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Introduction

Tropical rain forests contain a majority of the Earth's gene pool,

yet little is known of the spatial and temporal variation of these

vegetation communities on a regional or synoptic basis. With the spread

of man's activities the ability to monitor and forecast the response of

these communities is becoming increasingly critical to preservation and

management of such resources.

This technical report represents the results cf research

concerning two fundamental problems when considering the aonitoring of

tropical vegetation succession. First, there is the 'shadowing' problem

which is endemic to the use of Landsat in tropical areas. Secondly

central to any monitoring system is the ability to model changes over

space and through time for explanatory and predictive purposes. In the

case of both problems the potentials of the field of spatial modeling

were investigated.

The Shadowing Problem and a Spatialtial Model

The Problem

The problem of tropical natural resource inventory is fundamental

to development of a monitoring capability. One of the major problems in

the collection of data from Landsat for tropical areas is obstruction

from clouds. The problem considered here is one where two statistically

distinct classes occur with reference to an area where one homogeneous

class of vegetation is known to exist. One class is homogeneous

tropical rainforest and the other is known to be shadow. Variations in

I 



data	 values which contribute to this dichotomy are posted as

measurements subject influenced by variations at two scales, local and

regional. There is a general pattern of spatial variation in both

terrain and multispectral scanner (MSS) values. In addition, there is a

local pattern of variation unique to particular locations. It is

therefore hypothesized that the shadowing effect is largely the result

of small-scale spatial variations producing the responses measured by

the values contained in the MSS data, thus causing the erroneous

occurrence of	 two statistical classes where no observeable

differentiation exits. The trend surface terrain model is used to

decompose the spatial variation in elevation and MSS data. Since shadow

is thought to be a function of the local component of spatial

variation, the general component of spatial variation is used as input

in the classification process. It is expected that after having

filtered out the local spatial variation the two classes will become

less distinct or not distinct.

The Spatialtial Model

The spatial model used here is generally known as the Trend

Surface Analysis Model (TSA). 	 It is used here as a means of

quantitatively estimating the general spatial variation in the data

set. In TSA the locations of the sample points provide information

about the spatial variation of a variable. Each set of coordinates

(U[i] and V[j]) describe the location of sample point k. The value of

the	 observation (Z[k]) at point k is assumed to	 consist	 of

2
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REGIONAL or large-scale process which generates the broad pattern

of spatial variation, and

f .00AL or small-scale process

Fillowing Barringer et al (1980)

specified as

Z(U	 V )

where

Z(U,V) = observed val

operating locally.

and Robinson (1982), the model is

	

f (U	 V ) + e

	

i	 j	 ij

ue at the location described by the

coordinates U and V,

f(U,V)	 function defining the regional component,

e = the error term which describes the local component

since it is defined as Z(U,V) - f(U,V).

The regional component function defined by fitting a power-series 	

i
polynomial function of the general linear form

n	 m	 i	 j
Z(U,V)	 E	 E	 b (U ,V )

k	 i=0 j=0	 ij	 k

which is estimated using the orthogonal polynomial routines presented

in Mather(1976). In the case of Landsat data the measurement on Z are

the data values on MSS bands, chile U and V are locations of their

respective pixels.

The Methodology

The methodology was designed to evaluate the utility of s TSA

3
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model in the reduction of misclassification of shadowed tropical rain

forest. To accomplish this the following phases where were conducted in

order of presentation :

Phase 1 : Supervised classification of vegetation and shadow classes.

Phase 2 : Perform linear discriminant analysis to test efficacy of
supervised classification results and provide a benchmark.

Phase 3 : Decomposition and separation of the regional and local
spatial variations in spectral and terrain characteristics.

Phase 4 : Using classifications of 1 and data generated in 3, a
discriminant analysis was performed.

Phase 5 : Comparison of the two discriminant analyses was conducted to
evaluate the utility of the spatial modeling approach with
regard to the supervised classification.

Study Area

The study area lies within a region of mountainous terrain located

northeast of Mount Indie (approximately 12° 55' N , 121° 4' E) on

Mindoro Island, Philippines. Primary cover is semi-deciduous rain

forest comprised largely of dipterocarp spp. In addition, there are

areas of (I. cylindrica) believed to be human induced. The topography

is a dendritic drainage pattern. Thus, this is an ideal area for

studying the shadowing problem.

Cover Classification

Supervised classification was conducted to identify the major land

cover classes derived based on those derived from 1:50,000 vegetation

overlays developed from aerial photography and ground data (Bruce,

1979). Three major information classes were identified in a 128 by 128
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pixel subscene. They were tropical rain forest, grassland, and shadow.

For the conduct of the TSA modeling exercise, an area known to be

tropical rain forest but shadowed and surrounded by rain forest.

Sampling Design

A random-systematic sample of elevation data and corresponding

radiance count data was collected from within the study area. There

were 89 pixels included in the sample. For each of the sampled pixels,

elevation to the nearest 20 meter contour interval was interpreted from

a 1:50,000 topographic map (AMS Series L501, sheet 3258 III, 1962). The

elevation data was combined with the radiance count values taken from

the four Landsat bands to form a data set which contains information on

the relative location, elevation, and spectral characteristics of each

sample pixel.

Results of TSA Modeling

Results of the TSA modeling of elevation and Landsat MSS data are

presented below along with results of the discriminant analysis.

Results of the discriminant analysis of the supervised classification

are compared with results of the discriminant analysis using the TSA

estimates as the data for cover class discrimination.

The TSA Models

A fifth-order polynomial trend surface was chosen as that order of

surface which best describes the regional terrain variation within the

sample area. The fifth-order model was chosen because it represents the

5



point of decreasing percent explanation added and the point where

additional terms in the model provide less than modest increases in

percent explanation (Table I). It should be noted that when one is

concerned with describing a given pattern in terms of generalization at

various scales,	 and relating those generalized patterns to the

distribution of other variables, significance testing is unnecessary

and inapplicable.

A TSA model was estimated for each of the Landsat MSS bands. The

order of surfaces chosen and the percent explained are reported in

Table II. The percPat explained refers to the percent variation in the

original data accounted for by the regional component of the estimated

surface. Thus, it is a measure of the relative importance of the

regional component in explaining the spatial variations in the spectral

responses. As can be seen from Table II., the relative importance of

the regional component in explaining variations in bands six and seven

is small. The implication is that the local component in the spatial

variation of spectral responses in these bands are primarily of a

localized nature.

The Discriminant Analyses

Discriminant analysis of the supervised classification shows that:

bands six and seven have the greatest discriminating power with all

bands being present and significant in the linear discriminant function

(LDF) (Table III, Univariate Analysis). The power of this discriminant

function is exemplified by the classification results in which 83.15%

of the sample pixels were correctly classified. Since the initial

6
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classification was based on the MSS data, the significance and strength

of this LDF is not unexpected. Thus, the shadow/forest classification

scheme is statistically significant when using the MSS radiance count

data.

When a discriminant analysis was performed with data generated by

the TSA models, the results improved noticeably. That is the LDF is

less able to separate shadowed and unshadowed forest. This is supported

by an increased tendency toward mutual ejuality (i.e., classification

by random chance) of the four cells of the classification results table

(Table IV). A fall in the eigenvalue and an increase in Wilks' Lambda

are indicative of a decline in the discriminating power of this

discriminant function. The all-groups stacked histogram (Figure 1)

illustrates the variability and overlap present in this classification.

Although the spectral terrain models for band 6 and 7 are those with

teh weakest regional component in terms of explained variance, they

maintain their dominant influence in the LDF (Table IV). It is

important to keep in mind that their dominance in the LDF is

conditional on the other variables being included in the estimation of

the function. This is illustrated by the fact that when a stepwise

discriminant analysis was performed, the only variables entered (in

order of entrance were bands 7 and the regional terrain (elevation)

component.

7
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Discussion

This analysis supports the view that shadowing effects may be due

primarily	 to local variations in the spectral responses.	 The

r	 significance of this result is that they can be compensated for through

the decomposition of the spatial variation in both elevation and MSS

data. Use of the trend surface model to estimate both elevation and

spectral terrain surface as a posteriori inputs in the classification

process leads to an improvement in classification accuracy 	 for

vegetation cover of this type. The improvement might be increased

further through use of weighted linear components of the MSS and

elevation terrain data or the specification of a power-series other

than the straightforward polynomial expansion.

Results of this portion of the research also .suggest that the

spatial patterns depicted by the "'S data reflect the measurement of

responses to spatial processes ac,-:ng at several scales. 	 Thus,

continued research on the development and application of spatial

filtering models in the analysis of Landsat data is suggested. Perhaps

a more broadly significant implication is the use of dynamic spatial

models will be critical in the study of tropical rain forest succession

using Landsat.	 Therefore,	 the latter portion of this research

investigates the field of dynamic spatial cover ,:lass models as they

rela y± to succession dynamics.

1^	 8



ORIGINAL PAGE IS
OF POOR Q'UAL17Y

caul! I.	 ^csu:cs u:	 tha Trend '.,rfa:a Ycda.-.ng 3:

7:ur..ber	 2f	 V1riaCi.^n Variation :trns
Or: er Tsr-..s	 "x^1ai::ad	 ::.a/aiaed	 ,',ddsd :^t1

1 3	 66.1
2 6	 90.4 14.3 3
3 10	 99.1 8.7
4 13	 93.2 4.1 S
5* 21	 95.3 2.1 6
6 28	 96.6 1.3 7
7 36	 97.5 .9 4

* Order of trend surface chosen for use in analysis.
Source: Authors' calculations

Table :I. Results of Trend Surface Yodeling
of Landsac MSS Sand Data

Band	 Order of Surface	 1 variation Explained

	

4	 4	 44.4

	

S	 S	 41.6

	

6	 4	 26.3

	

7	 4	 33.3

Vote: The criteria used to choose the order of surface
co be used in the analysis and reported in this
cable is the same criteria repor:ed in the
discussion of the terrain model results.

Source: Authors' Calculaciens
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Charac:sriscics of -he ] itcriminan: ?lnc::on

"inonical	 Wilks'	 Chi-
Eitenvalue	 Correlation	 Lambda	 Square

.59	 .54	 S9	 ...4

5nivarlate .i•111;sis:

Standardized	 Canonical

Variable Wilms's' Lambda F-value
iscriminant Function

Coeff icients

Band 4 .368 13.22 * .1811
Band 3 .884 11.42	 * -.2354
Band 6 .664 43.99	 * '614
Sand 7 .399 58.144	 * 2^.2_02

Wilks' Lambda and F-value degrees of freedom 	 ( 1,87)
x Significant at the . 05 level or better.

Classification Zesuits:

Actual	
Number

Class	 Predicted Class	 of Cases
Shadow	 Forest

Shacov	 27	 4	 31
87.1 x	 12.9

Forest	 11	 47	 58
19.0	 81.0

Percent Correct:y Classi!isd n 83.15

_rirce: ^u:aors' Ca.^--ic_ors .;S _: a i?SS ;r:3 rs .-s.

10
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Characteristics of -.ht Oiscrinin.%n6. e•:nz:i:n

Canonical	 ::lilts'	 Chi-
Sltenvalue	 Cor-elaeion	 Lambda	 Square

.19	 .40	 .84	 15.1 *

;:nivariato Analysis:

Standardized	 Canonical
Discriminaac Function

Variable Wilks' Lambda F-value Coeffieier*s

Band 4 .987 1.16 -.3644
Band S .992 .70 .2367
Sand 6 .AAS 10.;9	 * .1685
Sand 7 .850 15.37	 * -1.0760
"Elevation .994 .56 -.3648

Wilks' Lambda and F-value degrees of freedom - (1,87)

* Significant at the .05 level or better.

Classification Results:

Actual	 Number
Class	 Predicted Class	 of Cases

Shadow	 :3rest

Shadow	 21	 10	 31
57.7 »	 32.3 »

:orast	 It	 40	 58

	

31.0	 59. ' »

?arcane Classified Correc':ly	 68.:4	 +

'our:*: Asthors' Calculac=ins zs:-; :`.e -?SS ?-:grans.
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2 2
2 2 2_

R 4+ 2	 2 2 222
E 2	 2 2 222 2
Q 122222222 2222	 212 21
U 1222222 2 2222	 212 21
.. 2+	 2 21222222 22 1222222112 2	 11 1 2
v 2 21222222 22 1222222112 2	 11 1 2
C 2	 2222 1	 221122221	 112 12211111112112111 1 1	 1
Y 2	 2222 1 221122221	 112 122111111:2112111 1 1	 1

...	 ....+..........+..........+ .................... +.........+
-2 -1 0	 1 2	 3

CLASSIFICATION 22222222222222222'.2222222:111111111111111111111111111.11
CLASS C0TROIDS 2 1

CLASS LEGEND

Shadow - 1
Forest - 2

Figure 1.
A'-1-Groups Scackad 'Histogram for Discrimilant Analysis

of Trend Surface Modeling Results
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Vegetation Succession, Land^sat z and Dynamic Spatial Models
An lnvestistation

Here are presented important issues which must be carefully and

thoughtfully considered if remotely sensed data are to be properly used

in	 the analysis of modeling of spatial succession 	 processes,

particulary in the tropical rain forest context. 	 Altnough raised in

the context of tropical vegetation cover dynamics, many of these issues

have broad applicability to other research using Landsat data to

monitor changing vegetation patterns (e.g. see Robinson et al., 1982).

i

Remote Sensing of Vegetation

Efforts in the field of satellite remote sensing of vegetation

have traditionally centered on questions of signature identification

and extension, cover inventory accuracy, and change detection and

monitoring (e.g., Anderson, 1977 	 Bannert, 1980 ; Omakupt and

Vunpiyarat, 1^ ' ; Qd^eves, 1975 ).	 Although the remote sensing

literature contains many references to the spatial and temporal aspects

of the science (e.g., Lillesand and Kiefer, 1979 ; Swain and Davis,

1978). Approaches incorporating the spatial and temporal dimensions are

typically not of a formal nature.	 Formal models of cover dynamics are

often specified in aspatial form even though satellite data are clearly

spatial in nature.	 Also, design of satellite spatial 	 sampling

instrumentation is largely a function of scanner technology and image

resolution considerations. 	 Little consideration seems to have

been given to the unique statistical properties of spatial samples

13
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(e.g.,	 Batty and Sammons, 1978 ; Bellhouse, 1977 ; Curtis and

McIntosh, 1950).

Models of Succession

The theory of ecological succession has been developed in the

papers of Clements (1916, 1936), Gleason (1926), Whittaker (1953), Odum

(1969), and Drury and Nisbet (1973).	 Although the term was coined in

the early 1800's, Clements is generally regarded as the first to offer

a theory of the succession process. He argued that "The developmental

study of vegetation necessarily rests upon the assumption that the unit

or climax formation is an organic entity... As an organism the

formation arises, grows, matures and dies" (Clements, 1916). 	 In

contrast to Clements (1916), Gleason (1926) took the view that the

successional processes of a plant community grow out of the processes

which its individual members undergo: "The sole conclusion we can

draw ... is that the vegetation of an area is ... the resultant of two

factors, the fluctuating and fortuitous immigration of plants and an

equally fluctuating and variable environment" (Gleason, 1926).

Another	 view of succession is that	 presented by

Whittaker (1953).	 He believed succession to be due to interactions

among a series of environmental gradients: "Vegetation is conceived

as,...a pattern of ;populations, variously related to one another,

corresponding to the pattern of environmental gradients" (Whittaker,

1953, pp. 59 - 60).

a
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Miles (1979) describes Odum's (1969) model as neo-Clementsian

because of its emphasis on properties emergent at the community level.

Odum (1969) saw the "stretegy" of succession as being action by the

community to bring about an increased control of, or homeostasis with,

the physical environment to achieve maximum protection from its

perturbations.	 Drury and Nisbet (1973) argued that succession grows

out of differential colonizing ability, growth and survival of species

adapted to growth under different environments.

Some general observations may be made on these models.

First, they are all informal models (van Hulst, 1978). Second, while

all of them imply the existence of temporal and spatial features in the

process, none of them adopts a formal notion of either. 	 Neither do

they consider the essential differences which exist between spatial and

temporal processes.	 Indeed, Drury and Nisbet (1973) note that most

descriptions of long-term changes in vegetation are based on the

observation of spatial sequences. Third, the models tend to shift

increasingly from a deterministic one toward a stochastic one (see van

Hulst,	 1974).	 Finally, the neo-Clementsian arguments have been

essentially demolished by Drury and Nisbet so that some trend from a

holistic toward an atomistic view of succession is evident.

Beeftink (1979) presents several reasons for increased

interest in vegetation dynamics on the part of European ecologists.

First, interest in descriptive research is falling off for a variety of

reasons.	 Next,	 vegetation conservation efforts demand a better

understanding of vegetational and environmer.-al dynamics.	 Last,

15
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advances in numerical methods and instrumental equipment present the

opportunity of developing dynamic models utilizing large data sets.

He recognizes several points of departure for future research in

successional dynamics. 	 One such question is that of the degree to

which detection of similarities between space-time patterns 	 in

biological and in environmental variables provide insight into causal

relationships among these variables. 	 The connection between diversity

t
and stability concepts, and space-time patterns is central to such

efforts.

1
Allen (1975) observes that in the modeling of population

stability over time, the usual approach ignores population variation

across space. He comments on the strangeness of this and warns that

time-dependent models can be radically affected by extending them into

the spatial domain. Therefore, the theoretical and experimental

investment of such models is certainly justified. Moreover, we might

seriously question whether stability statements based on the original

models can be trusted. Yarranton and Morrison (1974) investigate the

variation in spatial pattern over time in primary successional

sequences.	 They present a nucleation model which they argue

establishes a relationship between successional mechanism and

variations in spatial pattern. 	 Hilbourne (1979) points to the

increasing realization that spatial phenomena are an important aspect

influencing the dynamics of many ecosystems.	 He argues that an

understanding of the formation of spatial heterogenieties is crucial in

understanding the temporal dynamics of ecosystems.	 Finally, Miles

r	
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(1979) warns against the interpretation of existing spatial variation

in vegetation as representing different phases in a temporal sequence.

It is apparent that there is considerable interest among

ecologists in successional processes as they occur in both time and

space. Similar interest is in evidence among those of the remote

sensing field and biogeographers (e.g., Miller, et al., 1978).	 If

these interests are to be addressed, two important issues must be

addressed. The first complex of issues concern those the properties of

static spatial models.	 Secondly there are the implications of spatial

sampling methods for the study of succeessional processes. Although

such static models permit little insight into the dynamics of

succession, they form an important class of descriptive models and In

their descriptive role, they may aid in hypothesis formation for

dynamic models.

Static Spatialtial Models

Hera are presented those spatial models of a static nature

which are important in developing models of tropical rain forest

succession using Landsat data. It is common to regard the distribution

of a set of points in geographical space at some given time as the

outcome of a point process.	 While the actual generation of such a

distribution is presumed to be dynamic, the .exulting distribution is

not. More importantly, nor are the underlying spatial models.

17
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Bartlett (1975) organizes point process models into two broad

classes:

A.1 Clustering models
.2 Doubly stochastic models

B.	 Contagion or inhibitory models

All are based on the Poisson distribution. 	 More complex point

patterns may be described by mixed Poisson models which represent a

mixing, in various ways, of Poisson process rules with those of other

statistical distributions (e.g., Poisson-Poisson, Poisson -binomial).

Data for such models are usually obtained by the quadrat method.

First, a planar region is exhaustively partitioned into a series of

non-overlapping, generally square cells. 	 :Next, the numbers of points

falling in each cell are determined. Finally, the degree of randomness

of	 the distribution is examined through the fitting of 	 the

distributions described above which describe the degree of clustering

or regularity of the point set.

Rogers (1974) and Curtis and McIntosh (1950) point out some

of the difficulties associated with the quadrat method. Results depend

upon the shape, size and placement of quadrats as well as on the

density of the points being sampled.	 They propose rules for the

determination of optimal quadrat size, as does Grieg-Smith (1964). The

relative effects of applying alternative optimal size rules to quadrat

size selection should be of interest to those engaged in research

involving spatial data collection.

1s
r
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Rogers (1974) also discusses inferential problems which must

be	 considered in testing the goodness-of-fit of point 	 process

statistics to non-random (i.e., either highly clustered or highly

regular) spatial data.	 The chi-square test, a statistic commonly used

in such applications, is noted to have a number of shortcomings in this

respect.	 Among these are: lack of sensitivity, influence of data

grouping schemes on the outcome of the test, minimal class size

constraints on test effectiveness in the face of a lack of consensus on

a correct value for minimal size and loss of test power connected with

grouping to satisfy minimal size constraints. 	 Rogers also notes that

similar difficulties attend the fitting of bivariate distributions. A

far more serious problem of inference in that statistical agreement

with a mathematical model is far from sufficient evidence that it did

so arise.

The statistics of nearest neighbor models also raise issues

for those using them for spatial inference. It has been noted (Rogers,

1974) that density dependence, derivation of probability distributions

for non-random point patterns and the effects of 'zero-distance'

nearest neighbor configurations are all questions of interest in this

area.

Description of apatial arrays of points is closely tied to

the effect of process scale on scale of sample and the correct design

of spatial sampling schemes.	 Clearly, the relative spatial extents of

a spatial process and of a spatial sampling scheme designed to provide

data for inference on that process will have an effect on the outcome



i

of	 such	 inference.	 Also,	 Kooijman (1980) states that the	 ease	 of

inference	 on point processes decreases with decreasing spatial 	 scale.

Finally,	 the	 optimal	 shape is considered to be a rectangle 	 (Orloci,

1978).
Haggett,	 et al. (1977) examines the relative efficiencies of

various	 spatial	 sampling schemes. 	 In	 that	 review,	 Berry's	 (1962)

determination	 of the high relative efficiency of stratified systematic

unaligned	 sampling	 schemes over either stratified random 	 samples	 or

simple random samples is cited.	 Further, the superiority of stratified

sampling	 plans	 in	 situations where spatial	 autocorrelation	 may	 be

present is noted.	 Haggett (1963) also found transect sampling	 methods

to	 be more accurate than either point or quadrat sampling in measuring

the extent of cover by vegetation in an area of England.

Rogers	 (1974)	 looked	 at stratified random	 sampling	 in	 a

spatial context and Bellhouse (1977) derives a minimal average variance

criterion	 for sampling from a two-dimensional finite	 population.	 He

also	 concludes that no global optimal design exists 	 although	 locally

optimal	 designs	 do	 exist in terms of certain subclasses	 of	 spatial

sampling scheme.	 A problem, until quite recently, in spatial sampling

schemes	 was that of the asymptotic distribution of the	 sample.	 This

issue was resolved with Smith's (1980) publication of a Spatial Central

Limit Theorem.	 Although the theorem gives little guidance on the size

of the sample needed to realize asymptotic normality,	 it clearly shows

the	 existence	 of such a property for a spatial sample 	 of	 sufficient

size and meeting certain other conditions.

.'0
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Issues in the Analysis of S patial Data

Although Landsat data are quite obviously spatial data, for the

purposes of classification and modeling, reliance has been placed

primarily upon classical statistical models (e.g., Jensen, 1978;

Strahler, et al., 1980). Tubbs and Coberly (1978) pointed out that most

investigators have tended to assume that pixels are independent

observations. The fact that neighboring pixels are not separate

independent observations is at the core of the concept of spatial

modeling.

There are several basic properties of spatial data which make

their analysis using classical statistical models difficult. Spatial

stationarity is an implicit assumption in all applications of Landsat

data using classical statistical methods. In general, spatial data do

not possess the property of spatial stationarity. Granger (1969)

describes stationarity as an assumption that the relationship between

values of the processes generating the data is the same for every pair

of points whose relative positions are the same. Cliff and Ord (1975)

have presented a more formal definition of spatial stationarity. First,

it is assumed that the data collected correspond to a finite set of

locations. In Landsat data the locations are analogous to the pixels in

a Landsat scene or subscene. Also, in the Landsat case, the 'spatial

aggregates' are areas not points. Next, let j denote the set of

locations and j - 1,2,...,n where n is the total number of locations.

There is the observed variate value, y or Y 	 There is information
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concerning location j , e.g. row and column location of a pixel.

Suppose that Y can be decomposed into a stochastic component X and

j	 j
a deterministic component m such that:j

	E[ X J	 0	 or	 E[ Y J	 m

Definition 1. X	 is seid to describe a spatially stationary

j
process in the wide sense, to be weakly spatially stationary, if:

E[ X .X	 ` e'(j.j')	 (1)
j	 it

depend, only upon the relative position of locations	 j and j'.
Definition 2. Suppose X satisfies equation (1). In addition,j

if the correlation between X and X depends only upon the distance

j	
it

between their locations, and not upon the orientation between j	 and

j'	 then the process is weakly isotropic.

Definition 3. If the joint distribution of the X depends only
j

upon the relative positions of the locations, then the spatial process

is strictly stationary.

Definition 4. The process is strictly isotropic if it is both

strictly stationary and direction invariant(see Definition 2).

In areas such as time-series analysis definitions 1 and 3 will

suffice, but in spatial analysis definitions 2 and 4 are often required

(Cliff and Ord, 1975; Haggett, et al., 1977). Generally, the assumption

of spatial stationarity is difficult to sustain. It is worth noting

that the concepts of spatial stationarity and spatial dependence are

related. Haggett, et al., (1977) point out that if the marginal

distributions of X	 are identical, then non-stationarity implies that

j
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the data are spatially dependent.

,̀ ,, patial dependence among elements of spatial data sets is the

rule rather than the exception (Tobler, 1970; Gould, 1970). To

further illustrate this, suppose that data have been collected for a

set of j - 1,2,3,...,n areas (or pixels) and that the variate for the

j-th location is X	 Statistical methods are traditionally developed

from assumptions which usually state something like -

to 	 X	 (j-1,2,...,n) be n independent, identically distributed
J

variates" (Cliff and Ord, 1975a in Haggett, at al., 1977).

Spatially located data generally exhibit systematic spatial

variation or spatial autocorrelation (Tobler, 1970; Gould, 1970; Cliff

and Ord, 1975). The effect of spatially autocorrelated data on tests

of inference are in some cases well knuwra. Standard applications of t

and F statistics for comparison of means or construction of confidence

intervals require spatial independence. The same assumption is

necessary in regression analysis if the OLS (Ordinary Least Squares)

estimators are to be BLU (Best Linear Unbiased).

Many common applications of a variety of statistical models in

remote sensing use as the variance estimate:

n

d'	 -	 (y- Y )' l (n - 1)
j-1	 j

Cliff and Ord (1975) note that when positive spatial

sutocorrelation (e.g., a clustering process) is present, the estimator

v
J6

	 be biased downwards.	 This bias leads often times to an
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overstatement of the significance of the results.	 This is an issue not

y
widely	 recognized in the application of statistical models to	 Landsat

data.

It has also been shown (Brandsma and Ketellapper, 	 1979) that the

choice	 of	 a	 procedure	 for estimating test	 statistics	 for	 spatial

autocorrelation must be made carefully since the power, 	 robustness and

obtainable	 significance levels may vary considerably among	 estimation

procedures.

One of the more common statistical models used in the analysis of

Landsat	 data for cover class studies is principal components	 analysis

MA).	 Lebart's	 (1969)	 approach is briefly presented	 bolow	 as	 an

example	 of how spatial dependence may be incorporated into this common

method.	 Suppose	 data are collected on	 p	 variates,	 say Landsat	 MSS

bands 4,5,6,	 & 7 ,	 for each of n areas(pixels). This yields a (n x p)

data matrix	 X.	 In addition, a matrix 	 M	 is constructed where.

m	 •	 1	 if the i-th and j-th pixela are contiguous,
ij

0	 otherwise.

M	 - M**a	 defines the number of paths ,	 a links in	 length,	 between
a

each	 pair of pixels.	 This definition includes redundant	 paths.	 The

sample	 a-lag covariance for the	 k and	 1	 variates (e.g.	 bands 4 and

7) is in matrix fors:

T
C	 (1/n	 )	 X (Y	 -	 M	 )	 X	 (a - 0,1,...)
a	 a	 a	 a
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2
where n is the number of paths of length a , and Y • diag(M ) It may

a	 a	 a
air+ in understanding to note that C is the usual sample covariance

0
matrix. Lobart (1969) argues that the use of C other than C will

a	 0
reduce the effects of npatial dependence upon the analysis.

The example dealing with PCA begs the question of whether one

should: (1) incorporate spatial dependence into the w)del explicitly,
i

or (2) remove it before commencing the main analysin. The choice of

approaches depends upon the emphasis required by the nature of the

I
problem to be solved.	 However, from the perspective of spatial

1	 modeling one may argue that corrections used to remove spatial

dependence represent

" ... a throwing out of the uaby and keeping the bathwater
(Gould, 1970).

Anuther fundamental problem of spatial data has to do with aggregation

problems. The results of most any analysis depend on the manner in

which the geographical study area is partitioned for data collectio:-.

and processing purposes, We can use the example of Yulu and Kendal?

(1957) in whi.ci the value of their computed correlation coefficient (r)

between yields per acre of wheat and potatoes varied rather widely

depending upon the 'spatial aggregates' used. This problem is directly

comparable with the same methodology reported by Robinson et al (1982)

in a study of desertification modeling using Landsat data. In contrast

to Yule and Kendall (1957), Robinson et al (1982) does not appear to

have been aware of the role of spatial aggregation problems when

partitioning the study area. Even so, his study does represent a
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methodology	 which recognizes the spatial variation 	 in	 variate

relationships. In other words, Robinson et al(1982) study recognize in

a rudimentary way the fact of spatial non- stationarity.

Bearing in mind the dual issues of spatial stationarity and

autocorrelation, the analysis of spatial data usually has as its

objective either: (1) data smoothing, (2) data interpolation, or (3)

modeling. These objectives are not necessarily mutually exclusive. For

example, the preprocessing procedures used to destripe Landsat data

introduce,	 in an obvious manner,	 strong components of spatial
S

t
	

autocorrelation before any modeling has been done. This is also the

case in data interpolation for bad or missing Landsat data.

Spatialtial Modeling

The natural framework for the modeling of cover class dynamics is

the spatial-temporal process o-, ,-:e we need to capture both components

through temporal and spatial dependencies. However, before spatio-

temporal models can be developed, spatial models m •lst be considered.

Purely spatial processes are philosophically highly problematic. Their

study is of interest for three reasons (Ben gett and Chorley, 1978):

(1) They may, under special conditions, actually exist. Spatial
processes actually exist when the system under study has reached
equilibrium.

(2) They may seem to exist to the observer or analyst. This usually
occurs when the space-time data are available with very wide time
separation which does not allow recogn=tics of reaction, relaxation,
and lagged dynamics.

(3) There are a number of important spatial problems such as spatial
extrapolation, interpolation, and selecci.ve problems of statistical
inference.

26
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It is mathematically straightforward to develop representations

of purely spatial models. Two spatial processes which have received a

great deal of attention are the unilateral and multilateral models

defined on the basis of spatial lag as:

unilateral

Y	 a (Y	 +Y	 )+e
tij	 ti(j-k)	 t(i-1)j	 tij

multilateral

Y	 -a (Y	 +Y	 +Y	 +Y	 )+e
tij	 t(i-k)j	 t(i+k)j	 ti(j-1)	 ti(j+l)	 tij

k,l - 1,2,3, ...

where a Cartesian lattice is assumed. The parameter a provides an

indication of spatial stationarity where in each case the process is

stationary if for the

unilateral case:

lal < 0.5

multilateral case:

lal < 0.25

(Haining, 1978).

Multilateral models have been used to describe interplant

competition in ecology (Bartlett, 1975; `lead, 1971). 	 The important

difference between multilateral and unilateral models 	 is that
i

multilateral models are space-like whereas unilateral models perform in
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a way analogous to an ordered time -series. In other words, in a

unilateral model there is a distinctive ordering of events as they

occur across the plane. An event initiated at one location spreads out

in only one direction ( Bennett, 1980).

There have been few formal models of Landsat data which have

recognized the problem of spatial dependence. Notable attempts are

those of Tubbs and Coberly ( 1978), Craig (1979), and Craig and Labovitz

(1980). Without exception, attempts to date have depended heavily upon

some version of the unilateral model. Hence, it is only natural that

they should rely totally upon the Box-Jenkias (1970) formulations of

the AR (autoregressive) and A.RIMA (autoregressive integrated moving

average) models. In contrast to these formal modeling attempts stand

the less formal interpolation or filtering functions commonly used in

the preprocessing of Landsat data. These filtering functions are, in

the main, based on the same concept as the multilateral model. In

fact, the destriping algorithm is essentially a version of a spatial

moving average of a multilateral nature (Taranik, 1978). This implies

that those using such preprocessed data should take multilateral

spatial autocorrelation into account for the data they are working with

are very much related to the data values in surrounding pixels.

The approaches taken by Craig & Labovitz (1980), Craig (1979),

and Tubbs & Coberly (1978) underscore the relationship between the

spatial autoregressive and the temporal ( unilateral) autoregressive

schemes. Let us consider the time-series autoregressive model of first-

order where X(*_) is the variate measured at time t (t = ... , -1,0,1,

28

^.	 —



ORIGINAL PAGE IS
OF POOR QUALITY

...	 ).	 Three equivalent definitions follow which maintain the

condition of stationarity by constraining !p! < 1.0 	 (Cliff, 1980 ).

The simultaneous autoregressive model is:

X	 pX	 + e	 where,

t	 t-1	 t

E(X)	 0 ; E(e )-0 ; var(e ) = e' ; cov(e , e 	 )	 0

t	 t	 t	 t	 t-1

cov(X	 e ) = 0 for s > 0 .
C-s	 t

The conditional autoregressive model is:

E( X I X	 X	 ... ) = pX
t	 t-1	 t-2	 t-1

and

Var(X l X	 X	 ... )	 e'
t	 t-1	 t-2

The covariance model is:
Isl

E(X ) = 0	 and	 cov(X	 X	 )	 e' p
t	 t	 t-s	 x

where,	 e' =	 d'	 / ( 1 - p' )
x

(Cliff, 1980).

Whittle (1954) and Granger (1969) have shown that when a first-

order autoregressive model such as:

X	 pX	 + e
t	 t -1	 t
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is expanded to the two-dimensional, multilateral form:

X	 aX	 + bX	 + CX	 + dX	 +e
ij	 i-1,j	 i+l,j	 i,j-1	 i,j+l	 ij

considerable problems are encountered. The two major problems are (1)

.. parameter estimation becomes computationally difficult and (2) on the

basis of the same set of spatial autocorrelations, it is impossible to

discriminate between a number of alternative models (Bassett, 1972).

This problem of model identification or specification will be treated

in greater detail in the discussion of dynamic spatial models.

The autoregressive and moving average schemes assume spatial

data in discrete space. However, digital Landsat data are obtaineu

through an analog-to-digital conversion process. In this process the

[continuous] signal is sampled frequently enough so that the digital

representation of the signal will reproduce the information content of

the signal (Swain and Davis, 1978). This characteristic of Landsat

data suggests the possibility that models based on the discrete-space

assumption may be inappropriate and those based on continuous, but

sampled, spatial data are more justified. If this is the case, Cliff

(1980) suggests that it is better to specify the covariance structure

directly rather that attempt to formulate a linear dependence model.

The reasoning is that if a linear scheme is specified at one spatial

scale, there would need to be a scheme which is non -linear in p at

any different spatial scale.
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We may consider what the general formulation of such a covariance

structure might be. Consider a process X(u) defined at:

location u	 ( u , u	 )

	

1	 2
with

mean	 E [ X(u) ] - u

and

covariance structure

cov[ X(u),X(v) ]	 cr' c(u,v)

where c(u,u) - 1 for all u .

Various forms of c(u,v) have been suggested usually depending on

a distance formulation such as:

d - [(u - v)' + (u - v)' ]

rewriting c(u,v) as c(d) and keeping 	 c(0) - 1.0

This is only one of several alternative approaches to

specification of the form of the covariance structure (see Cliff,

1980).

Temporal Series and Cover Class Dynamics

When speaking of cover class dynamics one is generally interested

in process. Process is essentially change over time. Time-based systems

possess convenient properties not encountered in spatial systems . The

most important properties are asymmetry and transitivity.

Mathematically these properties can be defined for events E(i) and time

operators T by
i
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Asymmetry :

given	 E = T (E)	 then E / T (E )
1	 1	 2	 2	 1	 1

Transitivity :
given	 E	 T (E )	 and E = T (E ),

1	 1 2	 2	 2 3

then	 E	 T ( E ) .
1	 3 3

In other words, the whole set of events is uniquely connected or

ordered.	 One of the simpler models suggested for use in the study of

land cover change using remote sensing data (Bell, 1974; Strahler, et

al., 1980) and used extensively in the study of plant succession

(Slatyer, 1977) is the Markov Chain Model. The Markov Model is

concerned primarily with changes of 'state' over time.	 The transition

matrix forms the basis for the definition of the model where the

transition probability matrix P defines the probability of cover

class i	 changing to to cover class j from time t to time t+l . A

transition probability is the probability that a given spatial unit S

in cover class i at time t will be in cover class j at time t+l. 	 In

notation form, elements of the transition probability matrix may be

defined as :

t,t+l
P	 Prob [ S	 = j I S	 j ]
ij	 t+l	 t

(Robinson, 1980).

Bell. (1974) suggested its use in the study of land use change

data derived from aerial photographs and Strahler, et al. (1980) have

32

F--

r



.	 AqM 1

• ^	 r.	 t ^s ^ f .iii	 • .4 ^^ 'v ^ • i• ': k 1 ^.. ^ 
t ^ f .i ^ '• fi. ^ ^.' ,ry	 ^ ^	 ^	 f

ORIGINAL PAGE 19
OF POOR QUALITY

used it as a means of analyzing change in forest cover classes. From

the perspective of studying cover class dynamics as a process of plar_t

succession, Markov Models have the following advantages : ( 1) they are

easy to derive from successional data; ( 2) they do not require deep

insight into the mechanisms of dynamic changes, but it can help to

pinpoint areas where such insight would be valuable; (3) the transition

matrix summarizes the essential parameters of dynamic change in a

system in a succinct, concise manner; (4) the computational

requirements are modest. On the other hand, there are several serious

disadvantages such as :

(1) the lack of dependence on functional mechanisms may reduce
its .appeal to those less empirically -oriented scientists ( Slatyer,
1977);

(2) departure from assumptions of stationarity, or from
assumptions of constant, linear transfer rates ( Bell and Hinojosa,
1977);

(3) validation of the model depends upon predictions of system
behavior over relatively long periods of time and is therefore
difficult in many cases ( Robinson, 1980).

There are two additional problems of the Markov Model which are

associated with the use of Landsat data for modeling cover class

dynamics. These are: classification and spatial dependence. In order

to use the Markov Model to study cover class dynamics, some

classification scheme is needed which separates successional

communities into definable categories such as cover-states (Slatyer,

1977). The problem of classification remains an elusive problem in the

study of land cover change (Stow, et al., 1980).	 The second problem

SE
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has received less attention in the remote sensing literature. The

problem of spatial dependence was recognized in the study by Bell and

Hinojosa (1977) as being that the Markov model is intrinsically

aspatial. Thus, there remains the problem of finding a variation [of

the tlarkov model] that can take account of this dependence explicitly.

Uncritical use of the Markov model results in the same problems

as in the uncritical use of other, more general, models of time-like

T

	 systeas.	 Namely, the problems of stationarity and autocorrelation

i	

affect both the Markov model and the general linear stochastic models.
4

Autocorrelztion (in the non-spatial sense) refers to dependence (i.e.,

correlation) between the observed value of a variable at some time t

and its observed value at some later tim% t+l. As such, it represents

a violation of one of the assumptions of the Gaussian model.

Stationarity refers to constancy in the moments of a time series. 	 A

series is referred to as being first-order stationary if its mean is

constant from one time period to the next. 	 Second-order stationarity

is similarly defined with respect to variance. If a series is second-

order stationary, the implication is that the covariance of two terms

of the series is dependent only upon time difference between the points

and not upon the particular points being examined (Cliff, et al.,

1975). That is:

cov[X(t),X(t-k)] • E[(X(t) - u )(X(t - k) - u)].

The above reference quotes Granger (1969) to the effect that 'The

assumption of stationarity essentially says that the law that generates

the data is constant over time'.
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An Introduction to Dynamic Spatialtial Models

Despite a growing interest in	 space-time modeling,

especially in the remote sensing community, there is a relatively scant

body of literature on the topic. This section presents three general

spatial-temporal models,	 they	 will be	 the	 STAR	 (Space-Time

Autoregressive Model), STMA (Space-Time Moving Average Model), and the

STARMA (Space-Time Autoregressive-Moving Average Model) models.

As is evident from the types of models which shall be discussed,

this section is based on the modeling of Landsat data 	 for

classification, not on modeling classified Landsat data following an

aspatial classification exercise. This approach is suggested by the

work of Tubbs and Coberly (1978), Craig (1979), and Craig and Labovitz

(1980). Furthermore, concern with modeling Landsat data prior to the

classification exercise has offered promising results in the modeling

of tropical rain forest succession (Barringer, et al., 1980), and in

the monitoring of desertification (Robinson et al, 1982). In addition,

this approach may been seen to act to 'filter' out certain kinds of

confounding influences which arise from sources noted in detail by

Craig and Labovitz (1980), and Barringer and Robinson (1981).

To begin the discussion of these models some common definitions

are presented.	 First is the definition of the "spatial lag operator".

For a spatial lag operator L and data value y(it) that is associated

with pixel i for time t, the relationship is:

t

a
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0
L y	 y

it	 it

and

s
L y	 -	 w y	 s> 0

it	 j	 ij j,t

where s denotes the spatial lag which is s steps(pixels) away from

pixel i, aw! the summation is over the j pixels at spatial lag s from

i. Using this common notation all the above models are briefly

presented.

STAR Model

Tobler (1967, 1970) used STAR models to estimate the linear

spatial transfer functions (linear operator) which best transforms a

map at time t into that at t+l. This is, of course, a common problem in

the use of Landsat data to model cover class dynamics. The STAR model

is of the form:

1	 m	 s
y	 L	 Z	 a L y	 + e
it	 3-0	 k-1	 sk	 i,t-k	 it

where k denotes temporal lag k from t, while 1 and m denote the maximum

number (order) of the spatial-temporal lags over which the summations

are conducted (Haggett, et al., 1978).
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STMA Model

This	 a space-time moving average model of the general form:

1	 p	 s
y	 t	 L	 c L e	 + e

	

it	 s-0	 k-1	 sk	 i,t -k 	 it

STARMA Model

Combining the STAR and STMA models we obtain the space-time

autoregressive and moving average model where:

	

1	 m	 s	 1	 p	 s
y	 Y	 L	 a L y	 -	 E	 L c L e	 + e

it	 s-0 k-1	 sk i,t-k	 s-0 k-0 sk i,t-k	 it

Model SRecification and Identification

In the stochastic modeling of successional processes, ecological

theory forms the basis for model specification.	 Box and Jenkins,

(1976) point out that where theory is inadequate or non-existent, a

class of models may be specified. However, a given model may imply

more than one possible structure.

Identification forms the second stage in the process of

statistical inference and is the logical process whereby the model

specified in the first stage is related to a basic structure.	 Correct

model specification, based on ecological theory, implies structural

identification in terms of the model.	 Moreover, the identification

process works to reduce any class of models which may have been

specified initially to a more parsimonious sub-class. Haggett, et al.,

(1977) note that two questions may be posed which together summarize

the model specification problem. These two questions are:

37
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(1) Which model should be selected from the basic STAR, S1?-'.A, and
STARMA formulations presented above ?

(2) Having chosen a particular model, what orders of temporal and

spatial lags should be included in the model ?

If ecologic theory is strong enough to provide, a rp iori, answers

to these two questions, then the problem of model specification is

easily solved.	 However, more often than not, these bodies of theory

i

	 offer little guidance in making such fine distinctions among modeling

forms.

The identification of an appropriate model requires not only

computation of the time-space correlogram (i.e., a display of the

serial correlation structure among variate values for various spatial

and temporal lags, but also of tl. time-space partial correlogram which

displays partial correlation relationships between and among the

independent variables. The partials indicate the degree of correlation

between the data values in the pixels at time t and the values in those

pixels which are k t .̂ mporal and s spatial lags away with the effect of

all other spatially and temporally lagged variables held constant.

Each of the models presented above has been shown to have certain

general	 characteristic	 space-time correlations and 	 partial

correlations. They are:

(1) For the STAR (l,m) process of order 1 in space and m in time,

the autocorrelations should decay approximately exponentially in time

and space. The partial correlations should become approximately zero

after lag 1 in space and m in time.

r
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(2) For the STMA (g,p) process of order g in Apace and p in time,

the autocorrelations approach zero after !ag g in space and p in time.

Partial correlations decay approximately exponentially in time and

space.

(3) For the STARMA (l,m,g,p) processes display correlations and

partial correlations which tail off as a mixture of exponential curves

and damped sine waves. The correlations exhibit this tailing-off after

the first g-1 spatial lags and p-m lags in time . The partial

correlations exhibit such behavior after the First 1-g lags in space

and m-p lags in time (Martin and Oeppen, 1975).

In order correctly to specify and identify a spatial model of

succession from one of the classes outlined above, thought must be

given to three sets of relationships:

(1) For any giv,-n ;region in space and for any two points in
time, what effect -will the species collection present on
the site at time t have on the species collection present
at time t + k ? (Temporal autocorrelation effect).

(2) For any given time and for any two regions in space, what
effect will the species collection present at site i have on
the species collection at site j — and vice versa? (Spatial
autocorrelation effect).

(3) For any regions i at time t and j at time t + k, what effect
will the species collection on site i have on that at sire
j — and similarly for the effects of site j at time t on
i at time t + k ? (Space-time autocorrelation).

In the study of cover class dynamics as a successional process

such models may prove lees than illuminating if one does not realize

that they ere based on the assumption that the structural relationships

between spatial aggregates may vary over space and time — in
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particular,	 patterns	 of	 decline	 and cutoff	 for	 the	 various

i

M
autocorrelation effects will be of considerable importance in the model

specification.	 For example, it may be unrealistic to assume that the

form of the relationship between two cover classes at their mutual

boundary is the same as it is in an area of homogeneous cover located

away from that boundary. 	 Haining (1978) encountered the related

problem of bias associated with the estimation of certain stochastic

lattice models.	 It was observed that such edge effects are dependent

both upon the ratio of border to non-border cells (e.g., pixels) and

upon the values of border cells relative to the expected values of non-

border cells. Lattice regularity was also found to have a strong effect

on process outcome.	 It is to be expected that effects such as those

alluded to here would be particularly troublesome when studying such

spatial systems over time. One sophisticated approach to this problem

is the construction of varying parameter space-time models (Haggett, et

al., 1977).

Concluding Summary

There are two major outcomes of this research. First, the use of

the TSA model shows that the spatial modeling of radiance values can

provide a useful approach to one the problems in monitoring tropical

rain forest succession. It also raised the point that shadowing effects

may be due primarily to local variations in the spectral responses.

The significance of this result is that they can be compensated for

through the decomposition of the spatial variation in both elevation

40



and `tSS data. Use of the trend surface model to estimate both elevation

and	 spectral	 terrain surface as a posteriori inputs 	 in	 the

classification process leads to an improvement in classification

accuracy for vegetation cover of this type. Perhaps more significant

are the results suggesting that spatial patterns depicted by the MSS

data reflect the measurement of responses to spatial processes acting

at several scales. The results of the TSA modeling phase suggested the

investigation of spatial models as useful in the development of a

capability in monitoring tropical vegetation changes.

The most broadly significant result of this research is the

identification of dynamic spatial models critical to the study of

tropical rain forest succession using Landsat. A major theme has been

the spatiallity of Landsat data, of the process which it represents and

of the models which may be used to emulate successional processes.

Thus, its effect on data collection, model construction and statistical.

inference were identified. 	 An effort was made to suggest the promise

of dealing formally with space, as well as some of the pitfalls which

may await the unwary. 	 It is strongly felt that the issues raised here

must be clearly considered and resolved if future models based on

Landsat data are accurately to reflect the space—time processes they

are meant to emulate.
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