks parallel to 

the direction of sliding, typically with an area of about 10e2nun2 and . 

heights of about 2-3 m. The plateaux often show surface cracks perpen- 

dicular to the sliding direction, somewhat similar to the fatigue crack 

systems found in fracture mechanics. Clearly, one sees a possible reason 

for wear through fatigue due to intermittent heat and stress cycles as 

the plateaux comes into contact with similar plateaux on the opposing 

surface. The surfaces surrounding each plateau are rough and strewn 

with debris fragments, although there are no visible wear marks. It 

would seem that these fragments were once part of a previously existing 

contact plateau which, upon reaching its critical height became unstable, 

cracked, and eventually became the source of all the debris fragments 

in the non-contacting rough areas. 

The contacting plateau is the site for all the asperity/asperity 

interactions between two opposing surfaces. According to the oxidational 

wear mechanism, these asperities are the sites for oxidation at the 

temperature Tc. Since oxidation occurs by diffusion of oxygen ions 

inwards and (sometimes) by*metal ions outwards, one would expect the 

plateau to grow in height from the interface between the oxide and the 

metal beneath each asperity contact. In the course of many passes, one 

muld find that the increases in height were spread over the whole con- 

tact area of the plateau. When the plateau reaches a critical oxide 



14 

film thicbess (c), the film becomes unstable and breaks up to form 

flakes and, eventually, wear debris. The electron microscope evidence 

[18,22] indicates a fatigue mechanism could be operating. Certainly, 

the cellular sections discovered by Rigney, et al. [24] and, more 

recently, found in some debris analyses by Allen [25], would seem 

to be consistent with the fatigue cracks and their regular spacings 

at right angles to the direction of sliding. 

The oxidational wear mechanism, possibly to its own disadvantage, 

does not attempt to explain why the plateau breaks up at a thickness (Q. 

It merely states that, when the contacting plateau finally breaks up com- 

pletely, then another plateau elsewhere on the surface becomes the 

operative one. The virgin surface beneath the original plateau is now 

free to oxidize at the general temperature of the surface (Ts). Without 

externally-induced heating, the amount of oxidation at Ts = 80°C (say) 

is orders of magnitude less than the oxide growth at Tc = 400°C (say). 

Hence, the original plateau sub-surface region will not oxidize signifi- 

cantly until it becomes the operative area of contact once again. This 

mechanism is based on actual experimental as well as microscopic evidence. 

For instance, it has been shown [26] that the height of a cylindrical 

pin wearing its smallest dimension against a flat rotating disc exhibits 

periodic, sharp decreases in height about every five minutes. Taking 

into account the speed and the decrease in height, it is very likely 

that these periodic variations relate to sudden removal of a plateau 

of thicbess about 1 or 2 um. 
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We have seen that, before mild wear (or "run-in" wear) starts, 

there is always a period of severe wear (i.e., adhesive or scuffing 

wear). Clearly, this is when the surfaces are being made to conform 

to each other, through some abrasion or plowing process. If the 

deformation of the surface is so severe that conformity cannot occur, 

then we have seen there is no opportunity for an area to dominate any 

other area of the surface. Obviously, for an unreactive material, 

such as a polymer, there is no opportunity for mild wear to occur 

unless, of course, the other counterface is a metal which readily 

oxidizes or reacts in some way withthe ambient. In effect, we are 

saying that, if one has microscopically non-conforming surfaces, or 

if one has unreactive material , then severe wear must ensue by plastic 

deformation and subsequent removal, perhaps in the manner described 

in the "Delamination Mechanism" proposed by Suh and his co-workers [22]. 

It would seem that most of their work relates to severe wear, although 

this is never explicitly stated in their publications. 

1.5 The Theories of Wear -- 

Most of the current theories of wear accept Archard's [27] inter- 

pretation of the K-factor in the expression relating wear rate (w) to 

the real area of contact (A), namely 

pz--] (1) 

Archard [27] suggests that, since the units of wear rate (volume/distance) 
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are the units of area, then K is dimensionless and can be interpreted 

as the probability of producing (on the average) a wear particle at each 

asperity encounter. Hence, on the average, (l/K) encounters are needed 

to produce a wear particle. It is astonishing how much 'K' can vary for 

the same operating conditions but different material conditions (for example, 

for mild steel sliding on mild steel, without any lubricant, we have 

K = lO-2 whereas for Stellite on tool steel, we have K = lo-'). It can 

also alter by two orders of magnitude for the same material combination 

but just a slight change in load (or speed), as shown by Welsh [lo] in 

his paper on severe/mild and mild/severe wear transition loads. Most 

Tribologists would agree that the K-factor is what we need to concentrate 

our fundamental research on, if we are to understand the complexities 

of wear. A full discussion of the oxidational theory of mild wear, which 

is mainly based on Archard's probabilistic interpretation of the K-factor, 

is given in Section 2. 

For severe wear, it would seem that the Delamination theory is 

the most relevant one. It is possible [Engel [28]] to recast Sub's [22] 

expression into the same form as Equation (l), namely: 

W= 
Bihi 

[ -7 

+ B2h2 , 1 -7 
A (2) 

where the expression within the brackets is the K-factor; hl is the 

removed layer thickness from one surface and h2 is the thickness removed 

from the other surface of the sliding pair; d and d are the critical 
c1 c2 

plastic displacements for each surface; Bi and B; depend mainly on 

topography and are not very well-defined. 
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These theories of wear have received a considerable amount of support 

from experimental research over the past few years, more so than for any of 

the other wear theories which have appeared from time to time. The problem 

with all wear theories is that it is difficult to reduce the number of ill- 

defined variables to a manageable few. As can be seen, from Equation (Z), 

the Delamination Theory requires knowledge of two ill-defined parameters, 

Bi and Bi. The present situation as regards the oxidational theory of 

mild wear,under conditions where insignificant oxidation occurs at the real 

areas of contact when they are not in contact,is most encouraging, namely 

there is only one parameter which has to be obtained by calibration against 

experimental results. However, as soon as one introduces external heating 

or different partial oxygen pressures from atmospheric, one again is forced 

to introduce more parameters. There are ways of overcoming this problem 

through the use of direct measurement of oxide film thicknesses by scanning 

electronmicroscopy and these will be discussed in Sections 5 and 6. 

1.6 Summary 

Much of the slow progress in the development of our knowledge of 

tribological situations can be attributed to the complex nature of the 

interactions which occur between surfaces in relative motion. Some can 

be attributed, however, to the lack of precision in the terminology used 

in Tribology, especially in the study of Wear. In this section, an attempt 

has been made to clarify, and possibly si@ify, the existing situation 

as regards the various types or classifications of wear. If it is accepted 

that all wear can be considered to be severe, mild or a mixture of both, 
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then the laws, mechanisms and theories of wear need concern themselves 

only with these two phenomena, instead of the multitude of situations 

currently described as scoring, scuffing, gouging, abrasion, pitting, 

cutting, fretting, erosion, adhesion and corrosion! The next few sections 

are concerned with the oxidational mechanisms which have been proposed 

to explain the laws of mild, dry wear and with the oxidational wear 

theory which has emerged from these explanations. It is possible that 

similar mechanisms are involved when extreme-pressure additives interact 

with the wearing surfaces in lubricated wear, but this possibility will 

have to be investigated in a later review. 

It is hoped that the current review will encourage a more "global" 

view of wear, instead of the current attitude that wear is so complex that 

all we can do is to study specific situations and make limited predictions 

based on the experimental evidence. Complexity has not deterred investigators 

in other fieldsofresearch -- why should Tribologists not search for a 

universal theory of wear? Furthermore, why should they not also try to 

include friction in this theory, since both depend on surface topography 

and surface interactions. Although this review makes no attempt to discuss 

severe wear, it is clear that severe wear is what happens when mild wear 

is prevented from occurring after run-in, regardless of whether or not 

the sliding surfaces are lubricated. Perhaps severe wear can be explained 

(and quantified) in terms of competition between plastic removal and the 

chemical formation of new surface through an interaction with the ambient 

fluid? These questions will not be pursued in this review, but it is 

hoped that merely by posing them as we read the following, we may glimpse 

the beginnings of a universal theory of friction and wear. 
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2. THE ROLE OF OXIDE FILMS IN THE WEAR OF METALS 

2.1 Introduction 

This section concentrates very much upon the role of oxide 

films in the unlubricated wear of steels, since this is where most ---em 

of the definitive research has taken place. Nevertheless, there is 

nothing very special about steels (apart from their wide use in 

engineering structures) nor about the fact that no deliberate lubri- 

cation was used. Oxidation can occur at the real areas of contact 

at extremely low partial pressures. There is enough oxygen in most 

oils (and even in water) to produce a significant reaction with the 

surface at the high temperatures normally obtained in rotating 

machinery. Oxide films are readily formed on most metallic surfaces 

and these will prevent inter-metallic contact and adhesion, which is, 

of course, the usual role of a lubricant. An oxide film is just one 

(all-pervading) form of boundary lubricant, and it is suggested that all 

the analyses to be reviewed in the remainder of this review could, in 

principle, be applied to any metal/metal combination being slid under 

load in any fluid, provided that the fluid contains active molecules 

which can react with the real areas of contact to form a boundary film. 

It is true, however, that reciprocating machinery often has to 

be used under high loads, low linear speeds and, frequently, in an 

ambient atmosphere at a temperature well above room temperature. 

Under these conditions of externally-induced heating (rather than 

frictional heating), the whole of the surface oxidizes. Under 

frictionally-heated conditions, however, it is generally only at the 



20 

real areas of contact that one gets significant oxidation. In this 

section, we will only be concerned with such conditions. 

2.2 The Origins of Oxidational Wear 

In 1930, Fink [29] published the first paper in which oxida- 

tion was identified as a new component in the wear of metals. As a 

result of his experiments with rail-tire steel, both under normal and 

inert atmospheres, he proposed that oxygen access was essential for 

this type of wear to take place. 

Rosenberg and Jordan [30] in 1935, actually analyzed the wear 

debris formed when two disks were rolled against each other with 600N 

load and ten percent slip, under normal atmospheric conditions. Using 

eutectoid (0.81 percent) carbon steel which had been tempered at 32O"C, 

the wear rate in hydrogen was found to be 50 times that in air. Only 

highly distorted iron could be detected by their x-ray diffraction 

analyses of the debris formed under hydrogen atmospheres. Under air, 

the debris was found to be o-Fe203 and Fe304. 

Thum and Wunderlich [31], also in 1935, described the "frictional 

oxidation" which occurred at solid joints between two metals clamped 

together and then subjected to small amplitude vibrations. In all 

cases, the red or black "rust" which appeared was always found (by 

x-ray diffraction analysis) to be cl-Fe203. 

In 1943, two important papers appeared in the German scientific 

literature which, because of the war, did not make the impact which 

they deserved. One was related to the unidirectional sliding of soft 
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iron upon chromium-steel (Mailander and Dies [32]), whilst the other 

related to the recipricated sliding of these two materials (Dies [33]). 

In the unidirectional sliding experiments, loads were used from 30N up 
-1 to 600N and speeds from 1 to 3 ms . Mailander and Dies [32] describe 

how the wear rate versus load curve had a maximum at about 150N for 

1 ms-l; this maximum became less pronounced and moved towards lower 

values of load as the speed increased. Examination of the wear debris 

indicated that there was a maximum amount of metallic iron and Fe0 at 

this "critical" load and a minimum amount of a-Fe203. In the recipro- 

cated sliding experiments, Dies [33] showed that "fretting corrosion" 

(as this type of wear is often called) rarely occurred under lubricated 

conditions, unless oxygen was also present in the lubricant. At a load 

of 750N, a frequency of vibration of 48Hz and an amplitude of oscilla- 

tion of 250 Urn, Dies obtained dark brown debris (under unlubricated 

conditions) which proved to consist of 69% cl-Fe203, 24% Fe0 and 2.5% 

metallic Fe (according to proportional analysis by x-ray diffraction). 

Chemical analysis also showed that the debris contained nitrogen, 

presumably in the form of iron or chromium nitride. Dies [33] showed 

that these proportions depended upon both load and frequency of oscil- 

lations. For instance, by decreasing the load to 130N and increasing 

the frequency to 200 Hz, the cr-Fe203 content decreased to 0.5% whereas 

the Fe and Fe0 contents increased to 24.5% and 75.6% respectively. 

It is interesting to note that the origins of oxidational 

friction and wear occurred either contemporaneously, or even before, 

the origins of the adhesive mechanism of friction, first proposed by 
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Bowden and Tabor and described in their book in 1954 [12]. Their 

elegant and extremely simple hypothesis relates the force of friction 

to the force required to break the adhesive junctions formed at the 

real areas of contact between sliding solids (in the absence of oxide 

films), together with the force required for one set of surface 

asperities to plough through the asperities on the opposing surface. 

Their ideas were so successful in giving a qualitative and physical 

"picture" of what happens during sliding that, for the period 1945-1955, 

there was a tendency to use this "picture" beyond its ranges of 

validity and apply it to all tribological situations, even in those 

situations where plastic deformation could not possibly be the only 

(or even the dominant) mechanism. 

In 1956, however, Archard and Hirst [9] produced their definitive 

paper on the wear of metals under unlubricated conditions, in which 

mild and severe wear were first defined in terms of observable charac- 

teristics. Researchers were now able to isolate mild (oxidational) 

wear from severe (adhesive and ploughing) wear and, as a result, 

progress began towards a better understanding of wear, in particular, 

mild wear. The next sub-section highlights the more important con- 

tributions to the subject over the 20 years following the publication 

of Archard and Hirst's 1956 paper. 

2.3 Oxidation of the Real Areas of Contact and its Influence upon Wear 

We have already seen that the production of oxidized debris is 

one of the characteristics of mild wear. Leaving aside the often-posed 
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question about whether the oxidation occurs after removal (in which 

case we would not have an oxidational wear mechanism), it is possible 

to make three alternative assumptions about the temperatures at which 

the surfaces oxidize before removal as wear debris. These are (i) the 

oxides are produced at the "hot-spot" temperature (T,) at the real 

areas of contact, (ii) the oxides are formed at the general surface 

temperature (Ts), or (iii) the oxides are formed at some intermediate 

temperature. With these three alternative mechanisms in mind, the 

author [16], in 1962, made a comparison of the structures of the wear 

debris obtained in several published accounts of the mild wear of 

steel with those to be expected from the results of static oxidation 

experiments. He showed a good correlation for the first possible 

mechanism. 

Having shown the importance of oxidation at the 'hot-spot" tem- 

peratures at the real areas of contact in the mild wear of steels, 

the present author [16] proposed two possible mechanisms of wear 

particle formation. These were (i) the bulk of the oxidation occurs 

at the instant the virgin metal is exposed; this is followed by further 

contacts which merely cause the oxide to shear at the oxide metal 

interface, or (ii) an equal amount of oxidation occurs at each contact 

until a critical oxide thickness is reached, beyond which shearing 

occurs at the oxide-metal interface. As implied in Section 1.4 of 

this review, the second alternative is the one currently favoured. 

The work of Tao [34], which deals with oxidational wear under lubricated 

conditions, considers both mechanisms to be possible. In what follows, 
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we will consider the second alternative mechanism to be more likely than 

the instantaneous oxidation mechanism. We should remember, however, 

that this could be a point of weakness in the "structure" of the oxidational 

wear theory in the event of that theory failing to adequately describe 

any particular mild wear situation other than for steels. 

In 1967, the author [17] produced an expression for the wear state 

under mild wear conditions, based on Equation (1). He modified Archard's 

[27] interpretation somewhat by assuming that (l/K) encounters are neces- 

sary to produce a critical oxide thickness (C) at the real area of 

contact (A) and obtained the following expression: 

{exp - Q /RTc} 

wtheory = E2Pzof$ 1 *A. (3) 

The expression within the brackets is the K-factor for mild oxidational 

wear assuming no appreciable oxidation occurs when the wearing area is 

out of contact with the opposing surface. It should be noted that the 

contact temperature (Tc) is the operative temperature, as far as oxida- 

tional wear without external heating is concerned, where Tc is related 

to the "hot-spot" temperature (em) by the relation: 

Tc = Ts + em . . . (4) 

Since we assumed that an equal amount of oxidation occurs at 

each contact, we must therefore invoke a parabolic dependence of mass 

uptake of oxygen per unit area (i.e., Spa f ) o upon the time of oxidation 

(i.e. the time required for (l/K) contacts to occur at a given asperity). 
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Hence AT, and Qp are respectively the Arrhenius Constant and Activation 

Energy for parabolic oxidation. In Equation (3), p is the mean density 

of the oxide in the contact zone, f, is the mass fraction of oxide which 

is oxygen, V is the speed of sliding, R is the Molar Gas Constant and 

d is the distance of a sliding contact. 

To test the validity of Equation (3), the present author [17] 

rearranged the equation so that (c'/d) was on the LHS, leaving only 

those terms on the RHS which were thought to be readily measured or 

available from the literature. For instance, it was assumed (following 

Bowden and Tabor [12]), that A = W/pm where W is the load and pm is 

the room-temperature hardness of the material below the oxide film. 

In particular, (we will return to this later), it was assumed that the 

bulk static oxidation characteristics of iron would be relevant to the 

mild wear of low-alloy, medium-carbon steels. In fact, the Kubaschewski 
2 -4 -1 and Hopkins [35] values of $ = 193 kJ/mole and Al, =1.2 x lo4 kg m s 

were used. Although Ts was not measured, it was considered that it was 

so small that one could assume 6m = Tc and hence use Archard's [36] 

Figure 3 for these experiments. By plotting log (CL/d) versus em, it 

was shown [17] that, provided Bmwas greater than about 8OO"C, (<'/d) 

was constant at about 10m8m. Since Archard's [36] analysis assumes only 

one contact area, we can assume that nd‘/4 = A = W/pm, so that 

d = 4 x 10w5m, which in turn leads to a value of about 0.6 x 106m for 5, 

the critical oxide thickness. 

Unfortunately, below em - 8O"C, the value of (c'/d) fell rapidly 

to about 10 -15 
m for drn - 4OO'C. We now lo-~ow that this was probably due 

to the fact that the appropriate values of $ and Ap were not used. Also 
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the value of em was based on calculations which did not take into 

account the effect of oxide films upon the division of heat between 

sliding surfaces. 

The period 1967 to 1975 saw the emergence of much work designed 

to confirm the validity of the oxidational wear theory. For instance, 

the present author [18] showed, by transmission electron microscopy 

of replicas of worn steel surfaces, that during a mild wear process, 

large flat and extremely smooth plateaux were formed on both surfaces, 

the height of these plateaux being about 3 or 4 x 10W6m above the 

general surface. The plateaux also revealed crack systems reminiscent 

of fatigue cracks and some micrographs showed large areas about to 

flake away from the surface, leaving the rough non-contacting areas 

beneath. Later work [23], using scanning electron microscopy, showed 

similar features which could only be interpreted as oxide plateaux 

of contact about to break up at a critical oxide thichess. 

In another paper, the author [26] used x-ray diffraction analysis 

of the wear debris formed in the unlubricated sliding wear of steel to 

provide evidence that the temperatures at these plateaux were con- 

siderably less than would be expected from an application of Archard's 

[35] analysis to the system. It was shown that the contact temperature 

(T,) was approximately 2OO'C above the general surface temperature (T,) 

for several high-speed experiments, which meant that T, varied from 

3OO'C to 450°C, in direct contrast to the temperatures predicted by 

applying Archard's [36] Figure 3, namely, Tc should be around 1000°C. 

'Ihis conflict with Archard's calculated "hot-spot" temperature 

was originally thought to be due to possible flaws in the oxidational 
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wear theory rather than in the temperature calculations. Inthesame 

paper as the x-ray diffraction evidence [26], a new theoretical 

derivation of the wear rate (in oxidational mild wear) was given. 

This derivation did not depend on the Archard "Wear Law" (Equation 1). 

In fact, it equates the total volume of oxide formed on the real 

area of contact (A C) to the total volume of wear occurring during 

the time (to) of an established equilibrium wear rate (w), namely: 

A5'=wVto . (5) 

In Equation (S), 5' is total effective thiclcness of oxide famed 

at the real areas of contact and V is the speed of sliding. But we 

know that 5' is also related to the time of oxidation through the 

expressions: 

fopo~’ p 
= k1/2a t1/2 

or 

fopoE' = kR St (6bl 

according to whether one assumes parabolic [6(a)] or linear [6(b)] 

oxidation kinetics prevail during wear. 

The author [26] then proposed two possible equations for the 

mild wear rate, namely: 

wp= L!!ik!?; wa.=>. 
foPovtl'2 opo 

In these equations the 'p' subscript stands for parabolic and the '2' 
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stands for linear oxidation. We shall discard the linear oxidation 

model for the present, since linear oxidation is normally concerned 

with the initial stages of oxidation when the oxide film is still very 

thin. However, this could be yet another assumption to be investigated 

more fully, should the parabolic model fail. From oxidation kinetics, 

we know that 
kp 

is related to the temperature ( T) through the relatia I: 

kp = $ exp - {Qp/R T} . ‘31 

The author [26] applied the parabolic wear rate equation to those 

experiments in which the contact temperature (Tc) was found to be 

approximately 200°C above the general surface temperature (Ts) for 

various applied loads but with a constant sliding speed of 6.25 m/s. 

He also applied it to some experiments carried out over the same range 

of loads as above, but at a much slower speed (0.05 m/s). In these 

slow speed experiments, however, the sliding specimens (i.e., the 

pin and the disc) where externally heated so as to give the same readings 

on all the measuring thermocouples as had been obtained (at the appropri- 

ate load) in the high speed experiments through internal (frictional) 

heating. By comparing the wear rates for frictional (wf) and external 

(we) heating, it was possible to use Equations (7) and (8) to obtain 

an independent value for Q 
P' 

the oxidational activation energy relevant 

to mild wear processes, namely 26 + 4 kJ/mole for 100°C < Tc < 3OO'C - 

and about 76 kJ/mole for 300°C < Tc < 45O'C. 

These Qp values were, of course, different from the 193 kJ/mole 

given by Kubaschewski and Hopkins [35] in their book on the oxidation 
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of metals. This discrepancy could be due to many factors. At the 

present time, it seems likely that it was due to an implicit assump- 

tion made in comparing the high and low speed experiments, namely, 

that the Arrhenius constant (Ap) was the same in both sets of 

experiments. However, we also must not overlook the possibility that 

our (implicit) assumption that the Activation Energy (Qp) is the same, 

no matter how the oxidation temperature is achieved, could, in fact, 

be wrong! We will return to the question of constancy of Ap and Qp 

later in the review. 

2.4. _--- Disadvantages of the Original Oxidational Theory of Mild Wear - 

As with most of the theories of wear, the oxidational theory 

of mild wear, as originally proposed (see Equation (3)) and as modified 

(see Equation (7)), contained several ill-determined parameters. These 

were 'd' (the distance of sliding contact at an asperity), '5' (the 

critical oxide film thickness), and 'TC' (the temperature at the real 

areas of contact) in the original theory. The modified theory was an 

improvement in this respect, since it only contained the tempera- 

ture of oxidation, which is assumed to be the same as the contact tempera- 

ture, Tc. However, as was mentioned at the end of the last sub-section, 

both Ap and Qp were somewhat suspect. Also, both the original and the 

modified theories included the real area of contact (A), which was 

assmed to be given by the Bowden and Tabor [12] relationship, namely 

A = W/p,. Now pm will be the hardness of the substrate metal irrnnedi- 

ately below the contact, which will be affected by the general surface 
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temperature (T,). In fact, Earles andPowell [37], have shown that, 

if one takes into account the variation of hardness with surface 

temperature (Ts), then one can obtain a consistent relation between 

wear rate (w) and the product (WV). 

In order to deduce 'd' and 'c', it is necessary to use 

microscopic techniques on worn surfaces. To deduce Tc, one can use an 

indirect method, namely the detection of oxide or metallic phases which 

can only exist over certain temperature ranges. One can use the 

static values of Ap and Q p, but one should be prepared to find dif- 

ferences between static and tribological values of these oxidation 

constants. Following Earles and Powell [37], one can use the values 

of pm appropriate to Ts, since it must be the hardness of the sub- 

strate imediately below the contact areas which determines the 

real areas of contact and not the hardness of the oxide which lies 

on top of that metal. However, even here one should be prepared to 

consider, as did Stott, Lin and Wood [38], that theplasticproper-ties 

of the oxide might play an important role in the mechanisms of 

oxidational wear. 

Clearly, there are too many parameters to be deduced from 

supplementary sources (with the consequent uncertainties involved in 

such deductions) for the original oxidational wear theory to be given . 

more serious consideration as a predictive practical model. A surface 

model was, in fact, implied by that theory, namely that there were N 

asperities on each of the opposing surfaces and that there was an oxide 

film of thickness (5) at the time each asperity broke off to form a 
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wear particle. The assumption was hidden by following the Bowden and 

Tabor [12] convention that (W/pm) was equal to the sum of all the 

individual areas of contact making up the real area of contact. 

Another method for confirming this surface model was needed. 

Measurement of the frictional force and its relation to the surface 

model was not considered very relevent, since friction forces depend 

on all contacts and not just on those contributing to the wear [39]. 

Measurement of the division of heat at the wearing interfaces is a much 

more reliable way to confirm the model. Hence, the next section of 

this review describes the application of heat flow analysis to oxida- 

tional wear. 



32 

3. HEAT FLOW ANALYSIS AND THE OXIDATIONAL WEAR THEORY 

3.1 Heat Flow Analysis for some Typical Tribological Situations 

Probably Blok [40] was one of the first researchers to realize 

the importance of temperature in the failure of tribological systems. 

Blok was dissatisfied with the limitations inherent in the empirical 

criteria then available for design calculations for the "scoring" 

(or "scuffing") of gear teeth, especially the P-V criterion of Almen 

1411 l He estimated the maximLrm conjunction temperatures reached at 

incipient scoring in several gear testing machines as well as in actual 

gear practice, based on the following two equations: 

TC 
= Tb + Tf 

and 

Tf = 1.11 (10) 

where Tb is the bulk temperature, Tc is the maximum conjunction temperature, 

Tf is the maximum possible "fash temperature", u is the coefficient of 

friction, Vl and V2 are the tangential velocities of the two rubbing 

surfaces relative to the contact zone, W' is the load per unit width 

of the face of the wear track, w' is the width of the band-shaped 

conjunction zone, and bl and b2 are thermal contact coefficients for 

the materials comprising the two specimens (b =,/koc), where k is the 

thermal conductivity, P is the density and c is the specific heat, so 
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that pc-is the heat content per unit volume. 

It will be apparent that Equation (9) is similar to Equation (4). 

However, it should be remembered that Blok was interested in the tempera- 

ture at which the oil film breaks down to produce scoring (or "scuffing" 

or "severe wear" as we would now call it). This "flash-temperature" may 

not, indeed is most unlikely to be, the same as the "hot-spot" tempera- 

ture (em) occurring in a system with no lubrication (other than the 

protection afforded by surface oxide films). However, the bulk tempera- 

ture (Tb) does seem to be very similar to the general surface temperature 

(Ts) we have defined earlier, so that we must take Tc to be the same 

quantity in both equations, except that one would expect Tc to be 

lower for oil-lubricated systems than for dry systems (due to Tf being 

somewhat less than em). 

Blok's [40] "scoring criterion" is only applicable to oils with 

no extreme-pressure additives. In his review in 1970, Blok [42] 

re-appraised his approach regarding the postulate about the constancy 

of the scoring temperature for a given tribological system. His 

re-appraisal did not lead to any new conclusions, apart from the 

realization that the wide applicability of the postulate to non-additive 

oils makes it a "real boon" to gear designers. His 1970 review is 

interesting, however, from the point of view of this report, in that he 

makes some suggestions regarding possible scoring mechanisms which 

involve the replenishment of oxide layers on those parts where scoring 

(i.e., scuffing) starts. He suggests that competition occurs between 

the shearing and tearing at local failure areas and the "self-healing" 
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action of boundary layers (those which arise from adsorption from the 

oil and those which arise from the oxidation of the newly-exposed metal 

surface to form an oxide film). Blok further suggests that the scoring 

temperature (i.e., the critical conjunction temperature up to which 

protection from scoring persists) might vary with relative contribution 

of the bulk temperature and the flash temperature components. 

If the main contribution to the conjunction temperature comes 

from the bulk temperature [as, for example, in the slow speed wear tests 

carried out by Boerlage and Blok [43] and Vinogradov, Arkharariva and 

Petrov [44]] and this temperature is equal or near to the desorption 

temperature, then one should readily obtain scoring. Blok [42] seems 

unconvinced that these slow speed determinations of the scoring tempera- 

ture would be relevant to scoring temperatures in actual gear practice. 

This is the same type of misgivings expressed in the last section, 

where it described the work of the author [26] in which slow-speed 

unlubricated runs were carried out for the purposes of extrapolating 

to higher (more practical) speeds in order to deduce the contact 

temperature (Tc). 

If the bulk temperature is well below the desorption temperature, 

then Blok [42] envisages "a wide margin is left for frictional heating 

to provide a flash temperature component sufficient for reaching a 

critical temperature at which desorption and/or scoring will set in." 

These are just the sort of conditions for which the oxidationalwear 

theory was originally proposed, namely where interaction can only occur 

at the real areas of contact (see Section 2.1 of this review). 
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Predictably, Blok [40] sees that, under these conditions, the scoring 

temperature will be "somewhat higher" than the desorption temperature 

obtained from slow-speed experiments. He quotes the work of Lancaster 

[45], who proposed that competition between (i) the local breakdown 

of an oxide layer (characterized by the rate of exposure of the virgin 

metals), and (ii) the self-healing of these local areas caused by 

oxidation (characterized by the rate of oxidation), can have a con- 

siderable effect upon the type of wear which occur. This is, of course, 

the self-same mechanism we have been considering for explaining the 

transition between severe metallic wear (i.e., scuffing or scoring) and 

mild oxidational wear. Blok [42] attempts to include this work (which 

was carried out under unlubricated sliding conditions) in his concept 

of a critical temperature. He suggests, without any real basis, that 

the removal rate increases more rapidly with conjunction temperature (Tc) 

than does the replenishing rate through oxidation, so that there will 

occur a critical temperature at which the removal dominates the 

replenishment. This is, however, completely at variance with the 

typical behavior of steels sliding against each other, in which an 

increase in conjunction temperature usually brings about the production 

of a more protective oxide (viz. Fe304 or the spine1 oxide) in place 

of the low-temperature, more abrasive oxide (viz. e-Fe203 or the 

rhombohedral oxide), (see Reference [26]). The temperature at which 

Fe304 begins to form rather than e-Fe203 is about 3OO"C* (46), regardless 

of whether the oxidation occurs through oxygen in the air or in the 

lubricant. One would expect the oil to desorb well below this 
* 
Later work by Caplan and Cohen (53) suggests that this is a lower limit 

and that the transition temperature is nearer to 4000 to 4500 C. 
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temperature, in which case, the only protection at the real areas 

of contact will be through oxide films. 

This leads one to believe that Blok's critical temperature 

hypothesis is of limited value, since it is the protection afforded by 

oxide films which determines whether or not a local area will -fail, 

regardless of the temperature at which the oil desorbs. If the 

speed of sliding is so slow that only the bulk temperature contributes 

to Tc, then clearly it is the protection of the boundary layers of the 

oil which is important in determining when the surfaces will scuff. 

For more practical speeds, this author believes that, without any 

extreme-pressure additive, the type of oxide being formed at the 

conjunction temperature (Tc) is what determines whether failure of the 

surfaces will occur. If Tc is less than the desorption temperature 

then failure cannot occur. If Tc is less than the formation tempera- 

ture for the spine1 oxide (with steel specimens) then failure will 

occur. Thus, for steels, we have a small range of possible values 

for the so-called "scoring temperature", namely it must lie below 

the transition temperature for a-Fe203/Fe304 and above the desorption 

temperature of the oil. The successes of the Blok [40] flash tempera- 

ture criterion could be attributed to the possibility that the 

conjunction temperature attained in most gear machines is normally 

less than the a-Fe203/Fe304 transition temperature, so that, 

as soon as the oil desorbs from an incipient scuffing site, there 

is very little protection from the rhombohedral oxide film being 

produced at that site at the conjunction temperature. 
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Although some criticism has been made of Blok's [40] flash 

temperature criterion, there is no doubt that he has made a significant 

contribution to the knowledge insofaras his work relates to surface 

temperatures. Due possibly to the complexities of the subject, how- 

ever, his publications are not easy to read. This is also true of 

the work of Jaegar [47] and tribologists are indebted to 

Archard [36] for producing his "plain man's guide to surface tempera- 

tures." A most thorough, and readable, review of "Contact Surface 

Temperature" has recently been written by Winer [48]. None of 

these, however, has been concerned with using heat flow calculations 

and measurements to deduce a surface model which would, of course, 

be the same surface model one would have to use in any wear theory 

which is produced to explain the measured wear rates. Actually, 

Grosberg and Molgaard [49] did publish an account of some 

heat flow work with steels sliding at high speeds, but the derivation 

of their equations was not at all clear. Also they did not attempt 

to use the model from their heat flow work to explain the wear rates. 

In the next two sub-sections, we will deal (i) with the derivation 

of surface temperature (Ts) and heat flow during sliding (no external 

heating), and (ii) with the application of heat flow analysis, together 

with a suitable surface model, to provide an explanation of the wear 

rate in terms of the oxidational wear theory. 

3.2. The Derivation of Surface Temperature (T ) and Heat Flow 
&ring Sliding (No External Heating) 

The frictional heat flux generated at the real areas of contact 
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divides so that part of the heat flows into one specimen whilst 

the remainder flows into the second specimen. For a pin-on-disk 

configuration of specimens, as shown in Figure 1, the portion of 

the total frictional heat flow rate that enters the pin is Hl. This 

raises the temperature of the pin and if the heat flux, and hence the 

temperature of the pin, is sufficiently great, the metal of the 

contacting asperities of the pin undergoes parabolic oxidation 

so that, at equilibrium, contact between the two specimens is via 

an oxide film, the form of the oxide being dependent on the oxidation 

temperature, i.e., the temperature of the real areas of contact (Tc). 

In order to use the oxidational theory to predict the wear rate of 

metals, the temperature (Tc) of the real areas of contact must be 

computed. This may be done if the pin is mounted in a thermal insulator 

mounted within a copper calorimeter. By placing two thermocouples 

a known distance apart on the pin, as shown in Figure 1, and by 

measuring the temperature of the calorimeter, it is possible to 

deduce the heat flow rate at any position on the pin, in particular, 

at the interface between the pin and the disk. From this analysis 

of heat flow, it is possible to deduce a temperature (Ts), which is 

the temperature at the surface of the pin, assuming the whole of the 

apparent area of contact is, in fact, in contact at any given moment. 

Such a situation is almost impossible to obtain in practice due, of 

course, to the microtopographical features which provide real areas 

of contact rrmch smaller than the apparent area of contact. In fact, 

the total real area of contact (A) can be four orders of magnitude 
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less than the apparent area of contact for the sliding of metals. 

Nevertheless, the calculation does give us an average surface temperature 

(Ts) resulting from the dissipation of energy at the real areas of 

contact. Clearly, the temperature at the real area of contact (Tc) 

can be considerably in excess of Ts, depending on the speed, the 

ambient temperature and, of course, the number of contacts (N) and the 

thiclaress (EJ of any reacted film formed at the real area of contact. 

3.2.1 Heat flow analysis for the pin 

The analysis is divided into two parts. The first part relates 

to that portion of the pin within the thermal insulator and the second 

part for the portion of the pin that is not insulated (see Figure 1). 

(i) The insulated portion of the pin 

Figure 2 shows an element of the pin and insulator, in the area 

B of Figure 1. 

Let the temperature of the pin at x be TX. From elementary heat 

flow considerations, we lorow that the axial heat flow rate at x, i.e., 

@$Jx, is given by: 

o-&lx = (3 

where the symbols have the meanings given in the Nomenclature. The 

axial heat flow at (x +A x)*is (HA)x,Ax and is given by: 



40 

This could be written as 

‘A)x+Ax = 

d2Tx 'Ax 
&2 (ii) 

Ignoring the change in temperature between x and x +Ax, the radial 

heat flow through an element of unit length is given by 

HR = 
ZITK~ (TX - To) 

an(Ra'Rt) 
(iii)(a) 

l for element of length Ax . . 

2rKi 
CHR) x = .w (TX - TJ ' A x (iii)(b) 

where To is the temperature at the outer surface of the insulator. 

For equilibrium (HA), = (HA),+Ax + CHRlx 

d2Tx 

*** -z- = 

2rKi 
2 IT KS Rt 2 n(Ra/Rt> 

(TX - To> 

Writing 

Z'rrKi(Tx - To) * Ax 
R n CR,/R,) (iv> 

(VI 

TX - To = T (vi) (a> 
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and putting 

we get 

d2T S=M2T. 

The solution is of the form 

T= B1 exp @W + B2 eq(-W . 

The boundary conditions are 

Ci> atx= 0, TX= TA 

(ii) at x = L 3, TX = TB 

. . . CTA - To> = Bl + B2 

and 

(TB - To) = B1 expw3) + B2 exp(-ML3) 

. CTA - T,>exp 04~3) - CTB - ToI 
. . B2 = 2sinh (ML3) 

(vii) 

(viii) 

(ix1 

(xl 

(xi) 

substituting in Equation (ix) gives: 



Bl = (TA - ToI - CTA - ToI expW31 - (TB - To> 
2 sinh (ML3) . (Xii) 

Hence from Equations (vi) and (viii) we get 

r 
TX = (TA - To) - 1 CTA - ToI expW31 - CTB - ToI 

2sinh(ML3) exp @W 
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+ CTA - To> expW31 - CTB - ToI 
2sinh @a,) exp (-Mx) + To (xiii) 

Now when x = 0, (HA), = H3 

from Equation (i) 
x=0 

dT 
But from Equation (viii) --J$ = M Bl exp(Mx) - M B2 exp (-Mx), so that: 

= M (Bl - B2) 
x=0 

:. H3 = - KS ITR; M (Bl - B2) . 

Substituting for M, B2 and Bl from Equations (vi)(b), (xi) and (xii) 

respectively, the following expression can be obtained for H3, the 

axial heat flow rate leaving the element at x = 0: 

H3 = Kg TR; M 
- To> COshW33 - CTB - To> 

sinh(ML3) 1 . (111 
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If H2 is the heat flow rate entering the last uninsulated element 

of the pin, then 

H2 - H3 = 
C CTA - To> 

(Ra - Rt) 

is the heat flow along the thermocouple wires at that point (assuming 

that the wires at the outer surface of the insulator are at the 

temperature To). Hence 

-.. -..- -..... --.--.------- 
C CTA 

H2 = H3 + R 
- To> 

(a -Rt) - 
1. _._ _- _ 

(ii) The heat flow in the exposed portion of the pin 

In this part of the analysis, it will be assumed that the radial 

heat flow rate (HR) which is transferred from an element of unit length 

in the exposed portion of the pin (Area A) to the surroundings, is 

given by the empirical relation: 

HR = 2vRtf!.x h (TX - TE) (xiv) 

where TE is the temperature of the air flowing past the pin (well away 

from the boundary layer at the cylindrical surface of the pin) and h is 

the heat transfer coefficient. We will equate this transferred heat 

flow rate to the net axial heat flow rate through the element at x 

(taking our origin for x to be now at the end of the pin, where Hl is 

originating). We have already seen that this net axial heat flow rate 

will be given by the left handside of Equation (iv), hence: 
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- Ax = ZITR~ (TX - TE) . Ax. h. 

. dZTx 2 
. . - = - - h * (TX - TE) . 

dx2 KsRt 

Writing 

l/2 

TX 
-TE=TandZ= 

we get 

d2T T 
-=g - 
dx2 t 

The solution is of the form 

. . . Tx=Bpv(+ +B2e~($)+T~ 

Ni> 

(xvii) 

(xviii) 

(xix) 

Now axial heat flow (HA). = -KS RE from Equation (i), 
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so that 

The boundary conditions at x = Ll are 

TX = TA and (HA), = Hz 

. 
. . TA = Bl exp (2) +B2exp (2) +TE 

from Equation (xix) 

KS Rt Hz = - Z 
from Equation (xxi). 

The last two expressions for TA and Hz are readily solved for Bl and B2, 

namely: 

1 B1 = 2 CTA - TEI (xxii) 

and 

1 B2 = z - TE> + (xxiii) 
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A further set of boundary conditions relate to x = 0, namely 

. . . TS = Bl + B2 + TE 

.-- --_-_- ---. 

TS = (TA - TB) cash ZH2 Ll 

+- si* ZRt +TE Ksn Rt 
0 I 

(13) 

and Hl QRt = z (B2 - Bl). 

Substitution from Equations (xxii) and (xCii> gives us 

H1 = !+ IA - TE> sinhi&) + &cosh ($-I 

____,._._ -... _ -_. ._-- I_-_. 

l (TA - TE) sinh (kj + Hz cosh(&) I. (14) ~.___.__.. .-- -__- _-.__ _----- -I--_- -- 
If we assume that the air which flows past the pin has a temperature To 

instead of TE, then we modify Equation (13) and Equation (14) accordingly. 

'h' is deduced from the Nusselt Number (NNLI) and the Reynolds Number 

(&I, (See M=MUIS 1501). 
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Thus, from Equation (14), in conjunction with Equations (11) 

and (X2), it is possible to deduce the heat flow rate (Hl) entering 

the pin by taking three thermocouple readings. Furthermore, if we know 

the equilibrium value of the force of friction(F) at the interface 

between the pin and the disc, then we can deduce the division of heat 

(6 eq,t) at this interface, since clearly 

where V is the linear speed at the pin and F is the frictional force 

at the pin. Similarly, Equation (13) in conjunction with Equations 

(11) and (12) can be used to deduce the bulk surface temperature of 

the pin (Ts) from the same three measurements. 

3.3 The Application of Heat Flow Analysis to Oxidation during Wear 

In order to apply the heat flow analysis to mild, oxidational 

wear experiments, for the purposes of increasing our knowledge about 

the interactions at the real areas of contact during wear, it is necessary 

to postulate a surface model. The model chosen is similar to that 

proposed by Grosberg et alia. [49], namely, that at any time there 

exists (on the average) N contacts beneath the pin. As far as the pin 

is concerned, these N contacts will be covered with an oxide film of 

thichess 5 (the critical oxide thickness). On the other hand, the 

disk will have several sets of N contacts, representing the various 

positions taken up by the pin as the disk rotates beneath it. As a 

first approximation, let us assume that it is unlikely that there is 

any appreciable oxide thickness on the contacts on the disk, due to 
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the large area over which the contacts could occur on the disk compared 

with the small area available on the pin. We will re-examine this 

assumption later on in this review. This model differs from that used 

by Archard [36], who calculated "flash temperatures" on the assumptions 

that all the load was being supported by one asperity (N = 1) and there 

was no oxide film present on either surface (i.e., 5 pin = Sdisk = 0) * 

Junction growth in an unlikely feature to occur in any wear 

situation other than severe, adhesive wear. Hence one can assume that 

the total real area of contact (A) supporting the load is given by 

wwpml , and that this area comprises of a number (N) of circular 

contacts, each of radius (a), so that 

A = Nna' (16) 

As the disk moves beneath the pin, frictional heating occurs. We are 

not, at this stage, interested in what causes that frictional heating. 

Current suggestions involve the work necessary to take the asperities 

through elastic hysteresis cycles. Regardless of how the heat is 

evolved at the interface, it is possible to deduce Tax (the temperature 

difference between the sliding interface and the bottom of the oxide 

film on each asperity) since 

H1 (il 

It has been shown, from basic heat flow theory, by Blok [40],that Tb 

(the temperature difference between the bottom of the oxide film and 
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the general surface temperature, Ts) is given by 

Hl = KS - (Nrra) .ATb . (ii) 

Hence, the total temperature difference Qm) between the sliding 

interface (i.e., the top of the oxide film) and the general surface 

temperature (Ts) is given by Equation (4), namely em = Tc - Ts. But 

Brn must also equal the sum of ATa and ATb. Hence, from (i) and (ii) 

we can readily obtain the following expression for Tc 

Tc = Ts H1 Hl! +-+- . 
N-rrKs a NnKoaZ 

(17) 

Thus we have an expression for Tc, the contact temperature, 

in terms of measured parametners such as Ts and Hl, material constants 

such as KS and Ko, and the surface model features, N,< and a. Now 

Tc has an important effect on how the surface will oxidize during 

mild oxidational wear, as we have already seen in Equation (3) 

(Section 2.3). Let us examine this wear equation to see where else 

it depends on the model. Clearly d = 2a, that is, the distance of a 

wearing contact is considered to be the diameter of that contact. 

(Archard [27] first suggested that the distance from complete con- 

junction between two circular areas of contact to the point where the 

contact is just over, should be considered as a good estimate of the 

distance of a sliding asperity contact). It already contains 5 

explicitly as a squared term in the denominator. It also contains N 
n 

implicitly through A, which is equal to Nf'ra‘ [See Equation (16)]. 
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the oxidational wear equation is a rather complex function of N, 

a. 

Let us now consider the division of heat (Qheory) at the pin 

interface in terms of N, 5 and a. In order to do this, we can modify 

Archard's [36] expression for the average value of 6 theory' namely 

6 TD 
theory = Tp + TD 

where TD is the "fictitious" flash temperature obtained with a heat 

flow rate of Htotal supplied to the disc only, and Tp is a similar 

temperature deduced on the assumption that the heat is supplied at 

that rate to the pin only. Quinn [19] uses Equation (17) with Htotal 

inserted in place of Hl to obtain T . TD, on the other hand, is much 
P 

more difficult to deduce, since this is the case of the moving heat 

source. In a recent paper, Quinn, Rowson and Sullivan [Sl] claim 

that TD (for medium speeds) is probably suitable for most practical 

conditions, where TD is given by 

TD = [,.86 - 0.10 (41 (+) I WI 

where & is the thermal-diffusivity of the underlying metal (in their 

case, it was steel). It will be apparent that this expression for TD 

does not include a term involving the thickness of the oxide film; 

this omission will form the basis of further discussion later in the 

review. 
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Thus we see that we can deduce theoretical values for the 

division of heat in terms of TD (a function of 'a' and IN'), Tp 

(a function of 'a', 'N' and 6) to compare with the experimentally 

determined values of this division of heat. Since our theoretical 

expression for the oxidational wear rate is also a function of these 

three parameters, it would seem that there are two equations for 

three unknowns (after we insert experimental values for 6 and w 

into them). In fact, of course, there are only two unknowns, since 

"a" and "N" are related through Equation (16). Unfortunately, even 

with two &owns, the solution of the division of heat and the 

oxidational wear equations is not analytically possible. Using an 

intuitive approach, combined with a computer search technique, the 

present author [19] managed to obtain consistent values of N, 5 and 

Tc for some experiments in which low-alloy, medium-carbon steels 

were slid against disks of the same materials, at loads from 6 to 30N 

and at a sliding speed of about 5 m/s. 

Quinn, Rowson and Sullivan [51] have, more recently, used an 

iterative technique to solve these two equations (without any recourse 

to intuition). This was done by writing the oxidational wear theory 

in terms of the contact radius (a) only. This was done by taking 

Equations (18), (19) together with Equation (17) (with Htotal written 

for Hl) and Equation (15) (with Htotal written for VF) to obtain an 

expression for 5, namely 

5 = Ba (C - Ea) (20 (al > 
where 
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B = ITK,/~ 6 WJt KS 

c= 0.8605 (1 - Gexpt) - Gexpt 

E= 0.1021 V(1 - 6 expt)' 2% 

These authors then obtained an expression for Tc, as follows 

TC 
= Ga - Ia + Ts 

where 

6 
G = ewt * Htotal ' pm w 

and 

6 
I = exPt 

- Htotal . pm - B-E 
KW 

0 

(20 @I I 

(20 cc> I 

(20 (4 I 

(21 (a> 3 

W(b)) 

W(c)) 

Inserting the expressions for 5 and Tc from Equations (20) and 

(21) into Equation (3), the oxidational wear equation, with 'Za' written 

for 'd' and (W/pm) written for A, the following equation was obtained 

for w theory in terms of 'a' only: 

J 
Wtheory = c2a _ 2GEa2 + E2a3 ew 

Qp 

Ma - sa2 + u 
(Wall 

where 
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J = 2WAp/vpm f$;B2 (22 Ib) 1 

M = RG (22 cc> 1 

s=Rl (22 (4 1 

U = R(Ts + 273) 

where it is expected that Ts will be measured in deg. C. Setting 

Wtheory equal to w expt' Equation (22(a)) can be written as 

Qp 

Ma - Sa2 + u 
= Rn (C2 w 

expt 
a - 2CEw expta 

2 + E2w expta3) - bJ 

(23) 

Unfortunately, Equation (23) does not lend itself to analytical 

solution. Hence an iterative solution had to be sought. Details of 

the solution, together with a computer program used to deduce values of 

'a' from the experimentally-determined values of the division of heat 

and the wear rate, are given in the Appendix of Reference [Sl]. 

It is interesting to note that the trends of N, Sand Tc versus 

load (W) as revealed by the new iterative technique were not significantly 

different from those revealed by the intuitive and computer search tech- 

niques [19]. However, the actual numbers assigned to N, 5 and Tc were 

not in such close agreement. In fact, the numbers assigned to N and 

to the contact temperature (Tc) were all considerably lower for the 

iterative approach. This was mainly due to the fact that, between the 

publication of Reference [19] in 1978 and that of the iterative solution 
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[Sl] in 1980, a new approach had been initiated towards clearing up 

the old problem related to whether or not one can use static oxidation 

data in trying to explain oxidation during wear. This approach, by 

Sullivan, Quinn and Rowson [SZ], will be discussed in the next section. 

It should be emphasized that this work mainly relates to steels. There 

is a real need for more confirmation of the applicability of the 

oxidational wear theory to other metal systems! 
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4. ACTIVATION ENERGIES AND ARRHFNIUS 
CONSTANTS FOR OXIDATIONAL WEAR 

4.1 Introduction 

In static oxidation studies, one normally measures the mass 

uptake of oxygen per unit area (Am) of a metal surface during a time 

(t) 0 After an initial linear dependence upon time, it is most usual 

for a metal (especially iron) to oxidize according to the parabolic 

relation: 

Am2 = t 
kp (24) 

where kp is the parabolic rate factor, which itself depends upon the 

temperature (T) through Equation (8). This equation may be written in 

logarithmic form as: 

logloCkp) = loglo (Ap) - (A) (+) . (25) 

E?y plotting loglo (kp) versus (l/T), where T is expressed in absolute 

degrees (K), one obtains a straight line of slope (- 
B 

/2.30R). This 

is sometimes called an "Arrhenius Plot" and is used as a basis for 

determining 
Qp 

(the Activation Energy for Oxidation). 

Very rarely is the Arrhenius Plot a straight line over the 

range of temperatures for which Equation (24) has been shown to be valid. 

Most investigators of oxidation kinetics are only interested in the 

slope of these plots. Clearly, those portions of non-linearity indicate 

deviation from. parabolic dependence upon time. However, they could 

also be related to ranges of temperature where the type of oxide changes 
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from one structure to another. For instance, when the author first used 

the static oxidation results of Caplan and Cohen [53] in his work with 

low-alloy, medium-carbon steel (EN31) 1191, he did not appreciate that, 

instead of one straight line, there were, in fact, three straight lines 

relating to changes in oxide structure from the rhombohedral (o-Fe203) 

to the spine1 (Fe304) type at about 450°C and from the spine1 to the 

wustite (FeO) type at about 600°C. Very careful plotting of Caplan 

and Cohen's [53] oxidation rates versus the reciprocal of the absolute 

temperature revealed three regions of the Arrhenius plot, from which 

three combinations of Ap and 
Qp values could be deduced, as shown in 

Table 2. 

Table 2. Oxidation Constants (derived by the static 
oxidation of iron, 53) 

Temperature range < 450 450 to 600 > 600 
("Cl 

Arrhenius constant 1.5 x lo6 3.2 x lo-' 1.1 x lo5 
(kg2 m -4 s -1 1 

Activation Energy 
W - mole-') 

208 96 210 

Although SC the Activation Energy) only changes by a factor of 

2 (and back again) when the temperature increases from below 450°C to 

above 600°C, the Arrhenius Factor changes through 8 orders of magnitude 



57 

(and 7 orders of magnitude back) for the same temperature range and 

the same oxidizing conditions. However, it should be realized that a 

two-fold decrease in 
s, 

around 450°C, leads to an 8-orders of magnitude 

increase in the value of the exponential. Clearly, these are only 

slight changes in 
5? 

(which is the product of Ap and the exponential 

term) when going through an oxide transition in static oxidation 

experiments. Now 
kp 

may be expected to be proportional to the diffusion 

coefficients (D), where D may be written in the Arrhenius form equal 

to Do exp(-Q/RT), of the various atomic species in the relevant oxide. 

In a-Fe203, it is the diffusion of oxygen only; in Fe304, both the iron 

and the oxygen diffuse; in FeO, it is the diffusion of the iron only. If 

this is so, the values of Ap and 
B 

for oxide growth will depend upon 

Do and Q for diffusion. Q, depending on relative potential barrier 

heights, is not expected to differ in static and tribological situations. 

On the other hand, Do (and hence 
% 

) will greatly depend upon surface 

conditioning, voids and dislocations and other factors [35], all of 

which lead to differences, even between static oxidation tests with 

the same metal. Such differences can occur over many orders of mag- 

nitude depending on the experimental conditions. 

We may say, therefore, that activation energies will remain the 

same in both static and sliding cases, and hence statically-derived 

values may be applied to tribological situations, if the correct 

temperatures are chosen. (Th ere is little point in applying statically 

derived values above 6OO"C, say, to sliding oxidation where the tem- 

peratures might not exceed 300°C and quite different oxides may be 
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produced). The Arrhenius constants, however, unlike the activation 

energies, will be very different in the tribological situation. 

Intuitively, one would expect the values of Ap to be greater, due to 

the greater degree of surface disruption which occurs during sliding. 

In the next two subsections, we will show (i) how the inituitive search 

technique used in reference [19] can be used to provide tribological 

values of Ap for those experiments with EN31 steels sliding against 

themselves with no lubrication, and (ii) how these values of Ap can 

be used with other low-alloy steels, to confirm the surface model and 

its relevance to mild, oxidational wear. 

4.2 An Experimental Evaluation of the Arrhenius Constants 
related to the Oxidational Wear of Steel 

In the computer program used by the present author [19], a 

particular value of 5 (oxide film thickness) was chosen and tried 

with each of a wide range of N values to obtain a value for the 

theoretical division of heat (S theory) and a theoretical value for 

the oxidation contact temperature (Tc). If the value of Gtheory was 

within one percent of the measured value of the division of heat 

(6 exptL then th e computer used those values of N, 5 and Tc to 

derive a set of several 
B 

values which would be consistent with 

Equation (3), in which w 
e-t 

replaces w theory' A is set equal to 

@VP,,, and 'd', the distance of a wearing contact is taken to be 

'Za', where 'a1 is given by Equation (16), that is: 

d = 2a =. Z(W/n Npm)l" . (261 



59 

The approach was "intuitive" insofar as certain criteria were 

used for choosing a particular set of values of N, 5, Tc, 6 theory and 

B 
consistent with the experimental wear rate and division of heat for 

any particular experiment in reference [19]. These are given below: 

(i) 5 should be in the range 0.5 urn < 5 < 15 urn. 

(ii) N should be in the range 1 < N < 2000. 

(iii) Tc should be greater than Ts + 15OOC and less than 1000°C. 

The reasons behind (i) and (ii) were based on electron micro- 

scope evidence [18] regarding the height (- 3 pm) of the plateaux of 

contact between sliding surfaces. The limits of 5 are arbitrarily 

centered around this value. It is also intuitively considered that 

'd' will be of the order of magnitude of 5, i.e., about 10 -6 m. From 

Equation (26), this means that N' should be less than 2000 for most of 

the situations involved. Criterion (iii) arises fromthe x-ray dif- 

fraction work of the present author [26] which indicated that, for simi- 

lar conditions, the oxidation temperature was about 200°C above the 

general surface temperature (TS) for the low Tc's (i.e., Tc < 45O'C) 

obtained in these experiments. The criterion that Tc be less than 

1000°C is arbitrary, although one would expect values almost half of 

this if we assume N < 1. 

In reference [19], the present author used one particular value 

of Ap (namely 3.2 x lo6 kg2 m -4 s-l) and then used the criteria above 

to produce a fairly large range of possible values of N, 5 and Tc 

consistent with the 
B 

values around the statically-determined value 

of 96 kJ/mole. In order to reverse this procedure, namely to produce 
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values of A 
P' 

together with N, 5 and Tc, which would be consistent 

with both the experimentally-determined division of heat and the wear 

rate, there was no guide available as to the "correct" order of 

magnitude of Ap (apart from expecting the tribological Ap to be some- 

what greater than the statically-determined Ap). Fortunately, Ap 

seems to be rather insensitive to slight increases in the wear rate 

with increasing load (for a given oxide range), so that one was able 

to obtain fairly good average values for the Tribological Arrhenius 

Constants for the three temperature ranges over which the three dif- 

ferent iron oxides pre-dominate [SZ]. These Ap values (together with 

the appropriate 
B values) are given in Table 3: 

Table 3. Oxidation Constants (relevant to the wear 
of EN31 steel) 

Temperature Range 
("Cl 

< 450 450 to 600 > 600 

Tribological Arrhenius 1016 lo3 lo8 
Constant 

(kg' mV4 s-l) 

Activation Energy 
(kJ.mole-') 

208 96 210 

4.3 Application of Arrhenius Constants for Oxidational 
Wear to other &stems 

Although Sullivan et alia. [52] do show that the oxidation con- 

stants of Table 3 can be used to predict the wear rates of other 
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low-alloy steels and give information about the variation of N, 5 and 

Tc with load at various speeds, a mDre complete analysis was published 

elsewhere at about the same time [Sl] which we will discuss here. In 

these experiments, another low-alloy steel (EN8) was worn against itself 

at speeds of 2, 3 and 4 m/s over a range of loads from 4 to 60 N. The 

wear was always mild, i.e., the oxidational wear theory was always 

applicable to these results. In all cases, a thorough analysis of the 

collected wear debris was undertaken using the X-Pay Powder Diffraction 

techniques, so that the three oxide regions could be clearly identified. 

Since this work vividly showed the effect of oxide structure upon both 

the wear rate and the general surface temperature (as deduced from heat 

flow and thermocouple measurements), the graphs of "wear rate versus 

load" and "surface temperature versus load" are reproduced here in 

Figures 3 and 4 respectively. 

These graphs are important since they show (a) that wear rates 

and general surface temperatures are proportional to the load (in 

between transitions), and (b) a change of wear rate versus load occurs 

when the load increases through a transition load above which Fe0 is 

produced at the wearing interface. They give some support to the 

underlying premises of the oxidational wear theory. The results, then, 

give all the indications of being a reliable base on which to show that 

the tribological oxidation constants (of Table 3) give rise to "sensible" 

values of N, 5 and Tc when applied to other sliding systems. "Sensible" 

values are primarily those which lie within the limits of the criteria 

mentioned in Sub-section 4.2. Admittedly, there is a need for a more 
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direct measurement of these three most important wear parameters and, 

in a later section dealing with different materials, some work will be 

described in which scanning electron microscopy has been used to 

determine the oxide thickness (Q. Measurement of N and Tc by direct 

measurement, of course, is only possible if one of the specimens is 

transparent (a state in which most practical materials, in particular 

steels, never find themselves!). With these restrictions in our mind, 

let us examine how the tribological oxidation constants fit in with 

the expected behavior of N, 5 and Tc for a different low-alloy steel 

than EN31, namely for EN8 steel. 

Using both the intuitive computer search technique [19] and the 

iterative solution technique [51], it is possible to generate values 

of N, 5 and Tc for the wear experiments with EN8 steel summarized in 

Figures 3 and 4 of this review. For the sake of illustration, consider 

only the results obtained at 2. m/s. Table 4 compares the values of 

the surface model parameters as given by the two techniques. The column 

relating to the contact radius (a) has been derived from the iterative 

technique only. 

Most of the differences between N and Tc are trivial when 

plotted against the applied load. Figure 5 shows that the number of 

wearing asperities (N) is proportional to the load within the appropriate 

oxide ranges, the factors of proportionality being 0.92 and 1.2 asperities/ 

newton above the Fe0 transition, 3.57 and 4.5 asperities/newton between 

the Fe0 and Fe304 transition, and 16.8 and 28.5 asperities/newton below 

the Fe304 transition, according to either the computer search or the 
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iterative solution approach respectively. Graphs of contact 

temperature (Tc) versus load are given in Figure 6. Since the contact 

radius seems to approximately constant at 1.95 L 0.34 urn, 5.27 + 0.83 

wn and 10.40 + 0.97 urn for the o-Fe203, Fe304 and Fe0 oxide regimes 

respectively, Equation 21(a) indicates that Tc should be equal to Ts 

plus some constant. Hence, Tc should increase linearly with load in 

between oxide transitions in a similar fashion to the increase of Ts 

with load. Comparison of Figure 6 with Figure 4(a), shows that Tc does 

behave as expected. The differences in 5 values are even less sig- 

nificant than those apparent with the plots of Tc versus load. Although 

the value of 5 is supposed to be a constant for each load, the oxida- 

tional wear theory does not prevent the critical oxide thickness being 

dependent upon load. From this set of experiments, however, it seems 

that 5 is fairly insensitive to changes in load, the computer search 

technique giving an average of 1.66 + 0.49 urn whilst the iterative 

solution gives an average of 1.86 L 0.66 urn. 

Similar results were obtained at 3 and 4 m/s using EN8 steel 

specimens [51,52]. These results are important in the evolution of the 

oxidational theory of mild wear under conditions where oxidation at 

the real areas of contact dominates over oxidation of the remainder 

of the surface for several reasons. Firstly, they showed that there 

is a difference between the Arrhenius Constant for static oxidation 

and that relating to oxidational wear. Secondly, the Arrhenius 

Constant for oxidational wear of EN31 steel can be applied to the 

oxidational wear of other low-alloy steels. Thirdly, the effects of 
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oxide structure can produce sharp transitions in the wear rate and 

the general surface temperature. Fourthly, the values of N and 

contact radius (a) obtained by the application of the oxidational 

theory to these wear rates and surface temperatures, provide interesting 

confirmation of previously held ideas relating to the increase in 

the real area of contact with load. This is because it seems that N 

does increase linearly with load (in between oxide transitions) but 

the contact radius (a) remains constant (also between oxide transi- 

tions). Since the contact radius also seems to be different according 

to the oxide, this could explain why it has been difficult to decide 

if the increase in real areaof contact (A) is due to an increase in N 

with load or an increase in contact radius with load or an increase 

in both. Fifthly, the constancy of critical oxide film thickness (E;) 

is confirmed, the values always lying between 1 and 3 pm (the value 

&served in electron microscope examination of mild wear surfaces, 18). 

Finally, the actual values assigned to N and Tc are consistent with 

the asperity densities and contact temperatures currently being 

measured in direct measurements using interferometry [54] and infra- 

red microscopy [55]. 

There are limitations we must place on using these Oxidational 

Wear Constants to other systems, apart from the obvious one involving 

a change in constants when one changes the material of the wearing pair! 

These limitations relateto conditions where "out-of-contact" oxidation 

cannot be neglected. In particular, these constants will be only par- 

tially relevant to wear under the high ambient temperatures induced 
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mainly by external heating. This is the big problem. Most practical 

situations involving oxidational wear (e.g., the wear of valve and 

valve-seat materials in the exhaust systems of diesel engines) also 

involve a situation in which high ambient temperatures occur, which 

is generally not due to frictional heating, or only partly so. Even 

in lubricated situations, such as scuffing of gears, the ambient 

temperatures can be around 3OOOC. This could be enough to make the 

oxidation of those parts of nominal area of contact which are not in 

actual contact significant compared with those parts forming the actual 

real areas of contact. Hence the next section of this review, dealing 

with the wear of metals at elevated temperatures. 
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5. WEAROFMETALSATEJJYATEDTEMPERATURES 

5.1 The Oxidational Theory of Wear at Elevated Temperatures 

In this sub-section, we will deal with the modifications required 

to make the Oxidational Wear Theory applicable to wear at elevated 

ambient temperatures. The treatment is based on the author's original 

paper [56] but it owes much to discussion with colleagues and students 

at Aston University, in particular to Athwal [57] and Allen [25]. 

In order to apply the oxidational theory of mild wear to elevated 

temperatures, account must be taken of the "out-of-contact" oxidation, 

that is, the oxidation of the real areas of contact in between the times 

they are in contact, and are, therefore, being exposed to the general 

surface temperature (Ts). It is not possible to consider this aspect 

of wear without applying it to a particular system geometry. Let us, 

therefore, consider a pin-on-disk geometry, and assume that there are N 

asperities in contact at any instant. Furthermore, assume these con- 
n 

tacts are of equal circular area (Ira‘). If we assume a uniform dis- 

tribution of these contacts, each of the same height, then the number 

(n) of contacts per unit area on both the pin and the disk is given by: 

n = ~N/ITD~ (27) 

where D is the diameter of the pin (= 2Rt). 

In one revolution of the disk, an asperity on the pin will generate 

an annulus of width (d) on the wear track of the disk, where d is the 

diameter of the asperity (= 2a). Hence the number of contacts within 

this annulus is Nd given by: 
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Nd = n(2rRdd) = 8RdNd/D2 

where Rd is the mean radius of the 

each asperity on the pin will make 

revolution. 

(28) 

wear track. Hence, on the average, 

(8R d N d/D2) encounters in one 

Analogous to Archard's [27] K-factor, let us define K' as the 

probability of producing a wear particle per revolution. This means 

it will take (l/K') revolutions to produce a wear particle. Hence, 

from Equation (28), the number of encounters (l/K) required to produce 

a wear particle is (l/K')(Nd), that is: 

;+) (8doFN) . 

Thus, the probability of forming a wear particle at a single encounter 

is K, the Archard K-factor, where K is given by: 

D2 
K=K'mp ' (291 

We are now in a position to deduce expressions for the total 

times (t,) and (t,) for which the wearing asperity is at the contact 

temperature (Tc) and at the general surface temperature (Ts) respec- 

tively. 

Consider one asperity on the pin surface. The time of oxidation 

at this asperity for one revolution (t,) is given by: 
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'r =tr +S 
HIT Rd 

=- v (30) 
C S 

where V is the speed of sliding at the pin surface, tr is the time for 
C 

which the asperity is in contact and tr is the time it is "out-of-contact" 

during one revolution. From Equation (;8), the contact time per revolu- 

tion (tr ) is: 
C 

(31) 

where 'c is the time for a single asperity encounter which is given by 

T = d/V. Hence the total contact time (t,) needed before a wear particle 

is produced is: 

5 = (l/K')t, = d/LX (32) 
C 

Equation (32) could easily have been deduced from the Archard [27] 

interpretation of K, so that (l/K) encounters, each of duration 

T = (d/V); give rise to a total contact time (t,) of (d/VK). However, 

with the development as above, it is now easier to derive an expression 

for the total time (t;) that the asperity is out of contact (before it 

is removed in the wearing process after (l/K') revolutions). For 

example: 

ts = $ l tr 

0 S 

(33) 
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where 

tr 
ZITR~ 

= t, - tr = - - 
8Rd.N.d2 

S C 
V D2V 

i.e., 

ts =& b - 4N (n'] . 

This is the time that an asperity will be at the general surface 

temperature (Tc) before it breaks off to form a wear particle. Remember 

that it will also be at the contact temperature (Tc) for the total time 

(34) 

(t,) given by Equation (32). It is reasonable to assume that, for most 

practical systems subjected to external heating whilst sliding, the 

general surface temperature (Ts) will be greater than 100°C and it will 

oxidize with a parabolic dependence upon the time at both Ts and Tc. 

Hence the mass uptake (Amc) of oxygen per unit area of oxide film at 

the contact temperature (Tc) will be: 

AmE = kpVc) tc (35) 

where kp(Tc) is the parabolic rate constant at Tc. Similarly, we can 

write an expression for (Ams), the mass uptake of oxygen per unit area 

whilst the asperity is "out-of-contact", as follows: 

Am2 
S = $(Ts) ts (36) 
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where kp(Ts) is the parabolic rate constant at Ts. 

The critical oxide film thiclcness (5) which builds up upon the 

asperity after (l/K') revolutions, is simply given by: 

5 = 5, + 5, (37) 

where 5, and 5, are the total oxide film thicknesses produced at 

temperatures (T,) and (Ts) respectively. To a good approximation, 

5, and 5, are related to Amc and Aans through the relations: 

mc = fo(Tc) - P~(T$ - 5, (384 

MS = fo(Ts) * P~(TJ * 5, (38b) 

where f. is the mass fraction of oxide which is oxygen and p. is the 

density of the oxide film. Both quantities depend upon the temperature 

of oxidation (Ts or Tc), since there is usually more than one oxide 

type formed when the temperature goes from room temperature to 600°C 

or more. Combining Equations (37) and (38) we get: 

' = fo(Tc) 
hC hS 
- P~CT~) + f. Us) * PO&) ' 

Substituting for Ant and hns from Equations (35) and (36) one obtains: 
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Putting in expressions for tc [from Equation (32)] and ts [from 

Equation (34), the following expression for critical oxide film 

thickness (5) emerges: 

5 = (":"") "'(fO(Tc;.%(TiJ) 

+ 

2 
r-4N $ (UK f. OS) ‘PO PSI (40) 

Squaring this equation and rearranging, we eventually obtain an 

expression for the K-factor which takes into account oxidation at the 

general surface temperature (Ts), namely: 

+ D 
V-foflcl vo(Tcl~fo(Tsl -Pi ‘5 

Putting this value for K into Equation (l), we obtain the general 

oxidational wear equation. Assuming A = W/p, (from Bowden and Tabor [12] 
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we can write it in the following form: 

W= 
W.d.kp(Tc) 

V f;(Tc)*~~(Tc)*~,(Ts)E2 

WD + 
V~fo(Tc)~~o(Tc)~fo(Ts)~~O(Ts)~P,(Ts)~~2 

(42) 

In Equation (42), we have written pm(Ts) for pm to denote that the 

real area of contact (A) is determined by the value of the hardness of 

the underlying metal (and not the oxide), and this hardness depends mainly 

on the general surface temperature (Ts). 

The first term of Equation (42) is, of course, the expression for 

the wear rate as given in the original oxidational wear equation (Equation 

(3)] with [W/pm(Ts)] substituted for A. This expression ignores any 

oxidation which may occur away from the actual areas of contact during 

the life-time of a wearing contact. The second and third terms of 

Equation (42) are due to the effect of significant "out-of-contact" 

oxidation at the general surface temperature (Ts) upon the wearing 

processes occurring at the real areas of contact. One way of examining 

this expression as regards its validity to real wear processes, is to 

apply it to frictionally-heated systems in which the surface temperature 
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(Ts) is not insignificant. The present author [56] used this approach 

with an expression for the oxidational wear rate somewhat similar to 

Equation (42), to show that the second or third terms could be neglected 

for EN8 steel systems sliding at speeds less than 5 m/s and loads less 

than about 40N, provided Ts was less than about 3OOOC. The argument 

is somewhat circuitous, since the values assigned to kp(Tc) in these 

additional terms had been obtained from calculations in which the "out-of- 

contact"oxidation was assumed to be negligible! For the argument [56] 

to be truly valid, we should apply the processes described in Section 4 

of this review to the general equation [Equation (42)] and deduce the 

tribological Arrhenius Constants suitable for insertion into $ (Tc). 

These processes will clearly become very tedious for such a complex 

expression. There is a need for us to put in more measured data into both 

the wear equation [Equation(42)] and the heat flow analysis. Such data 

can be provided by using the scanning electron microscope to measure the 

oxide film thicknesses on both the pin and disk surfaces. We can then 

use Equation (17) together with anequation similar to Equation (19) to 

obtain the contact temperature in terms related to heat flow down the 

pin and into the disk respectively. Since the contact temperature must 

be the same for both the pin and disk, we can equate these expressions 

and solve for the contact radius (a), remembering that N is related to 

the contact radius through Equation (16). This is done in the next sub- 

section. 
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5.2 The Measurement of Oxide Film Thickness and its Use 
in Deducing the Contact Temperature and other Surface Parameters 

If we can measure the oxide film thickness on both the pin and disk 

surface, then we will have reduced the number of variables in Equation 

(42). Previously, when deducing Equation (19) for the fictitious disk 

temperature CT,) which one would obtain assuming all the heat (Htotal) 

evolved at the interface goes into the disk, it was assumed (for conveni- 

ence) that the average area of contact on the disk would not have very much 

oxide film. It is not necessary to make this assumption and certainly, 

recent examinations [25] by Scanning Electron Microscopy have shown that 

the oxide film thicknesses on the pin (c) and on the disk (6') are of the 

same order of magnitude. We can therefore modify Equation (19) to give 

us the general surface temperature of the disk (Td), by putting (VF-Hl) 

for Htotal and adding a term representing the temperature drop across 

the oxide film, of thickness 5' , upon the real areas of contact of the 

disk surface. (Tc-Td) must be equal to the temperature drop across 

the film together with that across the metal between the underside of 

the oxide and the bulk of the metal of the disk surfaces. This is 

summarized in the following expression: 

acvF 
Tc = Td + 

- Hll aOrF - Hl)S’ 
NITK~. a+ NTKa2 (43) 

0 

where cx is a dimensionless parameter which is related to the speed 

parameter (L) which is defined as: 

L=F . 
d 

(44) 
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According to Archard [36], a varies linearly with L in the range of 

0.1 < L c 9.0 from approximately 0.85 at L = 0.1 down to about 0.35 

at L = 5. Thus, we may write a as: 

a = 0.86 - 0.10 L . (45) 

In the above equations, Kd is the thermal conductivity of the disk 

material and xd is the thermal diffusivity given by the relation: 

Kd 
xd = G (46) 

where od is the density of the disk material and cd is the specific heat 

capacity of that material. Note that we have changed our subscript from 

's' to 'd' to allow for the fact that it is quite probable that the disk 

material will not be the same as the pin material, in respect of which 

we had used the subscript 's' to denote the property of the material of 

both the pin and the disk, namely steel. With this in mind, let us write 

Equation (17) in terms of subscripts 'p' and 'o', instead of 's' and lo', 

for the appropriate terms, namely: 

TC =Ts+ 
pmCrs) - I-$ l a + P,(Q) l Hl - 5 

K W 
P W - K. (47) 

In this equation, we have substituted for N from Equation (16) together 

with the well larown relation A = W/p,. Now let us compare Equation (43) 

with Equation (47), after substituting for a is Equation (43), and get: 
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0.86(VF - Hl)<' HlS 

% 
-%) - (Ts -Td)] =O (481 

This is a quadratic equation in the contact radius (a) of the form 

Ax‘+Bx +C = 0. Hence, Equation (48) will have two solutions if 

B‘ > 4AC. The correct solution will have to be chosen by inspection. 

All the parameters of Equation (48) aremeasured or known, with 

the possible exception of xo, the thermal diffusivity of the oxide. 

Only estimates are known for Ko, p, and co, which all vary with 

temperature. Since p, and co vary in opposition with temperature, 

we need only concern ourselves with K. and its variation with tempera- 

ture. Molgaard and Smeltzer [58] have shown that for hematite 

(cl-Fe203) and magnetite (Fe304), K. varies according to the following 

relations: 

a-Fe203: K. = (8.39 - 6.63 x lO-3 T) Wm-lK-' 

Fe304: K. = (4.23 - 1.37 x lO-3 T) W&K-' 

With most steels, it may be sufficient to use these relations to get Ko. 

However, for steels with high chromium content, or for other materials, 

it is better to use the value of K. which gives the best agreement between 

6 
expt 

and d theory' where 6 expt is given by Equation (15) and 6 - theory ls 
given by Equation (18) and Tp and TD are given by: 
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pm(Ts)*V.F.a p (T ).V.F.S' 
T= WK + m s 
P P w % 

and 

TD = 
a.pm(Ts).V.F.a pm(Ts).V.F.E 

' Kd 
+ 

w Ko 

(49) 

(50) 

The above analysis is mainly due to Allen [25] who has, in fact, 

used Scanning Electron Microscopy applied to the Oxidational Wear of 

austenitic stainless steel (Brico 65) pins against ferritic steel 

(Zl-4N) disks. Figure 7 shows a typical electron micrograph of one of 

these worn surfaces from which the oxide thictiess can obviously be 

measured with very little difficulty. In experiments carried out 

between 12.5 and 87.5N, with no external heating, Allen [25] used the 

quadratic equation [Equation (48)] to derive values of the contact 

radius (a> , Gtheory, N ad Tc, using the K. values giving the best 

fit between 6 theory and B 
expt 

and the values of pm(Ts) found from 

Figure 8 (a plot of the bulk hardness versus temperature). These 

calculations are summarized in Table 5: 
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5.3 The Feasibility of using the Oxidational Theory of Wear 
at Elevated Temperatures for Predicting Wear 

Now we have seen (in Section 5.2) that direct electron microscope 

measurements of oxide film thicknesses at the real areas of contact can 

lead to estimates of N, a and Tc, the general oxidational Wear Equation 

[Equation (42)] does not seem so untractable. Let us examine each factor 

in turn and see what we know about each one: 

(i) 

(ii) 

(iii) 

(iv> 

(VI 

(vii) 

(viii) 

(a 

D, V and W: can be measured directly 

W 
expt 

: measured directly 

Ts: obtained through thermocouple measurements 

plus calculations 

foUsL Pi, pm(Ts): readily obtained from Ts 

kpcTsl: it seems reasonable to assume the 'out-of-contact' 

regions oxidize in a similar manner to static 

oxidation. Hence, take static oxidation 

values at T s' 
5: can be measured by scanning electron microscopy 

(also cl, the oxide thickness on the disk). 

N, a, Tc: Obtained from 5, 5' and the analysis given 

in Section 5.2 

d: is equal to 2a. 

kpUcl : it is reasonable to assume that Qp is the same 

as the Activation Energy at T, but Ap (the 

Arrhenius constant for tribological oxida- 

tion) is unknown. 
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Thus we have only one unknown which, if we equate w theory to 

W expt, will be found from Equation (42). Repeating this process for 

all wear experiments in which values of Tc lie within a given oxide 

range, should give an average value of the Tribological Arrhenius Constant. 

Unfortunately, Allen [25] did not have the static value of the Activation 

Energy (Qp) for either Brico 65 or 21-4N, so he was unable to use this 

approach. In fact, Equation (427, the general oxidational wear equa- 

tion, still awaits validification. It is included in this "in-depth" 

review since it shows the present position in the development of a 

general oxidational wear equation. We must await the analysis of the 

elevated temperature wear experiments of Allen [25], together with an 

independent estimate of Qp for his particular steels. Clearly, this 

is an area of great interest to diesel engine manufacturers, so one 

should expect a breakthrough within the next few years. 

The general oxidational wear theory, with its inclusion of oxida- 

tion of the out-of-contact regions of the real area of contact, is more 

relevant to scuffing failure than the original oxidational wear theory. 

If Ts, the general surface temperature, is sufficiently high to cause 

breakdown of the oil film, then oxidational wear will ensue in those 

regions of breakdown at a rate determined by both Ts and Tc. It remains 

to be proved that the 'out-of-contact" oxidational terms of Equation (42) 

are relevant at Ts values around 300°C, but initial calcuations [56] 

indicate that they might well be relevant, in which case the wear (or 

scuff resistance) of lubricated steel surfaces will then depend on the 

nature of the oxide film being formed and the speed with which the 
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oxidation proceeds. If the oil contains an extreme-pressure additive, 

then, of course, Equation (42) cannot be applied, since there are 

components of the additive (possibly released through the processes 

occurring at the real areas of contact) which will compete with the oxygen 

to produce protective surface films. Possibly, this competition could 

be included by having extra terms in Equation (42) involving the forma- 

tion of additive-reacted films at the real areas of contact. These 

terms could possibly have the same form as the three terms of the 

oxidational wear equation with different values (and powers) for 

parameters such as kp and f,, which would now relate to the time 

dependence of additive film increase in mass per unit area and also 

how much of the film was due to the component of the additive reacting 

with the surface (which may or may not be oxidized!). kp would itself 

have the Arrhenius form, namely Ae -Q/RT , but now Q would be an activation 

energy related to the reaction between the additive component and the 

surface. 
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6. THE EFFEm OF PARTIALOXYGENPRESSURE 

UPONTHEWEAROFMETALS 

Possibly the most comprehensive work on the effects of partial 

oxygen pressure on the wear of metals was carried out by Habig, Kirschke, 

Maennig and Tischer [59]. These authors mixed oxygen and nitrogen in 

20/80 percentage mixtures from 760 Torr down to about 2 x lo-7 Torr. 

It is not clear whether the authors were actually getting these per- 

centages at the lower (i.e., vacuum) pressures, where impurities arising 

from the wearing surface might well affect the partial pressures. Their 

experiments were carried out at 0.02, 0.1 and 1 m/s, the load being 

chosen so as to ensure that the real area of contact (as defined by the 

relation A = W/p,) was the same for each experiment, namely about 0.03 

m2, where pm was the hardness (in units of force per unit area). They 

rubbed "like-on-like" (Fe, Co, Cu, Ag, Mg and A&L), and selected com- 

binations of "unlike" rubbing pairs (Co, Cu, Ag, Mg and AR pins on Fe 

disks; Fe pins on Co, Cu, Ag, Mg and AR disks). They produced graphs 

of friction coefficient versus log (PO ), where PO is the partial 
2 2 

oxygen pressure of the ambient atmosphere, but no significant differences 

were found. This was reflected in the small effect of PO upon the 
2 

surface temperature. For example, for Fe on Fe at 0.94 m/s and a load 

of 23.7N, the Ts values range from about 105°C at 1 Torr, up to about 

160°C at ambient pressures of 10m3, 5 x lo-5 and 10 -6 Torr. The one 

exception seemed to be Fe on Cu, where the value of Ts went from about 

155'C at 5 x lo-' Torr up to 245°C at 5 x 10m7 Torr. [These values are 

based on a room temperature of 2O"C.l 
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Habig et alia. [59] plotted wear rates in terms of Archard [27] 

K-factors. They rewrote Equation (1) in terms of the volume (v) 

removed from a wearing partner over the distance (5) of the wear run, 

namely: 

(51) 

Habig, et alia [5g] quote the original oxidational wear theory [16,17] 

and they suggest that since kp (which they describe as the "velocity 

constant of oxidation" and to which they assign the symbol, k") must 

be proportional to a constant power (c') of the oxygen partial pressure, 

then so also must K (for a given speed and load). 

Thus 

K c1 kp (-y. (PO )" 
7 (52(a)) 

so that 

K= a'Po lb (52(b)) 
2 

where a' and b are constants to be evaluated from actual new experiments. 

Table 6 is a stmunary of some of the constants obtained by Habig et alia 

[59] over ranges where log (K) appeared to be approximately proportional 

to log (PO ), in accordance with Equation (52(b)). 
2 

One might, at first glance, suggest that since the highest power 

to which we must raise (PO ) is 0.14 (for Fe/Fe at 0.02 m/s for pressures 
2 
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Table 6. Mabsrical values for a' and b of muation 52(b) 

Wearing Pair PressureRange 
Partner pin/disk 

b-&L-d %J& 
(Torr) lOSal b 

Fe pin Fe/Fe 23.7 0.02 18.3 0.14 
Fe pin Fe/Fe 23.7 0.10 2 x 10-7 to 1 12.2 0.10 

Co pin Co/Fe 28.0 0.02 5 x lo-' to 760 7.0 0.09 
Copin Co/Fe 28.0 0.1 5 x 10-6 to 760 4.8 0.15 
co pin Co/Fe 28.0 1.0 2 x 10-7 to 760 1.3 0.11 

Co disk Fe/Co 28.0 'i% \ 2 x 1O-7 to 760 
11:o j 

4.0 0.12 

cu pin w0.J 12.1 0.02 

1.0 I 

22.3 0.07 
Cupin a/a 12.1 0.10 4 x 10-7 to 760 15.2 0.04 
tipin OmJ 12.1 33.9 0.08 

Cu disk QaJ 12.1 19.1 0.13 

Cupin Cu/Fe 11.70 0.02 5 x 10-6 to 760 1.6 0.03 
Cupin Cu/Fe 11.70 0.1 3 x 1O-7 to 760 1.3 0.01 

Fe pin Fe/CU 11.70 0.02 5 x 10-5 to 760 1.3 0.11 
Fe pin Fe/a 11.70 0.1 5 x lo-' to 760 1.7 0.08 

I 
0.02 

Cu disk Fe/& 11.70 0.10 
1.0 

t 1O-3 to 760 4.8 0.01 

Fe pin Fe /AY 9.43 2 x lO-7 to 760 0.01 0.03 

All pin AE/Fe 4.56 0.02 5 x 10-5 to 760 4.0 0.03 
A&pin At/Fe 4.56 0.1 10-3 to 760 3.1 0.04 
AIL pin A&/Fe 4.56 1.0 2 x 10-7 to 760 2.3 0.01 

AI. disk Fe/A& 4.56 2 x 10-7 to 760 t 4.8 0.06 
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less than about 1 Torr), then, in general, the wear of metals is 

insensitive to partial oxygen pressures down to about 10 -7 Torr. One 

must ask oneself, however, if the wear rates used by Habig et alia [59] 

wereequilibriummild, i.e., oxidational, wear rates. Perhaps some 

of the combinations do not exhibit mild wear. Certainly, Cu on Cu 

would be expected to be severe wear. To some extent, this is reflected 

in the large values of a ' for Cu on Cu (about 25 x 10W5). A similar 

value for a' for Fe on Fe (about 20 x 10-5) leads to the conclusion 

that the Fe on Fe experiments were probably running-in under the usual 

severe wear conditions which occur for the first hour or so of mild 

wear runs. This is also confirmed by the x-ray diffraction evidence, 

in which Habig et alia [59] show us that a-Fe only was in the wear 

debris for all partial pressures less than 1 Torr. In fact, oxides were 

noticeably absent from many of the epxeriments carried out with the 

other wearing pairs apart from Co on Fe between 760 Torr and 1 Torr 

and Cu on Fe at 760 Torr. The present author considers that Habig 

et alia [59] have merely been showing that severe wear does not depend 

much on partial oxygen pressure. 

There is a real need to repeat Habig et alia's experiments, at 

least with low-alloy steels, to ensure that mild wear is obtained, so 

that the a' and b values can be (i) quoted with some confidence, and 

(ii) checked against values expected from the oxidational wear theory. 

Clearly, a1 values relate to both the oxidational wear theory and the 

theory of oxidational kinetics, whereas b relates mainly to the latter. 

What is the relationship between b and c? Many investigators think 
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that c approaches zero (Rahmel and Engell [60] find the oxidation 

rate Of iron at 700-950°C is independent of the oxygen pressure if Feg04 

and o-Fe203 are present). However, when one is considering oxidation 

which occurs during wear, then one must expect differences from such 

static oxidational behavior. Even Rahmel and Engell [60] show that 

at low oxygen potentials (when in equilibrium with CO/CO,) where only 

Fe0 can exist on the surface, then kl becomes equal to a constant 

times the 0.7th power of the partial oxygen pressure. It is quite 

feasible that at the real areas of contacts where most of the available 

oxygen is quickly used up to provide the wear plateau, the oxidation 

may be occurring under conditions of low oxygen potentials. 

Finally, it is reasonable to assume that, under lubricated 

conditions, there might also be an effect of limited access to the 

oxygen present in the oil. This means that when a certain temperature 

is reached between the sliding surfaces, and the oil breaks down 

according tothe Blok [40] hypothesis, the oxide film already formed 

before the breakdown might be of the thickness and type of oxide 

relevant to low oxygen pressures. This could lead to catastrophic 

failure (scuffing), especially since Fe0 seems to be associated with 

poor wear resistance [32]. Also, it should be pointed out that wear 

occurs between lubricated gears even when no scuffing ensues. This 

wear could be mild oxidational wear occurring at low partial oxygen 

pressures. There is thus a strong incentive for more work to be done 

on the effect of partial oxygen pressures on wear. 
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7. OXIDATIONAL WEAR IN THE 1980'S 

In this review, we have traced the development of oxidational 

wear from the early 1930's, when the German school of investigators 

carried out much of the pioneer experimental work; through the 1960's, 

when the first theoretical experiments were published and when the 

complexities of mild oxidational wear became apparent; through to the 

1970's, when increased instrumentation and heat-flow analyses were 

introduced together with computerization of the data, to lead to the 

present position. This position is one in which, for low-alloy steels 

at least, there seems to be a consistent oxidational theory of mild wear 

which gives information about the initial thickness (6) of the oxide 

films formed at the real areas of contact, the temperature (Tc) at 

which those areas oxidize during wear and the number of asperities (N) 

forming the contact at any given moment. Oxidation constants for 

Oxidational Wear have been evolved for the low-alloy steels. We can 

thus say that, in principle, we can predict the mild oxidational wear 

of low-alloy steels, given enough information about the geometry of the 

wearing system, and the thermal and crystallographic properties of the 

interacting surfaces. This also assumes that there is no external 

heating nor external lubrication applied to the system, and that the 

system is running under conditions where oxidation of the "out-of- 

contact" regions can be ignored. 

In the next few years, it should be clear from this review that 

oxidational wear should now be concerned with mild wear in its most 

general forms. For instance, the ideas and results obtained with the 
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low-alloy steels should be applied (suitably modified) to other systems, 

in particular other steels and other metals. Also, we should be con- 

sidering what modifications will have to be made for the original theory 

to be applicable to lubricated conditions. Should we develop an expres- 

sion which allows for the decreased partial oxygen pressures which might 

occur under lubricated conditions ? How does "pitting" and "scuffing" 

fit in with the theory? Both of these are catastrophic phenomena which 

occur when the wear is no longer "well-behaved". Certainly, some form 

of "benevolent" wear is occurring under normal running conditions before 

pitting occurs [61]. This could be mild oxidational wear under reduced 

partial oxygen pressures. "Scuffing" is probably what happens when the 

initial severe wear of "running-in" does not ameliorate, due perhaps to 

the low oxygen pressures yet again. 

The most important strides in the development of the oxidational 

wear theory over the next few years will probably be taken in the con- 

firmation and validification of the general oxidational wear theory 

expressed in Equation (42) [or some similar expression]. This takes 

into account the "out-of-contact" oxidation; that is, the oxidation of 

the real areas of contact in between the times they are in contact and 

are, therefore, being exposed to the general surface temperature (Ts). 

Normally, the amount of 'out-of-contact' oxidation (at Ts) is insig- 

nificant compared with the 'in-contact' oxidation (at Tc). However, 

there is an increasing number of practical situations where elevated 

ambient temperatures occur, for example, in nuclear reactors, in the 

exhaust valve systems of diesel engines, in rolling mills to name but 
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a few of the hostile environments in which tribological systems have 

to reliably operate. Under these circumstances, the 'out-of-contact' 

oxidation must affect the wear behavior of the sliding system. Although 

the relevance of 'out-of-contact' oxidation to scuffing might appear to 

be tenuous, it is probably here that the strands connecting the two 

phenomena should be drawn together. Blok's [40] hypothesis relates 

to the temperature at which the oil breaks down at the real areas of 

contact. It is most probable that the 'out-of-contact' temperature 

of these areas will be strongly connected with the general temperature 

of the oil, which will be fairly high in a scuffing situation. Oxida- 

tion will occur at these temperatures and, when breakdown occurs, 

the general oxidational wear equation may be relevant to whether or 

not mild or severe wear becomes the operative mode of wear, i.e., 

whether or not scuffing will occur. Similarly, the ambient temperatures 

in incipient pitting conditions could determine whether 'benevolent' 

wear occurs ('benevolent' because it wears away the cracks before they 

can propagate!) or not. If they are high enough, these ambient tem- 

peratures should affect the oxidational mild wear rate through an 

equation similar to Equation (42). There is, therefore, plenty of scope 

for the oxidational theory of mild wear to be applied to many important 

wear problems that are still awaiting solution. 
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Figure 5. Number N of asperities vs. load W for EN8 at 

2 m s-l from (a) the intuitive search program 
and (b) the iterative solution program. 
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