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IMPLICIT UPWIND METHODS FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS

T. J. Coakley*
NASA Ames Research Center, Moffett Field, California

Abstract

A class of implicit upwind-differencing
methods for the compressible Navier-Stokes equa-
tions is described and applied. The methods are
based on the use of local eigenvalues or wave
speeds to control spatial differencing of inviscid
terms and are aimed at increasing the level of
accuracy and stability achievable in computation.
Techniques for accelerating the rate of convergence
to a steady-state solution are also used. Applica-
tions to inviscid and viscous transonic flows are
discussed and compared with other methods and exper-
imental measurements. It is shown that accurate
and efficient transonic airfoil calculations can be
made on the Cray-l computer in less than 2 min.

Introduction

The purpose of this paper is to describe a
class of implicit upwind-differencing methods (IUM)
for the compressible Euler and Navier-Stokes equa-
tions. The methods use local eigenvalues or wave
speeds to control inviscid spatial differencing and
are closely related to many other recent tech-
niques.!~? The objective in all these methods is
to achieve more stable and accurate solutions than
can be obtained using conventional techniques such
as the central-differencing method!? and
MacCormack's method.!! 1In the latter two methods,
dissipative terms must usually be added to control
parasitic oscillations, and the choice of the form
of the dissipation terms and the size of the dissi-
pation constants is difficult. The more recent
methods, utilizing local eigenvalues, are naturally
dissipative and, in principal, do not require the
addition of extra terms to stabilize calculations.
In practice, however, these methods also have dif-
ficulties, especially in regions of the flow where
the eigenvalues change sign, and again special pro-
cedures must frequently be introduced to improve
accuracy.l'3

The class of methods reported in this paper
is an extension of the second-order method reported
in Ref. 1 where dissipative terms scaled on the
squares of the local eigenvalues were used.
Although the method of Ref. 1 is simpler than the
present methods, it was found in subsequent appli-
cations to suffer the same difficulty as that of
earlier methods, that is, the need for fine tuning
of dissipation constants to achieve accurate solu-
tions. Of the class of methods to be reported in
this paper, one second-order upwind method (UW2II)
has been found, through extensive numerical experi-
mentation, to produce accurate solutiomns of
transonic-flow problems without the need for spe-
cial treatment at normal shock waves or sonic lines.
For oblique shock waves, the method produces small
undershoots or overshoots around the shock which
may be substantially reduced by a simple technique.
The other methods reported produce accurate
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solutions, except at normal shock waves, where they
may be imprcved by special treatments.

The methods presented are closely related to
the flux-vector splitting method of Steger and
Warming,3 who used the finite-difference technique.
The present methods are designed for incorporation
into the strongly comservative finite-volume tech-
nique1 which, in contrast to the former technique,
retains the property of free-stream maintenance in
curvilinear coordinates without the need for dif-
ferencing metrics in the same way as fluxes.

In this paper, a one-dimensional description
of the methods will be made followed by a discus-
sion of two-dimensional results which include
inviscid and viscous transonic-flow calculations.
These are compared with other numerical methods and
experimental results. A basic conclusion from
these results is that accurate and efficient tran-
sonic airfoil calculations can be made, using the
full Navier-Stokes equations, in less than 2 min
on the Cray-l computer.

Theory

Although the methods will be applied to two-
dimensional viscous-flow problems in curvilinear
coordinates, they will be described here in the
inviscid, one-dimensional context in order to
simplify the development. The one-dimensional
Euler equations may be written

U+ F=0 (&3]

where 3, = 3/ac, ax = 3/3x, and

U= (p,pu,pE)T , F = (pu,pu? + p,(E + p)wT (2)
are the conservative state and flux vectors with

p = density, u = velocity, p = ocz/Y = pressure,

oE = p/(y = 1) + pu?/2 = total energy, and

¢ = gound speed. The nonconservative state vector

V and the Jacobian of the flux vector A are
written

V= (o,u,p)T , A= 3F/3U = RIAR (3)
where A = diag(u,u + c, u - c) is the diagonal

matrix of eigenvalues of A, and R is a similarity
matrix diagonalizing A. The matrix R may be

written
R = QP, P = 3V/3U (4)
sc2 0 1 1 0o o
Q=1]o0 pc 1 P = -u/p 1/p 0
0 =e L % u? -Xu X
where X = y - 1 and Yy 1is the ratio of specific
heats.



The sign of A and the absolute value of A are
defined by

S = sgn A=R"! sgn AR
(5)
|a| = abs A = R™! abs A R = SA = AS

where sgn A and abs A are diagonal matrices con-
sisting of the signs and the absolute values of the
eigenvalues, respectively.

The basic implicit algorithm, using first-
order time-differencing, may be writtem in the
delta form (leaving spatial differencing arbitrary)
as

(I + At3,A)AU = -ALdyF (6)

where AU = U(x,t + At) - U(x,t)
iable and At is the time-step.

is the delta var-

In order to completely define the algorithm,
the spatial derivatives in Eq. (6) must be replaced
by spatial difference operators. We consider first
the spatial flux differencing, or the right-hand-
side term of Eq. (6). It is expressed in the fol-
lowing generic (finite-volume) form

3gF = (

Fipy /o = Fi-1/2)/0% (7

where Ax 1is the mesh spacing and §i+1/z is the

flux vector defined at the midpoint (or cell face)
between the mesh points 1 and i+l. The state
vector, U(x,t) =+ U(iAx,nAt) = U], is defined at
the mesh points, and the flux vector, Fi+1/2' is
defined in terms of Uy_,, Uj, Usyy» Uy, "as
follows:

Fipy/2 = L/2(Fy + Figy = Dygy/a) (8)

where Fy = F(Uj) and Dy41/2 1is a dissipation
function to be specified. If Dy /, = 0, the
scheme reduces to pure central-differencing. We
note that the differencing of Eq. (7) is fully con-
servative, regardless of the definitiom of D1+1/2,
since it represents a telescoping sum of terms.

The dissipation function, Dy4;/2 = D, in
Eq. (8) will be expressed in terms of spatial-
difference operators, which are defined as follows.
We let W be either F, U, or V, and we define the
operators, 61, “'z' A4, by
)
SeWit1/2 = T%_+1/2(w1+1 - Wy) = W

MoWypyfo = (EgWipa/p = Wiy p) + MW i

N W

Witr/2 = B4 /0 = Y(8qWiga g + 8gWiny/))

- sz

)

The constants a, 8, and y define the spatial
accuracy of the differencing and will be discussed
later. The subscript & takes the values 1, 2,
and 3, and the matrices T§+1/2 - T are defined
by
T! =1, T2 aR, T3 = Q (10)

A suitable average must be given for T in .
terms of Uy, Ugpy for £ = 2, 3, and this averagin
will be discussed below.

‘splitting method of Steger and Warming.3

The present methods may be developed in a
sequence of steps starting with the flux-vector
The
latter method can be expressed in terms of Egs. (7)
and (8), using the dissipation function

D =AU + .1 |A|U (11)
and assuming that the flux vectors (F;y and Fj4;) in
Eq. (8) possess the homogeneous property, that is,
F = AU. However, it is not necessary to represent
the flux vectors in this manner and they may be
used directly. Furthermore, AU and |A|U in
Eq. (11) may be replaced, using Eq. (5), by F and
SF so that Eq. (11) can be expressed alternatively
by

D = F + M SF (12)
This results in a flux-vector splitting method that
does not depend on the homogeneous property.

Unfortunately, the occurrence of the matrix S
inside the operator ) causes difficulties in the
flux-vector splitting method when the eigenvalues
change sign.3 In this case the differencing becomes
inconsistent, and special procedures must be used
to stabilize the calculations.?

An alternative form of the method, here called
Method I, was proposed by Hwang® (in one-dimensional
first-order form for the pseudounsteady Euler

equations). This form is obtained from Eq. (12)
by taking the matrix S outside the operator, that
is,

(Method I) D = F + SAHF (13)

where a suitable average must be defined for S.
This method has the advantage that the differencing
is more consistent when the eigenvalues change
sign; numerical experiments in one-dimensica by
Huang and in two-dimensions by the present .ithor
using the first-order form and simple (linear)
averaging produced good, normal shock captures.
However, the second- and third-order forms, which
are needed for accuracy in multidimensions, were
found (by the present author) to be weakly unstable
at normal shock waves, and special procedures were
required to remove oscillations. The higher-order
methods were also tried, using nonlinear averaging,
and with the same kind of result. This method,
although the moat elegant of the three methods to
be discussed, was therefore put aside in favor of
the second method, now to be discussed.

Method II may be obtained from Egqs. (9) and
(13) by the replacement
§1F + AS U = Ai+”2610i+1/2 (14)

The operators J#\F and SHF
follows:

are then replaced as

M\F + AMy U = R™! AR U + R™! Aty U
(15)
SWKF + SAKU = R™}|A|RAU + R™L|A| AU

so that the dissipation function of Method II can
be written

(Method II) D = R™!(Auu U + [A|up U)



or

r
Ait1/24% 141/2

)

-1
Di~+-1/2 N R1.4-1/2

+ |A| u

i+1/2 7244172

Method II has been found to produce clean and
accurate (normal) shock captures in numerical exper-
iments and is the basis of the results to be
reported.

Method III is closely related to Method II but
uses the nonconservative state vector, V. It is
obtained through the replacements

6,U + P7l§,V , U +>PTl v, mu -+ P iy

a”n
in Eq. (15). By noting that RP™! = Q, the
replacements in Eq. (15) can alternatively be taken
as

MF ~ A MU ~ RTIAQ i1V ~ R™IA43V
(18)
SKF —~ SAU =~ R™HA[QuV + RTL|A sV

so that the dissipation function of Method III can
be written

(Method III) D = RTI(AM3V + |A|.43V) (19)
Only limited numerical experimentation has been
done with this method, and no results will be showm
for it.

It is important to note that the replacements
in Eqs. (15) and (18), indicated by the arrows, are
equalities only if A 1is constant; as a result,
the methods may be expected to produce different
results, especially at singular points where the
eigenvalues change sign. As a further note, we may
add that the form of the dissipation functions of
Methods II and III was inspired by a study of
Harten's explicit method5:7 so that a more complete
understanding of the present method, and perhaps
even further improvements (e.g., entropy conditions)
may be achieved by a careful study of his and
related works.

In order to completely specify the algorithms,
the method of averaging, that is, computing Si+l/2'
Ri+1/2, etc., in terms of Uy and Uj4+; or Vi
and Vj4+;, must be given. Although there are many
possibilities, we have tried only two methods;
linear averaging using the nonconservative state
vector (e.g., Ujyy/p = (ug + uyyy)/2 and
C441/2 = (4 + cy41)/2) and nonlinear averaging
after Roe’ as implcmented by Yee et al.’ In the
latter case, the replacement G&4F + A§4U becomes
an exact equality and expresses Roe's property U.
In the results to be discussed, Roe's averaging
has been used. The specific formulas used in com=
puting R1+1/2 and Ajy4)/2 for Method II are
given below.

1/2

a = (p;,,/0;)

Srife = (aui+1 - “i)/(l + a) a3
o2
i+1/2

2
= (- D@H, +H)/A+a) - u1+1/2]

H=E+ p/lp

These equations are used in computing Ry4;/, from
Eq. (4) where it may be noted that in the product

R = QP, the density cancels so that an average for
p 1is not required.

As stated earlier, the coefficients, a, 8, and
Y, appearing in the dissipation operators .4 and
# define the spatial accuracy of the flux differ-
encing. Several options for these coefficients
are listed in Table 1.

Table 1 Scheme options and nodal clusters
Deaig- Coefficients

nator a 8 X,

Nodal cluster,
i-1" 1

Fivyn
T+1 1+2

Scheme

First-
order
upwind

uwl 0 1

Second-
order
upwind

uw2 1/2 1 1/2 °

Third-
order
upwind

w3 1/6 1/3 1/6 e ° Q

Second-
order
dissi-
pative

e/2 ) [} o )

The nodal clusters are indicated for the
midpoint flux vector, Fj4)/; where it is assumed
that all che eigenvalues of Ay4;/;, are positive.
For the second-order dissipative scheme, that is,
CD2, ¢ is a free parameter., Assuming
A = constant, spatial accuracy may be checked by
Taylor series expansion of Eq. (7) utilizing
Eqs. (8), (9), and (13). The above schemes may
be used with any of the three basic methods, which
will be identified by placing a Roman numeral after
the scheme designator. For example, the second
order upwind method II will be denoted by UW2II.

As mentioned in the Introduction, the capture
of oblique shock waves is degraded to some extent
by the appearance of oscillations. These may be
reduced substantially by a high resolution tech-
nique in which a switch to first-order, that is,
forcing, @, vy 0 and B8 - 1, at points of local
maxima or minima in the pressure. For the second-
order upwind method this is achieved through the
following formulas:

a =y = max[0.5, 0.5 - (&§'p = §"p)/e']

§'0 = 180,y /pl + 1804y pl + 16044y,
"
§'"'p = Iapi'llz + 6pi+1/2 + 6pi+3/21

Pirry2 " Pier T Py

The parameter ¢' 1is a small constant

(e' = (0.01 - 0.001)pe) which controls the rate of
approach to the first-order relations at those
points where the pressure departs from monotonicity,
that is, 6'p > §"p. The designator HR will be
appended to the basic designator when this option

is used, for example, UWIIHR.



The spatial differencing of the implicit or
left-hand-side terms of Eq. (6) follows the devel-
opment given in Ref. 1. First-order upwind differ-
encing in an (approximate) nonconservative scalar
tridiagonal form is used. The algorithm may be
written

=1 + - - -
RTH[I + at(A79, + A Ay) |RAU 4t F (21)

where
AT = (A £ |A])/2

W= (W =W, ) e
B H = Wy, = Wy)/ax

Advantages of this formulation are 1) it sub-
stantially reduces computing time compared with the
more exact block-tridiagonal form, 2) the upwind
differencing is dissipative which, coupled with
the upwind dissipative differencing of the right-
hand side, enhances the (linear) stability of the
overall algorithm, and 3) viscous terms may be
included by means of a simple technique. The main
limitacion of the formulation is that time accuracy
is lost to some extent, but this is of no conse-
quence in steady-state problems, which are the
principal aim of this paper.

The inclusion of viscous terms is described
as follows. The one-dimensional Navier-Stokes
equations may be written

atu + ax(F - aaxu) =0 (22)
0 0 0
B=po"!. -u'u u' 0
p" = uu? - p'e (u' - u"u wl
p' o= (4/3)u , u" = (y/Pr)u , Pr = Cpu/K
where u 1is the molecular viscosity, Pr is the

Prandtl number, and e is the specific intermal
energy, e = c2/y(y - 1). The viscous analog of

the time-differenced delta-form algorithm, that is,
Eq. (6), becomes

(I + Atax(A - BBX)]AU = -Atax(F - BaxU) (23)

where on the left-hand side of this equation the
matrix B, like A, is evaluated at the time-level n.
The approximate scalar-tridiagonal form of this
equation is derived by replacing B by the matrix
vI, where I is the identity matrix, v = ugp../o,
and Upax 1s the largest eigenvalue of B, that is,
dpax = max(u', u'"). In this case, the above equa-
tion, expressed in nonconservative form, becomes

2
-1 - 2
R™H(I + 8e(Ad - v3 ) ]RAU = -Atd (F - B3U) (24)

Utilizing upwind differencing for the inviscid
term: A3, , and central differencing for the
viscous term v3_ , the diagonal difference opera-
tor in this expression can be represented by

r |
(T + (ae/2) (A(7, + 8,) - (|A]ax + zv)Axvx]} (25)

where Uy and Ay are defined by Eq. (21). Conven-
tional second-order central differencing is used
for the viscous-flux differencing on the right-hand
side of Eq. (24).

The numerical method, as outlined in the pre-
ceding paragraphs, may be generalized to multi-
dimensional curvilinear coordinates utilizing the
finite-volume technique, following the development
of Ref. 1. Boundary conditions based on the method
of characteristics are also described in Ref. 1.

Spatially varying time-steps are used to
accelerate iterative convergence to a steady-state
solution. The procedure used here is a modifica-
tion of that described in Ref. 1. Expressed in
terms of two-dimensional Cartesian coordinates,
the relationship used for the local time=step is

Ax Ay

lul RC ' |V| e

At = CFL * min <

= CFL Aclocal

where CFL is the local Courant number, usually
taken to be 0(5-10) for most inviscid problems.

For viscous-flow problems at high Reynolds numbers,
where a finely spaced mesh is used adjacent to
solid surfaces, the above formula leads to very
small values of At in the neighborhood of the
surface. In these cases, the formula is modified
by placing a lower limit on At, that is,

At = CFL - max(Aclocal, Atg)

where Aty 1s a constant of order 0(Ax/c) when
y 1is the fine mesh direction.

Results

Representative calculations of invis id1 and
viscous flows using the second-order methc ,
UW2II, are shown in Figs. 1-9. These resu.ts are
compared with those obtained from other methods
and experiments.

Results for the inviscid transonic flow about
an 18Z%-thick, circular-arc airfoil are illustrated
in Fig. 1, where surface-pressure distributions
using the present method and method B2 of Ref. 1
are given. The two methods show good agreement
except in the vicinity of the shock wave, where the
present method shows a superior, three-point
capture.

Computed surface pressures for the inviscid
transonic flow about an NACA 0012 airfoil are shown
in Fig. 2. This figure shows results obtained usin~
the present method and those obtained from Ref. 2,
using the central differencing and the (second-
order upwind) flux-splitting methods. The three
methods are in basic agreement except in the neigh=
borhood of the shock wave, where the present method
shows a higher quality, two-point capture.

Figure 3 shows calculations of a shock=-
reflection problem investigated by Yee et al.
Figures 3a and 3b show contour plots and pressure
distributions using the present method UW2II.
Figures 3c and 3d show results using the present
method with the high-resolution option added,
UW2IIHR. (This is the only case in which the high-
resolution option was used). These results may be



compared with the results of Ref. 12, which is con=
tained in the present volume, and those of Ref. 7.
It may be stated that the present method, with the
high-resolution option off, gives essentially the
same results as those obtained using the second-
order flux-splitting method.’ This is related to
the fact that the two methods reduce to a single
method in the linear constant-coefficient case.
The high-resolution option of the present method
gives results roughly comparable to those of
Hartens method (explicit TVD) and to those of the
implicit TVD method (FTVD) of Yee et al.!? An
advantage of the present implicit method and the
implicit TVD method over the explicit TVD method
is that the implicit and implicit TVD methods do
not suffer an explicit time-step limitation and can
be run at Courant numbers greater than 1. The
present method was run at a Courant number of 5,
and convergence was achieved in approximately

60 time-steps. This is comparable to the perfor-
mance of the implicit TVD method.

Figure 4 compares calculations of a laminar
supersonic flow over a flat plate at a low Reynolds
number. In this case, a strong interaction at the
placte leading edge results in a shock wave and a
nonuniform pressure distribution. The present
method is compared with results from MacCormack's
explicit-implicit method!! (those results were
provided by J. Viegas, Ames Research Center).
Although not shown, comparisons of surface-pressure
and skin-friction distributions indicate that the
two methods are in close agreement. Figure 4b
shows pressure distributions normal to the plate,
intersecting the shock wave. In this case, the
shock resolution of MacCormack's method is degraded
by comparison with the present method.

Figures 5-9 show results of transonic-airfoil
calculations, at high Reynolds numbers, requiring
the use of turbulence models. Figure 5 shows the
mesh system used. The mesh is analytically gener-
ated and consists of a 120 x 50 cell C-grid. A
sheared conformal mapping is used over the front
half of the airfoil, and an H=-type mesh is used
over the back half and in the wake. The mesh
points are exponentially spaced away from the air-
foil, and the cell spacing adjacent to the surface
corresponds to a y* of approximately 0.8. About
23 mesh points are contained in the boundary layer
at the midpoint, and the outer boundary is placed
at 10 chord lengths from the airfoil.

Boundary conditions used in the airfoil calcu-
lations were as follows: no-slip velocity condi-
tions at the airfoil surface, constant total
enthalpy and entropy (or constant total pressure)
conditions around the outer "C" part of the mesh
boundary, and constant (free-stream) static pres-
sure conditions along the vertical back boundary.
Further details on these boundary conditions are
given in Ref. 1.

Figure 6 shows results for an NACA 0012 air-
foil at the same Mach number and angle of attack
as used in the inviscid results (see Fig. 2).
Figure 6a shows computed Mach contours, and Fig. 6b
shows computed pressure distributions. These are
compared with preliminary experimental results
(from the Ames high Reynolds Number Channel II
facility) obtained by J. McDevitt, L. Hand, and
A. Okuno. The calculations for this case were
done with the full Navier-Stokes equations, using
the zero-equation turbulence model of Cebeci and

Smith, without pressure-gradient correction. In
the experiment, the wind-tunnel walls were adjusted
to conform to free-air streamlines so that inter-
ference effects should be minimized. The (free=-
air) calculations using the present method are in
good agreement with experiment. Calculations of
this flow using various two-equation turbulence
models have also been made and are reported in a
companion paper.13

Figures 7 and 8 show results for the RAE 2822
airfoill% which was used as an experimental test
case at the 1981 Stanford conference on Complex
Turbulent Flows.!S Figure 7 corresponds to the
subcritical Case 1 of the experiment, and Fig. 8
corresponds to the supercritical Case 9. Computed
Mach contours are shown in Figs. 7a and 8a, and
computed pressure distributions are compared with
experimental distributions in Figs. 7b and 8b. The
calculations were done at the nominal test Mach
number and the geometric angle of attack, and do
not account for wind-tunnel interference effects.
They were made using a new two-equation model which
is reported in Ref. 13. A more detailed comparison
of computational and experimental results is also
included in Ref. 13.

Computational efficiency of the present
method is indicated in Fig. 9, which shows residual
decay and lift convergence histories for the sub-
critical RAE airfoil calculation. The calculations
used a spatially varying time-step in the inviscid
flow! and a constant time-step in the viscous
boundary-layer flow; 3 min were required for
500 steps on the Cray-l computer. Since lift con-
vergence (and drag convergence, which is not
shown) occurs at about 200 time-steps, the actual
computing time required for practical applicatioms
in this case would be 1.2 min. The computer code
is partially vectorized (i.e., vector right-hand
side and scalar left side) and a speed up by a
factor of 2 may be expected if the complete code
is vectorized. An additional speed up may be
achieved by optimizing the local time-step, and
work in this direction is currently in progress.

Concluding Remarks

We have described a class of implicit upwind-
differencing methods for solving the compressible
Euler and Navier-Stokes equations. The methods
are based on the use of local eigenvalues or wave
propagation speeds to control inviscid spatial
differencing and are aimed at achieving more accu-
rate and stable solutions than can be obtained
using more conventional methods. Of the class of
methods investigated, one second-order implicit
upwind method, UW2II, was found to produce accurate
solutions of tranmsonic-flow problems ‘without the
need for special treatments at normal shock waves
or sonic lines. By combining the present method
with acceleration techniques based on spatially
varying time-steps, an effective and efficient
algorithm is produced for solving compressible
viscous-flow problems.
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Fig. 2 Comparison of computed surface pressures
for inviscid transonic flow about an NACA 0012
airfoil: M = 0.75, a = 2°, 80 x 20 cell C-mesh
(79 x 31 mesh for Ref. 2).
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Fig. 3 Comparison of computed pressure contour levels and distributions for inviscid shock-reflection
problem: M = 2.9, 8 = 29°, 60 x 20 cell H-mesh. a) Contour plots, present method UW2II; b) Pressure
distributions, method UW2II; c) Contour plots, method UW2II-HR; d) Pressure distributions, method UW2II-HR.
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Fig. 4 Viscous supersonic leading-edge flow. a) Sketch of flow; b) Pressure distributions normal
to plate surface.
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Fig. 5 Representative (120 x 50) C-mesh system
used in viscous transonic airfoil calculatioms.
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a) Computed Mach contours. b) Experimental and computed surface pressures.

Fig. 6 Transonic flow about NACA 0012 airfoil: M = 0.75, Re = 107, a = 2°, 120 x 50 cell C-mesh,
Cebeci-Smith O-equation model.
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a) Computed Mach contours. b) Experimental and computed surface pressures.

Fig. 7 Transonic flow about RAE 2822 airfoil, Case 1: M = 0.676, Re = 5.7 x 10%, a = 2.4°,
120 x 50 cell C-mesh, q-w two-equation model.
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a) Computed Mach contours. b) Experimental and computed surface pressures.

Fig. 8 Transonic flow about RAE 2822 airfoil, Case 9: M = 0.73, Re = 6.5 x 108, CFL = 6, NE = 500,
TCR = 0.12, a = 3.19, 120 x 50 cell C-mesh, q-w two-equation model.
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Fig. 9 Convergence histories for RAE 2822 airfoil computation, Case 1: M = 0.676, Re = 5.7 x 108,
a = 2.4°, CFL = 8, 120 x 50 C-mesh, q-w two-equation model.
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