General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



e AR N 1] B o
Ii . ¢

v. Hepory Ho, 2, Goveinment Accession No,
¢ Title and Subtite  THE POSSIBLE MODIFLCATIONS OF THE HISSE MODEL 1t Date
POR PURE LANDSAT AGRICULTURAL DATA FEBRUARY 10, 1981

* v i , 6. Petforming Organization Code
( 'thahae_a;/auame under NASA sponsorshiy SR-H1-04037

I ‘8 'rl grast nLergtlr and-wide-ths: T - ™

2 erort) semination of Earth Resources Survey | o oo o oo e

. CHARLES PETERS  [T087am information and without liability ”
far any use made thageoy " 10, Work Unit flo,

4. t'erfoeming Organization Name and Address
UNTIVERSITY OF HOUSTON
DEPARTMENT OF MATHEMATICS 11, Contract or Grant No.

HOUSTON, TX. 77004 ) NAS9-14689
13, Type of Report and Period Covered
7, Spaonsoring Agency Name and Address TECHNICAL REFORT
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION y ‘
LYNDON B. JOHNSON SPACE CENTER 14, Sponsoring Agency Chde
HOUSTON, TX. 77058 TASK MONITOR: DALE BROWNE :
:—Suppiermmuy Notes
5. Abstract
(‘E83°|O3 05) THE POSSIBLE MODIFICATIONs uf N83-27295
MHE HISSE MODEL FOR PURE LANDSAT
AGRICULTURAL DATA (Houston Univ.) Ig ‘p ac Uncias
HC AQ02/MF 401 o ke .
i / G3/43 00305
€ 1
L PAG
oR\G\NSR QALY
oF
L §
* hey Words (Sugoested by Author(s)) 3 18, Distribution Statement
Maximum likelihood est :mtion of normal
parameters, sufficient statistics,
invariance.
lm?»c‘.umy Classif, {of this report) 20, Sccurity Classif, (of this page) 21, No. of Pages 22, Price’

“For ssle by the National 1echnical Information Service, Springtictd, Virginia 22161

£ hoem 1424 (;{w Nov 75) ' /\TT/\CHMCNT ? s _3~ NASA ---J
6 1982 , i

TNV o by -

R %




PRECEDING PAGE BLA

POSSIBLE MODIFICATIONS OF
THE HISSU MODEL FOR PURE
LANDSAT AGRICULTURAL DATA

by

Charles Peters
Department of Mathematics
University of Houston
llouston, Texas

SUMMARY..

This report explores an idea, due to A. Feivesan, for relaxing the
assumption of class conditional independence of LANDSAT spectral measurements
within the same pateh (field). Theoretical arguments are given which show
that any significant rafinement of the model beyond Feiveson's proposal will
not allow the reduction, essential to HISSE, of the pure data to patch summary
statistics. A slight alteration of the new model is shown to be a reasonable
approxihation to the model which describes pure data elements from the same
Pﬂt9h as jointly qaussianwith a covariance function which exhibits exponential :

decay with respect to spatial separation.



1. The Basic HISSE Model and its Modifications.

The uriginal mathematical assumptions underlying HISSE are fully described

in [71. Briefly, they are:
a) The sampled pure pixels are organized into p patches (fields)
and corresponding to each patch j, there is a set of spectral
data measurements Xj = (in,
(perhaps multitemporal) vector of spectral data from the kth pixel

coe, XjNi)’ where Xjk is the

in the Jjth patch. For each patch j, there is also an unknown

class designation 0, ¢ {V,++v,m}, where m 1is known,

b) The {(Xj,ﬁj))?=] are treated as independent random variables.
The 0, have a common unknown discrete distribution

m
Prob [Gj = 2] =ap > 0, where 2§1a2 =1,

¢) Given that Bj = L, Xj1, cee, XjN are independently rormally
i
distributed with unknown mean M and unknown variance-covariance
_ matrix QQ.

A proposed modification due to A, Feiveson [3], introduces one additional

matrix parameter for each class. Assumption (c) is changed to

1 : 3 . o= L,oo= + e. + d. .
c¢') Given that OJ 2, XJk M e dJk’ where E(eJ)

= E(djk) = 0, var (ej) = I, var (djk) =Yy and the

ej's and djk's are independent normal random variables. Thus

the elements X.,, -+, X, of X. are jointly normal with
31 JNj J
marginal distributions xjk ~ N(uz, zi + wl)’ and constant

within-patch covariance cov(Xjk, in) = Lo, for k # 1,
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Notice that the original assumption {c) is a Vimiting case of (c¢') obtained
by ailowing ?i = (),

For reasons discussed later, we will alter (¢') t¢

(¢") The constant within-patch covariance for elements of the

Jth patch is  cov (xjk,xji) 2 ”N;xﬁ‘

The effect of (c") is that data elements from large patches are considered more
weakly correlated than those from small patches. Assumption (c¢') is perhaps
more appropriate if the correlation between pixels of the same patch is really
independent of their spatial separation, while (c¢") is better if the correlation
falls off rapidly with spatial separation, on account of the preponderance of
spatially distant pairs in larger patches. Calculations are presented in Section
4 to suggest that (c") is a rcasonable approximation to the average covariance
between pairs when the correlation decreases exponentially with spatial separation,
In Section 3 theoretical arguments are given whichseverely restrict the covariance
models for which the patch mean vector and scatter matrix are sufficient statistics
without, however, eliminating (c') and (¢"). This is an important consideration,
since procedures Yike HISSE are feasible only if the spectral information in patches
can be summarized in a small number of statistics.
2. Numerical Progedures for the Alternative Covariance Models.

The 1ikelihood function and iterative procedure for the current version of
HISSE are given in [77] and will not be repeated here. For covariance models

(¢') and (c¢"). The 1ikelihood functions is

[ e

)
& Tog f(X,)

1

m
L = .E log & oy
J=1 =1

9
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where the model (g¢')

L3

.N ‘] )
' o [ “‘) I Y & ax ] ey
fo(Xq) o Dl g + Nl © expl= g @y Xy

\ " ! " -
and qﬁ(xj) o rvmn‘sj * Nj(mj“ué)w(¢&+Nj$&) ‘(mj'nl)‘

while for moadel {(c¢*)

“Nyl

3

Plkg) = gl © g gl Fexnls g QX))

T -

ey L - “le l -] .
and Q&(XJ) ° gy &j b i(mi 1 ) (¥ ﬁQ) (md i)

n both these expressions U and Sj are, respectively the patch mean and
\

seatter

Ny

1 .
A NN,
mj Nj ki\ Jk

Ni ‘l‘
St a : ¥ b
; kil( f )(\jk mi)
Thus for both of these covariance models the patch mean and scatter are jointly
sufficient,

The unconstrained 1ikelihood equations Tor model (¢") have tha form

SRl
(. 1) Ny T jgl 1(V s
. p fQ(N ) P T (Xy)
(1.;-‘) H‘Q, 0 j‘i‘ . (‘\ ‘) m\]!\){z N W(*’(d)
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pr ¥ f (XD
(1.3) by @ };nmj) J! (N A1) - (qi)

p fo (X bt (Xj)

oo - - T N By
(]“‘) ;‘Q *3] f(X ) N, rmj “Q)(mj UQ}) /J‘"‘ ‘(Xj)

whore the new parameter y is defined as xﬁ + w&.

The expressions on the right of equatiens (1.1) « {1.4) are appealing in
that thoy are averages of quantitieg whose expectations, given nj = ¢, are
the parvameters on the left. In additicq, the successive substitukions schome
suggested by squations (1.1) = (Lod) fsastight variation of the generalized
(=N procedure of Dempster, taivd, and Rubin 21, For covariance model {(e'),
the 1ikelihoud cquations do not suggest a natural fterative procedure and it
appears that the yereralized UM procedure has no simple formulation.

To bo consfstont with the original interpretation of the parameter 5
as a variance=covarianes matrix, it 18 necessary to maximize the likel thood

subject to the additional ineguality constraint nt 2 ¢Q. Since a solution of

equations (1,1) = (1.4) need not satisfy this sonstraint, maximizing the 1ikeli-

hood subjoet to Ry " ¥y requires a much more complicated numerical procedure,

The condition Ry ™ ¥y is vquivalent to a set of sealar inequality and nonlireawr

equality consteaints, and numericeal procedures for such problems are generally

very slow to converge,  The unconstrained maximum 11kelthood procedure is

appropriate $F as in e") wi morely assume that cov (in,xjk) is the same for an
N

I oand  k, without introducing vandom variables o and djk‘

3o Covartanee Madels for which pateh mean and seatter are sufficiont,

et X » (xil“‘lxN)n\N be @ matrix whose columns are Jointly normally

4
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distributed n~vectors. We are interested in characterizing those families
of distributions of X for which the statistic (m-$) is sufficient,
where m = x] + oeee # XN and S = X1X] + oeee t XNXE. We begin by recalling

the following definitions (4, p, 327,

Definition: Let G be a group of homeomorphisms on ﬂzn. A function T

defined on & " is invariant under G if T(gx) = T(x) for all «x ejen. g ¢ G.

i et 90 8 00 U8, 4

T s a maximal invariant of 6 if T is invariant and T(x) = T(y) implies

that there is a g ¢ G such thate y = gx. A measure X is invariant under G

if Ag =X for all g ¢ G, where Ag(E) = A(g(E)).

Lemna 1: Let elements of E?N be represented as x = (x;l::+1xy) and fTet
eT = (]']""’])IXN' For each I x N real orthogonal matrix u satisfying
ue = e, let gu(x) = xu, Then T(;) = (m,S) = (xe,xxT) is a maximal invariant

of the group G = {gu}.

Proof: T(g x) = (xue, xu(xu)T) = (xe, xx') = T(x). Thus T is invariant.
Suppose that T(x) = T(y) so that xe = ye and xx! = yy'. If 1) and y(i)
denote the ith rows of x and y then T YT g <D o (),

for a1l i and j. This implies that corresponding rows of x and y have the

T

same Euclidean norm and form the same angle with the vector e'. In addition, the

rows of x describe the same set of angles in ﬂ{N as do the corresponding rows

of y. Thus, by carrying out parallel Gram-Schmidt procedures on

(1), () (1), (n;

t, Y , it is easy to construct an

T (1) (i)

orthogonal matrix u such that eTu =e and x' ‘u=y

{eT, X and {eT, y

for each 1; that

is, such that y = g %" Therefore T is a maximal invariant.

e
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Example: Any linear function T defined on ﬂi’ 1s a maximal invariant under
the group of translations by elements of the kernel of T. In fact, most of
the results {n [.67 characterizing linear sufficient statistics depend only on
this aspect of linearity.

If T 1is a maximal invariant then any invariant function on ﬁQ? is a
function of T(x). Moreover, a function ho T on ”{" is a maximal invariant
if and only if h 1is one to one on the range of T, In the theorems which
follow we shall require that T be a continuous open mapping, in addition

to being a maximal invarjant, The following lTemma shows that to some extent T

may be cho.en for convenience, with affecting the property of openness.

Lemma 2: Let V be an open subset of ﬂﬁ‘, let G be a group of homeomorphisms

from V to V and let T] and T2 be continuous maximal invariants of G

defined on V with values iIn 0@“. If T] 1s an open mapping then so is T2.

Proof: Since T2 and T] are maximal invariants, there is a one to c¢ne

. ) -1 -
function h:T](V) + TZ(V) such that T, = hT]. Since h ' = T1T2 1 on T2(V),
T2 js continuous and T] is open, h is continuous, By the Brouwer invariance

of domain theorem 8, p. 31 h is an open mapping. Therefore, T2 is also open.

Theorem 1: Let V. be an open subset of IKP’ let [ be a homogeneous collection
of finite Borel measures on ﬁ{", and Tet A be a fixed element of??z, Suppose
that A(VS) =0 and A(U) > 0 for each nonempty.open subset U of V., Let

G be a group of homeomorphisms from V to V such that A(gB) = 0 whenever
A(B) =0 and g ¢ G. Suppose that ﬂ; is a continuous representative of %%

for each u ¢7yl and that T:V -~ LMT is a continuous open maximal invariant of

e e T SR R e S
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G. Then T ds a sufficient statistic for 7Y if and only 1 each f“ is

fnvariant under G.

Proof: Suppose that T is sufficient. Then for each n e *°( there exists a
Borel measureable function k“ such that k“'T is a version of du/d\, (11,

Let woAland g« 6 be fixed, The set
U= fx‘VlFu(x) # F“(Qx)}
is an open subset of B u g“(n). where
B~ {x»Vlfn(x) # ku(T(x))}.

Since A(B) = 0, A(g‘](n)) = 0 and A(U) = 0. Therefore, U s cmpty and it follows
that F“ is invariant, Conversely, if cach f“ is invariant, then for each

oo P there exists a function h, such that f“ - h“'T. Since ﬂl is continuous
and T is open, hu is continuous on  T(V), Therefore, by {1, CGorollary §.1]

T is sufficiont.

Corollary 1.1¢ Given the hypatheses of Theorem Y, if A 1is invaniant then T s

sufficient 1f and only if cach u « T is tovariant,

Proof: In general, a density with respect toa N of ng is fug 5 (F“ag)h,

where h is a version of d\g/d\, If X\ dis {nvariant, then we can take h =
to obtain f“g = f“vg as a unique continuous density of ng, for each yp,g. By

Theovem 1, T is sufficient if and only if f“ © f“. which is equivalent to

9
THEETR
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Suppose that wug « 3 for each n ey g e G and that 0 s an
r-gimensfonal parameterization of ¢ 3 1.e., a one to one function from 24{ onto
Qe o) « R". Then theve is a momomorphism g +§ from G onto a group &
of transformations on o defined by §(0O) * O(O‘I(ﬂa)g). The following corullary

is clear,

Gorollary 1.2, Given the hypathesis of Theorem 1, if A is invarifant then T

SRR
is sufficient iff G is the teivial group consisting only of the identity mapping
on @,

To apply these results to the charagterization pﬁub1em at hand, let
X a (X,l"‘IXN) bo a random n v N materix haviﬁg one of a ¢iven Tamily of
NG

LY

normal distributions and Yot denote the ith row of X, We think of
X], RN XN as being the observed random vestor, but at various times wish to

consider the parameters

For the open set V¥ of Theorom 1, we take the set of »egular points oft

T{x) = (xe, xx1); that is, the set of points x abt which T'(x) is surjective
T
TH{x) 15 surjective 1f tho matriw (?u) has rank o + 1, which is almost certainly

€

true for any of the probabilities under consideration as soon as N > n + 1,

Clearly any of the mappings g, of lomma 1 is a homecomorphism from V onto itself

and T is a continuous open mapping on V‘7?{vﬁ11 be the given set of uN=variate

L 3

(5]
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norial probability measures,  The fnhvariant reaswre 3 of Corellary 1,2 wil
bhe that aiven by By 0, (‘m 0 iFr 123, C 13 ”‘I“\n‘ IT A is not already
a mowher of P{y 1t may be added without affecting the sufficioney of T for?¥,

According to Corollary 1.0, and Temma 1, T s sufficient for 2, if and only it

(2.1) Wy ()
and
(2.?} u R(i“i)uT u R(‘i!j)

for a1l 3.3 and uv U« 2NN N orthoaonal mateices v such that ue = o),
Now, (2.1} holds it and enly 1 each w(V) o m for some sealar Ay, whicn

is equivalent ta ay B e e I (M) U may be replaced by the larger set

T

Ut NN N orthoponal mateices such that we © sel, et Pe %~&ﬂ and

Qe T =P Then U s the get of a1l orthogonal matrices which commute  with
v b * )

Py, and (P.2) states that eacl R(“J' gomutos with each v e U', let w

be an arthegomal matrix such that

T X G]\(m;x-r == =

\\!p“? b &d R o PN R

Ny ,
HURIRT I CRINCS I
]

Then U' s the set of all orthogonal mateices u such that wu&T gommutos

with wpr and (2.3) holds it wR““)w computas with “wwj foar each u ¢ U'.

Clomentary calvelations show that WUWJ

aidd 110
Wiy o }ﬂd lv]

where vods  (N=I)NN=1)  orthogona), and that for some sealars A‘(i‘J)\ A@(iij)‘
&

must be of the form

S e
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2, (i) | 0

wR(i’j>wT = —
0 l )\2(1:3)1

If follows that (2.2) is true iff each R("J) is a linear combination of
P and Q. Therefore, (2.2) holds if and only if each R“'j) has constant
diagonal elements #nd constant off diagonal elements, which may depend on i

and j. Thus, there are matrices A = (aij) and B = b(ij) such that

aij if k=2
COV(Xik,ij) =
L. 3 w 0
b.iJ' 1f k L
That is,
'var(xk) = A for all k
and . cov(Xk,Xz) = B if k=2.

Consequently, A and B are symmetric and we have established

Theorem 2: Let Xy, «++, Xy be jointly normally distributed n-vectors whose
joint distribution is a number of a fami1y7ﬂ4 . Then the mean and scafter matrix
of the X;'s are sufficient for M if and only if for each member of 7¥,

(a) the Xi's are jdentically distributed, and (b) cov(Xi,Xj) is independent

of 1 and J.

4. Conclusion:
As we mentioned in Section 1 if one thinks of a patch as an approximation

to a field then it is difficult to understand how the within-patch covarijance of

ca PRI B TREIVY et s '3
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spectral measurements from a given patch could be constant but dependent on the
pakch size as in (¢"). According to the results of Section 3, there i% ity more
sophisticated covariance model whose parameters can be estimated with optimum
efficiency using only the patch means and scatters; however, there may be

more realistic covariance models which are well approximated by (¢') or (c").

For example, suppose that a patch is rectangular in shape with multidimensional
spectral information {Xijli = Jeeery j = 1s.vc} where i and j denote the
spatial line and column number of‘the pixel producing Xij' Suppose further that
the correlation of two observations X.. and ng decays exponentially with

11
their spati-1 separation; that is,

where Q is their common variance matrix and A and B are symmetric commuting
matrices of spectral radius less than 1. Let % be the average covariance over
all pairs of distinct pixels. Then a simple calculation shows that for large

r and s (large patch size) rsk is nearly I A(I-A)‘1B(I~B)']QH, )

that % 1is nearly inversely proporticnal to the patch size, as is required by (c").
Tx

If A and B are positive semidefinite, so that. z is always positively

iJ
cqrre1ated with zTXkl for any z, then the expression just given is an upper bound
for the average within-patch covariance for any patch size. Therefore, the effect
of approximating the exponential covariance model with the constant covariance

model (c") may be predictable, and not serious.

11
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