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SUMMARY.

This l'OPOft CXPIOI*es an ided, (ILIC 
to 

A. Feiveson, for relaking the

ASSUMPtion Of Class Conditional independence of LANDSAT spectral measurements

%flthi ll the S1 ►1l e pate), (field), Theoretical arguments are given wjljCjl show

that any significant refinement of the modal beyond reivesows proposal will

not tjjjow the mALICtiOn, OSS0, 11ti î I to HISSE, of the puro data to patch summary

statistics. A slight alteration of the new model is shown to be a reasonable

approximation to the model which descrihes pure data elements from the same

patch as Jointlyqaussianwith a covariance function which exhibits exponential

decay with respect to spatial separation.
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1. The Basic HISSE Model and its Modifications.

The original mathematical assumptions underlying HISSE are fully described

in C71. Briefly, they are:

a) The sampled pure pixels are organized into p patches (fields)

and corresponding to each patch j, there is a set of spectral

data measurements X  = (X ji , •••, XjN i ), where Xjk is the

(perhaps multitemporal) vector of spectral data from the 'tith pixel

in the jth patch. For each patch j, there is also an unknown

class designation 0  E {1,•••,m}, where m is known,

b) Th <: {(XP O ))P_ 1 are treated as independent random variables.

The 
0  

have a common unknown discrete distribution

Frob CO j = A. 1 = aZ > 0, where QE1 aR = 1.

c) Given that O j = Q, Xji ,	 XjN
i 

are independently normally

distributed with unknown mean 
irk 

and unknown variance-covariance

matrix QC

A proposed modification due to A. Feiveson C31i, introduces one additional

matrix parameter for each class. Assumption	 (c)	 is changed to

Ii

iia
i

C')	 Given	 that	 O j	 = Z,	 Xjk = uR + ej + djk , where	 E(ej)

= E(d k )	 = 0,	 var	 ( ej ) = E R ,	 var	 (djk )	 _  and the

's	 are independente.'s and d.	 endent normal random
i k	 p variables.	 Thus

the elements	 X jl ,	 •, XjN	 of	 X
i
	 are jointly normal with

i

marginal	 distributions Xik N N(pk? EQ + q),),	 and constant j

a`
within-patch covariance cov(Xjk ,	 Xji )	 = Ev for	 k	 i.

///
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Notice that tha originaI assumption (c) is a limiting case of (c") obtained

by allowing Y	 0.

For reasons discussed l a tot we will altar (c') tc

(c") The constant within-patch covariance for elements of the

jth patch is cov (x4ik'x,ii)

The effect of (c") is that data elements from large patches are considered more

weakly correlated than those from small patches. Assumption (c' ) is perhaps

more appropriate if the correlation between pixels of the same patch is really

independant of their spatial soparation, while (c"") is better if the correlation

falls off rapidly with spatial separation, on account of the preponderance of

spatially distant pairs in lamer patches. Calculations are presented in Section

4 to suggest that (c'") is a reasonable approximation to the average covariance

Between pairs when the, correlation decreases exponentially with spatial separation;

In Section 3 theoretical arguments are given whichsoverely restrict the covariance

models for which tho patch mean vector and scatter matrix are sufficient statistics

without, however, eliminating (c') and (c'"). This is an important consideration,

since proCedures like HISSE are foosible only if the spectral information in patches

can be summarized in a small nunr[10r of statistics.

2. Numerical procedures for tiro Alternative Covariance Models.

The likelihood function and iterative procedure for the current version of

HISSE are given in 11'1 and will not Be repeated here. For covariance models

(c') and (c"). The likelihood functions is

L	 r	 ' log	
(-I 

fr:{xi)	 _ log f(xi)

2

a
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f

t
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W1101.0 tll(, Illodel W )

J,

flz (X

and	 x

while for Illodel 
(ell)

I

Iv + N F	 (xZ

N (IIIjUlz+N K
j k

N 
J 

I

+Y X	 (X

and	 (x	
-I S

in 110(il the SO III J zind S 
i 

are, respectively tho, jmtch Illeall (111d

sca t tor

x
jk

Ni T

kul	 k,

Thus, for both of these covarialwo Illodols the patch 1110all and scatter are Jointly

Tho unconstrained Mvlihood oqmltiolls for 1110C10.1 (c ,l ) havo, the Form

X

(1.4) 	 Y l N^ ^(^^^



u.

t.

4

ORIGINAL PAGE IS
OF POOR QUALITTY

P Yy )	 p	 I ,
V	 j S	 (N

T 
p f W

N (MY )(Mj-pt)Jai
	

jif W 
j

whoro the new parameter 9	 is dofinod as X + 10.

The expressions on the right of equations (1.1)	 (1,4) are appealing in

that they Are averages of quantitio, whose expoetations t given 0 
j	

are

the parameters on the left. In addition, the successive substitutions scheme

svqgostod yj ;qualions (1.1) - (44) isaslight variation 
of 

the generalized

['41 procedure of PompWr l Lair  ani Rubin &I, FOr covAnianno model QQJ

the likolihood equations do not suggest a natural iterative procedure and it

appears that the yn Poralirod V-M procedure has no simple formulation.

To he consistont with the original intorpretAtion of the parameter

as a	 matrix, it is necessary to maximize tho likelihood

subjOet to the additional inequality constraint si t 
 
I IV Since a solution of

oquations (W) - (14 need not satisfy this sonstroint l maximizing the likeli-

hood subject to SSA 
 

0 t t roquiros a much more complicated numoricol procedure,

Tho condition o
f 

> Q is equivalent to a set of scalar inequality and nonliroar

Oquality constraints, and numerical procedures for such problems are generally

vory slow to lnnvov^j(" The unconstrained maximum likelihood procedure is

appropriAto if a s in fe") we merely assume that cov (XI	 ji Ad is the sAme for a11

i and K, without introducing random variablos a 
A 

and dik.

w )Ich	 soatter	 sufricient'

Let X n 01 1	 IXN ) n\N 60 a matrix whose columns are jointly normallSt

fl
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distributed n-vectors. We are interested in characterizing those families

or distributions of X for which the statistic	 (m. S)is sufficient,

where nr= X 1 + +•• + XN and S = X 1 X
T
 +--- + XNXN. We begin by recalling

t
the following definitions C4, p„ 321•

Definition: Let G be a group of homeomorphisms on Ja n . A function T

defined on	
n 

is invariant under G if T(gx) = T(x) for all x c, n , g c G.

T is a maximal invariant of G if T is invariant and T(x) = T(y) implies

that there is a g c G such that- y	 gx. A measure X is invariant under G

if Xg = X for all g c; G, where Xg(E) 	 a(g(E)).

Lemma 1: Let elements of 	
nN 

be represented as x = (x l 1 ,.. lx N ) and let

eT = (1,1,•••11)1xN" For each k! x N real orthogonal matrix u satisfying

ue = e, let g rr (x) = xu, Then I(x) _ ( m,S) _ (xe,xxT ) is a maximal invariant

of the group G = (gu}.

Proof: T(gux) _ (xue, xu(xu) T ) 	 (xe, xxT )	 T(x). Thus T is invariant.

Suppose that T(x) = T(y) so that xe = ye and xx T = yyT . If x ( ' ) and 
y(1)

denote the ith rows of x and y then x (i) x (3)T = y (i) y (3)T and x (i) e = y M e

for all i and j. This implies that corresponding rows of x and y have the

same Euclidean norm and form the same angle with the vector e T . In addition, the

rows of x describe tfre same set of angles in
N
 as do tile corresponding rows

of y. Thus, by carrying out parallel Gram-Schmidt procedures on

feT , x (1) , ..., x (11) )	 and	 {eT , y ( 1 ) , ,.•, Y
(n) ),	 it is easy to construct an

f
orthogonal matrix u such that e 

T 
u = e 	 and x (i) u = y ( ' ) for each i; that

is, such that y = g u x. Therefore T is a maximal invariant.

5
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ExaT le: Any linear function T defined on 	 n is a maximal invariant under

the group of translations by elements of the kernel of T. In fact, most of

the results in r61 characterizing linear sufficient statistic^ depend only on

this aspect of linearity.

If T is a maximal invariant then any invariant function on An is a

function of T(x). Moreover, a function h o T on /fin is a maximal invariant i

if and only if h is one to one on the range of T, In the theorems which

follow we shall require that T be a continuous open mapping, in addition

to being a maximal invariant. The following lemma shows that to some extent T

may be cho,,en for convenience, with affecting the property of openness.

Lemma 2: Let V be an open subset of Rn , let G be a group of homeomorphisms

from V to V and let T1 and T2 be continuous maximal invariants of G

defined on V with values in /Km , If T 1 is an open mapping then so is T2,

Proof: Since T2 and T1 are maximal invariants, there is a one to cane

function h:T l (V) -* T2 (V) such that T2 = hT l . Since h-1 = T I T2 -1 on T2(V),

T2 is continuous and T1 is open, h is continuous. By the Brouwer invariance

of domain theorem C8, p. 31 h is an open mapping, Therefore, T 2 is also open.

Theorem 1: Let V. be an open subset of Kn , let 7Yl be a homogeneous collection

n , and let A be a fixed element of 761. Supposeof finite Qorel measures on ^^ 

that a(Vc ) = 0 and a(U) > 0 for each nonempty.open subset U of V. Let

G be a group of homeomorphisms from V to V such that a(gB) = 0 whenever

X(B) = 0 and g c G. Suppose that f11 is a continuous representative of da

for each a E,-t and that T:V + 	 m is a continuous open maximal invariant of

6
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GR Then T is a sufficient st.o tistin for l it if and only i ► each fl, is

Invariant under G.

Q,o f z Suppose that T is sufficient, Then for each u t ?t thei R e exists

tlorel measurcalale function k0 such that ko f T is a version of clr/cif, (1].

Lot t ► ► `Manc1 tl , G he fixed. The sot

FI

U KvInk) 1 4100

is an open sunset of I 	 g" l (h), where

ti VIft^(x) * k► r(r^ )^^R

Since XM ° fl, A?1 W) v ti and A) u Q. Therefore, 11 is empty and it follows

that f1c is invarR iant, Conversely, if each f1 1 is invariant, ;hen for each

►► ► '1Yt there exists a function h 0 such that f1 1 " hIt -TR Since f1I i s continuous

and T is open, h 	 continuous can T(V), Thereforet by 11, Corollary 6R11

T is sufficiontR

Corollory 1 7_1; Given the hypotheses of Theorum 1, if 1, is invariant. then T is

sufficient if and only if vach 11	 L is invariant,

11).ryR f, In general, a cfonsity with respect to I of lrg is flrg U (flrog)h,

cohere h is a version of ci19M. If N is invariant, then we can take h - i

to obtain flig " f1log as a unique continuous density of wgj for each pvg. By

Theorem 1, T is suffiriont if and only if f99 " fIr , which is equivalent to

{Mg -^ 11.

7
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Suppose that jig r Itt for each fr f- 7,)t ► el k f:; and that 0 is an

M imensidnal parameterization ofQ ; Co., a one to one function from 71t onto

a 0(14) Y 4Q. Then there is a nomomorphism J + W from G onto a group 0

of transformations on o defined t)y ij(t^o ) ^ O W 1 (00 )g). The following oovollavy

is c1 ear,

Gar ollavy 1,2, Given the hypoth p sis of Theor om 1 1 if X is invariant then T

is sufficient iif, G is the trivial group consisting only of the identity ► +rapping

on 11

To ,apply these resul ts to the charactori ation pAbleth at hanei, let

X a All ... AN ) he a random n Y I matrix having orre of a r iven family o

normal d ist ributions And lot 00 denote thu itir row of X, Ile think of

Xl , •, 5 XN as being the observed random vector, but at various times wish to

consider the paranrQvo rs

rr i ^ f( Xi )

Ci 0 cO\&3i

For the open set V of Thoorem 1, we take the set of regular points of.

T(x) r (xo, xx 1' ), that is, the set, of points x At which V W is surjectivo
T

T' (x) is surjoct;ivo If the matrix ( ) has rank n * 1, which is almost corta my

true for any of the probabilities under consideration as soon as	 n + 1

Clearl y any of the mappings g u of lemma 1 is a homoomorphism from V onto i tsol f

and T is a continuous open wrapping on V.171 will be the given sets of ON-variato

S

k

ti

t
a
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11(11 .1,i,,al proballi I ill 	 Up invariant routwo X of Corollal"y 10 will

he that givon bV P i	 0,t' iâ 0 i f i * I w C, i I I nNn , If' N 'i s not already

a WOW ON& it Ma
y 

to Mod without affecting the sufficiency of T fort)l

According to Cor01l0rN,	and loilrna 1, T is cuff pient for ,M if and only if

(A n PM
And

(2.11	 u R	 POW
V

folk al I i	 and to	 U , 'S \ N ortho tonal matrictv^ I'l skIch 
that 

ue a eI,

Now ) (2.1) holds if Inj only if each	 X	 for SO ► Q scalar V whiwl

is oquivalont to a,	 ON. In (M)	 may be roplaQod by the larger sot

[N \ N 1 	 Torthononal watVivos such that uo	 Let P	 e	 and

P, Thon W is 
the 

sot of all orthogonal matrices whioh connuto with

and (M) states that oath R O 
JO colIN"lutes With each u t h	 Le't w

ht, an orthogonal matrix such that

WN,
slyl

T han	 11' is the wt of all orthogonal matrices u such that wow c (mi It u t cN s

with WPJ And (WA holdh if r J"'J" tsv"Igutol with WUWT for oath u

1:1 (1111ontary (al k Oat- ions ,how (ha t Wo J must, tit, of Ow form

whoro v i's (N-1) * N-1	 orthogonal and that for some seal ars
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X (i,J)	 0

wR ( i >j) V,T =	 l

^ ^ j ) j0	 a2

If follows that (2.2) is true iff each R ( " j ) is a linear combination of

P and Q. Therefore, (2.2) holds if and only if each R (i ' j) has constant

diagonal elements aid constant off diagonal elements, which may depend on i

and j. Thus, there are matrices A = ( a ij ) and B = b( ii ) such that

a ij	 if k=R

cov(X ik ,XjQ ) _

bij	
if k = N

That is,

var(Xk) = A	 for all k

and	 cov(Xk,Xz) = B	 if k x R .

Consequently, A and B are symmetric and we have established

Theorem 2: Let X 1 ,	
X 
	 be jointly normally distributed n-vectors whose

,joint distribution is a number of a family ?14	 Then the mean and scatter matrix

of the X i 's are sufficient for 741 if and only if for each member of

(a) the X i 's are identically distributed, and (b) cov(X i ,Xj ) is independent

of i and j.

4.	 Conclusion:

As we mentioned in Section 1 if one thinks of a patch as an approximation

to a field then it is difficult to understand how the within-patch covariance of

qqA

F.

r

I

10
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spectral measurements from a given patch could be constant but dependent on the

patch size as in (c"). According to the results of Section S, there in. i 1M. more

sophisticated covariance modal whose parameters can be estimated with optimum

efficiency using only the patch means and scatters; however, there may be

more realistic covariance models which are well approximated by (r.') or (c").

For example, suppose that a patch is rectangular in shape with multidimensional

spectral information { X ij li = 1#--r; j = 1- R ic} where i and j denote the

spatial line and column number of the pixel producing X ij . Suppose further that

the correlation of two observations X ij and Xkk 
decays exponentially with

their spatial separation; that is,

cov(X ij ,X kd _ q,;Ali-kIBIj-Q1921

where c2 is their corniion variance matrix and A and B are symmetric commuting

matrices of spectral radius less than 1. Let Z be the average covariance over

all pairs of distinct pixels. Then a simple calculation shows that for large

r and s ( large patch size) rs); is nearly 4.Q" A(I-A)-1B(I-B)-10 Ili ) so

that F is nearly inversely proportional to the patch size, as is required by (c").

If A and B are positive semidefinite, so that • zTXij 'is always positively

correlated with z'TXk	
for any z, then the expression just given is an upper bound

for the average within-patch covariance for any patch size. Therefore, the effect

of approximating the exaonenti,il covariance model with the constant covariance

model (c") may be predictable, and not serious.

J
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