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1.0 INTRODUCTION

During the last decade, communication satellite technology has been
directed predominantly toward expanded use of the existing spectrum 4/6 GHz
and 12/14 GHz bands. Market studies performed by ITT and Western Union have
shown that these frequency bands, by implementing a higher degree of frequency
reuse (where, for example, the expansion is accomplished by providing a large
number of beams isolated spacially and by polarization orthogonality), can
provide larger amounts of useable spectrum.]’2 Even though at first sight
this appears to be a tenable approach to solving the spectrum saturation
problem, the state-of-the-art in spacecraft control and antenna pointing
maintainability falls short of allowing such a scheme to be realized in the
near term. Hence, by developing 30/20 GHz technology in parallel with the
necessary frequency reuse technology, the 30/20 GHz band can be exploited in
order to provide the needed bandwidth for an expanded user base.

To date a great amount of activity and resources have been directed
toward the development of an EHF communication satellite - the Advarced
Communications Technology Satellite - system by the NASA Lewis Research
Center. The initial thrust of this work is to develop technology and
demonstrate its ut%]ity for a system which will ultimately pro&uce 70-18 fixed
trunking user beams and 6 customer premise service scanning beams in the
30 GHz receive and 20 GHz transmit bands. The proposed satellite will provide
proof-of-concept information by generating 6 fixed beams and 1 scanning beam.
Advanced technologies will be used for this system such as TWTA's, IF switch
matrices, and others. However, it is envisioned that in the future, the
advanced operating systems will utilize antenna subsystems consisting of
active phased array feeds with integrated monolithic microwave integrated
circuit (MMIC) receive and transmit modules. These modules provide several
advantages over conventional TWTA feed systems composed of ferrite phase
shifters. They include: (1) fast switching times (10 nanoseconds), which
aids in accessing a large number of users via a TDMA scheme, (2) ease of beam
trimming to compensate for satellite mispointing phenomena, and (3) graceful
failure using a large number of MMIC modules as opposed to a single TWTA. The
Base Research and Technology arms of the Advanced Communication Technology

00157 1
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program has been established with one of its goals to explore advanced
applications of MMIC modules to future systems applications on spaceborne
phased array-fed reflector antennas.

The scope of this contract entails performing a configuration study
for a phased array-fed transmit antenna operating in the freauency band of
17.7 to 20.2 GHz. This initial contract provides a basis for understanding
the design limitations and advantages of advanced phased array and cluster
feeds (both utilizing integral MMIC modules) §1luminating folded reflector
optics (both near-field and focused types). Design parametric analyses are
performed utilizing as constraints the objective secondary performance
requirements of the Advanced Communications Technology Satellite (Table 1.0).
The output of the study provides design information which serves as a data
base for future active phased array-fed antenna studies such as detailed
designs required to support the development of a ground tested breadboard.

In general, this study is significant because it provides the
antenna community with an understanding of the basic principles which govern
near-field phased scanned feed effects on secondary reflector system
performance. Although several articles have been written on analysis
procedures and results for these systems3’4, the authors of this report have
observed phenomenon of near-field antenna systems not previously documented.
Because the physical justification for the exhibited performance is provided
herein, the findings of this study add a new dimension to the available
knowledge of the subject matter. Additionaily, unique ways of integrating
MMIC modules into the waveguide elements, heat dissipation methods of the
modules in the array environment and the total array/element integration
problem with bias and control line interfaces is addressed.

2.0 SYSTEM DESIGN BASELINES

The purpose of this section is to underscore the overall antenna
system requirements of both the multibeam and scanning beam subsystems, and to
make clear all system baseline design assumptions unique to this contract. It
is important to note that, even though the multibeam and scanning beam
functions may eventually be combined into one antenna system, they shall be
considered separately in this study, and likewise, in the remainder of this

report.
00157 2
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Table 1.0, Objective Requirements for Multibeam and Scanning Beam Antenna

Beam Configuration Multibeam Scanning Beam
Antenna Size Shuttle Compatible
Operation Frequency -Downlink 17.7 - 20.2 17.7 - 20.2
Range (GHz) =Uplink 27.5 - 30.0 27.5 - 30.0
Number of Beams ~Operational 10 - 18 6 "rans
Minimum Gain (dB) -20 GHz 53 53

-30 GHz 56 53
Bandwidth (MHz) -20 GHz 500 500

-30 GHz 500 500
Polarization Linear Linear
C/1 Performance (dB)(1) 30 30
Pointing Accuracy -E & H Plane 0.0% 0.02

(degrees) Polarization 0.4(2) 0.4
Power/Beam (EIRP) dBW" 52 - 62 67 - 75

(1) Carrier to interference ratio for each beam relative to all other beams.

(2) Degrees rotation from reference (i.e., true satellite vertical or

horizontal).

00157




2.1 Objective Requirements and Specifications

Table 1.0 parameters are considered as design goals for the
melciple scanning spot beam antenna system. There are to be six transmit
beams in one 500 MHz band, operating in the frequency range of 17.7 to 20.2
GHz, each assigned to provf&e civerage to one of six contiguous sectors
covering the continental United States (CONUS), and each independently
controlled. These sectors are illustrated in Figure 2.1. Isolation between
veams covering different sectors is achieved by spatial separation and
polarization diversity. Frequency isolation techniques are to be used only
when the above mentioned techniques cannot provide the required isolation. !

Every point within a given sector, must fall within the 3 dB beam
spot area for at least one beam position. Beam movement within a given sector :
from one position to another, is accomplished in 10 to 100 nanoseconds, with ;
the dwell time on any vnme position being programmable between 10 and 100 ;
microseconds. The control system for the scanning beams is able to allow any
single beam to be independently sequenced to any one of its positions, with %
instructions supplied by an onboard computer. 5

Table 1.0 parameters are also considered as the design goals basis
for the multibeam antenna system configuration, a trunking beam service
application. A list of coverage sites for both the "ten city coverage" and
the "eighteen city coverage" schemes appears in Table 2.1. The numerical
order corresponds to the beam coverage priority. The beam-to-beam isolation
requirement is to be accomplished via spatial separation, beam shaping, and/or
‘polarization techniques. A multibeam coverage map is shown in Figure 2.2.
Again, frequency isolation techniques are to be used only when beam-to-beam
isolation cannot be achieved by the previously mentioned techniques.

2.1.1 MMIC Components

The component requirements outlined below are assumed as typical
specifications of MMIC components to be used.in developing the antennc
configurations. These specifications will be used to form the initial design

0015T ' 4
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Table 2.1, Multiple Fixed Spot Beam Antenna Coverage

Spot-Beam
Coverige Site

Ten-City
Coverage

Eighteen-City
Coverage

— ok - —d
W NN = O W ON OO bW Ny —
e e ® e & 9 . 9

—_— b
(S 2 S~
L] [ ]

16.
17.
18.

New York City
Washington, DC
Boston, MA

San Francisco, CA
Seattle, WA
Chicago, IL

Los Angeles, CA
Denver, CO
Minneapolis, MN
Atlanta, GA
Dallas, TX
Houston, TX

Detroit, MI/Cleveland, OH
Buffalo, NY/Pittsburgh, PA

St. Louis, MO
Phoenix, AZ
New Orleans, LA
Miami, FL

X
X

DX XX > DX X > >

DX DX DK DK DX DX DX DX DX > > D X M M D D
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pcint for parametric analysis, the final design point in the four selected
configurations, and design concept refinement.

2.1.1.1 Variable Phase Transmit Module

The variable phase transmit module to be used in this study is
assumed to have the specifications of Table 2.1.1.1.

The module construction is fully monolithic with no discrete :
components, wire bonds, or off-chip matching. :

The module is designed for high reliability under synchronous orbit :
envircnment. Heat removal is by conduction to a heat sink maintained in the

range of 0° to 70°C.

2.1.1.2 Variable Power Amplifier Module

The variable power amplifier (VPA) moduie used in this study is
assumed to have the specifications listed in Table 2.1.1.2.

The module construction is fully monolithic with no discrete
components, wire bonds, or off-chip matching.

The module is designed for high reliability under synchronous orbit
environment. Heat removal is by conduction to a heat sink maintained in the

range of 0% ¢o 70°.

2.1.1.3 MMIC Component Breakdown

Component specifications are as outlined in Section 2.1.1. For
maximum flexibility in design of the phased array, however, it is assumed that
the variable phase transmit module actually consists of two separate physical
devices: a variable phase shift (VPS) module and a constant gain amplifier
(CGA) module. The phase shift module is assumed to have 3 dB loss; while the
constant gain amplifier has 19 dB gain. Thus, the total gain for the modules
combined is 16 dB, as specified.

0015T 8 i
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Table 2,1.1.7.

Variable Phase Transmit Module

Parameter

Characteristic Value

Frequency

RF Input/Output Impedance
Input/Output VSWR

RF OQutput Power

RF Gain

Gain Variation

Module-to-Module
Gain Variation

Power Added Efficiency

Phase Shifter Levels

Phase Shjift Response Time

Group Delay Variation

17.7 - 20.2 GHz

50 ohms (nominal)

<1.3:1

>0.2 watts @ 1 dB gain compression point
>16 dB

<1 dB maximum (17.7 - 20.2 GHz)
<0.4 dB (over any 500 MHz band)

At any given frequency, <0.5 dB between
modules measured against the RMS average
for all modules at that frequency

>15% defined as follows:
. - _RF Qutput - RF Input
Efficiency = 5eTrput - Logic Input

5 bits as follows @ band center*

00 or -1800 +30
09 or -900 +30
0% or -450 #30
00 or -22.50 +30
00 or -11.2507+30

<10 nanoseconds

<0.2 nanoseconds peak-to-peak in any 0.5
MHz portion of the operating hand

R e o e

S

*Total phase shift is proportional to frequency in the operating band with
phase error <60.

0015T A 9



Table 2.1.1.2.

Variahle Power Amplifier Module

Parameters

Characteristic Value

Frequency

RF Input/Output Impedance
Input/Output VSWR

RF Output

Amplitude Control
Amplitude Control Response
Time

Number of Control Lines

Control Line Impedance and
Voltage Level

Control Line Input Signal

Group Delay Variation
Linearity

Amp1itude/Phase Isolation

17.7 - 20.2 GHz

50 ohms (nominal)

<1.3:1
Nominal Qutput Minimum Efficiency
Power (mW) Gain (dB) (%) State
500 20 15
125 ) 14 12
50 10 9
12.5 4 6
0 maximum dissipation: 50 mW

Digitaliy controlled providing the five
output state listed above

<10 nanoseconds

<4

TTL Compatible

Continuously available during dwell periods

<0.2 naroseconds peak-to-peak in any
0.5 MHz portion of the operating band

Third order intermodulation products
<20 dBC

Phase shift shall not vary by more than
459 in response to change in amplitide
state

0015T
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2.2 Underlying Assumptions

Recall, that it is the objective of this study to develop phased
array-fed reflector systems for communication satellite multibeam and scanning
beam antennas. More specifically, the Advanced Communication Technology
Satellite (ACTS) System is selected as the design goal. Several simplifying
assumptions are therefore necessary, in order to concentrate more fully on the
actual detailed antenna design, and alleviate the need for elaborate satellite
system design optimization.

The first of these assumptions, as defined in the statement of
work, is that the antenna system is to be operated on a Shuttle-launched
satellite, operationally located in geosynchronous orbit at a position of
100° iﬁo west longitude. The spacecraft is assumed to be three axis
stabilitzed, with the antenna system occupying no more than 18 cubic meters,
and weighing less than 230 kg.

Also provided for use in this study are the geometric parameters of
a 3.7-m (12-foot), shuttle compatible, offset parabolic reflector shown in
Figure 2.2a, obtained by direct scaling of the antenna configuration in
Figure 2.2b, supplied by NASA. It was specified from the outset, that no
shaped reflectors were to be used in this phase of the project, and that not
more than one subreflector was to be considered. These limitations in
reflector optics suggest that two dual-reflector antenna systems be utilized
to achieve CONUS coverage for the multiple scanning spot beam system. And
since the multibeam and scanning beam functions are considered separately, two
additional reflector systems are used for the multiple fixed spot beam service
with eighteen beam city coverage.

For scanning beam operation, it is apparent that the sectorization
scheme (division of CONUS into six zones) selected must be compatible with
this two-antenna assumption, i.e., three sectors in the eastern half of CONUS
and three in the west. Within each half-CONUS, only two possibilities exist,
three vertical sectors of approximately equal size, or three horizontal
sectors. Since polarization diversity is utilized to achieve maximum
beam-to-beam isolation between sectors, i.e., adjacent sectors are

0015T B
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orthogonally polarized, a sectorization scheme is optimum in this sense when
each sector is bounded by, at most, two other sectors. In the horizontal
scheme, four sectors meet at ore point and polarization diversity alone may
not be sufficient to achieve the required isolation. Therefore, the vertical
(constant longitude) sectorization scheme is employed.

Antenna boresights, selected to minimize the scan to each point
within CONUS, are

38° N. Lat. 110° W. Long. West Antenna
38° N. Lat. 83% w. Long. East Antenna

Given these boresight locations, and the vertically-arranged
sectorization scheme, CONUS can then be divided into six zones, bounded
approximately by the following west longitude values;

124 114°  103°  94°  gg®  78°  70°

where the 94° west longitude 1ine also serves as the east/west CONUS

dividing line for the two multibeam trunking antennas. The eighteen cities
are arranged as shown in Table 2.2. Cities in sectors 1, 2, and 3 are covered
by the west multibeam antenna (7 cities), and cities in sectors 4, 5, and 6
are covered by the east multibeam antenna (11 cities).

3.0 SCANNING BEAM ANTENNA SYSTEM

3.1 Summary of Requirements

For the multiple scanning spot beam system, recall that emphasis in
this study is placed on phased array-fed reflector design approaches in dual
offset antenpas, integrating solid state MMIC amplifier and phase modules into the
feed array design. As design goals, the Advanced Communication Technology
Satellite System objective requirements, shown again in Table 3.1, have been
selected. In accomplishing this, it was considered best to first optimize the
reflector geometry, including the overall dimensions of the feed array, and then
proceed to the detailed electrical and mechanical design of the phased array.

00157 14
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Table 2.2.

Sector/City Locations

124° 14° 103° 94° 86° 78° 70°
Sector Sector 2 Sector 3 Sector 4 Sector 5 Sector 6
San Deriver Dallas Chicago Atlanta New York
Francisco City
Seattle Phoenix Houston Minneapolis| Detroit/ Washington
' Cleveland | D.C.
Los St. Louis Boston
Angeles
New Orleans| Miami
Buffalo/
Pittsburgh
0015T 15
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Table 3.1

Beam Configuration Multibeam Scanning Beam
Antenna Size Shuttle Compatible |
Operation Frequency -Down1ink 17.7 - 20.2 17.7 - 20.2
Range (GHz) -Uplink 27.5 - 30.0 27.5 - 30.0
Number of Beams -Operational 10 - 18 6 Trans
Minimum Gain (dB) -20 GHz 53 53

-30 GHz 56 83
Bandwidth (MHz) -20 GHz 500 500

-30 GHz 500 500
Polarization Linear Linear
C/1 Performance (dB){1) 30 30
Pointing Accuracy -E & H Plane 0.0% 0.02
(degrees) Polarization { 0,4(2) 0.4
Power/Beam (EIRP) dBW 52 - 62 67 - 75

(1) Carrier to interference ratio for each heam relative to ail other beams.

(2) Degrees rotation from reference (i.e., true satellite vertical or

horizontal).
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In conformance with this approach and the statement of work, a
parametric study of possible reflector geometries was conducted, resulting in
the selection of an initial point design reflector system configuration.
Utilizing this geometry, two integrated feed/reflector systems are recommended
for further study and detailed design. The remainder of the study focuses
attention on the hardware design and implementation of these phased array
feeds.

3.2 Selection of Reflector Type

Before a parametric study of reflector geometries can be
accomplished, it is necessary to choose a generic type of reflector optics.
Restrictng this selection, are the assumptions outlined previously, that is,
an offset parabolic main reflector, 3.7M (12 feet) in diameter, no shaped
reflector surfaces, and not more than one subreflector.

Close inspection of the objective requirements of Table 3.1,
results in the elimination of several generic reflector candidates. Notice
that the single difference between the multibeam and scanning beam far field
transmit performance requirements is EIRP. Each of the six transmit scanning
beams must radiate 67 to 75 dBW. This is due to the fact that many users rely
on small aperture, Tow gain ground terminal antennas, as opposed to the high
gain trunking beam city coverage antennas. Recalling that the maximum nominal
output power level of the variable power amplifier (VPA) module is 500 mW, and
that the gain specification of the reflector system is 53 dB, it becomes
readily apparent that a very large number of radjating feed elements (one VPA
per element) is needed for each beam to meet the high EIRP specification.

This large number of elements implies an electrically large feed aperture.
Simple calculations readily show, that for the reflector geometries
considered, the subreflector is in the near-field of this electrically large
phased array, and is in fact, within the Rayleigh distance, R, given by

00157 17



Recall, that in the near-field of an antenna, and in particular, a
phased array feed, the propagating phase front is best characterized as a
pseudo-plane wave, diametric in character to a spherically exparding phase

front in the far field. This fact suggests a deviation from traditional
focused optics.

A review of reflector optics reveals two possible "unfocused", or
near-field, generic types of dual offset reflector antennas. These reflector
systems, shown in Figure 3.2, are known as the near-field Gregorian, and the
near-field Cassegrain, offset reflector antennas. Both consist of a parabolic
main reflector and a confocal parabolic subreflector, and are commonly
referred to as imaging reflector systems. The Gregorian configuration suffers
from the fact that the subreflector is located below the symmetric axis of the
main pawent paraboloidal reflector, and results in a less compact design than
the Cassegrain. Also, the Gregorian requires longer transmission line runs
from the feed array to the satellite, because the feed is located further from
the vertex of the main reflector. Considering these facts, and possible
future integration of the scanning beam and multibeam antennas, the offset
near-field Cassegrain antenna is selected as the generic reflector type.

3.3 Scanning Spot Beam Design Procedure

In the design of a multiple scanning spot beam antenna utilizing an
offset near-field Cassegrainian reflector system, it becomes necessary to
relate the f%r field objective requirements of the antenna system to physical
dimensions of the feed array and subreflector. A procedure is outlined here
which assists the engineer in this design, assuming the use of a 3.7-m
(12-foot) offset main reflector.

Recall, that a near-field Cassegrain antenna, offset or symmetric,
can be thought of as an imaging reflector system, i.e., a magnified image of
the feed array aperture distribution is produced in the aperture of the
secondary reflector, where the magnification factor is given by the ratio of
main reflector to subreflector focal lenghts. Alternatively, this system
could be thought of as transforming a planar wavefront, incident on the
subreflector from a direction parallel to the symmetric axis of the

0015T 18
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Figure 3.2. Scanning Beam Optics Configurations
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paraboloids of revolution, into a plane wave in the secondary aperture. For
this design procedure, it is assumed that the reflector system ideally
transforms this feed aperture distribution, in both amplitude and phase, to the
secondary aperture, or in other words, the antenna is considered to be a
perfect imaging reflector system. Based on this assumption, it is now possible
to directly relate the far field beam requirements within the coverage sector
to physical dimension criteria on the aforementioned magnified image of the
feed-array, nenceforth referred to as the aperture array, shown in Figure 3.3.
Consider a sector coverage area of approximately 3.5% in elevation
and 1.25° in azimuth as viewed from the satellite in geosynchronous orbit.
It is desirable for each point, or ground terminal, in the sector to 1ie within
the 3 dB beam spot area of each individual :2lement in the aperture array. This
criterion is imposed so that each element in the array will constructively
contribute to all of the far field spot beams within the scan sector. It does,
however, imply an inherent 3 dB loss in gain at the edge of the sector for a
scanned spot beam relative to the on-focus beam. This can be readily shown by
a calculation of the array pattern using pattern multiplication and the array
factor. To achieve less gain loss, e.g., 1 dB gain loss imposing a 1 dB sector
edge illumination requirement, would require many more elements, complicating
hardware implementation and heat dissipation. This is discussed further in
Section 3.6. Assuming the use of circular aperture elements, and given that
the 3 dB beamwidth of a uniformly illuminated circular aperture of diameter D is

_ A
eBw - 58-5'5 ’
the maximum aperture array element diameter becgmes

DgL = 16.7 A
Dy = 46.8 {.

Since circular, rather than rectangular, aperture elements are
assumed, the more stringent diameter criterion dictates the aperture array
element diameter. Recalling that a 3.7M (12 foot) (243 » @ 20 GHz) diameter
circular aperture array is required, and that the individual element diameter
is 16.7 A, the minimum number of elements reguired to achieve the far field
scan coverage is found to be approximately 177.
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Figure 3.3. Offset Near-Field Cassegrain Geometry Showing Aperture Array
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The actual feed array size and element spacing is determined
directly from the aperture array size and element spacing through the
magnification factor M, where

M = Main refiector focal length
subreflector focal length .

Since the feed array and subreflector are of approximately equal diameter, the
selection of magnification factor M uniquely determines the feed array size.

3.4 Parametric Analysis

A parametric study was performed to optimize the offset near-field
Cassegrain reflector geometry. Five configurations were selected, as shown in
Figure 3.4, providing a sufficient data base from which to choose a geometry
for further ‘investigation, and gain insight into the trade-offs involved in the
design of the scanning beam antenna system. These five antenna configurations
were obtained by varying the geometric input parameters of Table 3.4-1, shown
numerically in Table 3.4-2. The data base js generated through a calculation
of the output parameters of Table 3.4-1 for each of the five geometries.

3.5 Analytical Approach

Offset near-tield Cassegrain reflector antenna systems for
spaceborne satellite applications are still in the early stages of development,
and as such, very little if any attention has been devoted to them in the
literature. Also, computer software for the analysis of these antenna systems
was not available at the start of this study. Significant development effort
was therefore put forth in this area.

Two new computer codes now exist at Harris Corporation for the far
field radiation pattern prediction of offset near-field Cassegrain antennas.
The first, is a very fast, efficient design tool utilizing geometrical optics
raytracing techniques combined with the aperture integration (AI) method. The
second, is a more, sophisticated, and more accurate reflector antenna analysis
code also utilizing the raytracing techniques of geometrical optics with a

00157 22
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Table 3.4-1. Input and Output Parameters for the Parametric Analysis

Input Parameters

Output Parameters

Main Reflector Diameter
Main Reflector F/D
Main Reflector Offset

Subreflector Diameter

Subreflector Focal Points

Subreflector Curvature

Array Size (area)

Array Gain (or beamwidth)

Physical Orientation (array & reflectors)
Phase Resolution (of monolithic module)
Amplitude Resolution (of monolithic module)
No. of Beams (scanning beam)

No. of Beams (multibeam)

Gain
Sidelobe Level
Bandwidth

Efficiency (under illumination,
spillover)

Crosspolarization

00157 24
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Table 3.4-2. Range of Parametric Analysis Input Parameters

Subreflector Diameter Mag Factor Subreflector F/D Focal Length
A 22.86 cm (9") 16 0.405 28.2 cm (11.1")
B 45.72 cm (18") 8 0.405 56.4 ¢m (22.2")
C 68.58 cm (27") 5.3 0.405 84.8 cm (33.4")
D 91.44 cm (36") 4 0.405 113.0 cm {44.5")
E 114.30 cm (45") 3.2 0.405 141.2 cm (55.6")
\
00157 25
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surface current integration (SCI). Inputs to both include feed array position
and orientation, linear or circular polarization sense, feed element radiation

pattern, reflector geometry, frequency of operation, and far field pattern
specifications.

To circumvent the need for a complete, time-consuming analysis of
the near-field of the phased array feed using the well known plane wave
spectrum technique, an element-by-element superposition of field is utilized
in the secondary aperture for the Al code, and on the surface of the main
reflector for the SCI code. Array element weightings, in amplitude and phase,
can be applied to each field distribution at this time. A single far field
integration is then needed to determine the radiation pattern of the
array/reflector system. The superposition technique holds the unique
advantage of being readily adaptable to element weighting coefficient
optimization as discussed in Section 3.6.1, and has been found to produce very
accurate results in the main beam region and over the first few sidelobes.
Antenna gain calculated in this way includes the efficiency measures of phase
error loss, illumination loss, spillover loss, and cross-polarization loss.
Further discussion can be found in Appendix B.

3.6 Results of Parametric Analysis

The five geometric configurations of near-field Cassegrains that
are to be analyzed, essentially represent a trade-off study of unfocused optic
magnification factors, paralleling a study on the effect of equivalent f/D
ratios in traditional Cassegrain reflectors. Recall that the magnification
factor of this imaging reflector is defined as the ratio of main reflector
diameter to subreflector diameter. Since, in the near-field of the feed
array, wave propagation is nearly collimated, the phased array and
subrefiector are of approximately equal diameter. Knowing the array size and
number of elements (found to be 177 based on the far field sector scan
requirements), the individual element diameter can be determined. So, given
the system magnification factor, the feed array element size is defined, and
vice versa. As Figure 3.6-1 shows, for a given array diameter, the number of
elements (177) determines the element size (assuming circular aperture
elements to minimize coupling effects).

00157 26
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Figure 3.6-1. 177 Phased Array Feed Elements Are Required
Based On The Far-Field Sector Scan Criteria
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Radiation patterns were calculated on-focus for the five
geometries, and are shown in Figures 3.6-2 to 3.6-11. Each element diameter
corresponds to a different feed array size and magnification factor as
described in Table 3.6. A1l calculations were made assuming dominant mode
conical horns, and a field amplitude weighting distribution for each element
proportional to

cos (np/D)

where p is the radial distance to each element, and D jis the diameter of the
feed array. All elements are assumed to radiate in phase for the calculation
of the on-focus patterns, and the frequency of operation is assumed to be

20 GHz.

Gain versus element diameter is plotted in Figure 3.6-12. Notice
that the gain of the reflector system decreased as e2lement diameter, and
correspondingly element spacing, increased. This is probably due to primary
spillover. Cross polarization levels, shown in Figure 3.6-13, are found to be
well below the specification of 30 dB, and does not appear to be a significant
problem. :

00157 28
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Table 3.6.

Element Size Versus System Magnification Factors

Reflector Feed Element Array System
Geometry Diameter Diameter Magnification
A 2 22.6 cm (8.9") 16
B 2 45.0 cm (17.7") 8
o A 67.6 cm (26.6") 5.3
D o 89.9 cm (35.4") 4
E 5A 112.5 cm (44.3") 3.2

0015T
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On-focus Gain Vs Element Diameter.

Feed Array Contains 177 Dominant Mode Conical Horns with an
Amplitude Weighting Distribution Proportional to COS (n P /D)
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Further insight is gained when radiation patterns are calculated
for a typical scan case, say 2-1/2 beamwidths, These patterns are shown in
Figures 3.6-14 to 3.6-23, for each of the five configurations under
consideration. Loss in gain, relative to the on-focus gain calculated
previously, is shown in Figure 3.6-24. Notice that scan loss is in excess of
15 dB, at only 2 1/2 beamwidths of scan, for the configuration with one
wavelength elements and magnification factor of 16. In the configurations
with Tower system magnification, scan loss is much less. Recalling the
on-focus gain calculations, it is apparent that non-scanned antenna gain must
be sacrificed for superior scan performance. These calculations, it should be
pointed out, were made without utilizing the inherent pattern compensation
available with the MMIC modules, namely variable amplitude and variable phase
element weightings. Improved beam performance can be achieved when these
weights are optimized as discussed in Section 3.6.1., It appears, though, that
15 dB scan loss might be beyond the compensatory capabilities of the array
modules. Therefore, it seems that lower system magnification (larger
elements) is preferred for limited scan performance. However, this implies
the use of a large phased array feed. In fact, as the magnification factor
approaches unity, the feed array diameter approaches that of the main
reflector, significantly increasing the weight of the antenna system.
Therefore, in order to most effectively utilize the imaging reflector system’
and obtain acceptable far field beam performance, the reflector with system
magnification of 4 is selected. For this geometry, the loss in gain is
minimal at 2-1/2 beamwidths of scan, and the feed array size js not
exceedingly large. The selected geometry is therefore, configuration D of
Figure 3.4, shown in more detail in Figure 3.6-25, with a feed array and
subref lector diameter of approximately 99.4 cm (36 inches).
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Figure 3.6-26.
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This choice is further supported by Figure 3.6-26, showing the beam
deviation factor (BDF) of each reflector configuration. The BDF, as
calcualated here, is a measure of the reflector system's effectiveness in
transferring a phase front from the feed array aperture to the main reflector
apérture. In other words, a phase tilt in the feed aperture perfectly imaged
to the secondary aperture would correspond to a BDF of one. All five feed
arrays were weighted so as to ideally produce 0.75o of scan (2-1/2
beamwidths @ 0.3° beamwidth). As Figures 3.6-14 to 3.6-23 clearly show, far °
field scan is significantly less than 0.75° for configurations with high
system magnification. This again suggests the use of lower magnification
reflector systems. Figure 3.6-26 is, in many ways, analagous to the
traditional beam deviation factor for focused reflectors, e.g., parabolic
reflectors, Cassegrains, etc.

Additional calculations were made for the selected geometry,
showing far field radiation patterns from one to' four beamwidths of scan.
These patterns appear in Figures 3.6-27 to 3.6-36. A field amplitude
weighting distribution of the form

| (1 - (2p/D)%)%,
where p is the radial distance to each element, and D is the feed array
diameter, was used in order to obtain the required low level side]obes..
Figure 3.6-37 shows the scan loss at four beamwidths is about 3.5 dB. Recall
that the design procedure of Section 3.3 called for an aperture array element
diameter of 16 A, yielding an inherent 3 dB loss in gain at 1.75° from
boresight. We note, therefore, that the scan loss of 3.5 dB can actually be
considered as the sum of two smaller Josses. First, the inherent element

pattern loss at four beamwidths (~1.29) of approximately 2 dB for the
selected feed array geometry. The additional 1.5 dB is attributable to
reflector effects such as primary spillover, phase error loss,
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cross-polarijzation loss, etc. Furthermore, the 2 dB element pattern loss can
readily be decreased by the addition of more elements in the feed array, while
the loss in gain due to reflector effects can be significantly reduced with
the optimal utilization of the MMIC variable amplitude and variable phase
modules as discussed in Section 3.6.1. Therefore, the resultant scan loss can
approach that of the element pattern level at the sector's edge, and with
additional elements, say 541 per feed array, this loss can be reduced to about
1 dB. Cross polarijzation levels, shown in Figure 3.6-38, are again seen to be
well below the required -30 dB level.

One final point concerning the scanning performance of tne
near-field Cassegrain should be mentioned. Some part of the 3.5 dB scan loss,
calculated above, is attributable to primary spillover. This can be recovered
in part by overéizing either the subreflector or the feed array. A simple
extension of the parabolic subreflector contour, however, may not be
sufficient to properly co]ﬁimate the scanned beams, so some reflector surface
shaping may be necessary. By oversizing the feed array, on the other hand, it
is possible to recover the lost energy. The amount ¢f oversizing necessary
can be approximated graphically as shown in Figure 3.6-39 and 3.6-40. These
plots were generated by tracing an incoming plane wave through the near-field
Cassegrain reflector system for elevation scans of i].75°. For a particular
scan direction, only a portion of the feed array would be illuminated, thereby
requiring more than the proposed 177 feed elements to cover an entire sector,
but the scan performance of the system will be significantly improved.
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3.6.1 Element Weighting Coefficient Synthesis From Reflector Secondary
Characteristics

The far field radiation characteristics of the array/reflector
system can be greatly improved by optimum selection of the feed element
excitation coefficients, in both amplitude and phase. These can be
dynamically incremented to any of a number of preselected levels to provide
beam movement and optimum pattern shape at each position. This is one of the !
unique advantages gained t4rough effective utilization of the MMIC transmit
modules. Two methods of determining these weighting coefficients are outlined
below which are applicable to reflector systems in general, and the offset
near-field Cassegrain in particular.

The first of these methods, utilizes a system transformation
matrix R, relating the complex excitation coefficients of N feed elements to N
corresponding complex secondary aperture field points. This can be written as:

—k?1 o u ] _-w]
AF, SYSTEM W, ‘w
' = TRANSFORMAT ION '
' MATRIX o
' R P
+ 4
] ]
LA ] _ NI B

where AFn is the complex principal component of the electric field vector in
the aperture of the secondary reflector (or on the main reflector surface :
itself), and wn is the complex rglative excitation coefficient of the nED- i
feed element. Based on a particular set of far field beam requirements, a set
of desired aperture fields can be determined, and the required weighting

coefficients are found as:

ORIGINAL PAGE IR
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W, l L aF, ]
Wy SYSTEM AF,

' - TRANSFORMAT ION '

' MATRIX :

] R ]

] []

[] ] ]
] 3 LA

This technique has been found to calculate weighting coefficients which do
indeed produce the required aperture distributions, and therefore, the desired
far-field radiation patterns, but are not optimized with respect to power.
(See Appendix D.)

To resolve this power problem, a second, more sophisticated,
optimizaiion procedure is suggested. Referred t4 as the method of steepest
descent, or gradient method, it provides a way of finding the minimum of a
system function with many unknowns. It is an iterative process well suited to
implementation on digital computers, and, while it usually does not exhibit
tremendous]j fast convergence properties, is fairly simple to understand and
easy to program.

The first step in using the method of steepest descent is the
determination of the function to be minimized. This can be referred to as the
"error function" and should depend on all N complkx weights, as shown helow:

E = f(w], wz, w3, e e e ey wN)

Incidentally, since each weight consists of an amplitude and a phase, this
function actually depends on 2N parameters. The error function should somehow
relate the pattern produced by the present weights to the desired pattern.
This relation should be such that the value of E becomes smaller and smaller

as the actual pattern approaches the desired pattern.

00167 51

T R I R AR AR 1



ettt

The choice of the error function depends on the criteria which must
be met by the system. For the scanning beams, the system specifications
require that peak gain be at, or above, a particular level, and that gain in
the sidelobe regions be below some lower rel.tive level. This selection of
error function should be made judiciously so that the solution will converge
to the proper point. But once it is selected, the process becomes
straightforward.

At each step of the iterative process, the 2N parameters are
adjusted in such a way as to decrease the value of E. The rule for adjusting

each parameter Ni is:

K+ K oF 22 CR'CINAL PAGE IS
W7 =Wy - a (Wi /-w—-g) OF POOR QUALITY

where k is the jteration number and a is a step size. The value for a is
important in determining the success of the algorithm, but its best value can
only be found by trial and error. For this reason a is sometimes known as

the "magic factor". Note that at each stage of the algorithm, 2N first
pértia] derivatives and 2N second partial derivatives must be calculated. The
necessity of finding closed forms for these expressions should encourage the
designer to keep the definition of E as simple as possible.

After each parameter has been adjusted, a convergenre test is
made. Several conditions for convergence are possible, such as the new value
of £ falling at or below some threshold, the sum of all the first partial
derivatives falling below a cutoff point, or a maximum number of iterations
being reached. If convergence is reached, the process is terminated and the
latest values of the parameters are considered optimum. If the conditions for
convergence are not met, the parameters are readjusted, and so on. A flow
graph for the entire process is shown in Figure 3.6.1.
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3.7 Recommended Configurations OFE POOR QUALITY

Based on the results of the parametric study, it is now possible to
recommend configurations for hardware dasign. These two scanning spot beam
configurations are outlined in Table 3.7. Notice that they differ only in
MMIC module combinations utilized to achieve beam performance. It was
determined during the parametric analysis (see Appendix D) that variable
ampiitude and phase control would be required in order to meet the performance
specifications. This is reflected by configuration A. It may be possible,
though, to "thin" the array (discussed in Section 3.12.1) as indicated by
configuration B, This module thinning can be implemented only after all
weights are determined by the optimization procedure outlined in Section 3.6.1
for each beam position.

3.8 Scanning Beam Phased Array Design

Design of the scanning beam phased array presenté some unique
problems, most important of which is integration of the monolithic modules
into the array. The phased array design can be broken down into three
independent parts which COﬁrespond'to the basic parts of the array: radiating
element selection, monolithic module integration, and feed system desidn.

Radiating element selection involves selection of element size and
type to satisfy sector coverage requirements. Integration of monolithic
modules into the phased array requires design of a configuration for mounting
the modules, and design of transistions for RF signals to &nd from the
modules. Additionally, some provisions must be made for bias and control
input signals and for conduction of heat from the modules. The goal of feed
system design is to provide an RF distribution network that will dijvide the
power from one source and distribute it at appropriately proportioned levels
to each of the elements. The relative advantages of the two general types of
feed systems will be discussed before demonstrating the most advantageous for
this application.
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Table 3.7. Two Recommended Scanning Spot Beam Configurations
ORIGINAL PACE IS
OF POOR QUALITY

CONFIGURATION‘A - SCANNING SPOT BEAM

Main Reflector: 3.7M (12 foot) diameter paraboloid

Subreflector: 91.44 cm (36 inch) diameter paraboloid

Feed: Spacefed lens with active elements

Elements: 177 circular wavequide with MMIC modules

MMIC Modules: Variable Phase Shift (VPS), Constant Gain
Amplifier (CGA), Variable Power Amplifier (VPA)

Module Gain: VPS, -3 dB; CGA, 19 dB; VPA, programmed to
produce weighted amplitude, 20 dB max

Module Phase: Phase programmed to produce weighted phase for
low sidelobes and heam pointing

EIRP: Approximately 70 dBW

Output Power: 15 dBW (31.6 Watts)

CONFIGURATION B, - SCANNING SPOT BEAM

Same as Configuration A except that a thinning tecﬁnique will be used
wherein the radiating elements of the array (lens) can have the
following combinations of modules:

1) Variable Phase Shift module o%]y

2) Variable Phase Shift and Constant Gain Amplifier modules

3) Variable Phase Shift and Variable Powar Amplifier modules

4) Variable Phase Shift, Constant Gain Amplifier, and Variable Power
Amplifier modules

0016T 55
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3.9 . Radiating Element Selection

]
ORIGINAL PAGE I3
3.9.1 Element Size and Type OF POOR QUALITY

Selection of the size of the radiating element for the scanning
beam phased array was based on analysis of sector coverage requirements imaged
through the reflector system. The analysis showed that an array of 177
elements of 4 wavelengths in diameter was required to achieve scan performance
over the entire sector. Circular elements are preferred for large arrays
because of their equal E and H-plane beamwidths, reduced coupling, and
multimode capability.

3.9.2 Element Design

The initial design was a four wavelength dominant mode conical
horn, although a multij-mode horr could be used if required. The horn is shown
below in Figure 3.9.2.

The 7° flare angle produces a maximum aperture phase error of
36%, well within the acceptable 1imits. A 3-wavelength circular-to-
rectangular transition is included based on design criteria developed by
Reich. Its total length, including the transition, is 24.5 cm (9.64 inches).

3.10  Monolithic Module Integration

3.10.1 Requirements
4

Integration of monolithic modules into the phased array requires
design of a configuration for mounting the modules, and design of transitions
for RF signals to and from the modules. Additionally, some provision must be
made for bias and control input signals and for conduction of heat away from
the modules. '
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3.10.2 Monolithic Module Mounting Configuration

Table 3.10.2 1ists some important factors in the design of
microelectronic packaging for spacec#aft. In addition to those factors, there
are several unique system constraints which must be considered in design of
the mounting configuration. The size of the completed package must be
compatible with waveguide dimensions to fit in the space behind the radiating
element. Also, the package must be compatible with the transition used
between waveguide and the monolithic modules. Finally, provision must be made
for routing control and bias 1ines to the modules.

Table 3.10.2. Important Factors in Microelectronic Packaging for Spacecraft

Factor Characteristics

Reliability Number of Connections
Structural Integrity

Physical Characteristics s Size
Weight
Thermal Properties

Environmental Protection ‘Shock and Vibration
RF Interference
Humdity

A mounfing configuration has been devised which appears to meet the
requirements of Table 3.10.2 and is compatible with the system constraints.
The configuration, shown in Figure 3.10.2, uses microwave leadless chip
carriers for mounting the monolithic modules, then integratgs the chip
carriers onto a single substrate for routing of RF, bias and control signals.
The MMIC's would be bonded into the chip carriers using an epoxy adhesive,
then a ceramic cover would be attached to provide a hermetically sealed chip
carrier. The chip carrier would in turn be attached to the substrate using

ORIGINAL PAGE 1S
OF POOR QUALITY
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Figure 3.10.2. Monolithic Transmit Module Mounting Configuration
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conventional soldering technigues. Conductors for carrying RF, hias and
control signals would he etched on the surface of the substrate. Finally, a
frame could be attached as shown to provide some strength and rigidity to the
structure. Conventional alumina ceramics would he used unless therma)
problems required use of Beryljum Oxide.
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3.10.3 Transition OF POOR QUALITY

5

3.10.3.1 Design Alternatives

Since microstrip offers the most attractive interface to the
monolitnic transmit modules, a transition is needed between waveguide in the
feed system and radiating elements, and microstrip which connects to the
modules. The technology assessment in Appendix A outlines several common
methods of accomplishing this transition. Some desirable features for a

waveguide to microstrip transition are listed be1ow.6

1. High return loss to reduce reflection in the feed system and
improve EIRP

2. Low transmission loss
3. Easily attached to microstrip with reproducible results
4. Mechanically easy to reproduce

3.10.3.2 Design Approach

The design approach chosen is to transform impedance from waveguide
to microstrip using a broadband stepped ridgeline transformer mechanically
connected to the microstrip using a tab. For a given bandwidth and return
loss, the desired impedance at each step can be computed by the method
outlined by Cohn7. - The mechanical dimensions required to achieve desired
impedances can be computed from ridgeline data given by Hopfera. A
reproducible microstrip ridgeline junction is made by setting the height of
the last step so that the substrate will hit and.stop against the ridgeline.
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The reactance at the microstrip-ridgeline junction can he reduced by tapering

~he edge of the transformer at the junction. The transformer is easily

machined out of aluminum or similar material and hgonded or screwed to the

inside of the waveguide. The completed transition and transformer are shown
below in Figures 3.10.3.2 a and b.

3.10.3.3 Performance of Transition7

Schneider® built a transition for the 27.5-31.3 GHz band. Return
loss measurements, plotted below in Figure 3.10.3.3, show the transition has
more than 30 dB return loss over a 17 percent bandwidth. Insertion loss is
less than 0.1 dB.

v

Be tipry o 4

:
i
i

TRANSITION

RETURN LOSS IN dB

26 27 28 29 30 3 32 33

FREQUENCY IN GHz
1494 82

Figure 3,10.3.3. Return Loss of Microstrip-to-Wavequide
Transistion From 26.5 to 32 GHz

3.10.4 Integration of Transitions and Modules

To eriable integration of transitions and modules, the monolithic
transmit module assembly (Figure 3.10.2) is bonded inside an open waveguide
section as shown in Figure 3:10.4-1. An opening in the wall of the module
section allows access to module control and bias pins.

The resulting section has interfaces compatible with the transition

sections, enabling quick and accurate integration of the modules and transitions.

Details of the connection are shown in Figure 4,10.4-2. After the flanges are
aligned and bolted together, the electrical connection is made using laser
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(a)

TAB FOR MATING
TO MICROSTRIP LINE

/////, -~ RIDGELINE
TRANSFORMER

WAVEGUIDE SECTION

WR42 REMOVED TO SHOW
WAVEGUIDE TRANSFORMER DETAIL
fe) 1498 82

Figure 3.10.3.2. Waveguide to Microstrip.Transition:
(a) Ridgeline Transformer, (b) completed transition
- wall sectioned to show detail
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Figure 3.10.4-1, Mounting Monolithic Transmit Module Assembly
in Waveguide Section
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MATED TO MICROSTRIP LINE

1496 82

Figure 3.10.4-2. Detail of Transformer - Microstrip Connection

TRANSFORMER © MODULE
SECTION SECTION SECTION

TRANSFORMER

1497 82

Figure 3.10.4-3. Monolithic Module Transition and Mounting Configuration
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reflow soldering or IR spot heater techniques. Finally, the protective'cover
is placed on the module section. The resulting assembly provides a highly
rigid base for the module-transition combination and affords environmental
protection for the monolithic transmit modules. An exploded view of the
module-transition assembly is shown in Figure 3.10.4-3.

3.10.5 Thermal Analysis of Heat Flow From Modules

An analysis of heat flow from the modules can be conducted to
verify that the conductive cooling provided by the mounting configuration is
sufficient to allow the modules to operate at full power.

3.10.5.1 Model for Analysis

The analysis models the thermal conducting path as a series of

slabs of different thermal conductivities. Heat flow is calculated using

- dT
q--KA'a';

where heat in watts

temperature -
area'of the conducting slab

thermal conductive of slab
distance in the direction of heat flow

x X P 4 O
1

}]

By treating each slab separately and allowing the area to become a function of
x, the analysis can accurately model the tendency for heat to spread out over
a progressively larger area as it moves away from the module. A quick
calculation reveals that the separation distance between adjacent modules is
sufficient that their thermal conducting paths can be considered independent.

- Thus, analysis @f the worst case module (largest heat dissipation) is adequate

to verify the conductive cooling of the mounting configuration.

3.10.5.2 Worst Case Module

The VPA module in full power operation représents the highest heat
dissipator among the modules. As shown in Figure 3.10.5.2, with 500 mW RF
output, the module reguires 5 mW RF input and 3.3 W DC input (15% efficiency).
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Figure 3.10.5.2. VPA Module in Full Power Operation
Assuming that power is conserved, 2.80 W of heat is generated in the module.

3.10.5.3 Results

The output of the analysis is the thermal resistance of each slab
in °C/watt. This represents the temperature gradient generated across the
slab per watt of heat flow. A summary of thermal resistances for each layer
is given in Table 3.10.5.3.

The total thermal resistance through the hottom of the waveguide is
10.77°C/watt. Thus, for a heat dissipation of 2.80 watts, a 30.2°C

temperature gradient exists between the module and the bottom of the wavequide.

Table 3.10.5.3. Thermal Resistance Summary

Layer # Material Functicn : K AT/q (9/watt)
0 GaAs - MMIC 1.26 0.2525
1 36-2 epoxy adhesive 0.017 3.12
2 Alumina 94% . chip carrier 0.24 2.34
3 Sn 60-63 solder connection. 0.47 0.169
4 Alumina 99.5% substrate 0.32 1.52
5 518 epoxy adhesive 0.01 3.28
6 aluminum . waveguide 2.0 0.086
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3.10.5.4 System Thermal Design

A thermal analysis of heat conduction from the monolithic modules
was treated in Section 3.10.5.3. That analysis assumed existence of a heat
sink in the area under the waveguide containing the modules. Figure 3.10.4-4
shows a cooling concept utilizing a honeycomb heat pipe plate. Individual
waveguides pass through the plate and are mechanically attached at their
center section, the region of heat dissipation. Heat is conducted into the
plate and evaporates a working fluid such as methanol. By capillary action,
vapor is radially transported through wicks to the plate edge where
condensation takes place. Heat is then rejected to space via the plate edge
region which acts as a space radiator. Since heat is transferred using
evaporization and condensation of a working fluid, there is very little
temperature built-up from the plate center to edge which is ideal for this
application.

Results of thermal analysis indicate that the plate condenser area
should be 1 foot wide which produces a 5 foot diameter plate. The maximum
waveguide mounting temperature with full sun stabilization temperature is
66°C... .
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LN Feed System Design

3.11.1 Types of Feed Systems

The role of the feed system is to provide an RF distribution
network that will divide the power from one source and distribute it at
appropriately proportioned levels to each of the elements. The numerous
methods for achieving this distribution can be classified into two general
types. The first employs transmission line techniques ‘for routing signals
from the feed point to the array elements. Since all transmission takes place
over closed paths, this type is termed a constrained, or corporate feed. The
second method uses free space propagation to spread the signal out from the
feed point to the array elements, and hence is called a space feed.

3.11.2 Corporate Feed

The corporate feed employs various types of power dividers in
conjunction with lengths of transmission line to divide a single input signal
into multiple outputs. Very precise amplitude control is possible at each
output; howéver, large. amplitude errors can be generated due to the cumulative
effects of mismatch. A typical corporate feed is shown in Figure 3.11.2.1.
This feed uses branch-guide couplers as power dividers and varijous waveguide
bends and twists to form 9 outputs.

3.11.2.1 Losses
Losses in the corporate feed arise from power losses in feed

componenits: power dividers, bends, twists, and straight sections. A loss
budget for a typical 177 element corporate feed is shown in Table 3.11.2.2.
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Table 3.11.2.2. Losses for 177 Element Corporate Feed

Component Loss
Power dividers (5 levels) 1.5 dB
Bends (12) |.2 dB
Waveguide length (1.2 m) 0.5 dB
Total 3.2 dB E

ORIGINAL PAGE Is
3.11.2.2 Input Power Requirements OF POOR QUALITY

Required RF input power to a corporate feed can be calculated by
adding losses to the total input power required by the radiating elements.
For the feed in Table 3.11.2.2, 1.85 watts RF input would be required if each
radiating element required 5 mW input.

3.11.3 Space Feed

Since the space feed uses free-space propagation to divide the
signal among the radiating elements, it is ideal for arrays of large numbers
of elements where cost and space considerations would make corporate feeding
impossible. While amplitude control over each individual element is not
normally possible, the presence of monolithic amplifiers in this application
removes that disadvantage. ATlthough transmission 1ine lecsses are low, the
space feed is subject to spi]]ove} loss due to the illumination not being
confined to the angle subtended by the array.

Figure 3.11.3.1 shows a typiba] space feed configuration. The
phased array becomes a feed thru array with a receiving aperture and a
transmitting aperture. Active elements such as phase shifters and amplifiers
are located between these apertures. One or more horns are located some
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Figure 3.11.3.1. ‘Space Feed Configuration
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distance behind the array to provide primary illumination for the space feed.
Use of a space feed requires design of additional radiating elements: the
space feed horn for primary illumination and radiating elements for the

receive aperture of the feed thru array. For the purposés of computations, it
is assumed that radiating elements on each aperture of the feed thru array are

identical, although this is not true in general.
3.11.3.1  Losses

Losses in the space feed arise from space losses in propagation of

the signal from the space feed horn to the receive aperture and from spillover

Toss due to the illumination not being confined to the angle subtended hy the

array. Additional loss will occur as a function of the packing density of the

array. However, the spillover loss can be minimized by use of a corrugated
horn with low side and back lobes. Extending the aperture of the horn to the
array by the use of an absorbing type shroud can reduce space loss and
undesired radiation.

3.11.3.2 Input Power Requirements

Required RF input power for a space feed can be calculated by
considering element size at the receive aperture and calculating the power
density at the receive aperture to supply the required element input power.
Multiplying that power density by the area of the array and adding in

spillover losses gives the total RF input power.
]

For a 177 element space feed with four wavelength elements on the
receive aperture, a power density of 0.176 mw/cm2 is required to provide
5 mW per element. Assuming an array diameter of 91 cm and 3 dB spillover
loss, the total RF input power required is 2.3 watts.

UrGiiiiah, Paak 1S
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3.11.4 Space Vs Corporate Feed

To provide additional input for a decision on feed type, trade-off
calculations can be made to quantify differences in power requirements for
each type. For easy comparison, equal output power can be assumed and
required input power can be calculated. Feed systems can-then be compared
solely on the basis of input power, or the array power-added-efficiency (PAE)
can be calculated. Besides feed system choice, an additional trade-off factor
in this application is amplifier configuration. Single or cascaded
configurations can be considered, where the trade-off is an additional
amplifier stage for lTower RF input power. To provide the most complete data,

trade-off calculations will be made for each configuration and both feed types.

3.11.4.1 Relevant Assumptions

Assumptions used in making these calculations include:
1. Reflector gain 1is 53 dB

2. Corporate feed loss is 3.2 dB

3. Space feed spillover loss is 3 dB

4, VPS-VPA configuration has 10 mW in, 185 mW out, 12.5%
efficiency on VPA. (185 mW represents the average RF output
per element)

5. VPS-CGA-VPA configuration has 0.125 mW in, 185 mW out, 15%
efficiency on CGA, 12.5% efficiency on VPA

6. The 177 element array has 4r» (6 cm) element apertures. Array
diameter is 91 cm
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3.11.4.2 Results of Trade-Off Calculations

Results of amplifier and feed configuration trade-off calculations
are shown in Table 3.11.4.1. RF output power (and EIRP) is equal in all
cases. The effect of changing amplifier configurations is clearly seen, as a
slightly higher DC input power is required but RF input power is dramatically
less., The effect of changing from corporate to space feed is an increase in
required RF input power of about 20%. From PAE calculations, the space-fed
single amplifier configuration is least efficient, while the corporate-fed
cascaded amplifier configuration is most efficient. Note, however, that the
difference in efficiency between space and corporate-fed cascaded
configurations is only 0.004%. This suggests that only.a negligible price is
paid for the substantial cost and weight savings provided by the space-feed,
As an alternative, a corrugated feed horn with absorber cone can be used to
decrease spillover to less than 2 dB, resulted in a space feed advantage. The
use of microstrip for the corporate feed configuration would reduce the number
of transitions required to feed the MM1C modules and, consequently, a
reduction of weight and complexity. However, the loss of microstrip (1.2
dB/ft) éompared to waveguide (0.14 dB/ft) would impose a severe penalty on the
RF input requirements.

3.11.5 Feed System Summary

Both feed fypes have been reviewed and their uses in this
application explored. The Corporate feed offers advantages of near exact
power division between elements and no extra radiation of RF signals.
Considering the number of elements involved here, a corporate feed would be
costly and bulky. The space feed, on the other hand, uses no heavy power
division network. It offers lower cost and weight, and no power balance
uncertainty. Trade-off calculations show that losses in both feed types are
about equal. Therefore, it appears that the space feed is preferred for this
application for the cost and weight savings it offers. Additional
investigations should be made concerning the use of microstrip for the
corporate feed and the RF input requirements. )
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An additional conclusion reached from the trade-off calculations is
that the cascaded amplifier configuration is preferred because it provides a
1.5% higher efficiency. This is because each amplifier is operating in a more
efficient mode.

3.12 Module Thinning

From the space vs corporate feed calculations (Table 3.11.4.1), it
is evident that the high EIRP requirements coupled with transmit module
efficiencies make for a severe DC input power requirement. One of the
selected scanning beam configurations calls for a module thinning scheme to
reduce this requirement. Basically, module thinning implies removing some
modules from some elements in an attempt to improve overall efficiency of the
system. The sections below outline the development of two module thinning
configurations and show how the modules can be thinned according to a typical
weighting scheme. These results are then applied to the 177 element array and

compared with a non-thinned array.
3,12.1 Method Used
The method used to arrive at a medule-thinned phased array is:

e Consider all possible combinations of 1, 2, and 3 modules

e Choose several cases of RF input power which allow use of full
module capability without saturation

e Thin modules according to a weighting scheme, considering
quantization levels

e Calculate EIRP and DC INPUT POWER

o Compare thinned with non-thinned case
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3.12.2 Module Combinations

Assuming that a variable phase shift (VPS) module is required for
each element, the three avajlable modules provide five useful module
combinations as listed in Table 3.12.2.

Table 3.12.2. Module Combinations

VPS - CGA VPS - CGA - VPA
VPS - VPA VPS - VPA - VPA

VPS only

The VPS-VPA-VPA cascade represents a special case which provides additional
output quantization levels at the cost of doubling the number of control
lines. Use of this combination would be considered separately if required.

3.12.3 Module Thinning Configurations

Two module thinning configurations have heen devised using the
module combinations from Table 3.12.2. Thinning type A uses hoth single and
double amp]ifieé combinations, while thinning type B uses oﬁly single
amplifiers. Module thinning type A uses four module comhinations as shown in
Figure 3.12.3.1 to provide 10 output quantization levels.

Module thinning type B uses three module combinations as shown in
Figure 3.12.3.2 to provide 6 output quantization levels.

Summaries of efficiency states and CC input power for each
quantization level for both thinning types are included in Appendix B.
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0.125 MW —>{ VPS f———> 0625 MW
0625 mW
0.125 MW vPS CGA - 5 MW
0625 mN
0.125 MW vPS VPA *= 0 MW, 0.15625 MW, 0,625 MW, 15625 MW, 6.25 MW
06 ' w '
0.125 MW —3 VPS = "'—-l ceal>" VPA l—— 0 MW, 12.5 MW, 50 MW, 125 MW, 500 MW
1502 82
Figure 3.12.3.1. Module Thinning Type A
5 MW VPS f———3 2.5 MW:
25 mw
S5MW ———» vPS CGA 200 MW
2.5 mw
Smw vPs VPA freeu3e 0 MW, 6.25 MW, 25 MW, 62.5 MW, 250 MW
1503 82

Figure 3.12.3.2. Module Thinning Type B
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3.12.4 Weighting Scheme

A weighting scheme has been devised for making module thinning
calculations which closely approaches the expected array amplitude
distribution. The actual weighting coefficients for any scan angle would be
determined hy the optimization procedure outlined in Section 3.6.7.

The weighting scheme assumed here js a cosine squared power
amplitude taper acrvuss the face of the array. The weighting of an element at
a distance R from the center of the array is given by:

_ 2
A - Amax C0sS (nR/ZRmax)

where Amax = maximum amplitude allowed.

The output quantization levels for each thinning type can be substituted in
the equations above to calculate the radius at which each quantization level
falls. Through this process, a series of concentric rings is created on the
face of the array - each ring corresponding to a particular quantization
level. The ratio of the area of a particular ring to the total area of the
array gives the percentage of the total number of array elements excited at
that quantization level. The results of these calculations for hoth thinning
types are given in Appendix B. A 91 cm array diameter was assumed.

3.12.5 Application To A Specific Case

To demonstrate the benefits of module thinning, the weighting
scheme was applied to the 177 element array. Details of the numbers of
elements at each quantization level along with input and output powers are
given in Appendix B. A summary of the results is given in Table 3.12.5.
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3.12.6 Summary

Two module thinning configurations have been devised and applied,
using a weighting scheme, to the 177 element array. After completing
calculations and comparing results, three benefits of module thinning become
clear. The number of output quantization levels was increased from four for
the non-thinned case to 11 for thinning type A. The array efficiency

increased by 1.7% due to the more efficient operating state of the remaining

modules. Finally, a reduction of 20% in the number of modules required was
achieved (after adjusting for equal EIRP). It is important to note, however,
that module thinning cannot change the funZamental 1imit on array efficiency
imposed by the module efficiencies. DC power savings result only because the
remaining VPA modules are operating at more efficient power levels.

3.12.7 Receive Aperture Horn Sizing

The introduction of module thinning into the phased array increased
the number of output quantization levels from 4 to 11. If additional output
levels are required to meet critical scan requirements, a method of varying
horn sizes in the receive aperture of the phased array can be used to "tailor"
the output power of an individual element to almost any level. Additionally
this method can be used to enhance or diminish the effects of the built-in
amplitude taper from the space feed.

3.12.8 Achievable Range

The power density method outlined in Section 4.11.3.3 can be used
to calculate the range of output power achievable by varying horn size.
Assuming horn diameters can be varied from 1 cm to 6 cm (0.7x to 4 ), a
15 dB range of output variation is possible. Using this range in addition to
the 11 available quantization levels, any single required amplitude
distribution can be produced on the array.
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3.13 System Considerations

A conception of the 177 element space feed scanning beam phased
array is shown in Figure 3.13.1. Dimensions are included to show the overall
sizes involved. Figure 3.13.1.1 shows a conceptual view of the complete
scanning beam phased array as envisioned on a satellite. The three boxes on
the bottom of the support arm contain the RF exciter, power supply, and logic
control network. The space feed horn aperture has been extended toward the
array by an absorbing type shroud to reduce loss and undesired radiation.

3.13.1 Bias and Control Network

The distribution of bias and control lines to the MMIC modules
appears trivial when compared to the overall problem of designing a 20 GHz
monolithic antenna system. However, considering that 177 elements will appear
on each of six scanning beam feeds with each element requiring up to 13
control lines for its modules, the task becomes more complex. Effects of
propagation delays on the lines must be considered, with short runs to reduce
these delays. Of prime importance is maintaining equal path lengths to all
the s~di-les to equalize delays. Additionally, coupling between lines, weight
and ©.aysical size must be reduced..

One approach to the problem which avoids numerous long wire runs is
the use of a multiplexing technique or the use of fiber optics. Optical lines
could be run to the core of the array, followed by a corporate distribution to
all of the modules. Use of optical fibers would reduce system size and weight
while maintaining fast response.
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Scanning Beam Space Fed Phased Array

Figure 3.13.1.
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Scanning Beam Space Fed Phased Array

Figure 3.13.1.1.
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3.13.2 Impact of Extending Technology to 30 GHz

Extension of the technology developed from the 20 GHz phased array
study to 30 GHz requires consideration of several important problems. These
problems consist of radiating element selection, feed system design, and
integration of the monolithic modules.

The near field nonfocused optics developed for the 20 GHz transmit
scanning beam array has an advantage over focused systems when there is a
transmit EIRP requirement above the available antenna gain. However, for
receiving scanning beam arrays (30 GHz), this advantage is not required and
there will be interference problems from sector-to-sector for multiple near
field feeds operating at the same frequency. This suggests a more careful
investigation into the offset dual reflector systems with the subreflector
optics in the far field of the feed cluster. The use of the MMIC modules with
individual element control will simplify the dual shaped optics presently
proposed in the 20 GHz study.

The problems associated with the monolithic module integration
include the distribution of local oscillator signals, mounting configuration,
bias and control line distribution, and conduction of heat from the'modules.

The distribution of the 30 GHz LO signals is analogous to the
distribution of the exciter signals for the 20 GHz transmit scanning beam
array. Both the space'feed and corporate feed techniques can be utilized at
30 GHz with the space feed having less loss due to the increased waveguide
losses at 30 GHz utilizing the corporate feed.

The MMIC module configuration can utilize the same mounting
technique suggested for the 20 GHz transmit array, except scaled in size to
accommodate the smaller waveguide. Present stripline techniques are capable
of operating at frequencies ub to 40 GHz.
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The distribution of bias and control lines have the same
requirements for both 30 GHz and 20 GHz and no problems are anticipated in
extending the technique to 30 GHz.

The conduction of heat from the MMIC modules will be less severe at
30 GHz because the modules wiil be operating in a more efficient mode for the
receiving applications. Additionally, there is no EIRP requirement for the
30 GHz receiving array and power levels will be lower. The technigue
developed for the 20 GHz transmit scanning array should provide adequate
cooling for the MMIC modules.

3.13.3 Measurements Using 9-Foot Reflector

This section addresses the measurement of the scanning beam antenna
system at 20 GHz using a 274.32 cm (9 foot) main reflector. In order to
maitain consistent beam performance with that predicted in Section 3.6, the
system magnification factor of the near field Cassegrain antenna must be held
constant at 4. This impiies that the subreflector diameter should be scaled
to approximately 68.6 cm (27 inches) and that 177-3» feed elements be used.
On-focus gain would be lower (due to a smaller main reflector aperture) and
the expected beamwidth is now about 0.40, but measured scan performance
would be as computed in the parametric trade study.

3.14 Extension to Six Sector Coverage

The previous discussions of the scanning beam array has heen
Jimited to a single sector coverage. Extension of the single sector coverage
to the required six sector coverage posses several major problems. The
problems include location of the six space fed lens to produce the required
scan angle without a major penalty in gain, isolation between heams.
subreflector shape, conduction of heat from the MMIC modules, bias and control
line distribution, and the available physical space.
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A major break thru was obtained when the preliminary thermal and
packaging analysis indicated that up to two scanning heam arrays could he
packaged into one array lens. The use of OMTs (Figure 3.14.1) would permit
two sector coverage with polarization isolation between the two heams thus
reducing the total number of space feed lens to three. In order to obtain the
required scan angle for each sector without a major penaity in gain requires
the use of a shaped TRI focal subreflector shown in Figure 3.14.2. The shaped
subreflector not only reduces the scan versus gain loss but decreases the
dynamic range of weighting coefficients required to correct the array elements
because of displacement of the array from the subreflector.

The use of OMTs requires more space due to the increase in the
physical size of the OMT, additional waveguide components, and dual MMIC
modules for each element of the array. The thermal analysis contained in
Section 3.10.5.4 required a 1.5M (5 foot) diameter plate to conduct the heat
array from the MMIC modules. The additional 60.96 cm (2 feet) should be
adequate to provide space for the dual MMIC modules and the OMTs.

The distribution of bias and control lines would hecome less
difficu]t'since the fiber optics technique for distribution of control lines
can be utilized more effectively where a large cluster of modules are in close
proximity to each other.

It should be pointed out at this that the results of the
preliminary thermal and packing analysis are a very critical item and that the
sucacy of the design of the SBA system is heavily dependent upon the adeqliate
heat removal from the MMIC modules.
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Figure 3.14.1. Feed Horn with OMT

0016T 89

e e N ” .

p—




THREE SECTOR FEED ARRAY LAYOUT

C.'\’G’n\'Az_ FA o1y IS
OF POOR QUALITY

\1‘\.;‘;\ At
7 8

¥

FRONT VIEW

1314 82

TOP VIEW

Figure 3.14.2. TRI-Focal Subreflector
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Scanning Beam Antenna Summary and Conclusions

1.

2.

It has been fogpd that near field optics is necessary to obtain
the required EIRP over the specified scan angle with a minimum
loss of antenna gain. Shaped tri-focal optics is required to
produce the specified scan angle and maintain isolation for the
6 sector scanning beam coverage.

The space lens offers a substantial cost and weight saving
advantage over a corporate fed in the distribution of exciter
signals to the MMIC modules. Further development of light
weight absorbing materials for space use is required to improve
the efficiency of the space fed lens.

Preliminary thermal and packing analysis indicates that up to
two scanning sectors can be accommodated in one array lens with
the use of OMTs. The major problem of adequate cooling of the
MMIC modules appears to be within the state of the art of
advanced cooler designs. However, it is recommended that
additional studi~= should be initiated of zdvanced cogoler
designs to adequately handle the heat dissipation of second
generation MMIC modules with greater output power levels and
increased heat dissipation requirements.
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The present MMIC modules have sufficient phase quantization
Jevels hut finer control of amplitude is highly desirable to
provide adequate beam trimming and improve C/I performance.
It is recommended that additional studies be initiated to
determine the hardware tradeoffs versus finer amplitude
quantization levels.

The distribution of bias and control lines to individual MMIC
modules is stil11 a major problem due to the large numher of
modules required for the SBA system. A more integrated
approach should be taken to this problem in which the logic
control network should be considered together with the
distribution of the control lines to the individual MMIC
modules.
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4.0 MULTIBEAM ANTENNA SYSTEM

4.1 Summary of Requirements

An approach, closely paralleling that used for the design of the
scanning beam feed/refiector system, is utilized in the design of the
multibeam antenna system for fixed beam service. Design goals, differing
primarily in EIRP requirement, are shown in Table 4.1.1. Once again, the
approach will be to first optimize reflector geometry via a parametric study,
recommend two integrated feed/reflector systems, and then proceed to the
electrical and mechanical design of the feed clusters.

4,2 Selection of Reflector Type

The lower EIRP requirement, combined with a gain specification of
53 dB, results in fewer elements (one VPA module per element) being needed per
city beam. This implies an electrically small feed, with the reflector
surfaces in the far field defined by the value R as

where D is the diameter of the feed cluster and A is the operating
wavelength. The overall diameter of the feed cluster D is, incidently,
essentially independent of the number of elements within the cluster, e.g., a
19-element cluster is approximately of the same ditmeter as a 7-element
cluster, but its individual elements are smaller. Therefore, traditional
focused optics reflector systems can be utilized. Gain degradation
considerations, for of f-axis beams, suggest the use of offset dual reflector
antennas demonstrating low scan losses. Possibilities include the offset
Cassegrain and dual offset shaped, or Schwartzchild, reflectors, shown in
Figure 4.2.1. Since shaping is not considered in this phase of the study, the
offset Cassegrain is selected.
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Table 4.1.1. Advanced Communication Technology Satellite Multibeam

Objective Requirements

et

Beam Configuration

Multibeam

(TR

s

Antenna Size

Operation Frequency
Range (GHz)

Number of Beams

Minimum Gain (dB)
Bandwidth (MHz)

Polarization
C/1 Performance (dB)(1)

Pointing Accuracy
{degrees)

Power/Beam (EIRP) dBW

-Downlink
-Uplink

-Operational

-20 GHz
-30 GHz

-20 GHz
-30 GHz

-E & H Plane
Polarization

Shuttle Compatible

17.7 - 20.2
27.5 - 30.0
10 - 18

53

56

500

500

Linear

30

0.0

0.4%2)

52 - 62

(1) Carrier to interference ratio for each beam relative to all other beams.

(2) Degrees rotation from reference (i.e., true satellite vertical or

horizontal).
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4.3 Parametric Analysis

The optimization of offset Cassegrain geometry, after the initial
assumption of a 3.7M (12 foot) main reflector as described in Section 2.2,
essentially becomes a selection of the hyperboloidal subreflector shape.
In order to sample the entire range of possibilities, and provide a sufficient
data base from which to choose this chape, four carefully selected
configurations were analyzed. These are shown graphically in Figure.4.3-1,
with corresponding parameters listed in Table 4.3.

The shape of each subreflector is best described by an eccentricity
e, and each shape corresponds to a different reflector system focal point and
magnification factor M, defined as

These four real foci are labeled A through D in Figure 4.3.1, and respectively
correspond to equivalent focal length to diameter»ratios9 (F/D) of 0.65,

1.0, 1.35, and 1.71, as shown in Table 4.3. Also shown is a real focus-to-
virtual focus (FTF) length representing the distance between the two foci of
the hyperboloid. As this distance increases, with a corresponding increase in
the magnification factor M, the angle subtended by the subreflector decreases,
making it more difficult to efficiently illuminate the reflectors as desired
and increasing feed mispointing and spillover losses. Also, recall that a
primary advantage of high magnification focused optic reflectors, j.e., large
equivalent F/D ratios, is that off-axis gain degredation due to beam scanning
is substantially reduced. Therefore, a subreflector shape must be selected
which maximizes the subtended angle of the subreflector, substantially
reducing feed design complexity and weight, while minimizing off-axis pattern
degradation.
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5579 cm

MAIN REFLECTOR GEOMETRY
SHAPE: PARABOLQIO
OFFSET HEIGHT: 192.2¢m
FOCAL LENGTH: 4519¢cm

SUBREFLECTOA GEOMETRY
SHAPE: HYZERBOLOID

362.4 em
OFFSET HEILHT: J37.0em

192,2cm
’ FTF = 3556 cm, 431.8 cm
!
' FTF = 279.4 cm
|
] FTF = 203.2.cm
i
l 3% —
' LAY w
o] c B A
l 160782 A
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Figure 4.3-1. Initial Point Design Multi-beam Configurations
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An outline of the analysis flow appears in Figure 4,3-2. To study
the effect of reflector edge illumination, all calculations were made using
three feed radiation patterns, providing -7 dB, -14 dB, and -21 dB
subreflector edge tapers, respectively. Feed patterns are assumed to be
linearly polarized, circularly symmetric, and of the form

E (e) = cos "e,

where © is measured from the boresight of the feed. Far field reflector
patterns were calculated for feeds located on-focus, on the focal plane
providing for 8 beamwidths of scan, and on the optimal focai -urface, also
providing for a scan of 8 beamwidths. A1l1 calculations were made at a
frequency of 20 GHz.

4.4 Analytical Approach

To carry out the calculations jus% described, two computer codes
were utilized. The first of these employs geometrical optics raytracing
techniques together with the aperture integration (AI) method. This code has
two principje advantages. First, it is a very fast and efficient offset
Cassegrain design tool providing reasonably accurate radiation pattérns in a
very short turn-around time. Second, the AI method provides a means of
readily inspecting the fields in the aperture of the main reflector, revealing
valuable information to the antenna designer about the electromagnetic
mechanisms controlling the far field radiation pattern befure a lengthy
integration is performed. Full advantage is taken of the latter, in the
parametric study of the four reflector configurations.
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The second computer code also employs raytracing, bit calculates
the radiated fields by an integration nf equivalent currentslo over the
surface of the main reflector, generally referred to as the surface current
integration (SCI) method. This technique has been found to provide very
accurate pattern prediction for large spaceborne dual reflector antenna
systems in general, and offset Cassegrain reflector antennas in particular.
Computer run time is significantly increased, however, so this SCI code js
used only for detailed pattern prediction once design information has been
obtained from the Al computer code. Verification of both codes can be found
in Appendix C.
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4.5 Results of Parametric Analysis

S e e

Radiation patterns were calculated for all cases described in
Figure 4.3-2, but only typical patterns and final resuits will be shown here.
For the case of -14 dB edge illumination and an F/D ratio of 1.0, the on-focus
pattern is shown in Figure 4.5-1. Antenna gain is calculated to be 56.6 dB,
with the maximum sidelobe radiation greater than 28.5 dB below the heam peak.
Cross polarization radiation is greate, thait 42 dB down. The amplitude and
phase of the principal component of the electric field vector across a
diameter of the secondary aperture is shown in Figures 4.5-2 and 4.5-3. Note
the constant phase and the relative electric vector amplitude of approximately
-14 dB at the edge of the aperture.

For the same geometry and feed jllumination function, the reflector
pattern was calculated at 8 beamwidths of azimuth scan, shown in Figure 4.5-4,
The feed phase center 's located on the "focal plane", defined as the plane
perpendicular to the principal ray, or alternatively, perpendicular to the
on-focus feed boresight direction. Gain loss, relative to the on-focus gain,
is 3.1 dB. Aperture fields are shown in Figures 4.5-5 and 4.5-6. After
moving the feed's phase center to an optimum "focal surface", significant
improvement is obtained, as seen in Figure 4.5-7. Gain loss is now only
0.52 dB, relative to the on-focus gain, and sidelobe levels are reduced
substantially. Corresponding aperture fields appear in Figure 4.5-8 and 4.5-9,

Complete results are summarized in Figures 4.5-10 and 4.5-11.
Surprising as it may seem, gain loss actually increases with increasing F/D
ratio for a constant far field beam scan when the feed phﬁse center is
confined to 1ie on the "focal plane." However, once the feed is moved to the
optimum "focal surface", gain loss is significantly reduced, and in fact,
decreases with increasing F/D. Sidelobe levels behave in a very similar
manner, as evidenced by Figure 4.5-11.

‘ The question naturally arises as to why the gain loss curves
diverge for increasing F/D, as seen in Figure 4.5-10. Consider the feed to be
"in-focus" for a position along the optimum focal surface and badly
"out-of-focus" for a position along the focal plane. Figure 4.5-12 shows that
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Figure 4.5-12. Feed Plane Versus Optimum Focal Surface
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the feed is more out-of-focus for the higher F/D geometries, and jn fact, is
more than 18 wavelengths away for an F/D of 1.71. This figure shows that for
low equivalent F/D geometries, the optimum surface is very well approximated
by the focal plane. It also shows that the optimum focal surface deviates
from the previously defined focal plane by a greater amount for higher F/D
ratios. This indicates an inherent limitation of high equivalent F/D ratio
offset Cassegrain reflector antennas and points to reflector shaping as an
alternative for large scan and Jow loss reflector systems.

In selection of a best geometry, two things must now be
considered. First, gain loss due to beam scanning must be maintained at a
minimum. From Figure 4.5-10, for feeds on the focal surface, this Joss
deireases with increasing F/D ratio. Secondly, consider the design of
eighteen cluster feed arrays, each 1ying on this highly curved focal surface,
and as the equivalent F/D ratio gets higher, the angle subtended by the
subreflector becomes smaller, making it more difficult to illuminate it
efficientlv. This will surely lead to troublesome hardware design
considerations for higher F/D ratio systems.

Closer inspection of the focal surface graph in Figure 4.5-10
reveals that 1ittle improvement is obtained in gain loss reduction beyond an’
equivalent F/D ratio of 1.0. There is, so to speak, a "knee" in the curve at
this value. For this reason, and the feed hardware design considerations
discussed previously, multiple fixed spot beam configuration B (F/D = 1.0) is
selected as the design choice.

4.6 Recommended Configurations

Based on the results of the parametric analysis, it is now possible
to recommend two feed/reflector configurations for further refinement. These
are outlined in Table 4.6, both utilizing the selected reflector geometry of
Section'4.5, and differing only in the'choice of MMIC modules.
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Table 4.6.

CONFIGURATION C - MULTIPLE FIXED SPOT BEAM

Main Reflector:
Subreflector:

Feed:

Elements:

MMIC Modules:

Module Gain:

Module Phase:

EIRP:
Output Power:

Input Power Divider:

365.76 c¢m (12 foot) diameter paraboloid
Hyperboloid

7 to 19 element cluster for each spot beam on
curved (optimum) focal surface

Circular waveguide with MMIC modules

Variable Phase Shift (VPS), Constant Gain
Amplifier (CGA), Variable Power Amplifier (VPA)

VPS, -3 dB; CGA, 19 dB; VPA, 20 d8B

3 bits phase shift used to adjust phase
weighting to improve adjacent beam C/!

57 dBW
4 dBW (2.5 watts), 0.5 W maximum per element

Amplitude weighting achieved by power dividers

- CONFIGURATION D - MULTIPLE FiXED SPOT BEAM

Same as Configuration C except:

MMIC Modules:

Module Gain:

Variable phase shift (VPS), Variable Power
amplifier (VPA)

VPS, -3 dB; VPA, 20 dB.

0016T

110




Ao
. .

4,7 Typical Multibeam Cluster Design - Washington/New York/Boston

With the selection of reflector geometry completed, we turn to the
design of individual feed clusters for the trunking beam application. To
circumvent the time-consuming design of all 18 relatively similar clusters, a
representative set of city locations is chosen that will demonstrate the
applicability of the general cluster design procedure and the utility of the
MMIC transmit modules in the multibeam antenna system. The Washington/New York/
Boston locations are selected because of their proximity, indicating that it may
be difficult to meet the 30 dB C/I specification with spatial separation and
polarization diversity alone. In order to minimize phase errors and thereby
maximize gain, feed clusters are positioned on the optimum focal surface as
discussed in Section 4.5, and are oriented so as to most efficiently
illuminate the subreflector and reduce spillover.

4,7.1 Cluster Design Procedure

Recall from Table 4.1.1 that the minimum gain of the antenna at the
20 GHz transmit frequency is 53 dB, and the power per heam requirement (EIRP)
is-52-62 dBW. Gain and EIRP are related by the equation

EIRP;3 = Gaingg * Feed Power g, (1)
where feed power is measured in watts for EIRP in dBW. Antenna gain]] is
given by

]
( D 2
Gainy, = 10 log|{n .-;') (2)
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where

n=npnin5nxnbnr
"y is phase error loss
nj is illumination loss

n_ is spillover loss

n, i5 cross-polarization loss

n. is blockage loss

n . is reflector surface error loss

D is the diameter of the antenna

S T X wn

Network losses are not included in the above calculations directly because the
feed power is measured at the output of the MMIC amplifier modules (assuming
one VPA per feed element). The feed power used in equation (1) can therefore
be thought of as the output power of the feed cluster, thereby indirectly
including BFN losses.

Assuming that the minimum gain requirement of 53 dB, calculated as
in equation (2), is met, we find the required output power of the feed cluster
becomes 0.8 watts for the low EIRP requirement of 52 dBW and:7.9 watts for the
62 dBW requirement. As a minimum, this necessitates ‘the use of from 2 to 16
elements, respectively. We note, therefore, that the addition of more
elements serves primarily to increase EIRP, and secondarily to improve
discrete control of the focal field distribution.
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The design procedure is therefore iterative, trading off improved
beam performance and higher EIRP 3gainst increased complexity in the feed
hardware with additional cost and weight. The procedure is briefly outlined
below:

o

RN N

B T

s,

e

- As a starting point, select the minimum number of elements
required to achieve the desired far field beam performance.

- Determine the element size and spacing based on the selected
antenna geometry, the desired edge illumination, and number of
elements.

- Determine element weighting coefficients by the conjugate
matching techm’que]2 and check EIRP. Iterate with more
elements until EIRP and desired beam performance is obtained.

Typical cluster arrangments that were considered are shown in
Figure 4.7.1.1. Some are seen to be more readily applicable to clusters

requiring overlapping elements, as is the case with the Nashington/New York/Boston

clusters, so careful consideration must be given to each city beam
individually. It should be pointed'out that an increase in the number of

elements during this trade-off study does not increase the overall size of the

feed cluster. More (smaller) elements are merely arranged within the same
area in order to increase EIRP and improve beam performance. The element
excitation coefficients were determined by the so-called conjugate matching
technique where element weights correspond to the complex conjugate of the
focal field distribution at the element ‘aperture for the case of jdeal plane
wave reception through the reflector system. This technique is very easy to
implement and produces optimum gain at the desired location far the given
reflector/feed configuration.
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4.7.2 Washingtori/New York/Boston Beam Performance

A feed plane map appears in Figure 4.7.2.1, with each element's
excitation shown in Table 4.7.2.1. The phase of each element has been
quantized to the nearest level of phase available from the MMIC variable phase
module. This configuration achieves the relative amplitude weights through a
power dividing network, so the amplitude values are not affected by the
discrete gain levels of the VPA modules. The computed far field performance
of each beam is shown in Table 4.7.2.2, and 3-dimensional views of each beam
displayed in Figures 4.7.2.3 through 4.7.2.5. The footprint of each of these
beams on the Earth, or pattern contour, is shown in Figures 4.7.2.6 through
4.7.2.8.

The beam location from Table ¢.7.2.2 is measured with respect to
the antenna horesight, 38° North latitude and 83° West longitude. It is
important to note that the gain specification is easily met for all three
beams, and that the C/I ratio (interference includes only Washington/New York/
Boston beams) is above the required 30 dB level. For the 7 element clusters
designed, EIRP was consistently about 54 dBW. It appears, therefore, that
spatial separation and polarization diversity alone may be sufficient to
achieve the desired beam-to-beam isolation.
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WASHINGTON, D.C,
{HORIZONTAL POLARIZATION)

NEW YORX
(VERTICAL POLARIZATION)

- BOSTON
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Figure 4.7.2.1. Washingtoln/New York/Boston Feed Plane Map
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Table 4.7.2.1.

£

Element Excitation Coefficients for Washington/New York/Boston

Boston New York Washington
helative Quantizied Relative Quantizied Relative Quantiziedl
Amplitude Phase Amplitude Phase Amplitude Phase
; Horn (dB) (Deg) (dB) (Deg) (dB) (Deg)
1 -12.9 -22.50° -10.6 -11.25° -15.1 -11.28°
2 -12.2 -33.75° -10.4 -22.50° -14.5 -33.75°
3 -9.4 -22.50° -9.2 -11.25° -8.9 1.28°
4 0.00 0.00° 0.0 0.00° 0.0 0.00°
i 5 -7.8 0.00° -7.9 -11.28° -8.3 -22.50°
“ 6 -9.8 0.00° -12.1 -11.28° -8.4 0.00°
7 -8.5 33.75° -11.1 -11.25° -7.8 -11.25°
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Table 4.7.2.2. City Beam Performance

00227
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City (AZ, EL) Location C/I Ratio Peak Gain Cross-Pol EIRP
Washington  (0.65°, 0.19) 33.9 dB 54.8 dB -42.1 dB 54.0 dBW
New York (0.959, 0.259) 44,3 dB 54.8 dB -4%1.7 dB 54.0 dBW
Boston (1.29, 0.459) 31.7 dB 54,9 d8  -37.9 dB  54.9 dBW
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4,7.3 Dynamic Beam Control

One obvious advantage of the MMIC modules is the capability to
dynamically change the amplitude and phase weight of each element in the feed
cluster. This may be required due to satellite mispointing, implementation of
site diversity schemes because of rain-induced path attenuation, or simply in
an attempt to improve the C/I performance at some other Jocation. We
concentrate here on the latter reason.

Note that the C/I performance at Boston, shown in Table 4.7.2.2, is
31.7 dB. This is slightly above the 30 dB design goal. The dominant
interference component is from the Washington beam sidelobe levels, ‘which are
similarly polarized to the Boston beam. In an attempt %o improve this C/I
ratio, we reoptimize the Washington beam at new locations, resulting in a
small amount of scan without significant degradation in beam performance.
The original set of weights and two alternative sets are shown in
Table 4.7.3.1, with the resu]t%ng beam performance listed in Table 4.7.3.2.
Note that the C/I ratio at Boston improved to 34.3 dB and 32.9 dB,
respectively for the two alternative beams with an increase in EIRP.
The gain, however, is reduced, but is above the 53 dB specification in
case A. Contours of each beam, shown in Figures 4.7.3.1 through 4.7.3.3,
clearly demonstrate the beam movement with 1imited pattern degradation.
The practical implementation of these new weights into the BFN will be
discussed in Section 4.8.
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Table 4.7.3.1.

Three Sets of Weighting Coefficients for Washington

v —

Original N
Relative Quantizied Relative Quantizied Relative Quantizieg
Amplitude Phase Amplitude Phase Amplitude Phase
Horn (dB) (Deg) (dB) (Deg) (dB) (Deg)
1 -15.1 -11.25° -4.4 1.25° -7.0 -11.25°
2 -14.5 -33.75° -4.,2 -11.25° -2.2 0.0°
3 -8.9 11.25° -9.4 0.0° -15.5 -22.5°
4 0.0 0.00° 0.0 0.00° 0.0 0.00°
5 -8.3 -22.5° -8.5 -22,5° -3.6 -11.259
6 -8.4 0.00° -19.6 -67.5° -18.4 -90.0°
7 -7.8 -11.25° -23.5 -56.25° -18.7 -33.75°
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Table 4.7.3.2.

Computed Washington Beam Performance for Three Sets
of Element Excitations

C/1 Ratio| Gain at

i
I
Weight | (AZ, EL) Location at Boston | Wasington ; Cross-Pol EIRP
:
Original ; (0.65, 0.1) 31.7 d8B 54.8 dB -42.1 d8 54.0 dBW f
A (0.65, 0.0) 34.3 dB 53.2 dB -41.9 dB 54.9 dBW E
B (0.7, 0.0) 32.9 dB 52.8 dB -41.7 dB 55.5 dBW ;
{
ORIGINAL pACD ™
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4.8 Fixed Beam Cluster Design

’ Design of the fixed beam clusters for the multibeam antenna system
is similar to that of the scanning beam phased array design in many respects.
The three basic design tasks remain the same: radiating element selection,
monolithic module integration and feed system design; however, differing
design goals for the.mu1tibeam antenna system result in different design
tradeoff considerations. Because of lower EIRP requirements, a typical fixed
beam cluster requires only 7 elements implying that a corporate feed network
may be more practical. The module mounting configuration developed for the
scanning beam feed is directly applicable here, as are the transitions for
carrying RF signals to and from the modules. An added ccmplexity for the
New York/Boston/Washington clusters is their use of shared elements. The
hardware implementation thus requires orthomode transducers and two complete
sets of modules behind each shared element.

4.8.1 Radiating Element Selection

Selection of the size of the radiating elements is based on city
coverage requirements and reflector performance. Analysis showed a cluster of
seven 2.57x elements was required to achieve the specified performance.
Circular elements are preferred because of their equal £ and H-Plane
beamwidths, reduced coupling, and multimode capability. A 2.57» conical
horn with 36° maximum aperture phase error is shown in Figure 4.,8.1.1.
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4.8.2 Monolithic Module Integration OF POOR QUALITY
j The monolithic module mounting configuration developed for the
! scanning beam phased array is directly applicable to the fixed beam cluster.
i Although size of the radiating element is difierent, the interface to the heam

forming network is identical. Descriptions and diagrams for the mounting
configuration are given in Section 3.10*. The completed transition and
mounting configuration is shown in Figure 4.8.2.1.

PEESEE

& ey

: TRANSFORMER MODULE TRANSFORMER
i SECTION SECTION SECTION

Figure 4.8.2.1. Monolithic Module Transition and Mounting Configuration
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4.8.3 Feed System Design OF POOR QUALITY

A summary of the basic types of feed systems including discussion
of advantages, disadvantages and tradeoff data js given in Section 3.11. A
space feed system was chosen for the scanning beam array because it offered
substantial cost and weight savings where a large number of elements (177)
were involved. The fixed beam cluster, however, contains only seven
elements. The close proximity of clusters within the feed and necessity of
"sharing" some elements makes space feed difficult. Therefore, a corporate
waveguide feed is preferred for the fixed beam cluster. A typical 7 element
fixed beam cluster with corporate feed is shown in Figure 4.8.3.1.

Figure 4.8.3.1. Typical 7 Element Cluster

4.8.3.1 Components

Components of the corporate beam forming network are power
dividers, bends, twists, and in the case of shared elements, orthomode
transducers. An ideal power divider for use in this application is the branch
guide coupler. The branch guide coupler provides wideband performance with
accurate power division ratios possible.
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4,8.3.2 Losses

A loss budget for a 7 element corporate feed is given in
Table 4.8.3.2.1.

Table 4.8.3.2.1. Losses for Seven Element Corporate Feed

Component Loss
Power dividers (2 levels) 0.6 dB
Bends (5) 0.5 d8
Length (0.4m) 0.2 dB

Total 1.3 dB

4.8.3.3 Shared Elements

In the New York/Boston/Washington feed clusters, sharing of some
elements is required to obtain required city coverage. Figure 4.8.3.3.1 shows
a feed plane map indicating assignment of shared and nonshared elements.
Because polarization isolation is used between adjacent beams, an orthomode
transducer is required with two sets of modules. Each shared horn, then, has
two inputs with orthogonal linear polarization, one for each beam. Because
each input has its own module set, phase and amplitude for that elements
contribution to each beam can be controlled independently. Figure 4.8.3.3.2
shows a single elements with OMT and two modules sets.
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4.8.4 Obtaining Optimum Phase and Amplitude Weights

Section 4.8 presented a method for determining optimum phase and
amplitude weights for any beam.

Using the varjable phase and amplitude capabilities of the modules
in combination with fixed phase and amplitude set by the corporate feed, any
desired single set of phased and amplitude weights can be produced. Any
trimming or adjustments required to that optimum set must be accomplished
within the quantization constraints of the modules. However, by proper choice
of feed system weights, it is possible to closely approach one or more
alternate beam positions by trimming. As an example, assume that an optimum
set and alternate sets have heen obtained as in Table 4.7.3.1.

Table 4.8.4.1 shows the amplitude quantization levels in dB
available with the VPS-VPA and VPS-VGA-VPA configurations. The 5 bjt VPS
module gives 11.25° minimum phase quantization.

Table 4.8.4.1. Amplitude Quantization Levels

Power Quantization Level dB

500 mW 0
125 mW -6.02
50 mW -10.0
12.5 mW -16.02
6.25 mW -19.03
1.5625 mW . -25.05
0.15625 mW -35.05

aal PAGE B
ORIGINAL PRG
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By setting appropriate phase and amplitude levels in the corporate
feed, the optimum weights can be obtained as shown in Table 4.8.4.2,
Corporate feed levels are relative to element 4.

If proper choices are rade for weights in the corporate feed, it is
possible to closely approach one or more alternate heam positions by trimming
using the modules only. Table 4.8.4.3 shows that alternate heam position A
can be obtained with maximum amplitude error of 0.44 dB by changing moduie
weignts only. Feed weights are the same as in the original position.

Table 4.8.4.4 shcws that alternate beam position B can be obtained with
maximum amplitude error of 3.27 dB.

The resulting beam performance, showing quantization effects,

appears in Table 4.8.4.5. Notice the improvement in C/I ratio from 31.7 dB to
more than 34 dB without a significant loss in gain at Washington.
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of Element Excitations

Computed Washington Beam Performance for Three Sets

.,

—
C/I Razio | Gain at
Weight (AZ, EL) Location at Boston | Wasington| Cross-Pol EIRP
Original (0.65, 0.1) 31.7 dB 54.8 dB -42.1 dB 54.0 dBW
A (0.65, 0.0) 34.3 dB 53.2 dB -41.9 dB 54,9 dBW
B (0.7, 0.0) 32.9 dB 52.8 dB -41.7 dB 55.5 dBW
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4.9 System Considerations

4.9.1 Extension of Multiple Beam Technology to 30 GHz

Extension of the technology developed from the 20 GHz multiple beam
study to 30 GHz requires consideration of three basic problem areas. These
areas are radiating element selection, feed system design, and jntegration of
the monolithic modules.

The radiating element and feed systems design would be similar to
the design utilized on the 20 GHz multiple beam study except scaled in
frequency to 3Q GHz. Beam-to-beam jsolating is achieved with polarization
diversity provided by OMTs on each element of the cluster array and spatial
separation of the cluster arrays.

The problems associated with the monolithic module integration
include the distribution of local oscillator signals, mounting configuration,
bias and control line distribution, and conduction of heat from the modules.
These problems were discussed in Section 3.73.4 and no significant problems
were uncovered that would prevent the technology from being directly extended
to 30 GHz.

In summary, the major difference in extending the technology to
30 GHz is the change in requirements from a transmitting beam configuration to
a receiving beam configuration. As a result system noise temperature becomes
an inportant consideration and care should be exercised in regard to the use
of the MMIC modules in the system to reduce losses and system noise
temperature.
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4.9.2 Measurements Using 9-Foot Reflector

This section addresses the measurement of the multiple fixed beam
antenna system at 20 GHz using a 9-foot main reflector. In order to maintain
consistent beam performance with éhat predicted in Section 4.5, the
eccentricity of the subreflector (and the corresponding magnification factor)
should be held constant. On-focus gain will be lower (due to a smaller main
reflector aperture) and the expected heamwidth is now about 0.4°, but
measured scan performance would be as computed in the parametric trade study.

4.10 Multiple Beam Antenna Summary and Conclusions

Throughout the study, it was assumed that two reflector antennas
were to be utilized for the multiple fixed beam system; one for east-CONUS
coverage and one for west-CONUS in order to reduce beam scan requirements. It
was shown that feeds located on the optimum focal surface minimized gain loss
as a function of scan and would be required to meet the objective
requirements. Therefore, in order to utilize a single dual reflector system
for multibeam operation, a highly contoured feed cluster arrangement or a
shaped sgpreflector would be required.

It has also been shown that limited dynamic beam control can be
effective using conventional beam forming networks and the MMIC modules to
improve the C/I performance. Figure 4.8.4.5 shows a typical example of the
improvment in C/I performance for the Boston beam cluster utilizing dynamic
beam control. Dynamic beam control offers a new flexibilty for future
communications system design in obtaining time on orbit beam control.

The present MMIC modules have sufficient phase quantization levels
but finer control of amplitude is highly desirable to provide adequate beam
tuning and improved C/I performance. It is recommended that additional
studies be initiated to determine the'hardware tradeoffs versus finer

amplitude quantization levels.
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SUMMARY FOR MODULE THINNING TYPE A

RF Output Power Module DC Input Power

Per Element Combination Efficiency Per Element f
|
0.0625 mW VPS - -- =
0.15625 md VPS-VPA 63 1.5625 mi |
0.625 mW VPS-VPA 9% 6.25 mi E
1.5625 mW VPS-VPA 12% 12.5 mi
5 mi VPS-CGA 15% 32.9 mi
6.25 m VPS-VPA 15% 41,25 m
12.5 mh VPS-CGA-VPA 15%-6% 157.9 mi
50 mi VPS-CGA-VPA 15%-9% 532.9 mW
125 m VPS-CGA-VPA 15%-12% 1032.9 mi
500 mW VPS-CGA-VPA 15%-15% 3332.9 mi

SUMMARY FOR MODULE THINNING TYPE B

RF OQutput Power Module DC Input Power
Per Element Combination Efficiency Per Element
2.5 mW VPS -- --
6.25 mi VPS-VPA 6% 62.5 mH
25 mW VPS-VPA 9% 250 mW
62.5 mW VPS-VPA 12% 500 mW
200 mh’ VPS-CGA 15% 1316.7 mH
250 mW VPS-VPA 15% 1650 mW
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WEIGHTING SCHEME
e Assume cosine squared amplitude taper across the array

o Provides good on focus performance
e Some correction required at scan

o Apply allowed quantization levels to amplitude taper

o Calculate number of elements to be excited at each quantization
level

AMPLITUDE TAPER

e The weighting of an element at a distance, R, from the center
of the array is given by

. 2
A=A cos” (R/R_)

"where

Amax = Maximum amplitude allowed

e Given the quantization levels allowed, this equation is used to
calculate the radius at which each level falls

00227 4
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Pt

Output
Quantization
Level

0.0625 mW
0.15625 mW
0.625 mW
1.5625 mW
5 mW

6.25 mW

" 12.5 mW
50 mW

125 mW
200 mW
500 mW

Region Of
Array
45,3 - 45,5 cm
45,2 - 45.3 cm
44.7 - 45.2 cm
44,1 - 44,7 cm
42,8 - 44,1 cm
42,5 - 42.8 cm
41.1 - 42.5 ¢m
36.3 - 41.1 cm
30.5 - 36.3
0 - 30.5 cm

AMPLITUDE WEIGHTING FOR MODULE THINNING TYPE A

Percent of Elements
Excited At Level

1.42%
0.82%
2.21%
2.54%
5.35%
1.41%
5.44%
17.58%
18.78%
12.65%
31.8%

o Assumes a 91 cm array

AMPLITUDE WEIGHTING FOR MODULE THINNING TYPE B

Output
Quantization Region Of Percent of Elements
Level Array Excited At Level
2.5 mW 42,7 - 45,5 cm 12.35%
6.25 mW 41.1 - 42.7 cm 6.85%
25 mW 36.3 cm - 41.1 cm 17.58%
62.5 mW 30.3 cm - 36.3 cm 18.78%
200 mW 13.5 - 30.5 cm - 35.73%
250 mW 0-13.5c¢m 8.71%

® Assumes a 91 cm array
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Element RF

OQutput Power

0.625 mW
0.15625 mW
0.645 mW
0.5625 mW
5 mW

6.25 mW
12.5 mW

50 mW

25 mW

500 mW

177 ELEMENT ARRAY MODULE THINNING TYPE A

0.125 mW RF INPUT POWER PER MODULE

Module Number Of
Type E]ements

VPS 3
VPS-VPA 2
VPS-VPA 4
VPS-VPA 4
VPS-CGA 9
VPS-VPA 3
VPS-CGA-VPA 10
VPS-CGA-VPA 31
VPS-CGA-VPA 33
VPS-CGA-VPA 78
177

o EIRP 69.52 dB (53 dB reflector gain)

Element RF

OQutput Power

2.5 mW
6.25 mW
25 mW
62.5 mW
200 mW
250 mW

177 ELEMENT ARRAY MODULE THINNING TYPE B

5 mW RF INPUT POWER PER MODULE

Module
Type
VPS
VPS-VPA
VPS-VPA
VPS-VPA
VPS-CGA
VPS-VPA

Number Of

Elements

22
12
31
33
63
16

177

o EIRP 65.92 dB (53 dB reflector gain)

00227

Total DC Input Total RF
Power Qutput Power
-- 0.1875 mW
3.125 mW 0.46875 mW
25 mW 2.5 mW
50 mW 6.25 mW
296.1 mW 45 mW
123.75 mW 18.75 mwW
1.579 W 125 mW
16.520 W 1550 mW
34.086 W 4125 mW
259.9662 W 39 W
312.65 W 44,873 W
Total DC Input Total RF
Power Qutput Power
-- 55 mW
750 mW 75 mW
7750 mW 775 mW
16500 mW 2062.5 mW
82952 mh 12.6 mh
26400 mW 4 mW
134.352 W 19.5675 W
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APPENDIX B
COMPUTER CODE VERIFICATION

The software used for all parametric analysis and design tradeoffs
was thoroughly checked against avajlable data. Excellent agreement was found
between the Harris offset Cassegrain codes (both Al and SCI) versions) and 1)
the Numerical Electromagnetic Code (NEC), Ohio State University, using the
equivalent parabola geometry and the aperture integration method, and 2) Raj
Mittra, University of [11inois, current integration technique. The latter
comparison is shown in Figures B.1 and B.2.

No data was available for the offset near field Cassegrain codes to
be compared against. The codes are however, very similar to the two offset

Cassegrain codes, differing primarily in the definition or subreflector shape,
and have therefore been sufficiently verified.

00227 . 148

T e e S I

o B N

LI I



bk anet ol

>

w“mw anbruyda) uotjeubaju] aanjuady uost4edwo) apo) ureabasse) 19s3yg “L°g 24nbLj

\x

53

o ap ¥5°§ gp G€°0 | 8P G270

= Q

=2 ap 8L°€ gp 0£°0 | 8P 8¢°0

Mm @ 820 | @b 2c0 | @ 100

>
N gpP €070 gp ¢0°0 | 8P 00°0
Lod-X 9GoapLs uteg ~
v

008" L~ 9 008" 1- @ 09€°L- @ 09€°L- @ 008" L- 9 008°L- 9 A
4P 6v°€¢ aP €002 gp 08°82 gp §l°6¢ gp ve"Ss 8P 60°6S [OLL°L = 0/ | NVOS. —
089°L- @ 0¢8°1- @ ot L- @ ol L= 9 098°L- © 098" L- 9
gp 2212 aP 00°52 gP 02°67 gp 06°8¢ aP 88°5S gP 09°G5 |259°0 =a/4 | M3 9
081°0 9 06170 9 09%°0 9 05770 @
gp LL°§ ap 167t apP 99°/2 ap €1°82 ap 99°95 8P £9°9G |OLL°L = @/3 | snJod

08L°0 @ 9P 68"V 09Y°0 @ 9P 86" L2

002°0 @ 061°0 @ 09770 9 TN ,

P L1712 ap 81°12 aP 6v° /2 ap 19°/2 ap 99°95 gP 99°GS [259°0 = a/3 NO
002°0 @ 9P vl L¢ 09v°0 @ @P 15742
VILLIW 430 VALLIW 430 VYYLIW 320
104d-X wnwixep 30| 9pLS wnulxep utey

00227



2r
%M uoL3e4653U] Jud4ANY 9I€JANS uostaedwo) 3po) uLeabasse] 3135430 “¢°§ 4nbLd
&3
mm gp ¥0°0 gp G0°'0 | ap €0°0
e @ 50°0 | @820 | @ (00
& @ 02°0 | @ 6v-0 | 90 L0°0
g 2L 0 gp 2L°0 | ap 10°0
. 10d-X 3qo|apLs uteg
v
008" L- @ 06L°L- @ 09E° L~ 9 olE7L- @ 008" L- @ 008" L- @
gp 6v°€2 gP £5°€2 gP 08°8¢ 9P 68°82 gP .v€°5S gp L£°SS [259°0 = 0/4
089°L- @ 089°1- @ o L= 9 oz L= 9 098°L- @ 098°L- @
gp 22712 @p (2712 gP 02°6¢ P 26°8¢ P 88°GS gP 68755 |2S9°0 = 0/4
08L°0 9 06170 9 09%°0 @ 05770 9
@ LL°S gP LE°S gpP 99°(2 gP §1°8¢ gP 99°95 gp £9°9S |OLL°L = 0/3
00270 9 061°0 @ 09%°0 d 05770 9
aP L1712 gP 62712 P 6v°L2 ap 19°L¢ gP 99°95 gP 69795 |259°0 = a/4
VHLLIW 420 VILLIW 420 VHYLIN 20
L04d-X wnwixey 3Q0|apLS wnwixel , uLey

enapmreTe P RS,

e B e b e S

150

NVIS

Mg 9

SNJ04

NO

00227

»
b
it

e [etesesd



e =l

P

00227

APPENDIX C
RESULTS OF

ELEMENT WEIGHTING COEFFICIENT SYNTHESIS BY THE SYSTEM
TRANSFORMATION MATRIX APPROACH

- 151




APPENDIX C

RESULTS OF
ELEMENT WEIGHTING COEFFICIENT SYNTHESIS BY THE SYSTEM
TRANSFORMATION MATRIX APPROACH

An initial investigation was conducted to determine the combination
of MMIC modules needed to achieve optimum scanning beam performance. As the
statement of work requested, three combinations were considered:

1. Constant Gain Amplifier (CGA) ;
Variable Phase Shifter (VPS) . g
2. Variable Power Amplifier (VPA)

Constant Phase ;

3. Variable Power Amplifier (VPA)
Variable Phase Shifter (VPS)

To reduce computation time, all analysis was scaled to 2 GHz using
half-wavelength elements with an assumed radiation pattern of cosze.
Weighting coefficients and corresponding far field radiation patterns were
computed both on-focus and for one typical scan position. A flow diagram of
the analysis is shown in Figure C-1. Element weighting coefficients were
determined by the system transformation matrix method, described in

Section 3.6.1.
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A detailed description of the flow plan is as follows:

CONFIGURATION 1 - CGA, VPS .
it On-Focus
§ Elements are initially weighted with tapered amplitude and zero

relative phase. We then vary the phase of each element in
, order to improve the far field performance of the antenna.

' ' Scanned .

Elements are initially weighted with tapered amplitude and a
constant ¢, progressive phase shift between adjacent
elements. by is 33.75% in order to produce approximately

v 2.2% of scan in the far field. We again attempt to improve
beam performance by varying the phase excitation of each

“ element.

CONFIGURATION 2 - VPA, Constant Phase
On-Focus
Our baseline element excitation is tapered amplitude and zero

phase and we attempt to improve beam performance by varying
only amplitude weights.

il Scanned

i -

ne Elements are excited with tapered amplitude and a fixed

L. 33.75° phase shift between elements (this does not allow for
7 dynamic beam positioning) and attempt to improve beam

§, performance by varying only amplitude weights.

P

!

| e 3
¢ B
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CONFIGURATION 3 - VPA, VPS

On=-Focus

Baseline is tapered amplitude and zero phase. Both amplitude
and phase weights are varied in order to improve beam

performance.
Scanned

Baseline is tapered'amplitdde and a 33.75° progressive phase
shift between elements. Both amplitude and phase weights are
varied in order to improve beam performance.

Results are shown in Tables C.1 and C.2. Both on-focus and scanned
results indicate that significant improvement in beam performance can be
achieved if both amplitude and phase are allowed to vary. It is therefore
recommended that both the VPA and VPS modules be incorporated into the phased

array design.

00227
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Table C.1.

On-Focus Results

Phase Amplitude Phase and

Weighting Weighting Amp1itude
Parameters Baseline Only Only Weighting
Sidelobe -23.19 dB -24.66 dB -25.01 dB -30.91 dB
Leve]
Beamwidth 2.779 2.720 2.789 2.900
@ 2 GHz
Max imum 11.59 70 8.40 6.50
Phase
Deviation
From Ideal
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Table C.2.

Scanned Results

Phase Amp1litude Phase and

Weighting Weighting Amplitude
Parameters Baseline Only Only Weighting
Sidelobe -8.23 dB -14.55 dB -15.01 d8 -18.84 dB
Level
Beamwidth 2.459 2.590 2.520 2.730
@ 2 GHz
Max imum 38.10 22.00 27.39 10.17°
Phase
Deviation
From Ideal
Beam Peak 1.59 1.450 1.89 2.250
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