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IMPLICIT UPWIND METHODS FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS 

T. J. Coakley· 
NASA Ames Research Center. Moffett Field. California 

Abstract 

A c lass of implici t upwind-d i fferencing 
met hods for the compressibl e Navier-Stokes equa­
ci ons i s des cr i bed and app l ied. The methods are 
based on the use of l ocal eigenvalues or wave 
speeds to control spat i al d ifferencing of inviscid 
terms and are a imed at i ncreasing the level of 
accuracy and stability achievable in computation. 
Tec hniques for accelerating the rate of convergence 
to a s teady-sta te so l ution are also used. Applica­
tions to invi sc i d and viscous transonic flows are 
discussed and compared with o ther methods and exper­
i mental measurements . I t i s s hown that accurate 
and eff i cient t ransonic airf o i l calculations can be 
mad e on the Cray- l computer i n l ess than 2 min. 

I nt roduction 

The purpose o f chi s paper i s to describe a 
class o f implic i t upwind-differencing methods ( IUM) 
for t he compressible Eul er and Navier-Stokes equa­
cions. The met hods use l ocal ei genvalues or wave 
s peeds t o control i nv i scid s patial differencing and 
are closely rel ated co many other recent tech­
niques . I - 9 The object i ve i n all these methods is 
to achieve more stable and accurate solutions than 
can be obtained using conventional techniques such 
as t he c entral-differencing method 10 and 
~acCormack ' s method. 11 In the l atter two methods. 
dis s ipative terms must usuall y be added to control 
parasitic oscillations . and the choice of the form 
of t he d issipation terms and the size of the dissi­
pat i on constants is di f ficult . The more recent 
met hods. utilizing local eigenvalues, are naturally 
d iss ipat i ve and, in princ i pal, do not require the 
addi tion of extra terms to stabilize calculations. 
In pract i ce, however, t hese met hods also have dif­
ficult i es, espec i ally i n regions of the flow where 
the eigenvalues change sign, and again special pro­
c edures must f requently be introduced to improve 
accuracy . 1- 3 

The c lass of methods r eported in this paper 
i s an extension of the second-order method report ed 
in Ref . 1 where diss i pative t erms scaled on the 
squares o f the l ocal e i genvalues were used. 
Although the method of Ref. 1 is simpler than the 
present methods . i t was found in subsequent appli­
cat ions to suff er the same diff iculty as that of 
earlier methods, t hat i s . t he need f or f ine tuning 
of dissipation constants t o achieve accurate solu­
tions . . Of t he class of methods to be reported i n 
this paper. one second-order upwind method (UW2II ) 
has been found , through extensive numerical exper i ­
ment ation, to produce accurate solut i ons of 
transonic-flow problems without the need for spe­
c ial treatment at normal s hock waves or sonic l ines. 
For oblique shock waves, t he method produces smal l 
undershoots or overshoots a round the shock which 
may be substant i ally reduced by a simple technique. 
The other methods reported produce accurate 
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solutions. except at normal shock waves , where they 
may be imprcved by special treatments. 

The methods presented are closely related to 
the f lux-vector splitting method of Steger and 
Warming . 3 who used t he f inite-difference technique. 
The present methods are designed for incorporation 
into the strongly conservative finite-volume tech­
nique 1 which. in contrast to the former technique, 
retains the property of free-stream maintenance in 
curvilinear coordinates without the need for dif­
ferencing metrics in the same way as fluxes. 

In this paper, a one-dimensional description 
of the methods will be made f ollowed by a discus­
sion of two-dimensional results which i nclude 
i nviscid and viscous transonic- f low calculations. 
These are compared with o ther numerical methods and 
experimental r esults. A basic conclus i on f rom 
these results i s chat accurate and efficient tran­
sonic airfoil calcul ations can be made , using the 
full Navier-Stokes equations, i n l ess than 2 min 
on the Cray-1 computer. 

Although the methods will be applied co two­
dimensional viscous-flow problems in curvilinear 
coordinates, they will be described here in the 
inviscid, one-dimensional context in order to 
simplify the development . The one-dimensional 
Euler equations may be written 

(1) 

where at· a/ at, ax • a / ax, and 

U • (p,pu ,pE)T , F - (pu,pu2 + p, (pE + p)u)T ( 2) 

are the conservative state and flux vectors with 
p • denSity, u • velocity, p - pc 2 /y - pressure, 
cE - p/(y - 1) + pu 2/ 2 - total energy. and 
c - sound speed. The nonconservative state vector 
V and the J acobian o f the f lux vector A are 
wr i tten 

v _ (p,u,p ) T 

where A - diag (u,u + 
matrix of eigenvalues 
matrix diagonalizing 
written 

c , u 
of 
A. 

(3) 

- c ) is the diagonal 
A, and R is a similarity 
The matrix R may be 

R - QP, P - av/au (4) 

where X - Y - 1 and y i s che ratio of specific 
heats. 



The sign of A and the absolute value of A are 
defined by 

S a sgn A - R- 1 sgn A R 
( 5) 

IAI - abs A • R-l abs A R - SA -AS 

where sgn A and abs A are diagonal matrices con­
s isting of the signs and the absolute values of the 
e i genvalues, respectively. 

The basic implicit algorithm, using first­
or der time-differencing, may be written in the 
del ta fo rm ( leaving spatial differencing arbitrary) 
as 

(6) 

where ~U - U( x,t + ~ t) - U(x,t) is the delta var­
i ab l e and ~ t i s t he time-step. 

In order to comp l etely define the algorithm, 
t he spatial derivatives in Eq. ( 6) must be replaced 
by spatial dif f erence operators. We consider first 
t he s pat i a l fl ux dif f erencing, or the right-hand­
side t erm o f Eq. ( 6). I t i s expressed in the fol­
l owing generic (fi nite-volume ) form 

( 7) 

where ~x i s the mesh spacing and Fi + 1/ Z is the 

fl ux vector defined at the midpoint (or cell face ) 
between the mesh points i and i+l. The state 
vec tor , U(x ,t ) ~ U(i4x,nAt) - U~, is d~fined at 
the mesh points, and the flux vector, Fi + 1/ z , is 
defined i n terms of Ui - 1 , Ui' Ui + 1 , Ui +2 as 
fo l lows : 

Fi + 1/ Z - 1/ 2( Fi + Fi + 1 - 0i+l / Z) ( 8) 

where Fi • F(Ui ) and 0i+l / Z is a dissipation 
funct i on t o be specified. If 0i+l/Z - 0, the 
scheme reduces to pure central-differencing. We 
note that the differencing of Eq. (7) is fully con­
servat i ve , regardless of the definition of 0i+l / Z' 
s ince i t represents a telescoping sum of te~. 

The d issipation function, 0i+l/Z ~ 0, in 
Eq. (8) will be expressed in terms of spatial­
diff erence operators , which are defined as follows . 
We l et W be either F, U, or V, and we define the 
opera t ors , 62.' ""2. ' "';-1.' by 

6 W • T2. (W W ) .. 6 W 
2. i+ l /Z i+l /Z i+l - i 2. 

( 9) 

The constants a , 8 , and y define the spatial 
accur acy of the differencing and will be discussed 
l a t er . The subscri pt t takes the values 1, 2, 
and 3, and the matrices T ~+1 / 2" T2. are defined 
~ 1 

(10) 

A suitable average must be given for Tt i n 
t erms of Ui' Ui+ l for i - 2, 3 , and this averaging 
will be d iscussed below. 
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The present methods may be developed in a 
sequence of steps starting with the flux-vector 
'splitting method of Steger and Warming . 3 The 
latter method can be expressed i n terms of Eqs. ( 7) 
and (8), using the dissipation function 

and assuming that the flux vectors (F i and Fi +l ) i n 
Eq. (8) possess the homogeneous property , t hat i s , 
F - AU . However, it is not necessary to represent 
the f lux vectors i n this manner and they may be 
used directly . Furthermore , AU and IAl u in 
Eq. (11) may be replaced, using Eq . ( 5) , by F and 
SF so that Eq . (11) can be expressed alter natively 
by 

(12) 

This results in a f lux-vector spli tti ng method that 
does not depend on the homOgeneous property . 

Unfortunately, the occurrence of t he matrix S 
inside t he operator "';-1 causes dif f i cul t i es i n t he 
f lux-vector spl itting method when t he eigenvalues 
change sign. 3 In t his case t he di ff erenci ng becomes 
i nconsistent , and spec i al procedures must be used 
to stabilize the calculations. 2 

An alternative form of the method, her e called 
Method I, was proposed by Hwang 6 (in one-dimensional 
first-order form f or the pseudounsteady. Euler 
equations) . This f orm i s obtained from Eq . (12) 
by taking the matrix S outs i de the operat or, t hat 
is, 

(Method 1) ( 13 ) 

where a suitable average must be defined fo r S. 
This method has the advantage that the differenci ng 
is more consistent when the eigenvalues change 
sign; numerical experiments in one-dimensiva by 
Huang and in ~-dimensions by the present ~thor 

using the fi r st-order form and simple (linear) 
averaging produced good, normal shock captures. 
However, the second- and third-order forms , which 
are needed for accuracy in multidimensions , were 
found (by the present author ) to be weakly unstable 
at normal shock waves, and spec i al procedures were 
required to remove oscillations. The higher-order 
methods were also tried, using nonlinear averag i ng . 
and with the same kind of result. This method , 
although the most elegant of the three methods to 
be discussed, was therefore put aside in f avor of 
the second method, now to be discussed . 

Method II may be obtained f rom Eqs . ( 9) and 
(13) by the replacement 

(14 ) 

The operators ""IF and s.A\F are then replaced as 
follows: 

..MIF A.AII U - R- l ARJI U ,-I U, u} 
(15) 

s.A1 F .. SAoA\. U - R- 1
1 AI M IU .. R- I IAI ..... zu 

so that the dissipation funct i on of Method I I can 
be written 

. ' , 



r-

or 

D _R-
1 

(A "" 
i+l/2 i+l/2 1+1/2""'/i+l/2 

Method II has been found to produce clean and 
accurate (normal) shock captures in numerical exper­
iments and is the basis of the results to be 
reported. 

Method III is closely related to Method II but 
uses the nonconservative state vector, V. It is 
obtained through the replacements 

0IU" p-l 01 V, .... IU .. p-l ""IV, .,rIU" p-l.,rlV 
(17) 

in Eq. (15). By noting that RP-l - Q, the 
replacements in Eq. (15) can alternativ~ly be taken 
as 

(18) 

50 that the dissipation function of Method III r.an 
be written 

(Method III) D - R-l(A.A'3 V + IAI ""3 V) (19) 

Only limited numerical experimentation has been 
done with this method, and no results will be shown 
for it. 

It is important to note that the replacements 
in Eqs. (15) and (18), indicated by the arrows, are 
equalities only if A is constant; as a result, 
the methods may be expected to produce different 
results, especially at singular points where the 
eigenvalues change sign. As a further note, we ~y 
add that the form of the dissipation functions of 
~ethods II and III was inspired by a study of 
Harten's explicit method 5 ,7 so that a more complete 
understanding of the present method, and perhaps 
even further improvements (e.g., entropy conditions) 
may be achieved by a careful study of his and 
related works. 

In order to completely specify the algorithms, 
the method of averaging, that is, computing Si+l/2' 
Ri+l / 2' etc., in terms of Ui and Ui+l or Vi 
and Vi+l, must be given. Although there are ~ny 
possibilities, we have tried only two methods; 
linear averaging using the nonconservative state 
vector (e.g., ui+l/2 - (ui + ui+l)/2 and 
c1+1 / 2 - (ci + c1+1)/2) and nonlinear averaging 
after Roe 9 as implemented by Yee et al. 7 In the 
latter case, the replacement 0iF" AOiU becomes 
an exact equality and expresses Roe's property U. 
In the results to be discussed, Roe's averaging 
has been used. The specific formulas used in com­
puting Ri + 1 / 2 and "i+l/2 for Method II are 
given below. 

a -
1/2 

(Oi+/Oi) 

ui+1/ 2 - (au i+
1 

+ ui)/(l + a) 

2 
c -i+l / 2 

H - E + p/o 

(20) 
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These equations are used in computing Ri+l/2 from 
Eq. (4) where it may be noted that in the product 
R - QP, the density cancels so that an average for 
p is not required. 

As stated earlier, the coefficients, a, S, and 
y, appearing in the dissipation operators .... and 

. .,r define the spatial accuracy of the flux differ­
encing. Several options for these coefficients 
are listed in Table 1. 

Table 1 Scheme options and nodal clusters 

Scheme 

First-
order 
upwind 

Second-
order 
upwind 

Third-
order 
upwind 

Second-
order 
dissi-
pative 

Desig­
nator 

UWl 

UW2 

UW3 

CD2 

Coefficients 

a s y 

o 1 o 

1/2 1 1/2 

1/6 1/3 116 

o E E/2 

Nodal cluster, Fi +V2 

i-l · i i+l i+2 

o o 

o 

o o 

The nodal clusters are indicated for the 
midpoint flux vector, Fi + 1/2 where it is assumed 
that all the eigenvalues of Ai+l/2' are positive. 
For the second-order dissipative scheme, that is, 
CD2, E is a free parameter. , Assuming 
A - constant, spatial accuracy may be checked by 
Taylor series expansion of Eq. (7) utilizing 
Eqa. (8), (9), and (13). The above schemes may 
be used with any of the three basic methods, which 
will be identified by placing a Roman numeral after 
the scheme designator. For example, the second 
order upwind method II will be denoted by UW2II. 

As mentioned in the Introduction, the capture 
of oblique shock waves is degraded to some extent 
by the appearance of oscillations. These may be 
reduced substantially by a high resolution tech­
nique in which a switch to first-order, that is, 
forcing, a, y .. 0 and S" 1, at points of local 
maxima or minima in the pressure. For the second­
order upwind method this is achieved through the 
follOwing formulas: 

a - y - ma:c(O.5, 0.5 - (o'p - O"p)/E'] 

op - p - P i+l/2 1+1 i 

The parameter E' is a small constant 
(E' ~ (0.01 - O.OOl)p~) which controls the rate of 
approach to the first-order relations at those 
points where the pressure departs from monotonicity, 
that is, o'p > o"p. The designator HR will be 
appended to the basic designator when this option 
is used, for example. UWIIHR. 



The spatial differencing of the implicit or 
left-hand-side terms of Eq. (6) follows the devel­
opment given in Ref. 1. First-order upwind differ­
encing in an (approximate) nonconservative scalar 
tridiagonal form is used. The algorithm may be 
writ:t:en 

( 21) 

where 

Advantages of this formulation are 1) it sub­
s t:antially reduces computing time compared with the 
more exact block-tridiagonal form, 2) the upwind 
differencing i s dissipative which, coupled with 
t he upwind dissipative differencing of the right­
hand s ide, enhances the ( linear) stability of the 
overall algorithm, and 3) viscous terms may be 
i nc l uded by means of a simple technique. The main 
l i mitation of the f ormulation is that time accuracy 
is lost t o some extent, but this is of no conse­
quence i n steady-state problems, which are the 
principal aim o f this paper. 

The inclusion of viscous terms is described 
as follows. The one-dimensional Navier-Stokes 
equations may be written 

a U + a (F - Ba U) • 0 
t )( )( 

o o 

IJ' 

u')u2 - lJ"e (IJ' - 1J")u 

u • (4 / 3)1J , IJ " • (y/Pr)1J Pr • C IJ/K 
P 

where u is the molecular viscosity, Pr is the 
Prandtl number, and e is the specific internal 
energy, e • c 2/ y(y - 1). The viscous analog of 

( 22) 

t he time-differenced delta-form algorithm, that is, 
Eq. (6) , becomes 

where on the left-hand side of this equation the 
matrix B, like A, is evaluated at the time-level n. 
The approximate scalar-tridiagonsl form of this 
equation i s derived by replacing B by the matrix 
vI, where I i s the identity matrix, v • IJmax/p, 
and umax is the largest eigenValue of B, that is, 
Umax " max ( IJ', u"). In this case, the above equa­
tion, expressed in nonconservative form, becomes 

2 
R- I[ I + 6t ( Aa)( - va)()]R6U • -6td)(F - BaxU) (:4) 

Utilizing upwind differencing for the inviscid 
t erm: AdX ' and

2
central differencing for the 

Viscous term va)(, the diagonal difference opera­
tor i n this expression can be represented by 

( I + (6 t / 2)[A (9 + 6 ) - ( i Ai6X + 2v)6 9] } ( 25) 
)( )( )( x 
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where 9x and 6)( are defined by Eq. (21). Conven­
tional second-order central differencing is used 
for the viscous-flux differencing on the right-hand 
side of Eq. (24). 

The numerical method, as outlined in the pre­
ceding paragraphs, may be generalized to multi­
dimensional curvilinear coordinates utilizing the 
finite-volume technique, following the development 
of Ref. 1. Boundary conditions based on the method 
of characteristics are also described in Ref. 1. 

Spatially varying time-steps are used to 
accelerate iterative convergence to a steady-state 
solution. The procedure used here is a modifica­
tion of that described in Ref. 1. Expressed in 
terms of two-dimensional Cartesian coordinates, 
the relationship used for the local time-step is 

6 t • CFt • min ( 6X 6Y ) 
lui + c ' Ivl + c 

" CFt • 6 t local 

where CFt i s the local Courant number, usually 
taken to be 0(5-10) f or most inviscid problems. 
For viscous-flow problems at high Reynolds numbers, 
where a finely spaced mesh is used adjacent: to 
solid surfaces, t he above formula leads to very 
small values of 6t in the neighborhood of the 
surface. In these cases, the formula is modified 
by placing a lower limit on 6t, that is, 

6t • CFt • max (6tlocal ' 6tO) 

where 6tO is a constant of order 0(6x/c ) when 
y is the f i ne mesh direction. 

Representative 
viscous flows using 
UW2II, are shown in 
compared with those 
and experiments. 

Results 

calculations of invis .i1 and 
the second-order met~ , 
Figs. 1-9. These resu~ts are 
obtained from other methods 

Results for the inviscid transonic f l ow about 
an laX-thick, circular-arc airfo i l are illustrated 
in Fig. 1, where surface-pressure distributions 
using the present method and method B2 of Ref. 1 
are given. The two methods show good agreement 
except in the vicinity of the shock wave, where the 
present method shows a superior, three-point 
capture. 

Computed surface pressures for the inviscid 
transonic flow about an NACA 0012 airfoil are shown 
in Fig. 2. This figure s hows results obtained usin, 
the present method and those obtained from Ref . 2, 
using the central differencing and the (second­
order upwind) flux-splitting methods. The three 
methods are in basic agreement except in the neigh­
borhood of the shock wave, where the present method 
shows a higher quality, two-point capture. 

Figure 3 shows calculations of a shock­
reflection problem investigated by Yee et al. 7 

Figures 3a and 3b show contour plots and pressure 
distributions using the present method UW2II. 
Figures 3c and 3d show results using the present 
method with the high-resolution option added, 
UW2IIHR. (This is the only case in which the high­
resolution option was used). These results may be 



-, 

compared with the results of Ref. 12, which is con­
tained in the present volume, and those of Ref. 7. 
It may be stated that the present method, with the 
high-resolution option off, gives essentially the 
same results as those obtained using the second­
order flux-splitting method. 7 This is related to 
the fact that the two methods reduce to a single 
method in the linear constant-coefficient case. 
The high-resolution option of the present method 
gives results roughly comparable to those of 
Hartens method (explicit TVD) and to those of the 
implicit TVD method (FTVD) of Yee et al. 12 An 
advantage of the present implicit method and the 
implicit TVD method over the explicit TVD method 
is that the implicit and implicit TVD methods do 
not suffer an explicit time-step limitation and can 
be run at Courant numbers greater than 1. The 
present method was run at a Courant number of 5, 
and convergence was achieved in approximately 
60 time-steps. This is comparable to the perfor­
mance of the implicit TVD method. 

Figure 4 com~ares calculations of a laminar 
supersonic flow over a flat plate at a low Reynolds 
number. In this case, a strong interaction at the 
plate leading edge results in a shock wave and a 
nonuniform pressure distribution. The present 
method is compared with results from MacCormack's 
explicit-implicit method ll (those results were 
provided by J. Viegas, Ames Research Center). 
Although not shown, comparisons of surface-presaure 
and skin-friction distributions indicate that the 
two methods are in close agreement. Figure 4b 
shows pressure distributions normal to the plate, 
intersecting the shock wave. In this case, the 
shock resolution of MacCormack's method is degraded 
by comparison with the present method. 

Figures 5-9 show results of transonic-airfoil 
calculations, at high Reynolds numbers, requiring 
the use of turbulence models. Figure 5 show. the 
mesh system used. The mesh is analytically gener­
ated and consists of a 120 x SO cell C-grid. A 
sheared conformal mapping is used over the front 
half of the airfoil, and an H-type mesh is used 
over the back half and in the wake. The mesh 
points are exponentially spaced away from the air­
foil, and the cell spacing adjacent to the surface 
corresponds to a y+ of approximately O.B. About 
23 mesh points are contained in the boundary layer 
at the midpoint, and the outer boundary is placed 
at 10 chord lengths from the airfoil. 

Boundary conditions used in the airfoil calcu­
lations were as follows: no-slip velocity condi­
tions at the airfoil surface, constant total 
enthalpy and entropy (or constant total pressure) 
conditions around the outer "c" part of the mesh 
boundary, and constant (free-stream) static pres­
sure conditions along the vertical back boundary. 
Further details on these boundary conditions are 
given in Ref. 1. 

Figure 6 shows results for an NACA 0012 air­
foil at the same Mach number and angle of attack 
as used in the inviscid results (see Fig. 2). 
Figure 6a shows computed Mach contours, and Fig. 6b 
shows computed pressure distributions. These are 
compared with preliminary experimental results 
(from the Ames high Reynolds ~umber Channel II 
facility) obtained by J. McDevitt, L. Hand, and 
A. Okuno. The calculations for this case were 
done with the full ~avier-Stokes equations, using 
the zero-equation turbulence model of Cebeci and 
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Smith, without pressure-gradient correction. In 
the experiment, the wind-tunnel walls were adjusted 
to conform to free-air streamlines so that inter­
ference effects should be minimized. The (free­
air) calculations using the present method are in 
good agreement with experiment. Calculations of 
this flow using various two-equation turbulence 
models have also been made and are reported in a 
companion paper. 13 

Figures 7 and B show results for the RAE 2B22 
airfoill~ which was used as an experimental test 
case at the 19B1 Stanford conference on Complex 
Turbulent Flows. iS Figure 7 corresponds to the 
subcritical Case 1 of the experiment, and Fig. B 
corresponds to the supercritical Case 9. Computed 
Mach contours are shown in Figs. 7a and Ba, and 
computed pressure distributions are compared with 
experimental distributions in Figs. 7b and Bb. The 
calculations were done at the nominal test Mach 
number and the geometric angle of attack, and do 
not account for wind-tunnel interference effects. 
They yere made using a new two-equation model yhich 
is reported in Ref. 13. A more detailed comparison 
of computational and experimental results is also 
included in Ref. 13. 

Computational efficiency of the present 
method is indicated in Fig. 9, which shows residual 
decay and lift convergence histories for the sub­
critical RAE airfoil calculation. The calculations 
used a spatially varying time-step in the inviscid 
flow1 and a constant time-step in the viscous 
boundary-layer flow; 3 min were required for 
500 steps on the Cray-l computer. Since lift con­
vergence (and drag convergence, which is not 
shown) occurs at about 200 time-steps, the actual 
computing time required for practical applications 
in this case would be 1.2 min. The computer code 
is partially vectorized (i.e., vecto~ right-hand 
side and scalar left side) and a speed up by a 
factor of 2 may be expected if the complete code 
is vectorized. An additional speed up may be 
achieved by optimizing the local time-step, and 
work in this direction is currently in progress. 

Concluding Remarks 

We have described a class of implicit upwind­
differencing methods for solving the compressible 
Euler and ~avier-Stokes equations. The methods 
are baaed on the use of local eigenvalues or wave 
propagation speeds to control inviscid spatial 
differencing and are aimed at achieving more accu­
rate and stable solutions than can be obtained 
using more conventional methods. Of the class of 
methods investigated, one second-order implicit 
upwind method, UW2II, was found to produce accurate 
solutions of transonic-flow problems 'without the 
need for special treaenents at normal shock waves 
or sonic lines. By combining the present method 
with acceleration techniques based on spatially 
varying time-steps, an effective and efficient 
algorithm is produced for solving compressible 
viscous-flow problems. 
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