
NASA-TM-8456619830018988
NASA Technical Memorandum 84566

Potential of MinicomputerlArray-Processor
System for Nonlinear Finite-Element Analysis

Gregg A. Strohkorb and Ahmed K. Noor

JUNE 1983 "-',-. , ....
1:"":<)

NI\SI\

LANGLEY f(ES':;','i,':H C~'HER

L1C",1."·", >;~:.3L\

H:J: ':"'(':. .':' ;',:~:'!'\





NASA Technical Memorandum 84566

Potential of MinicomputerlArray-Processor
System for Nonlinear Finite-Element Analysis

Gregg A. Strohkorb and Ahmed K. Noor
The George Washington University
Joint Institute for Advancement of Flight Sciences
Langley Research Center
Hampton, Virginia

NI\S/\
National Aeronautics
and Space Administration

Scientific and Technical
Information 'Branch

1983



Use of trade names or names of manufacturers in this report does not constitute
an official endorsement of such products or manufacturers, either expressed or
implied, by the National Aeronautics and Space Administration.



CONTENTS

INTRODUCTION •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

2 SYMBOLS •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 2

3 SUMMARY OF MAJOR-HARDWARE AND SYSTEM-SOFTWARE FEATURES OF
MINICOMPUTER/ARRAY-PROCESSOR SYSTEM •••••••••••••••••••••••••••••••••••••••• 4
3.1 Prime 750 Host Computer •••••••••••••••••••••••••••••••••••••••••••••••• 4
3.2 Floating Point Systems AP-120B Array Processor ••••••••••••••••••••••••• 5
3.3 Interface Between Host Computer and Array Processor •••••••••••••••••••• 5
3.4 Comments on Operation and Performance of Minicomputer/

Array-Processor System ••••••••••••••••••••••••••••••••••••••••••••••• 6
3.5 Simulator •••••.••••.••.•••••..••••..••••.•••••.•••••••••••••••.•.•••.•• 6

4 SUMMARY OF COMPUTATIONAL PROCEDURE AND NONLINEAR
FINITE-ELEMENT EQUATIONS ••••••••••••••••••••••••••••••••••••••••••••••••••• 7
4.1 Mathematical Formulation ••••••••••••••••••••••••••••••••••••••••••••••• 7
4.2 Computational Procedure •••••••••••••••••••••••••••••••••••••••••••••••• q
4.3 Program Organization ••••••••••••••••••••••••••••••••••••••••••••••••••• 9

5 VECTORIZATION OF ARITHMETIC OPERATIONS ....................................... 9

6 PROGRAMMING CONSIDERATIONS TO EXPLOIT MINICOMPUTER/
ARRAY-PROCESSOR CAPABILITIES ••••••••••••••••••••••••••••••••••••••••••••••• 10
6.1 Minimization of I/O Operations ••••••••••••••••••••••••••••••••••••••••• 10
6.2 Parallel Host and Array-Processor Operations ••••••••••••••••••••••••••• 11

7 TEST PROBLEMS USED IN EVALUATION OF PROPOSED ALGORITHMS ...................... 11

8 FURTHER IMPROVEMENTS TO MINICOMPUTER/ARRAY-PROCESSOR SYSTEMS ••••••••••••••••• 12
8.1 New Hardware ••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••• 1 2
8.2 Improved Algorithms and Programming Language ••••••••••••••••••••••••••• 14
8.3 User Interaction ••••••••••••••••••••••••••••••••••••.•••••••••••••••••• 14

9 CONCLUDING REMARKS ........................................................... 14

10 APPENDIX A - DISCUSSION OF MAJOR-HARDWARE AND SYSTEM-SOFTWARE
FEATURES OF MINICOMPUTER/ARRAY-PROCESSOR SYSTEM •••••••••••••••••••••••••••• 17
10.1 Prime 750 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 17
10.2 AP-120B Array Processor ••••••••••••••••••••••••••••••••••••••••••••••• 18
10.3 AP Executive Software (APEX) •••••••••••••••••••••••••••••••••••••••••• 20
10.4 Comments on Use of AP-120B Simulator •••••••••••••••••••••••••••••••••• 21

11 APPENDIX B - PROGRAM AND PROCESSOR ORGANIZATION •••••••••••••••••••••••••••••• 26
11.1 Program Organization •••••••••••••••••••••••••••••••••••••••••••••••••• 26
11.2 Control Flow •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 26
11.3DataFlow •••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••• 27
11.4 Processor Organization •••••••••••••••••••••••••••••••••••••••••••••••• 27

12 APPENDIX C - DETAILS OF VECTORIZATION OF BASIC OPERATIONS •••••••••••••••••••• 32
12.1 Evaluation of Linear- and Nonlinear-Stiffness Arrays •••••••••••••••••• 32
12.2 vectorization of Newton-Raphson Iterative Technique ••••••••••••••••••• 33
12.3 Vectorization of Cholesky's Method with Hypermatrices ••••••••••••••••• 34
12.4 Vectorization of Solution Update and Convergence Check •••••••••••••••• 36

iii



12.5 Vectorization of Evaluation of Basis Vectors and Generation
of Reduced Arrays ••••••••••••••••••••••••••••••••••••••••••••••••••• 36

12.6 Vectorization of Strain-Energy and Stress-Resultant Computation
(Post Processor) •••••••••••••••••••••••••••••••••••••••••••••••••••• 37

12.7 Comments on Vectorization ••••••••••••••••••••••••••••••••••••••••••••• 37

.................................13 APPENDIX D - BUFFERING TECHNIQUES USED FOR MINIMIZING
I/O OPERATIONS ON HOST AND ARRAY PROCESSOR
13.1 Buffering Techniques for Host Computers •••••••••••••••••••••••••••••••
13.2 Buffering Techniques for the AP-120B ••••••••••••••••••••••••••••••••••
13.3 Minimizing I/O Between Host Computer and Array Processor ••••••••••••••

41
41
43
45

14 REFERENCES ................................................................... 51

TABLES .......................................................~ ............... 53

FIGURES .........................................................................

iv

57



1 INTRODUCTION

The last two decades have witnessed an explosive growth in computer technology.
Computer-hardware developments are most noticeable at the two extremes of the spec­
trum. At one end there are large expensive computer systems, usually referred to as
supercomputers, such as the CRAY-1 S, CDC 1 CYBER 205, and Burroughs Scientific
Processor (BSP), which have radically different architectures and very high per­
formance (computational speed of the order of 100 million floating-point operations
per second (100 MFLOPS) or more). At the other end of the spectrum are the various
types of minicomputers, desktop computers, microprocessors, and programmable pocket
calculators. These devices provide reasonable performance at less cost. However,
their effectiveness is limited for solving large-scale structural problems such as
those encountered in crash dynamics and large space structures.

Recently, array processors, which are low-cost, high-performance units used as
attachments to minicomputers and mainframes, have gained popularity. The question
arises as to whether the combination of a minicomputer and an array processor in a
dual-processor system can extend the range of finite-element prohlems that can be
solved effectively by the minicomputer. This capability is likely to be accomplished
through efficient implementation of both the numerical algorithms used in the finite­
element solution and the communication protocol between the host minicomputer and the
array processor. The question of synchronization between the different parts of the
system to ensure correct and efficient function of the minicomputer/array-processor
system is of paramount importance. Studies have been made to assess the potential of
minicomputer/array-processor systems for large structural calculations. Potential
speedups of some of the matrix processors used in the SPAR structural-analysis pro­
gram are studied in reference 1. Implementation of finite-element algorithms on a
minicomputer with an attached array processor is discussed in references 2 and 3.
In all the cited references, however, estimates are given for speedups of certain
matrix operations within the finite-element program, but no speedup estimates are
given for the entire solution process. Furthermore, no guidelines are presented for
realizing the full potential of the minicomputer/array-processor system in large­
scale structural calculations. The present paper focuses on these questions. Spe­
cifically, the objectives of the present paper are as follows:

(1) To explore the feasibility and potential of using a minicomputer/array­
processor system for nonlinear finite-element analysis of large struc­
tural systems

(2) To identify the guidelines for computational strategy and programming
techniques required for realizing this potential

In this study, a Prime 750 superminicomputer is the host computer, and a soft­
ware simulator residing on the Prime is employed to assess and measure the perfor­
mance of the Floating Point Systems (FPS) AP-120B array processor. The selection of
the AP-120B was prompted by the fact that it is the most widely used array processor
and the only commercially available one with a simulator on the Prime. In the pres­
ent paper, emphasis is placed on understanding characteristics of the hardware and

'CDC: Registered trademark of Control Data Corporation.



interplay among the hardware components, selection of proper computational procedure,
vectorization of numerical algorithms, minimization of input-output (I/O) operations,
and overlapping host and array-processor operations. Two numerical examples are
presented to demonstrate the gain in speed obtained by using the proposed algorithms
on the minicomputer/array-processor system. Also, new advances in array-processor
hardware by two commercial vendors are outlined, and possible improvements in compu­
tational algorithms are identified. The combination of hardware and algorithm
improvements can significantly enhance the effectiveness of these systems for large­
scale nonlinear analysis. The methodology developed in this paper is intended to
guide further efforts on distributed finite-element computations.

2 SYMBOLS

[ B]

{B(X) }

[C]

E

e

e

'" '"
Fijk ,Gijk~

H~

h

[J]

[K]

'"K ..
1.J

[K(e)]

L

N

n

2

linear-strain-displacement matrix

nonlinear-strain-displacement vector

material-stiffness matrix of structure

Young's modulus of the material

error norm, measuring error of reduced system

error norm defined in equation (C7)

nonlinear-stiffness coefficients of discretized structure

nonlinear-stiffness coefficients of reduced system

weighting coefficients for numerical quadrature, where ~

shell thickness

Jacobian matrix of transformation from local to natural
(dimensionless) element coordinates

linear-global-stiffness matrix

linear-stiffness coefficients of discretized structure

linear-stiffness coefficients of reduced system

linear-element-stiffness matrix

length of shell

total number of displacement degrees of freedom

number of numerical quadrature points in element domain

normalized external-load components

1 to n



Q.
1.

q

R

r

u

wy'

{x}

normalized load components of reduced system

load parameter

radius of curvature of shell

number of unknowns of reduced equations

total strain energy of structure

contribution of cubic and quartic terms in nodal displacement to
strain energy

displacement components in coordinate directions

= Hy' (det[J])y' where Y. = 1 to n

nodal-displacement parameters

vector of nodal displacements

orthogonal coordinate system

condition number of Gram matrix of global-approximation functions

as defined in equation (3)
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Subscripts:

I,J,K,L

i,j,k,Y.

max

Superscripts:

e

change in a function

path parameter in solution space

Poisson's ratio of the material

vector of nodal stress resultants

rotation components

unknowns of reduced equations

indices ranging from 1 to N (number of degrees of freedom of full
system)

indices ranging from 1 to r (number of degrees of freedom of
reduced system)

maximum

elemental quantity
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T

Abbreviations:

AP

CP

CPU

OCU

OOF

FPS

I/O

L.H.S.

MFLOPS

2-0,3-0,4-0

rth iteration cycle (see section 12.2)

transposition

AP-120B array processor

central-processing bound

central-processing unit

data-base complex utility

degrees of freedom

floating-point system

input-output operation

left-hand side

million floating-point operations per second

two-, three-, and four-dimensional, respectively

3 SUMMARY OF MAJOR-HARDWARE AND SYSTEM-SOFTWARE FEATURES OF
MINICOMPUTER/ARRAY-PROCESSOR SYSTEM

The minicomputer/array-processor system has a number of features which dis­
tinguish it from current third-generation (mainframe) hardware. These features pro­
vide a high degree of interactive capability and attractive computational speeds.
Although the speed of the system is below those of the large mainframes, its purchase
cost is considerably less. A schematic drawing of the organization of an assumed
minicomputer/array-processor system is shown in figure 1.

A detailed description of the hardware and software of both the host minicom­
puter and the array processor is given in the manufacturers' manuals (refs. 4 to 8),
and their major features, which are exploited in the present study, are summarized
herein.

3.1 Prime 750 Host Computer

The Prime 750 host computer belongs to the class of computers frequently referred
to as superm~n~s. (See ref. 9 for a classification of hardware systems.) It has a
32-bit-word (approximately 8 significant digits) central processor and a virtual­
memory operating system. A basic feature of the Prime 750 is a three-level memory
organization depicted in figure 2. The three levels are the cache memory, the central
memory, and the disk system. The Prime 750 supports up to 2 million words (8M bytes)
of central memory and 600 million words (2.4 x 109 bytes) of disk storage. The system
can run in both interactive and batch modes, and up to 63 users can be supported simul­
taneously. The memory organization and the computational speed of the Prime 750 at the
Langley Research Center are discussed in appendix A.

4



3.2 Floating Point Systems AP-120B Array Processor

An array processor (AP) is a high-speed special-purpose computational device which
can perform repetitive computations on well-structured data sets at effective speeds
far beyond those achieved by current minicomputers. The AP-120B array processor, also
called an attached processor, has the following features (see ref. 10):

(1) It is designed and accessed as a peripheral (i.e., like a tape drive) for a
conventional host minicomputer, and it is intended to enhance the perfor­
mance of the host in specific numerical computing tasks.

(2) It achieves high performance through both parallelism and pipe lining.

(3) It includes an arithmetic section containing one adder and one multiplier
capable of operating in parallel.

(4) It is not hardwired. Rather, it can be programmed by the user in FORTRAN or
assembler language to perform a variety of computational tasks.

Parallelism is a major feature of the AP-120B that allows high-speed vector and
matrix processing. In addition, the parallel structure of the AP-120B allows the
overhead of loop indexing, array indexing, and data fetching to be performed in par­
allel with floating-point computations. Parallel operations include integer index­
ing, branch instructions, memory fetches, memory storage, I/O with the host, and
floating-point arithmetic. These features make the AP-120B a much faster processor
than most general-purpose computers which perform operations sequentially. The
AP-120B has a peak processing rate of 12 million floating-point operations per second
(12 MFLOPS) and a concurrent 6 million integer and addressing operations per second.

The two major components of the AP-120B are the memory and the arithmetic unit.
The organization of these two components is discussed in reference 11 and is summa­
rized in appendix A. The memory includes main-data memory, table memory, program
memory, data-pad registers, and address registers. (See fig. 3.) The function of
each memory, including its size and word length, is given in appendix A.

The arithmetic unit of the AP-120B has a two-stage pipeline adder and a three­
stage pipeline multiplier. Each can perform up to 6 million floating-point opera­
tions per second (6 MFLOPS). If both pipelines are kept constantly full, the speed
can reach 12 MFLOPS, but it is often impossible to keep either or both pipelines
full. Sustained speeds of up to 4 MFLOPS have been observed for some fluid-dynamics
computations by W. T. Thompkins at the Massachusetts Institute of Technology. The
interface between the host and the array processor is described in the succeeding
subsection.

3.3 Interface Between Host Computer and Array Processor

There are two distinct operating systems which reside on the host: (1) the
operating system of the host computer, and (2) a software driver for the array pro­
cessor called "APEX" (array-processor executive). The host operating system controls
the operation of the host, including the user program which, in turn, specifies the
sequence of events necessary to perform the computation. The data on which the com­
putations are performed reside on a disk controlled by the host. Some of these data
are present in the memory of the host, where they may undergo simple reorganization
on their way to and from the array processor.
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The host interface to the array processor consists of an interface board which
is controlled by APEX. This software is resident on the host and facilitates com­
munication with the array processor by translating FORTRAN calls into small descrip­
tive packages called "function control blocks." 'll1ese tasks are shipped to the array
processor to initiate specific computations or data transfers on the latter device.
The APEX is part of the host load module whose formation is depicted in figure 4.
Additional details on the array-processor executive are given in appendix A.

3.4 Comments on Operation and Performance of Minicomputer/Array­
Processor System

The following comments regarding the operation and performance of the
minicomputer/array-processor system seem to be in order:

(1) The high speed of the AP-120B can be attributed to the following three
factors: (a) speed of the components (167-ns cycle time compared with 600-ns cycle
time on the Prime 750); (b) parallel architecture with complete parallelism in the
sense that all memory and arithmetic units can perform operations in parallel; and
(c) pipeline processing of arithmetic operations.

(2) The AP-120B performs vector operations with scalar hardware. Software loops
constructed from scalar operations are used to program vector operations. By con­
trast, most vector computers, such as the CRAY-1 S and the CYBER 205, provide one set
of hardware to perform scalar operations and another set to perform vector computa­
tions. The use of scalar hardware to perform both vector and scalar operations
helped to keep the purchase cost of the AP-120B substantially below that of super­
computers. The penalty for this architecture is the increase in software complexity
for vector operations. A detailed discussion of this subject is given in refer­
ences 6 and 10. Sample timings for vector-software operations on the AP-120B are
given in table I, and the effect of vector length on the number of results per second
is depicted in figure 5.

(3) Parallelism on the AP-120B can be exploited only by the software. To syn­
chronize and coordinate concurrent activities, the programmer or compiler must explic­
itly code all parallelism into the program. This situation requires use of the
lowest level of programming language (called "microcode") and significantly compli­
cates the software development. (See ref. 12.)

Extensive libraries of microcoded routines (some callable from the FORTRAN pro­
gram) are available for use on the AP-120B. These routines include an assembler
(APAL), a loader and a linker (APLINK), a software simulator (APSIM), an on-line
software debugger (ADBUG), an executive driver (APEX), a software chaining utility
(VFC), and an extensive mathematics library including vector operations, matrix oper­
ations, vector-to-scalar operations, and fast Fourier transform. (See ref. 7.)

3.5 Simulator

A software simulator (APSIM) has been developed by Floating Point Systems, Inc.,
to assess the performance of the array processor through simulating the operation of
the AP system software APEX and the execution of the assembler programs on the array
processor. The simulator can be used on the host minicomputer for performing actual
computation and for providing run-time estimates on the array processor without actu­
ally using the array processor. The APSIM can run interactively, thereby providing

6



the user with maximum control over the program execution. The simulation is limited
to program execution on the APi interaction with the host is not simulated. In the
present study, however, the times expended in the communication between the Prime and
the array processor are estimated to be only a small fraction of the total central­
processing unit (CPU) time. Other difficulties observed in using the simulator are
identified in appendix A.

4 SUMMARY OF COMPUTATIONAL PROCEDURE AND NONLINEAR
FINITE-ELEMENT EQUATIONS

To simplify the presentation, discussion herein is limited to large-deflection
static analysis of shells. The analytical formulation is based on a form of the
geometrically nonlinear shallow-shell theory with the effects of transverse shear
deformation included. A displacement formulation is used with the fundamental
unknowns consisting of the three displacement components and the two rotations at
each point of the middle surface of the shell structure. The shell is modeled by
using 16-node quadrilateral elements with bicubic Lagrangian interpolation functions
for each of the displacement and rotation components.

The computational procedure used herein is based on the combined use of finite
elements and the classical Rayleigh-Ritz approximation. The procedure has been
referred to as the reduced-basis technique and is described in detail in refer-
ences 13 and 14. The discretization of the shell is done by using finite elements.
The nonlinear system of finite-element equations describing the response of the dis­
cretized shell is then replaced by a reduced system of equations with considerably
fewer unknowns through the application of the classical Rayleigh-Ritz technique. The
reduced system of equations may be updated periodically as needed.

4.1 Mathematical Formulation

4.1.1 Governing finite-element equations.- A total Lagrangian formulation is
used in describing the response of the shell, and the governing finite-element equa­
tion in index notation can be cast in the following form:

o

where KIJ are the linear-stiffness coefficients; FIJK and GIJKL are nonlinear­
stiffness coefficients; XJ are unknown nodal-displacement parameters; QI are
normalized external-load components; and q is a load parameter. The range of the
indices I,J,K,L is 1 to N where N is the total number of displacement degrees
of freedom, and a repeated index denotes summation over its full range. The
coefficients KIJ , FIJK , and GIJKL are completely symmetric with respect to permu­
tation of indices.

The loading is assumed to be conservative and proportional. As the load is
increased, the value of the load parameter q changes, but the component QI
remains constant; that is, the spatial distribution of the load does not change.

4.1.2 Basis reduction and reduced system of equations.- The nonlinear solution
XI is approximated, over a range of values of the parameter q, by a linear combi­
nation of a small number of global-approximation (or basis) vectors. The basis vec-
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tors consist of a nonlinear solution for a particular value of q and a number of
its path derivatives (derivatives of XI with respect to a path parameter A which
may be identified with a loading or displacement parameter) at the same value of q.
The approximation can be expressed as

r
J

. <V.
~ ~

where J = 1 to N, i = 1 to r, r« N, <Vi are undetermined coefficients, and
rJi is a transformation matrix whose columns represent global-approximation
functions or basis vectors. Thus,

(2)

A Rayleigh-Ritz technique is then used to approximate equation (1) by a much
smaller system of nonlinear algebraic equations in the new unknowns <Vi. The reduced
equations have the following form:

where

a (4)

"J

K ..
~J

(5)

FIJK r Ii rJj r Kk

(8)

The subscripts i,j,k,~ are indices ranging from 1 to r. The subscripts
I,J,K,L are indices ranging from 1 to N. A repeated index in the same term denotes
summation over its full range.

The equations used in evaluating the basis vectors are obtained by successively
differentiating the governing finite-element equation (eq. (1», and solving the
resulting system of linear simultaneous algebraic equations. The explicit form of
these recursion relations is given in reference 15 and is not reproduced here.

The criterion for selecting the number of the basis vectors is based on
monitoring the condition number of the Gram matrix ~ of the basis vectors and
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on terminating the generation of the basis vectors when
value. (See ref. 13.) Also, upper and lower limits for
were chosen to be 10 and 2, respectively.

4.2 Computational Procedure

~ exceeds a prescribed
the number of basis vectors

The five key elements of the computational procedure which strongly affect the
performance of the reduced-basis technique are: (1) efficient evaluation of the
basis vectors and generation of the reduced system of equations; (2) characterization
of the nonlinear response of the shell by means of a single scalar; (3) automatic
selection of load step size and evaluation of the corresponding displacements and
stress resultants; (4) sensing and controlling the error in the reduced system of
equations; and (5) tracing postbuckling and post-limit-point paths. These elements
were discussed in detail in references 13 and 14. The reduced-basis technique appears
to be suitable for solving large-scale nonlinear problems on the minicomputer/array­
processor system because of the following: (1) the operations involving the large
arrays of the full system of equations are limited to generating basis vectors and
reduced arrays and to sensing the error of the reduced equations (see ref. 13); and
(2) many operations required in the solution process can be performed as vector
operations.

4.3 Program Organization

The nonlinear analysis program used in the present study uses the data-base
management system of the SPAR finite-element system. (See ref. 16.) The program is
divided into small self-contained logical sections or processors. Each processor can
run as a separate program and complete its execution in an interactive mode. Com­
munication between different processors is made through the common SPAR data base.
The processor organization and the control and data flow in the program are dis­
cussed in appendix B.

5 VECTORIZATION OF ARITHMETIC OPERATIONS

The array processor is specially designed for vector operations. The perfor­
mance of a nonlinear finite-element program on the minicomputer/array processor system
depends on the extent to which the pipeline and parallel-processing capabilities are
used in the different modules of the system. Use of the scalar mode in all or most
of the computation may provide moderate benefits (because of the small cycle time of
the array processor and the complete parallelism in performing the operations). Full
benefits of the array processor, however, are not obtained by use of the scalar mode.
The process of designing a numerical algorithm to make effective use of the pipeline
(or streaming) capability of the array processor is referred to as vectorization.
The vectorization of any mathematical operation is dependent on the particular
hardware. For a task to be vectorizable on the AP-120B, it should contain three
characteristics: (1) repeated operations, (2) independence of each result from the
others, and (3) the members of each operand are packed in either contiguous memory
locations or at fixed intervals from each other (with some restrictions as seen in
the discussion on interleave in appendix A).

In the present study, the following basic operations were vectorized: (1) eval­
uation of linear- and nonlinear-stiffness arrays K~~), Fi~k' and G~~kL for inde­
pendent elements; (2) solution of linear algebraic equations using Cholesky's method;
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(3) computation of the error norm and checking the convergence of the full-system
solution in the Newton-Raphson iterative technique; (4) generation of basis vectors;
and (5) computation of stress resultants and strain energy of the structure. These
operations are listed in table II. Vectorization of each of the aforementioned oper­
ations included the design of the data structure of the operands (arrays or vectors)
as well as the sequence of the computation. For operands with simple-data structure
(e.g., full matrices and vectors), the math-library routines (ref. 8) of the array
processor were used to perform the vector operations. On the other hand, for operands
with complex-data structure (e.g., sparse matrices and completely symmetric three- or
four-dimensional arrays), assembler codes were developed to exploit the special-data
structure of these operands, thereby improving the efficiency of the vector opera­
tions. Details of the vectorization of the basic operations listed in table II are
discussed in appendix C. Note that some of the vector operations listed in table II
were overlapped with the host I/O operations, with a resulting improvement in
efficiency.

6 PROGRAMMING CONSIDERATIONS TO EXPLOIT MINICOMPUTER/ARRAY
PROCESSOR CAPABILITIES

After the proper computational procedure has been selected and the numerical
algorithms have been vectorized, the realization of the full potential of the
minicomputer/array-processor system requires the following: (1) the minimization of
the I/O operations in order to make the'program central-processing (CP) bound, and
(2) organization of the computation and data in order to achieve maximum parallelism
between the host and AP operations. The programming efforts to accomplish these
tasks are outlined in this section. The major factors affecting the I/O operations
are the host Prime 750 computer, the AP-120B, and the communication interface between
the host and the AP as listed in table III. In the discussion of these factors,
hardware, system software, and user software are considered with emphasis on the
user-software techniques to minimize the I/O operations.

6.1 Minimization of I/O Operations

6.1.1 Minimizing the host system 1/0.- The major hardware factors that affect
I/O operations on the host include cache-memory size and speed, central-memory size
and speed, and disk-access speed and transmission rate. The system-software factors
affecting I/O include resource management and allocation and the paging algorithms
between cache and central memory, as well as between central memory and disk.

On the user-software level, minimization of I/O can be achieved through the
proper use of buffering techniques. Six buffering techniques were used in the
present study. Three of these techniques were proposed by Mitch Modeleski of Systems
Applications, Inc., for use in an atmospheric-simulation model. They were found to
be effective on the Prime 650 computer. The other three techniques were developed
by the first author of the present paper. In order to assess the effectiveness
of the different techniques, a small FORTRAN program was developed to transfer
10 000 vectors of nodal displacements from central memory to disk. The CPU and I/O
times for execution of this task were measured by using subroutines SNAP and SHOT.
The details of the six buffering techniques and their performance are given in
appendix D.
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6.1.2 Minimizing the I/O within the array processor.- The hardware and system­
software features that affect the I/O within the AP are listed in table III. On the
user-program level, I/O operations within the AP can be minimized by minimizing the
memory-fetch operations and data-path conflicts through proper selection of the
buffering technique used between table memory and main-data memory. The details of
these techniques are given in appendix D.

6.1.3 Minimizing I/O between host computer and array processor.- In a multiuser
operating-system environment, the host overhead can be a significant portion of the
total time needed to run a problem on the minicomputer/array-processor system. On
the user-software level, merging data, chaining AP routines, and proper sequencing
of AP calls can be used to reduce host-system overhead. Details are described in
appendix D.

6.2 Parallel Host and Array-Processor Operations

The parallel architecture of the AP-120B allows overlapping of data transfer
from the host computer with the execution of arithmetic operations on the AP. After
data have been transferred, the host can perform data management and other tasks
during the execution of the operations on the AP. Specifically, for the nonlinear
finite-element program considered herein, the host can perform the following three
data-management tasks while the AP is executing the arithmetic operations:

(1) Data storage and retrieval from disk

(2) Data reorganization required for host and AP programs

(3) Synchronization of data transmission to and from the AP

Overlapping the data transfer and execution of the AP requires bypassing the
task-synchronization commands of the AP, which result in sequential operations, and
designing the data structure in the program carefully, so that data sets are avail­
able whenever they are needed. Examples of the task-synchronization commands are
APWR (wait on running), APWD (wait on data), and APWAIT (wait on data and running).

7 TEST PROBLEMS USED IN EVALUATION OF PROPOSED ALGORITHMS

To assess the performance of the vectorized algorithms and the programming
techniques outlined in the previous sections, numerical studies were made on two
problems of elastic collapse of cylindrical-shell structures. The problems were run
on the Prime 750 minicomputer and subsequently on the minicomputer with an AP
simulator. Results were compared to determine the potential gain in speed obtained
by use of the AP in conjunction with the techniques discussed in the present paper.

The first test problem has a pear-shaped cross section (fig. 6), and the second
structure has a circular cross section and a rectangular cutout (fig. 7). The two
problems were used in reference 17 to assess the capability of programs to analyze
shell structures. The load was applied to the cylinders by means of a uniform axial
shortening which is increased incrementally until the cylinder collapses. Advantage
was taken of the symmetry, and each structure was modeled by using 16-node, quadri­
lateral, shear-flexible, shallow-shell elements with bicubic Lagrangian interpolation
functions (a total of 80 generalized-displacement degrees of freedom per element).
The total degrees of freedom for the first structure is 1715, and for the second it
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is 3230. The finite-element models used for the two structures are shown in fig­
ures 6 and 7. Four distinct elements are used in modeling the first shell, and
52 elements are used in modeling the second shell. In both problems, the basis
vectors were generated at zero loading and, therefore, their evaluation involved the
decomposition of the linear-global-stiffness matrix [K]. Five basis vectors were
used in the first problem, and six were used in the second.

The CP and I/O times were recorded which were required for evaluating the basis
vectors (at zero loading), generating the reduced equations and marching three steps
with these equations. Figures 8 and 9 show the CP times expended in 10 different
processors for the 2 cylindrical-shell problems. The 10 processors are as follows:
(1) evaluation of linear-stiffness arrays [K(e)]; (2) evaluation of nonlinear­
stiffness arrays F(e) and G(e); (3) assembly of elemental matrices; (4) incor­
poration of boundary conditions; (5) decomposition of the global-linear-stiffness
matrix [K]; (6) forward reduction/back substitution (forward/back solve); (7) solu­
tion update; (8) postprocessing (stress resultant and strain-energy computation);
(9) generation of basis vectors; and (10) solution of reduced equations. Three of
these processors were not vectorized, namely, the assembly, boundary conditions, and
solution of reduced equations. Also, since the basis vectors were generated at zero
loading, no convergence check was needed for the full system. The percentage of time
expended in each of the processors and the estimated gain in speed obtained by using
the array processor are summarized in table IV.

As can be seen from table IV and figures 8 and 9, most of the solution time is
spent in the processor used for the decomposition of the left-hand side and in the
processor used for the evaluation of basis vectors and the generation of reduced
equations. The use of the array processor is shown by the simulator to reduce the
total times (CP + I/O) expended in these two processors by factors of 46.7 and 17.1
for the pear-shaped cylinder and by factors of 59.8 and 38.1 for the cylinder with a
cutout. Estimates for total gains in speed for both sample problems are presented in
figure 10. Although the total gains in the CP speed obtained by using the AP for the
two problems are 9.2 and 18.1, respectively, the gains in the total (CP + I/O) times
are reduced to 5.2 and 9.9, only. Note that the higher gain in speed for the larger
problem was due to the higher percentage of time expended in the two processors used
for the decomposition of the global-stiffness matrix [K] and generation of basis
vectors. Both processors were effectively vectorized.

8 FURTHER IMPROVEMENTS TO MINICOMPUTER/ARRAY-PROCESSOR SYSTEMS

Since the development of the AP-120B, several new advances in AP hardware have
taken place. Two of the advanced AP systems are described herein along with improve­
ments in numerical algorithms and software design that are likely to enhance the
effectiveness of the minicomputer/array-processor system for large-scale, nonlinear,
finite-element analysis.

8.1 New Hardware

Among the new array processors with improved capacity and performance over those
of the AP-120B, mention may be made of the FPS-164 (ref. 18) and the CSPI MAP-6400
(ref. 19).
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The overall architecture of the first processor, FPS-164, is very similar to the
AP-120B. The cycle time and machine timings are identical. However, the following
major improvements can be identified:

(1) 64-bit floating-point arithmetic (compared with 38 bit on the AP-120B)

(2) 32-bit integer arithmetic (compared with 16 bit on the AP-120B)

(3) 24-bit addressing (compared with 20 bit addressing on the AP-120B)

(4) 1024 64-bit word-instruction cache-memory loading from main memory, which
replaces the program memory of the AP-120B and allows larger programs to
be accommodated in a more flexible way

(5) A clock for timing programs (which is lacking on the AP-120B)

(6) A 256-register subroutine call stack and 64 address registers

(7) Main memory expandable to 7.25 million 64-bit words (58M bytes)

A recent study has shown reductions in wall-clock time obtained by using the
FPS-164 for a number of benchmark structural problems (900 to 3900 degrees of
freedom) by factors of 7.5 to 10.6 over those required by the DEC VAX-11/780
supermini. The general-purpose computer program ANSYS2 (ref. 20) was used in these
studies.

The second group of array processors, the CSPI MAP series, have two major
features which distinguish them from the FPS array processors. The first is the
asynchronous multiple-bus architecture in contrast to the FPS synchronous archi­
tecture. The multiple asynchronous I/O buses on the CSPI MAP array processors
significantly reduce data-path conflicts and provide fast concurrent I/O, thereby
allowing the arithmetic units to be utilized more effectively for vector operations.
However, difficulties can arise in coordinating several asynchronous processors for
scalar operations. Processing speeds up to 4.3 MFLOPS have been achieved on the
CSPI MAP-300 series. Furthermore, the asynchronous hardware architecture differs
from the synchronous in that it allows individual components of the AP to be upgraded
without redesigning the entire machine. The second major feature is the use of the
shared-memory concept to eliminate the I/O overhead between the host and the array
processor. This concept was implemented on the Gould Corporation's S.E.L. 32/77
superminicomputer. The CSPI MAP array processors were coupled with the S.E.L. 32/77
superminis through a common-memory interface to form VPS-3300 and VPS-6400 vector­
processing systems. The former has a 32-bit word size, and the latter has a 64-bit
word size.

The CSPI MAP series of peripheral array processors offer considerable
versatility when connected with different host computers. Only a single board
replacement is necessary to interface with new host computers. The use of a CSPI
array processor for finite-element analysis is discussed in references 2 and 3.

2ANSYS: Registered trademark of Swanson Analysis Systems, Inc.
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8.2 Improved Algorithms and Programming Language

To improve the effectiveness of the minicomputer/array-processor system for
large-scale finite-element computations, improvements are needed in six areas:

(1) Parallel host and array-processor execution:
processing than that used in the present study can be
the software.

A greater degree of parallel
achieved by careful design of

(2) Parallel host and multiple array-processor execution: Many peripheral array
processors can be added to the host computer. Additional levels of parallel­
processing capability require effective algorithms on the host to control the
parallel execution of operations on the host and on the peripheral devices.

(3) Vectorization of packed-data structures: Parallel processing within the
array processor of packed-data structures can be accomplished by using table memory
to store constant offsets into the packed-data structure.

(4) Computational algorithms for parallel processing:
algorithms in nonlinear finite-element analysis appear to
parallel processing. One criterion used in the selection
algorithms should be to maximize parallel processing.

The most time-consuming
be very adaptable to
of the computational

(5) Expert systems on host computer: Expert systems (ref. 21) are programs
written to perform the decision-making processes of human experts. They are a result
of research in an area of computer science called artificial intelligence. Among the
possible applications for this capability are the following: (a) determination of
the optimal number of nodes per hypermatrix block to be used in the Cholesky
decomposition and solution of the full system; and (b) allocation of central-memory
space for user I/O buffers.

(6) Host-computer programming language: The programming language of the
Prime 750 host is FORTRAN, which is not designed for parallel processing. A
parallel-processing language, such as ADA (ref. 22) or concurrent PASCAL (ref. 23),
would be helpful for program development on a parallel-processing system.

8.3 User Interaction

Increased user interaction with the minicomputer/array-processor system can be
achieved through the use of interactive graphics and relational data-base systems.
(See ref. 24.) The latter is particularly useful to engineering users because of the
natural form of representation of data, namely, two-dimensional tables or relations.
A relational information manager (RIM) has recently been implemented on the Prime 750
and the DEC VAX-11/780 computers. (See ref. 24.)

9 CONCLUDING REMARKS

A study is made of the potential of using a minicomputer/array-processor system
for large-scale, nonlinear, finite-element analysis. A Prime 750 superminicomputer
is used as the host computer, and a software simulator residing on the Prime is
employed to assess the performance of the Floating Point Systems AP-120B array
processor. The major hardware characteristics of the system that significantly
impact nonlinear finite-element computations are identified. Computational
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strategies and programming techniques are developed to exploit these character­
istics. Two benchmark nonlinear problems with 1715 and 3230 degrees of freedom are
selected to measure the anticipated gain in speed obtained by using the algorithms
developed on the array processor. The estimated gains in central-processing-unit
(CPU) speed for the two problems were 9.2 and 18.1; however, the reductions in the
total solution times, central processing and input-output (CP + I/O), were only
5.2 and 9.9.

The following major hardware characteristics of the Prime 750/AP-120B system
have been identified as having a significant impact on nonlinear finite-element
computations:

(1) Virtual memory of the host Prime 750 supermlnl consisting of the three
levels: cache memory, central memory, and disk, with a total storage capacity of
over 600 million 32-bit words.

(2) Pipeline processing through the multiple pipelined floating-point arithmetic
elements (adder and mUltiplier) of the array processor.

(3) Parallel processing achieved on three levels: (a) on the array-processor
level, all memory and arithmetic units can perform operations in parallel; (b) on the
host level through parallel CP and I/O operations; and (c) between the host and array
processor (AP).

(4) Distributed processing: The computationally intensive portions of the
program are allocated to the AP; and the other tasks, such as data management,
control of the AP, and user interface, are allocated to the host supermini.

To exploit the aforementioned hardware features of the minicomputer/array­
processor system in a large-scale, nonlinear, finite-element analysis, the follow­
ing tasks were performed:

(1) Proper selection of the computational algorithm: Although a comprehensive
study of the different computational algorithms was not made, the reduced-basis
technique appears to be very suitable for use on minicomputer/array-processor
systems.

(2) Minimization of I/O operations through the following: (a) the use of
buffering techniques on the host computer; (b) treatment of the table memory and
main-data memory of the array processor as a two-level virtual memory; (c) merging
smaller arrays into larger ones; and (d) chaining several array-processor routines
into a single routine in order to reduce the number of subroutine calls.

(3) Vectorization of numerical algorithms: Although most of the computation­
ally intensive processors of the program have been vectorized in the present study,
the efficiency of vector operations on arrays with a packed-data structure needs
improvement.

(4) Synchronization of parallel operations on the host and array processor.
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On the basis of the present study, the following two conclusions seem to be
justified:

(1) The use of the aforementioned computational strategies and programming tech­
niques developed in the present study make large-scale, nonlinear, finite-element
computation on the minicomputer/array-processor system feasible. The computational
speeds achieved are comparable to those of the large mainframes.

(2) The peak-performance rates of the AP-120B at 12 million floating-point
operations per second (12 MFLOPS) cannot be achieved in practical finite-element
computation. Computational speeds of 2 to 3 MFLOPS are possible for some of the
vector operations. Further improvement in speed requires the development of low­
level microcodes to take advantage of the parallelism in the system. This task can
be fairly complicated.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
January 20, 1983
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10 APPENDIX A

DISCUSSION OF MAJOR-HARDWARE AND SYSTEM-SOFTWARE FEATURES OF
MINICOMPUTER/ARRAY-PROCESSOR SYSTEM

The memory organization and computational speed of the host Prime 750 supermini­
computer are discussed in this appendix along with the memory organization,
arithmetic units, executive software, and the simulator of the AP-120B array
processor.

10.1 Prime 750

10.1.1 Memory organization.- A basic feature of the Prime 750 minicomputer
at the Langley Research Center is its three-level memory organization depicted in
figure 2. The first level of storage is the cache memory with a capacity of 4000
words (16K bytes) where each word is 32 bits (approximately 8 significant digits).
The second level is the central memory whose capacity is 0.5 million words
(2M bytes), and the lowest level of storage is a moving-head-disk system with a total
capacity of 75 million words (300M bytes). The central processing unit can reference
only data and code stored in the cache memory. Cache memory provides the CPU wi th
high-speed access to central memory. It contains information that is a duplicate to
that of central memory. The Prime 750 has an advertised cache-hit rate of 95 per­
cent, meaning that 95 percent of the memory accesses requested by the CPU are found
in cache memory. This reduces central-memory access time from a nominal of 600 ns to
an effective 110 ns (cache-memory access time is 80 ns), thus allowing faster memory
access for critical-performance portions of the code.

Transfer rates between the three memories are drastically different. The trans­
fer rate from disk to central memory is 2 million words per second, not including
setup time for each access. The setup time, which is the time needed to service the
request and find the data on the disk, averages 600 ms. A maximum of one segment
(32 000 words) can be transferred per disk call (8 ms). The average disk setup and
transfer times range from 600 to 608 ms. Central-memory access times are 64.6 times
faster than disk access time for an average segment transfer. Access times on cache
memory are 7.4 times faster than those on central memory.

The memory system of the Prime 750 can be viewed from two different levels:

10.1.1.1 User level: The user views central memory as being divided into seg­
ments of 32 000 words each. The user program allocates central-memory space for the
storage of data used by the program and can create user buffers for transferring data
from central memory to disk. Special precautions have to be taken when user buffers
cross segment boundaries.

10.1.1.2 System level: The system views and manages memory from a higher level
than the user. If the user program and data cannot fit into central memory, the
operating system decides which pages (groups of 512 words) will reside in central
memory and which pages are transferred to disk. When the program references its
address space for data located on disk, a page fault occurs and the desired page of
data is brought into central memory while another page is moved out. This automatic
overlay system is referred to as virtual memory.
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The system also manages the use of cache memory through a microcoded program.
When the CPU requests data from cache and the data are not there, the data are copied
from central memory (which obtains pages from disk) in two-word blocks. The second
word is automatically copied into cache to reduce the number of central-memory
accesses in a prefetching procedure. The CPU can now access the data item. This
creates an essentially two-level paging system. (See, for example, ref. 25.) The
system memory-management procedures are invisible to the user. The system also
creates I/O buffers that are invisible to the user. The size of some of these system
I/O buffers can be controlled by the user as will be illustrated in a later section.

Note that if the Prime 750 system routines are used for I/O operations, then the
data must be contained within one segment or a condition of "wrap around" occurs. As
an example of "wrap around," consider an array {X} which has the dimension 10. If
the first 5 elements of {X} are located at the end of 1 segment and the remaining
5 elements of {X} are located at the beginning of an adjacent segment, then a user
request for the 10 items {X} from disk results in reading the first 5 items cor­
rectly. However, the second 5 are read from the data and/or the code at the begin­
ning of the first segment instead of being read from the beginning of the second
segment, that is, locations 6 to 10 of {X}. This condition necessitates the careful
outlay of a program's central memory and I/O operations to the disk. As a result,
32 000 words (1 segment) is the maximum size of a user I/O buffer. This maximum is
allowed only when the buffer starts at the beginning of a segment. Note that the
wrap-around problem occurs only with disk I/O operations using Prime system
routines. User buffers larger than one segment can be used, provided the Prime
system I/O routine is not used.

10.1.2 Computational speed.- In table AI the computational speed of the
Prime 750 is compared with that of other minicomputers and mainframes for a number
of benchmark structure calculations. (See ref. 26.) The test was performed in a
single-user environment. Table AI illustrates the performance measured in terms
of CPU times available in the minicomputer cost range. The addition of an array
processor to the Prime 750 system achieves the mainframe performance (i.e., CPU
speeds) while remaining well below the mainframe cost range.

Timings of the nonlinear finite-element code described in subsequent sections
were measured by using Prime system routine "TIMDAT." In order to verify the manu­
facturer's time estimates (ref. 4), a small test program was developed and used to
measure the speed of various floating-point operations. Table All shows that the
measured timings fall within the manufacturer's range for each floating-point opera­
tion. The range of speed shown in the table occurs because in a multiuser environ­
ment the user has no control over whether cache memory or central memory is used for
the double floating-point load operation. Therefore, all timings presented were
measured in a single-user environment for consistency.

10.2 AP-120B Array Processor

The overall architecture of the Floating Point Systems AP-120B array processor
is based on multiple special-purpose memories feeding two floating-point pipelined
arithmetic units via multiple data paths. The details of the memory organization and
arithmetic units are discussed subsequently.

10.2.1 Memory organization.- Memory of the AP-120B includes main-data memory,
table memory, program memory, data-pad registers, and address registers. (See
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fig. 3.) A description of the function of each memory, including its size and word
length, is given as follows:

10.2.1.1 Main-data memory: Main-data memory is the main storage file for the
array processor and serves as the main interface (buffers) for communication with the
host computer. It is composed of memory banks of 4000 or 16 000 38-bit words and is
expandable to 320 000 38-bit floating-point words. Main-data memory is available in
two speed ranges: 333 ns (slow) and 167 ns (fast). These times indicate the fre­
quency with which a program can reference main-data memory. All AP-120B timings in
this paper assume the use of fast main-data memory.

10.2.1.2 Table memory: Table memory is used to store floating-point constants
and slowly changing data. This memory is available in ROM (read only memory) or RAM
(random access memory) with a maximum size of 64 000 38-bit words.

10.2.1.3 Program memory: Program memory stores AP-120B programs in a maximum of
4000 64-bit words.

10.2.1.4 Data pads: Data-pad registers are referred to as X and Y. Each can
store 32 intermediate floating-point numbers. Two sets of registers are needed since
the floating-point multiplier and adder require different operands with parallel­
access capability.

10.2.1.5 Address registers: The 16 address registers contain integer data items
of size-16 bits. The inability of the AP-120B to achieve the maximum of 12 MFLOPS in
most floating-point arithmetic operations is due to insufficient parallel data flow
to keep the floating-point multiplier and adder fully occupied. Figure A1 details
the data flow and interconnection network of the AP-120B.

The user has complete control over the flow of data in the AP memories. This is
a complex task when timing characteristics of the different memories are considered.
The following discussion will first address a timing characteristic called "inter­
leave" which is peculiar to the main-data memory, and then the timing characteristics
of other memories within the AP will be discussed.

Interleave is the sequential reference to different banks of main-data memory.
Main-data memory is divided into banks to facilitate faster access than standard
main-data memory, which takes three instruction cycles (500 ns). Each bank holds odd
or even memory locations. Memory references to main-data memory are now allowed every
333 ns for slow memory and 167 ns for fast memory as long as interleave is not
broken. If interleave is broken, the AP executes a "spin" operation which halts all
processing until the memory-reference instruction can be satisfied. The AP assembler
programmer must be careful that his data are accessed sequentially and that main­
data-memory accesses have at least one instruction cycle between them for slow main­
data memory. The instruction cycle on the array-processor hardware is 167 ns. All
separate memories and arithmetic units in the AP are synchronized to the instruction
cycle. For example, the contents of a main-data-memory location become available to
the program three instruction cycles after the main-data-memory address register has
been altered. Reference instructions to main-data memory are allowed only every
333 or 167 ns with the assumption that interleave is not broken. Data from table
memory are available two instruction cycles after the table-memory access register is
changed. Data from address registers and data-pad registers are available during the
instruction cycle in which they are referenced. Data-pad X and data-pad Y cannot
be referenced in the same instruction cycle. Further timing complications occur when
considering the pipeline architecture of the floating-point adder and multiplier.

19



APPENDIX A

10.2.2 Arithmetic units.- The floating-point arithmetic units in the AP-120B
have pipeline architecture which segments arithmetic computation into a sequence of
basic operations (such as exponent comparison, coefficient alignment, addition, and
normalize shift). The arithmetic unit can perform basic operations simultaneously
on independent pairs of data elements, with each pair at a different stage in the
computation.

There are two types of data elements on the array processor, scalar and vector.
A scalar is a single-valued element of data usually contained in one storage word. A
vector is an array of scalars usually contained in either contiguous locations of
memory or at fixed intervals from each other. If the same operation is performed on
successive data pairs (vector operation), results are available as frequently as 167 ns
for some operations. Such operations are called vector operations and can lead to
substantial gains in speed over scalar arithmetic operations where one operation is
performed at a time.

Floating Point Systems, Inc., designed the arithmetic units of the AP-120B for a
balance of vector and scalar capabilities. (See ref. 11.) This results in a vector
processor that performs well on short vectors and sequential operations. Imple­
mentation of this idea involved adjusting the cycle time of the AP to shorten the
arithmetic-unit pipelines to only two or three stages. Other vector processors, for
example, the CDC STAR-100, have much longer pipelines and perform poorly on scalar
operations.

Each vector operation on the array processor has associated with it a delay
before the first result emerges from the pipeline. This time is called start-up time
and is independent of the vector length. The start-up times on the AP-120B range
from 333 to 500 ns for various floating-point operations.

The AP-120B has a two-stage pipeline adder and a three-stage pipeline multi­
plier. (See fig. A2.) Each can perform up to 6 million floating-point operations
per second (6 MFLOPS).

10.3 AP Executive Software (APEX)

A table is maintained by APEX that describes the contents of the program-source
memory in the AP. When the AP subroutine is called from the host program, APEX
checks the subroutine table to see if the called routine is present in program-source
memory. If the routine is not in memory and space is available in program-source
memory, the program instructions are loaded normally. The routine's name and offset
are added to APEX's table. However, if space is not available, APEX overwrites
routines in program-source memory on a last-in, first-out basis. APEX loads
parameters from the array-processor subroutine call statement into address registers
and initiates execution of the program by the AP-120B. The time that elapses between
the array-processor subroutine call in the FORTRAN program and the execution of the
instructions in the AP-120B is "host overhead" for that call. This overhead is
typically from 100 to 1000 ~ per array-processor subroutine call. (See ref. 8.)
Host overhead becomes very significant with a large number of calls to the array
processor.

An I/O processor and programmable I/O processor are provided to allow direct­
data transfer to a peripheral storage device (disk) by the array processor. Depen­
dence on the host interface is thereby greatly reduced.
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On the array-processor side the user can code operating-system functions to
facilitate communication with the outside world, of which the host computer is a
part. This is accomplished through direct communication with both the host operating
system and APEX.

Communication and data-transfer operations between the AP and host computer are
processed by a combination of hardware and software. There are three basic stages to
consider:

(1) Before the array processor is used, its presence has to be acknowledged by
the host computer through an initialization procedure.

(2) APEX is loaded as part of the host load module. (See fig. 4.)

(3) APEX is activated, thus allowing the array processor to run as an
independent computer.

There are three ways to control the attached processor:

(1) Direct control: Function control blocks are generated, transferred, and
executed separately.

(2) Function lists: A group of function control blocks are generated and
transferred to the AP. These function lists can be executed many times without
transfers or regeneration.

(3) User written-assembler routines: The most effective and most time consuming
routine involves writing the program directly for the AP, thereby making the best use
of its characteristics. This is required for algorithms involving sparse matrices
and operations with overpacked data structures.

10.4 Comments on Use of AP-120B Simulator

Although the AP-120B simulator (APSIM) was very useful in assessing the
performance of the array processor AP-120B, the following four difficulties were
observed in using it:

(1) The simulation is limited to program execution on the array processor, and
the interaction with the host computer is not simulated.

(2) The size of the main-data memory on the simulator is considerably smaller
than that of the AP-120B (8192 words as compared with a maximum of 1-million words on
the AP-120B). Therefore, smaller-size arrays and vectors are used.

(3) The single command that allows AP subroutines to be called from the AP
assembler program (JSR command) is not operational on the simulator. This
necessitated the use of two instructions (JUMP and BRANCH) to perform the same
operation.
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(4) The computational speed of the simulator is dependent on the speed of the
host computer and is considerably slower than that of the array processor. There­
fore, for effective use of the simulator in the present study, small sample problems
were used to debug the code developed, and then the larger problems were run in a
batch mode. Computation times were recorded to assess the gain in speed obtained by
using the array processor.
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TABLE AI.- CPU TIMES FOR BENCHMARK PROBLEMS OF
STRUCTURES LISTED IN REFERENCE 26

Mainframe Time, Minicomputer Time,
(cost range, sec (cost range, sec

$2M to $6M) $50K to $300K)

CDC CYBER 175 2 DEC VAX-11/780 23

IBM 360/95 3 Prime 750 32
IBM 370/168 4 DEC PDP-11/70 42
CDC 6600 8 Prime 500 47
IBM 360/75 10 S.E.L. 32/75 52
CDC CYBER 173 12 Prime 400 65
UNIVAC 1108 15 SIGMA V 71

S.E.L. 32/55 72
MODCOMP IV 85

TABLE AII.- ESTIMATED AND MEASURED TIMING FOR DOUBLE-PRECISION
(64-BIT) FLOATING-POINT OPERATIONS ON THE

PRIME 750 COMPUTER

Time, Ils
Operation

Estimated (ref. 4) Measured

Load 0.47
store a O•93 to 2.61
Add + Load + Store a 3 •17 to 4.85 3.45
Multiply + Load + Store a 6 •14 to 7.82 6.42
Divide + Load + Store a 9 •39 to 11.07 9.89
Loop overhead a 3 .02 to 3.14

aRange shown is due to fast cache memory and slower central
memory.
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11 APPENDIX B

PROGRAM AND PROCESSOR ORGANIZATION

The program organization, control flow, and data flow for the computational
procedure discussed in sections 4.1 and 4.2 are discussed in this appendix. The
program is divided into self-contained units or processors whose organization is also
discussed herein.

11.1 Program Organization

A computer program based on the reduced-basis technique was implemented on the
CDC CYBER 175 computer under the NOS operating system at the Langley Research Center
in a mostly batch-oriented environment. In the present study, the program was
modified to make it more suitable for the interactive environment of the Prime 750
and to exploit the hardware characteristics of the minicomputer/array-processor
system. The major features of the modified program are as follows:

(1) The program is divided into small self-contained logical sections or
processors. Each processor can run as a separate program and complete its execution
in an interactive time frame, thereby increasing the user control over the flow of
computation.

(2) Communication between different processors is made through a common data
base. The data-base complex utility (DCU) of the finite-element program system SPAR
(see ref. 16) was selected for performing the data-manipulation and data-management
tasks in the modified program. The DCU has been designed to minimize the disk I/O
operations on the Prime computer.

(3) Most of the arithmetic operations were vectorized to exploit the pipeline­
processing capability of the array processor, and an attempt was made to overlap the
host and array-processor operations. The details of the vectorization of the
numerical algorithms, programming techniques used for overlapping the host and array­
processor operations, and minimizations of I/O operations are described in sections 5
and 6. A flow chart of the modified program is shown in figure B1. For the sake of
clarity, a distinction is made between the full- and reduced-system processors. The
former use full-system (global) arrays and vectors, and the latter use reduced-system
arrays and vectors. The control flow, data flow, and processor organization in the
modified program are discussed subsequently.

11.2 Control Flow

The control flow of the nonlinear finite-element program depicted in figure B1
represents the normal sequence of program execution. In addition to the normal
sequence, the program design has the flexibility to allow interaction by display
processors, alteration of executing data sets or program parameters, or elimination
of the execution of a processor whenever needed. The following comments concerning
the control flow described by figure B1 are in order:

(1) The individual blocks in the group of boxes marked "solve nonlinear reduced
equations" are not numbered because they constitute a portion of the
reduced-system solve processor.
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(2) The reduced arrays referenced in box 6 are K.. ,
~J

and Q.•
~

(3) Box 9, which is designated "recover full solution," is considered as part of
the reduced-system processor since reduced-system data are used to form
the full-system vector {X}.

(4) The interface between the full and reduced systems is controlled by the
decision box between the processors in boxes 17 and 18. This interface is
important because full-system analysis is considerably more expensive than
reduced-system solutions.

11.3 Data Flow

During execution of a processor a data-base file is created which is called a
library. Each library is identified by a table of contents whose entries contain the
following information (see refs. 27 and 28):

(1) A sequence number to determine the order of data-set creation

(2) A number indicating the relative location on disk where the data start

(3) The date and time of data-set creation

(4) An integer-error code

(5) The number of words in the data set

(6) The number of columns and number of columns times rows in the data set

(7) An integer-data-type code

(8) A four-part data-set name

The information in the table of contents completely describes the data being stored
and allows the user to access these data, print it, copy it to another library or
data set, write it to tape, or retrieve it from tape. The data sets can also be
assigned symbolic names and be used in equations involving matrix and vector
computations.

11.4 Processor Organization

The routines represented in the flow chart in figure B1 were grouped into
separate processors or functional units and were connected through the common data­
base DCU. For example, F and G arrays are formed by a single processor (fig. B1,
box 1) and are stored on the common data base. These data are retrieved from the
data base and are used to generate the basis vectors (fig. B1, box 5) in the
processor called "generate basis vectors." The individual processors can be run in
any sequence specified by the user, provided the data needed at any stage are
available in the data base.
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The following advantages for dividing the program into smaller processors
connected through a common data base can be identified:

(1) Minimal central-memory requirements: Only COMMON BLOCKS and subroutines
needed for the specific calculation are included in the processor.

(2) User interaction and convenience: This includes interactive program
development and debugging, easy numerical and/or graphical display of data, and easy
manipulation and modification of data between processor executions.

(3) Faster run time: The wall-clock time can be reduced if the program is
divided into processors. This is because the scheduling algorithms for most multi­
user operating systems give higher priority to jobs that require small system
resources, and the individual processors generally require smaller central-memory
space during execution than that required by the entire program when it is run in a
batch mode.

(4) Reduction of program-development time: Once a processor has been debugged,
its data have been generated and sent to the data base. That processor need not be
loaded or executed in subsequent debugging runs. Also, having checked the
correctness of data on the data base, the debugging is confined to the processor
being developed.

Adaptation of existing or new programs to the finite-element system is greatly
simplified. Programs (e.g., graphical, data base, or computational) are easily
connected to the data-base system through the SPAR FORTRAN interface. This is a
significant saving in program conversion and development time.

(5) I/O optimization: The data-base system used in conjunction with the
processor organization centralizes the places where I/O to the disk occurs. This
allows easy optimization of I/O for the program. The Prime system routines were used
in the SPAR program to minimize I/O operations.
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12 APPENDIX C

DETAILS OF VECTORIZATION OF BASIC OPERATIONS

Some details of the vectorization of the basic operations listed in table II
are discussed in this appendix. However, extensive work was done to improve the
efficiency of the vector operations which is not detailed here. The data structures
selected for the different operands are denoted by the symbols A, B, C, D, and E
and are identified in table CI. A list of the array-processor routines used in the
present study is given in table CII. Some of the vector operations were performed by
using the math-library routines of the array processor; others required the develop­
ment of special routines in assembler language.

12.1 Evaluation of Linear- and Nonlinear-Stiffness Arrays

12.1.1 Linear-element-stiffness matrix.- A linear-element-stiffness matrix
[K(e)] can be conveniently expressed in the following form (see ref. 29):

n

[K(e) ] = L w~ [B)~ [C) [B) ~

~=1

(Cn

where [K(e)] is an 80 x 80 matrix (16-node quadrilateral element with five degrees
of freedom per node), H~ is a weighting coefficient, n is the number of quad­
rature points, [B) is an 8 x 80 linear-strain-displacement matrix, [C] is the
material-stiffness matrix, and det[J] is the Jacobian matrix of the transformation
from local to natural (dimensionless) coordinates in the element domain.

Two algorithms were tested for the vectorization of the operations involved in
equation (C1). In the first algorithm, microcode was developed for use on the array
processor to form the upper triangular portion of [K(e)]. Vectors of variable
length had to be used in order to take advantage of the symmetry of the matrix
[K(e)]. This resulted in increasing the overhead (associated with the extra data
manipulation), with a consequent reduction in the speedup due to vectorization. The
second algorithm used the library routines of the array processor (see table II) to
form the full matrix [K(e)]. No advantage was taken of the symmetry of this
matrix. The formation of the full matrix [K(e)] using the second algorithm was
found to be 5 percent slower than the generation of the upper triangular portion
using the first algorithm. However, if the time required to generate the elements of
the lower triangular portion of [K{e)] during the assembly process is taken into
account, the second algorithm turns out to be faster and, therefore, it was used in
the present study.
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12.1.2 Generation of the nonlinear array
(e)

F .- The nonlinear array
IJK

is

a sparse, completely symmetric, three-dimensional array with dimensions 80 x 80 x 80.

For convenience, F~~~ is partitioned into nonzero blocks of 16 x 16 x 16. (See

fig. C1.) The blocks are rearranged so that the central block is in the upper left­
hand corner as depicted in the right half of figure C1. Because of symmetry, only
the corner block and four vertical blocks need to be generated. Moreover, the corner
block is doubly symmetric (i.e., symmetric in two directions), and the four other
blocks are symmetric in one direction.

The array F(e) was generated by using the array processor math-library
IJK

routines listed in table II. Each block was formed as a full array. Then, it was
reduced to symmetric form before being stored on the data base. The speedup ratio
obtained by using the array processor was 4.3.

12.1.3 Generation of the nonlinear array (e) h f d' . 1G .- T e our- 1menS10na array
IJKL

(e)
G

IJKL
is completely symmetric. Generating Gi~~L was attempted by using the array-

processor math-library routines, but it failed to improve the performance because of
the large amount of symmetry in the G array. Data preparation by the host computer
for the array-processor library routines took longer than the time required by
the original host routine to form G. Therefore, a microcoded routine had to be
devel?ped. The speedup ratio obtained by using this routine on the array processor
was 14.4.

12.2 vectorization of Newton-Raphson Iterative Technique

The recurrence relations for the Newton-Raphson iterative technique can be
written in the following form:

(C3)

and

(C4)

where {~x(r)} is the correction to the nodal-displacement vector {x(r)} obtained

from the rth iteration cycle. The elements of the matrix [~(r) ] and the vector

{f(r)} are given by

*K
IJ

= K
IJ

+ F
IJK

X
K

+ G
IJKL

X
K

XL (C5)
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and

An error norm e is introduced as follows:

(C6)

1
e =-

N

{llX(r)}T {llX(r)}

{ X ( r+ 1) } T {X ( r+ 1) }
(C7)

where N is the total number of degrees of freedom. The iteration is terminated
when either e is less than a prescribed tolerance or the number of iterations
reaches a preselected number. For the first load increment, the initial estimate of
{X} is chosen to be

(C8)

The global-stiffness matrix [~(r)] in equation (C3) was partitioned by rows
and columns into blocks which can be regarded as elements of a hypermatrix; this is
analogous to the way that numbers are the elements of a matrix. An address or
pointer matrix is used to identify the location of the nonzero submatrices in the
hypermatrix. Zero submatrices are identified by a zero entry in the address matrix
and are neither built nor stored. The vectors {llX(r)} and {f(r)} are parti­
tioned into subvectors which are consistent with the hypermatrix blocks.

The vectorization of the Newton-Raphson iterative technique can be conveniently
divided into three phases:

(1) Vectorization of the evaluation of the right-hand side of equation (C6)

(2) Vectorization of the solution of equation (C3) by using the Cholesky method
with hypermatrices

(3) vectorization of the solution update and convergence check of equa­
tions (C4), (c7), and (C8) "

The first phase can be accomplished by forming the full arrays F(e)
for the individual elements from their symmetric portions and contracting
the nodal displacement {x(e)}. The details of the latter two phases are
subsequently.

12.3 Vectorization of Cholesky's Method with Hypermatrices

and G(e)
them with
discussed

12.3.1 Brief summary of the basic method.- The Cholesky method for solution of

the global equations [~]{x} = {Q} is expressed by the three hypermatrix equations:
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Decomposi tion:

[u] T [D) [U]

Forward reduction:

Back substitution:

[0] [U] {x}

{Q}

{y}

(C10)

(C11 )

where [U] is an upper triangular hypermatrix and [0] is a diagonal hypermatrix
(block diagonal matrix). The vector {Y} is obtained by a forward reduction of the
load vectors, and the displacement vector {x} is then calculated by back
substi tution.

12.3.2 Organization of the hypermatrix computation.- In the Cholesky method,
modified for the hypermatrix approach, the submatrices play the role of the elements
in the ordinary (scalar) Cholesky method. This requires six basic operations on
submatrices to be performed repeatedly in the solution process. (See eqs. (C9) to
(C11).) These are as follows:

(1) Decomposition of a square positive-definite symmetric submatrix: [A]

(2) Product of an inverse of a square matrix and a rectangular matrix: [A]-1[E]

(3) Difference between a matrix and a product of three matrices of the form
[H] - [E) T [A] [E)

(4) Difference between a matrix and a product of two matrices of the
form [H] - [E]T[S]

(5) Product of an inverse of a square matrix and a vector: [A]-1 {Q}

(6) Difference between a vector and a product of a matrix and a vector of
the form

(a) {Q} - [E) {R}

and
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where [A] represents any of the diagonal submatrices in the hypermatrix
[K]; [H] is a symmetric submatrix; [E] and [8] represent any of the off­
diagonal submatrices; and {Q} represents a vector. In operation (2) above the
inverse is not formed explicitly. Rather, [A] is decomposed and the product
[A]-1 [E] is formed by forward reduction and back substitution. The six basic
operations above, (1) to (6), will, henceforth, be referred to as macrooperations.

The first four macrooperations above, (1) to (4), are used in the decomposition
phase, and the last two above, (5) and (6), are used in the forward-reduction/back­
substitution phases (forward/back solve) of the solution process. The vectorization
of the three macrooperations (3), (4), and (6) was accomplished by using the math­
library routines of the array processor. On the other hand, the vectorization of the
macrooperations (1), (2), and (6) required the development of a microcoded routine
since no appropriate library routines are available to date for performing these
tasks. The gain in speed obtained by using the array processor for each of the
aforementioned macrooperations is given in table CIII. Note that the gain in speed
in the operation {Q} - (E]T{R} is considerably less than that for {Q} - (E] {R}
because of the slow matrix transposition on the array processor.

12.4 Vectorization of solution Update and Convergence Check

The operations involved in the solution update and convergence check of the
Newton-Raphson technique are described by equations (C4), (C7), and (C8). The
vectorization of these operations was accomplished by using the three math-library
routines on the array processor: namely, vector addition (eq. (C4», sum of the
squares of the vector elements (eq. (C7», and scalar times a vector (eq. (C8».

In the vectorization process the full vector {~} was constructed by using its
subvector partitions obtained from the Cholesky hypermatrix-solution process in each
iteration. In spite of the associated storage penalty with the formation of the full
vector {~}, considerable improvement in the performance was obtained because of the
reduction in the number of disk accesses and the number of calls to the array
processor.

12.5 Vectorization of Evaluation of Basis Vectors and Generation
of Reduced Arrays

The explicit form of the recurrence relations for*the basis vectors is given in
reference 15. As mentioned before, the same matrix [K] appears on the left-hand
side of each of the recurrence relations. Therefore,*the evaluation of the basis
vectors involves: (1) decomposition of the matrix [K] once, (2) evaluation of the
right-hand side of each of the recurrence relations, and (3) forward reduction/back
substitution to generate each basis vector. Vectorization of the operations involved
in (1) and (3) has already been discussed in the preceding sections. The evaluation
of the right-hand side of each of the recurrence relations involves contraction of
the arrays F(e) and G(e) with nodal-displacement vector and its various-order
path derivatives. (See ref. 15.) This is accomplished by converting the arrays into
full matrices and performing matrix-vector multiplication.
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The procedure outlined in reference 15 was a~opted in the present study for
efficiently generating the reduced arrays K

ij
, F

ijk
, and G

ijki
by taking

advantage of the operations performed to evaluate the right-hand sides.

12.6 Vectorization of Strain-Energy and Stress-Resultant
Computation (Post Processor)

The stress resultants and strain energy can be expressed in the following
compact form:

and

U

[C) [B) . {x(e)} + [C) {B(X(e) )}
~

L (~{x(e) f[K(e) ]{x(e) } + u(x(e) ))

Elements

(C12)

(C1 3)

where {ali is the vector of stress resultants at node i; [C) is the material­
stiffness matrix; {x(e)} is the vector of nodal displacements for the element;

[B]i is the linear-strain-displacement matrix evaluated at
the nonlinear-strain-displacement vector evaluated at node
strain energy, and u(x(e)) represents the contribution of
terms in the nodal displacements to the strain energy of an

node i; fB(x(e))} is
i; U is the total
the cubic and quartic
individual element.

The vectorization of the operations described in equations (C12) and (C13) was
accomplished by using the math-library routines listed in table CII. To increase the
gain in speed obtained by vectorization, the subvectors of nodal displacements and
stress resultants were strung ~p tnfo long vectors. The same was done for the
matrix [B] and the vector fB(X e)}. The larger arrays could still fit into one
segment of memory.

12.7 Comments on Vectorization

The following comments regarding vectorization of the numerical algorithms on
the array processor seem to be in order:

(1) User-developed microcoded routines are more efficient to use than the array­
processor math-library routines when (a) specialized algorithms are used, such as the
Cholesky hypermatrix algorithm discussed in the preceding sections, and/or (b) vector
operations involve sparse or symmetric arrays. On the other hand, the AP math­
library routines are generally more efficient for vector operations involving full
nonsymmetric matrices.

(2) Data reorganization (required prior to performing vector operations) was
found to be slow on the array processor. An example of this is provided by the
matrix transpose operation. (See table CIII.)
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TABLE CI.- TYPES OF DATA STRUCTURES USED IN VECTORIZATION OF NONLINEAR
FINITE-ELEMENT COMPUTATIONS

Type

A

B

C

D

E

Array

Global [K]

Partitions of [K(e)],
stress resultants,
strain, or dis­
placement vectors

Description

Full, symmetric, 2-D array
(80 x 80)

Large, completely symmetric,
3-D array (80 x 80 x 80)

Large, completely sym­
metric 4-D array
(16 x 16 x 16 x 16)

Large, sparse, symmetric,
square matrix

Small submatrix or vector

Data structure used
in vectorization

Expand to full square matrix

Array treated as full non­
zero blocks of size
16x16x16

Expand array as if it were
symmetric with reference to
first three indices only

Matrix partitioned into square
submatrices (Cholesky
hypermatrix blocks)

Combine a number of submatrices
(or subvectors) into a larger
matrix (or vector)
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TABLE CII.- ARRAY-PROCESSOR MATH-LIBRARY ROUTINES USED
IN PRESENT STUDya

FPS library AP Assembler FPS library
subroutine function library code subroutine name

Matrix multiply 1 MMUL
Matrix transpose 2 MTRANS
vector addition 3 VADD
Vector subtraction 4 VSUB
vector scalar multiply 5 VSMUL
Sum of vector elements squared 6 SVESQ

aRoutines described in reference 8.



TABLE CIII.- SPEEDUP RATIOS OF PRIME 7S0jAP-120B FOR VECTOR OPERATIONS

Routine Block no.
Computationa Assembler coded Estimated ratio of

in figure B1 or AP math library Prime 7S0jAP-120B

[K(e) ]
n

Linear-element- L T
Library1 = w i[B] i C ] [B) i 19.0

stiffness matrix J.= 1

Generate F(e) 1 See reference 14 Library 4.3
IJK

Generate G(e) 1 See reference 14 Assembler 14.4
IJKL

Cholesky's method 3,4 Macrooperation (1) Assembler 22.9
with hypermatrices Macrooperation ( 2) Assembler 22.3

Macrooperation (3) Library 29.6
Macrooperation (4) Library 72.2
Macrooperation (S) Assembler 22.4

Macrooperation (6 (a) ) Library 84.S
Macrooperation (6(b» Library 33.8

Solution update and 14 {x} * q Library 22.S
convergence check N

x
2L Library SO.6

i=1
~

{X} + {~} Library 23.3

Strain energy and 18 Linear strain energy Library 44.9
stress resultant
computation Stress resultant Library 72.3

a An asterisk * denotes multiplication.
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BUFFERING TECHNIQUES USED FOR MINIMIZING I/O OPERATIONS ON HOST AND
ARRAY PROCESSOR

The buffering techniques used for minimizing the I/O operations on the Prime 750
are described in this appendix. Extension of these techniques to the DEC VAX-11/780
are also given. Then, the minimization of I/O operations on the AP-120B, as well as
between the host minicomputer and the array processor, is presented.

13.1 Buffering Techniques for Host Computers

13.1.1 Description of buffering techniques on Prime 750.-

13.1.1.1 Standard FORTRAN binary I/O: When standard FORTRAN binary I/O is used,
the portion of the code employed to measure the output of 10 000 displacement vectors
has the following form:

REAL*4 DISP
DIMENSION DISP(5)
CALL SNAP
DO 10 1=1,10 000

WRITE(6) DISP
10 CONTINUE

CALL SHOT ('FORTRAN BINARY,' 14)

Standard FORTRAN binary I/O uses a system I/O buffer of size-3D words plus a
2-byte pointer. The entire buffer is transmitted to disk at the end of each write
statement. This produces a large output file of 1387 records. (See fig. D1.)
Each Prime disk record equals 220 words (880 bytes). The total word output equals
305 140, compared with a user output of 50 000 words. Standard FORTRAN binary I/O
proves inefficient because of the constant size of the system I/O buffer.

13.1.1.2 Set FORTRAN system buffer size: Prime system routine "ATTDEV" ("attach
device") allows the user to set the siz,e of the FORTRAN system I/O buffer. This
routine is called once outside the "do loop" in the portion of code listed above,
which sets the system I/O buffer to five words. The use of this technique con­
siderably reduces the number of records in the output file compared with those
used by the first technique (250 records as compared with 1387 records). (See
fig. D1.)

13.1.1.3 System I/O routine: Prime system I/O routine PRWF$$ (position, read,
and write file) permits direct transfer of data from memory to disk, thus completely
bypassing the FORTRAN I/O buffer. Only user data are written to disk. No pointers
or zero filling are used to enlarge the output file as with FORTRAN binary I/O. The
write statement in the aforementioned FORTRAN is replaced with a call to PRWF$$. The
use of this buffering technique reduces the CPU time by a factor of 4.5 and increases
the data rate by a factor of 3.8 from the corresponding values when the second
technique is used. (See fig. D1.)
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Although PRWF$$ is a powerful I/O routine, it has the following two limitations:

(1) It can transmit data only to contiguous memory locations.

(2) It cannot transmit data across segment boundaries.

The first limitation is not a serious one since buffers are located in contiguous
memory locations.

13.1.1.4 User buffering (32-bit words): This technique involves copying 32-bit
data items into a user I/O buffer the size of one Prime segment (32 000 words) and
outputting the buffer to disk when either it is full or the I/O operation is
completed. Three routines are used for this method: INITBF (Initialize Buffer)
initializes the output file and sets a pointer to zero; WRITBF (write to Buffer)
copies 32-bit data items into the buffer and outputs them to the specified logical
unit when the buffer is full; and DONEBF (Done with Buffer) flushes the buffer and
closes the output file. The use of this technique results in significant decreases
in CPU and I/O times, as well as a dramatic increase in data rate. (See fig. D1.)
The improvement in performance is due to the minimal number of disk accesses required
by this method. The favorable CPU-I/O ratio of 2.27 enhances the prospects of CPU­
I/O overlap within the Prime 750. PRIMOS (Prime Operating system) is capable of
scheduling parallel processing between the CPU and disk I/O to allow higher system
throughput.

13.1.1.5 User buffering (64-bit words): This technique is identical to the
preceding one except that the data are copied in 64-bit words into the segment-size
buffer. The data rate improves by a factor of 2 over the preceding technique, and
the CPU-I/O ratio becomes most favorable for parallel CPU-I/O operation on the
Prime 750.

13.1.1.6 User buffering all data - system pages buffer: This technique involves
no user output to disk. The data are copied to a very large user buffer. If the
buffer cannot fit in central memory, the system pages the data to and from disk as
they are needed. This technique is used for large arrays produced as intermediate
results.

Of the six techniques described, the last one produced the best results for
total time and data rate. (See fig. D1.) This can be attributed to the absence of
user-initiated I/O. The technique is restricted, however, for use with data that are
not needed for permanent disk storage, and it should be used with care because of its
large central-memory requirements.

13.1.2 Performance of I/O buffering techniques on the prime 750.- To evaluate
the effectiveness of the buffering techniques described in the preceding section in
reducing the I/O operations, the techniques were applied to the cylinder problem with
rectangular cutout (3230 degrees of freedom). Most of the I/O time in the program
was expended in four processors, namely, generation of basis vectors, decomposition
of the left-hand side, forward reduction/back substitution, and assembly of the
elemental stiffness matrices and load vectors. The dramatic reductions in the I/O
times obtained by using these techniques for the four processors are shown in fig­
ure D2. The use of these techniques transformed the I/O-bound program to one which
is CP bound.

In figure D2, T1
technique. The times
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is a combination of techniques 3, 5, and 6 outlined in appendix D. The number of
nodes per hypermatrix block are 12 and 5, corresponding to array sizes of 60 x 60 and
25 x 25, respectively. Note that the improvement obtained by using the smaller-size
arrays (5 nodes per hypermatrix block - 25 x 25 arrays) is due to the smaller number
of zeros stored in the blocks.

The total (CP + I/O) times expended in 10 different processors for the
2 -cylindrical-shell problems are shown in figures D3 and D4. The 10 processors are
as follows: (1) evaluation of linear-stiffness arrays [K(e)]; (2) evaluation of
nonlinear-stiffness arrays G(e) and F(e); (3) assembly of elemental matrices;
(4) incorporation of boundary conditions; (5) decomposition of the global-linear­
stiffness matrix [K]; (6) forward reduction/back substitution; (7) solution update;
(8) postprocessing (stress resultant and strain-energy computation); (9) generation
of basis vectors; and (10) solution of reduced equations. Note that three of these
processors were not vectorized; namely, the assembly, boundary conditions, and
solution of reduced equations. Also, since the basis vectors were generated at zero
loading, no convergence check was needed. The percentage of time expended in each of
the processors and the estimated gain in speed obtained by using the array processor
are summarized in table IV.

As can be seen from table IV and figures D3 and D4, most of the solution time is
spent in the two processors used for the decomposition of the left-hand side and in
the evaluation of basis vectors and the generation of reduced equations. The use of
the AP (with minimal host I/O) reduces the total times (CP + I/O) expended in these
two processors by factors of 46.7 and 17.1 for the pear-shaped cylinder and by
factors of 59.8 and 38.1 for the cylinder with a cutout. The effect of I/O on total
gains in speed for the two problems is a reduction in CP gains of 9.2 and 18.1,
respectively, to total (CP + I/O) gains of 5.2 and 9.9. This difference of a factor
of two between the CP gain and the I/O gain can be attributed to high I/O in the
assembly of elemental matrices and generation of basis vectors.

13.1.3 Application of bUffering techniques to DEC VAX-11/780.- Five of the six
buffering techniques outlined above were implemented for the DEC VAX-11/780 minicom­
puter. (See fig. D5.) Although results are not as dramatic as on the Prime 750,
steady increases in data rate result from use of these techniques. The authors
believe that these techniques are not machine dependent and would be useful on most
virtual-memory minicomputer systems.

Buffering techniques 3 to 6 of figure D5 used the VAX macro routine "#WRITE" to
perform output to the disk. Subroutines INITBF, WRITBF, and DONEBF had to be written
in VAX-11 macro language because a FORTRAN callable-system I/O routine was not
available.

!
13.2 Buffering Technique for t1e AP-120B

The buffering technique presented herein involv~s table and main-data memory of
the AP-120B. Data are buffered from main-data memorr into table memory to avoid
interleave problems with main-data memory. The fol~owing example was taken from the
Cholesky decomposition of the global-stiffness matrix [~]. (See block 3 in
fig. B1.) The FORTRAN code used in the decomposition of the diagonal blocks and the
execution trace of this code are
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FORTRAN Code:

DO 40 I=2,N
IM1 = 1-1
DO 20 L=1, IM1

SUM = SUM + A(L,I) * A(L,I) * A(L,L)
20 CONTINUE
40 CONTINUE

As an example, consider the 5 x 5 symmetric matrix [A] whose elements occupy
the following locations in memory:

[ A]

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

I IM1 L A(L,I) A(L,L)

Execution trace 2 1 6
3 2 1 , 2 11 , 12 1 , 7
4 3 1 , 2, 3 16, 1 7, 18 1 , 7, 13
5 4 1 , 2, 3, 4 21 , 22, 23, 24 1 , 7, 13, 19

To perform the multiplications indicated in the FORTRAN program as vector
operations, the pairs of elements A(L,I) and A(L,L) need to be fetched from main­
data memory. Consider, as an example, the case where 1=3 and L = 1. The ele­
ment A(L,I) in location 11 is fetched from memory, and then the element A(L,L) in
location 1 is fetched from memory. Since both elements are in odd memory locations,
they reside in the same memory bank. Therefore, the access of the second element
results in a spin operation. The execution trace shown above indicates that spin
operations are certain to occur frequently. Each spin operation adds 167 ns to the
loop times required to produce one result in a vector operation.

The spin operations are a direct consequence of interleaving in main-data
memory. Since no interleaving is involved in accessing the table memory, the
aforementioned problem can be overcome by using the table memory as a buffer for the
main-data memory, that is, treating the two memories as a two-level virtual-memory
system on the array processor. Only the three hypermatrix blocks needed by the
Cholesky algorithm at anyone time are kept in table memory. The main-data memory
is then used as a mass-storage area wherein a large number of hypermatrix blocks
reside. All computational modules are made to reference table memory only, thereby
taking advantage of its faster access speed. The transfer of blocks between main­
data memory and table memory is accomplished by using the math-library routines of
the AP.
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13.3 Minimizing I/O Between Host Computer and Array Processor

On the user-software level, the following two techniques can be used to reduce
host-system overhead:

(1) Minimizing the number of calls to the array processor: This can be achieved
by the following:

(a) Merging smaller arrays (e.g., vectors and matrices) into larger ones: If
a number of short vectors are combined into a single long vector, only one data­
transmission call to the AP will be needed. This may require a change in I/O block
sizes and/or a change in the numerical-solution algorithm being used.

(b) Chaining several array-processor routines: When a number of array-processor
subroutines are needed, it is more efficient to call these subroutines from a single
main array-processor routine instead of calling them separately from the host FORTRAN
program. Several routines can now be sent to the array processor in one call if the
program-source memory is large enough. Program-source memory ranges in size from 512
to 3096 words with 256-word increments.

(2) Loading the most frequently used routines first: This is because the array­
processor executive (APEX) uses a last-in, first-out technique in allocating memory
space for the source program.
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Figure D1.- Performance of buffering techniques on the Prime 750 to output 10 000 vectors to disk.



Block no. I/O time, sec Speedup
Routine in fig. Bl T1 T2 T

3
ratio, T1rr3

CD Generate six 5 19214.9 2933.0 625.5 30.7
basis vecto rs

CD Decompose L. H. S. 3 2483.0 627.9 225.6 11.0

CD Fa rwa rd red uction, 4 781.4 417.2 37.7 20.7
back substitution

@ Assemble [K( e)] 2 351.5 49.0 7.2
and Q( e)

Time Type of I/O in program Designation
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T2 12 nodes per block

}
I/O after bufferi ng E4iltiJrl
techniques 3, 5,

0T3 5 nodes per block and 6

o

5

15

I/O
time, 10
sec

Figure D2.- I/O reductions obtained by using buffering techniques on Prime 750. Cylindrical shell
with rectangular cutout shown in figure 10.
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Figure D3.- Estimated total speedup ratios (CPU + I/O) obtained by using minicomputer/array-processor
system. Pear-shaped cylindrical shell is shown in figure 6.
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Figure D5.- Performance of buffering techniques on the DEC VAX-11/780 to output 10 000 vectors to disk.
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TABLE I.- SAMPLE TIMINGS OF VECTOR-SOFTWARE OPERATIONS FOR LIBRARY ROUTINES
DEVELOPED FOR THE AP-120B

rLibrary routines developed by Floating Point Systems, Inc.;]
data taken from ref. 8.

operationa
Time, IJS

(b)

Startup + Loop time

Vector divide (term by term) ••••••••••••••••••••• {A}/{B}

Vector add •••••••.•••••••.••......•..•......••••• {A} + {B}

Vector multiply (term by term) ••••••••••••••••••• {A} * {B}

Vector scalar multiply and constant vector add ••• A * {B} + {C}

1 .333 + O.333n

2.667 + O.SOOn

2.667 + O.SOOn

2.667 + o.SOOn

3.333 + O.SOOn

3.333 + o.SOOn

3.333 + O.833n

4.167 + O.833n

4.167 + 1 .667n

0.833 + O.333n

{B}A *

-n
L A.
i=1

1

-n
L A~
i=1

1

Sum of vector elements •••••••••••••••••••••••••••

Vector scalar multiply

Dot product...................................... {A}T * {B}

Sum of squares of vector elements ••••••••••••••••

Vector multiply and add (term by term) ••••••••••• {A} * {B} + {C}

Two vector multiplies and one vector add......... ({A} * {B}) + ({C} * {D})

a An asterisk * denotes multiplication.
b The symbol n denotes the length of vector.
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TABLE II.- VECTORIZATION OF ARITHMETIC OPERATIONS IN NONLINEAR-FINITE-ELEMENT PROGRAM

Data-structure

Function Block no. typea AP math Assembler code Overlap host
in fig. B1 libraryb developed I/O with AP

A B C D E

Generate [K(e) ] 1 .; 1,2,3,5 .; .;

Generate pee) 1 .; 1 ,3,5 .;

Generate G(e) 1 .; 1 ,3,5 .; .;

Decompose L.H.S. 3 .; 1 ,2,4 .; .;

Forward reduction, back 4 .; 1 ,2,4 .; .;
substitution

Convergence check 14 .; 3,5,6

Generate basis vectors 5 .; .; .; .; 1,2,3,4 .; .;

Compute energy and stress 18 .; 1,2,3,5

aSee table CI.
bsee table CII.



TABLE 111.- HARDWARE AND SOFTWARE FACTORS AFFECTING I/O OPERATIONS
IN MINICOMPUTER/ARRAY-PROCESSOR SYSTEM

U1
U1

Computer
I/O level

Hardware

System
software

User
software

Host computer
(cache memory, central memory,

and disk)

• Cache-memory size

• Central-memory size

• Memory's access speed

• Resource management and
allocation

• Paging algorithm between
• Central memory and disk
• Cache and central memories

• Buffering techniques
between central memory
and disk

Array processor
(main-data and table memories)

• Main-data-memory size and
speed

• Table-memory size

• Main-data-memory interleave

• Single global data base

• AP system I/O routines used
in transferring data
between table and main­
data memories

• Buffering techniques between
table and main-data
memories

Host/AP interface

• Use of peripheral storage
device with AP

• Host-operating-system response
time to setup transfer from
host to AP by APEX routines

• Minimize number of calls to AP
• Merging small data sets
• Chaining AP routines

• Load most frequently used
routines first

• Overlap data transfer and
AP execution



TABLE IV.- TIMING DISTRIBUTION FOR TWO BENCHMARK PROBLEMS
USED IN PRESENT STUDY

Time, percent Speedup ratio

Block no. CPU CPU + I/O CPU CPU + I/O
Routine in fig. Bl

Problem Problem Problem Problem

1 2 1 2 1 2 1 2

Generate form independent [K(e) ] ....... 1 6.2 8.2 5.7 7.7 6.4 20.6 6.9 20.5

Generrte form independent F(e) and
G(e arrays ·......................... 1 3.6 4.5 3.4 4.4 7.5 6.5 7.3 6.3

Assembly ................................ 2 4.5 2.4 4.5 2.6 1.0 1.0 1.0 1.0

Incorporation of boundary conditions .... 2 <0.01 <0.001 0.7 <0.001 1 .0 1 .0 1 .0 1 .0

Decompose [K] ·......................... 3 36.1 44.8 34.6 43.4 18.7 28.0 46.7 59.8

Forward reduction, back substitution .... 4 4.9 4.9 5.1 4.9 7.0 18.7 45.9 51 .1

Convergence check and solution update ... 14 <0.001 <0.001 <0.001 <0.001 4.0 1.7 17.0 19.4

Post processor ·......................... 18 2.9 0.5 2.6 0.5 2.2 1.9 2.2 2.1

Generate basis vectors and reduced
equations ............................. 15 41.6 34.6 43.1 36.5 5.8 8.5 17.1 38.1

solution of reduced equations ........... 8 <0.01 <0.001 <0.01 <0.001 1.0 1 .0 1 .0 1 .0

Total ................................... 9.2 18.1 5.2 9.9
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Figure 3.- Floating Point Systems AP-120B array processor.
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Figure 6.- pear-shaped cylinder and finite-element model used in present study.
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