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Final Report

Establishment of a Center of Excellence
for Applied Mathematical and

Statistical Research

Introduction

In this report, we will describe the research efforts which

have been undertaken at Southern Methodist Univ- sity (SPIU)

in support of contract FAS 9-16438. As the title of the

contract states, a first priority has been the establishment

of a "Center of Excellence" for directing and carrying out

r research in the area of Aerospace Remote Sensing. Such a

center is needed in order to adequately organize and direct

mathematical and statistical research in support of the

AgRISTARS objectives. We have conducted a thorough

assessment of the current state of the art (as defined by

NASA and its contractors) with regard to estimation efforts

in support of the crop production estimation problem. In

particular, we have reviewed old methods and have evaluated

methods in current use.

C
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This review and evaluation process was facilitated

through seminars in which methods were presented and

discussed. ;<<Rong the methods reviewed in this manner were:

Proportion estimators from LACIE - analyst dependent

(i) PC estimator

(ii) Procedure 1 estimator

(iii) etc.

'	 CLASSY/APEP	 ORIGINAL PAGE IS

AMOEBA/HISSE	
of POOR QUALITY

Procedure M

Spatial/Color Sequence

ERIM Profile Model

Multitemporal Profile Modeling

Others

Reviews and evaluations have been presented as lengthy

written reports, such as the report in Appendix A on the

multitemporal profile modeling. Other reports have been in

the form of written and oral reports delivered to the

project director and at workshop settings.

Our second major effort has been in the area of

development of alternative generic proportion estimation

techniques. Of course, there is no distinct dividing line

between the efforts involved in the two tasks. For example,

as we	 developed	 alternative	 proportion	 estimation
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techniques, we compared these with the existing techniques.

This provides us with further insight into the performance

of the current procedures.

}

Major Reports

Our efforts have resulted in three major written reports

which will be introduced in this section. These reports are

included in the Appendix. During the early months of the

contract, our major efforts were in the evaluation of

current and former methods. At this time, G. Badhwar had

introduced a procedure for modeling the multitemporal

profile for a crop. It was believed that this profile

(usually of "greenness") across the growing season would

provide feature variables with superior discriminating

power. Curly results using this procedure showed that it had

promise. we were asked to evaluate this procedure and male

recommendations. Our report is included in Appendix At and

was presented at the January 1962 Quarterly Technical

Interchange. Basically, we took a systematic look at the

modeling of the greenness profile, and discussed the

properties which such a model' should possess. Our major

concern with the early Badhwar model was that in that model,

emergence date, to, was not a location parameter. This

concern was mentioned in discussions with Dr. Badhwar in

October 1981. Recent modifications of the profile model have

a



s
I
I

ip-
ORIGINAL PAGE IS

OF POOR QUALITY
	

4

included emergence	 date as	 a	 location parameter,	 and	 we

believe	 that	 our	 evaluations	 had	 an	 impact	 on'	 'these

modifications. Various possible models	 for the profile	 are

discussed in the	 report in Appendix	 A t along with	 results

from both simulated and LANDSAT data.

In	 Appendix	 B	 we	 include	 a	 report	 which	 is	 a

compilation of	 results	 presented	 at both	 the	 April	 and

October 1982	 Quarterly Technical	 Interchanges and	 at	 the

special mini-symposium	 at	 NASA in	 December,	 1982.	 These

results were also presentee' at 	 a special session on	 remote

sensing at the national meetings of the American Statistical

Association in Cincinnati, August 1982 and were published in

the	 Proceedings	 &f	 sectio	 Survey

Research	 Method.	 This	 'report	 has	 been	 distributed	 as

Technical Report SR-62-04376, and it summarizes some of	 the

results obtained in our	 second major effort, 	 specifically,

t'1e	 development	 of	 alternative	 generic	 proportion

estimators.

The mixture model is	 currently being used 	 extensively

by NASA and its contractors to obtain crop proportion

estimates. CLASSY was an early result of this effort, and

current investigations in this area are included in the APEP

study headed * by R. Heydorn. Parameter estimation in this

mixture model is being accomplished using maximum likelihood

(ML) techniques based upon an assumption that the underlying

component distributions are normally distributed. Although
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ML estimators have desirable optimality properties when the

underlying assumptions are valid, they are notoriously

sensitive to departures from these underlying assumptions.

It is our belief that the underlying normality assumption in

the case of LANDSAT data is of questionable validity. For

these reasons we investigated alternatives to ML estimation

which were not as sensitive to departures from the

underlying assumptions. Our investigations in this area have

centered around minimum distance (MD) estimation. We

conducted a simulation sturdy in which the ML and MD

estimators were compared on both mixtures of normal and of

non-normal components. We have shown that MD estimators are

competitive with ML estimators when the components actually

are normal, while they tend to be superior when the

• components are non-normal yet symmetric. The non-normal

model used is the Student's t with 4 degrees of freedom,

and similar results have recently been obtained for the

double exponential. Neither of these models is extremely

non-normal. Thus even when the non-no=ality would probably

not be detectable visually, the MD estimates are better than

the "optimal" ML estimates. The results of this study are

given in Appendix B.

Although the results shown in appendix B basically

reflect research efforts in the area of development of

generic proportion estimation techniques, they also involve

an "evaluation" component. For example, we believe that the

ORIGINAL PAGE G
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results of our simulations provide much needed insight

concerning the role of the normality assumption in the

current implementations. For example, it was found that

normal based estimation techniques often provide very biased

estimates when the underlying distributions are actually

skewed. For example, a 50-50 mixture of two chi.-squared

distributions will "confuse" the normal based procedures

which assume that the underlying distributions are

symmetric. This phencmenon is mentioned in Section 5 of the

report in Appendix B. The problem of asymmetry is one of

extreme concern since the variables currently being used in

proportion estmation are feature variables from the profile

model4, and these variables have been shown to have

asymmetric distributions. In Appendix C we have suggested an

approach to the problem of obtaining proportion estimates

when the underlying distributions are asymmetric. This

report reflects material which was presented at the October

1982 Quarterly Technical Interchange and at the December

1982 mini-symposium. Briefly, instead of assuming that

components are normally distributed, we have proposed that

they be assumed to	 have Weibull distributions.	 This

assumption is	 made	 since Weibull	 distributions	 are

"flexible" in the sense that they can be either symmetric or

asymmetric depending upon parameter configurations.

Properties of the Weibull are summarized in Appendix C along

with the proposed procedures for estimating the parameters

L Ad
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in a mixture of Weibulls. This procedure utilizes the MD

techniques discussed in Appendix B. Although ML estimation

is shown to be quite untraceable in this setting # the MD

estimators are relatively easy to obtain. The result3 in

thins report suggest that this Weibull assumption may prove
r

to be a viable alternative to the procedures now in use.

Future Resea l. ch Directions

In each of the reports in Appendices A-C, suggestions are

mane for future research. Vie refer the reader to those

sections for a discuosion of research topics Which are

suggested by the current results.

Other Reports

In 'Appendices D and E we include two other reports which

were technical evaluations requested by the project

directors.

7
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I t	 A ,,rnporal Model For Crop Classification

by

H. L. Gray and W. A. Woodward

Introduction

In a recent article G. D. Badhwar (1980) suggested a

function 
Pb 

(t) for modeling the greenness spectral profile of

a crop from emergence to harvest. The function P b (t) is

defined as follows:

Pb (t) - PO	 0 <.t < t0
(I)

Pb(t)	 PO
	 ) a exp [-S(t2-to)l,	 to < t
0

where

PO . Soil greenness

t0 - Emergence date

and a and S are parameters to be estimated.

By applying the Model I to Landsat spring wheat data for

LACIE segments in North Dakota and Minnesota,Badhwar demonstrated

that Model I could be used to successfully estimate t 0 in these

cases.

Badhwar (1979) and Badhwar, Carnes, and Austin (1981) have

also applied the model in (I)to the problem of crop classification.

It was demonstrated that a, $ and t0 could be used as features to

correctly classify corn and soybeans. Again these methods were

utilized on Landsat data,and the results were impressive on the

•	 data considered. Austin (1980), (1981) has reported on more

extensive testing of these methods on LANDSAT data with the results

r
Y
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again being quite good. In this paper we examine (I) move closely

from the perspective of a desirable mathematical model for describing

crop greenness. Some shortcomings of Model I are noted and some

modifications are proposed. It is shown how this modified model

can be utilized for crop classification from 1ANDSAT data. The

results are then demonstrated on some LANDSAT corn-soybean data.

Analysis

Even though a mathematical model may perform well on a selected

number of data sets, it seems desirable that it also satisfy some of

the more obvious physical constraints imposed by the phenomenon it

seeks to explain. If this is not the case, i.e., if it does not

satisfy such constraints, then i", behooves the investigator to

explain why such constraints can be relaxed and the model still be

expected to perform its function.

Several properties which a function, p(t) for greenness should

possess are

(i) P(t) - P O	t < t0

(ii) P(t) : P T	t > t 	 where PT is terminal greenness

and tl is the corresponding point in time.

(iii) p'(t) should be independent of po after full coverage.

(iv) t  should be a location parameter, i.e., p should be a

function of t - t0.

Several other criteria could be listed, but the above suffice

for the current discussion. The condition (iv) requires some

comment. Certainly the same variety of crop planted at greatly

differing times would be expected to have greenness character
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istics which differ in more ways than simple translation. 	 However,

the model in (T) is posid for crops in the same segment and as such

tae planting datec of the same crop are not expected to differ

greatly even though it is possible. 	 In any event it is the opinion

j of these authors that effects of to,Gther than location effects, have

to be relegated to noise in the model or treated as producing a

diflerent classification 1 not necessarily generically different

but labeled different, spring wheat and winter wheat for example.

In any event there is no reason to believe that the model in (I)

speaks to this problem.	 Moreover,in (I),t 0 is clearly not a

location parameter. 	 Note also that although Pb (t) satisfies (i),

it clearly fails to satis ' fy (ii) and (iii).

Actually Model I represents a considerable simplification

of the general model suggested by Badhwar in (1980).	 T^e following

definition for p(t) makes use of that general model and the

function
a.	 2E(t;a,O)	 - t	 exp (-$t

demonstrated by Badhwar to be of some value in describing greenness.

Let F(t) be a probability distribution function such that F(t) 	 0

for t < 0 and F(t) - 1 for t > X.	 Then define

p(t) = (1-pF(t-t )IP O + PF(t- tO)IP J + DE(t- to;(1 0011	 (2)
0

where

p	 proportion of ground covered for t > X

Po	 soil greenness

p	 crop greenness at terminal greenness

to	 emergence date

a	 greenup parameter
greendown parameter

D	 constant
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In (2) clearly

aa) P(to) - PD

b) P(t) * P O + (p l-P0)p u terminal groanness of the pixel

c) if {a - 1, p' (t) is independent of p4 for t a A

d) to is a location parameter.

^i

I	 j'

Thus interpreting (b) as a satisfactory approximation to

(ii), wo can any that the model in (2) satisfies conditions (i)-

(iv) and makes use of important aspects of the exponential

function found by hadhwaar as a model for greenness.

Unfortunately the modal, in (2) tins 9 unknown parameters

(assuming that the distribution r(t) has one unknown parameter)

Since the data to which we intend to Apply our model consists

of no more than 8 acquisitions, (2) is obviously not acceptable.

The problem is complicates: by the fact that it is desirable to

classify the data as early as possible. 'Therefore,from a practical

point of view,one can probably only count on 4 to 6 acquisitions

before as classification must be ►n;^do. This clearly eliminates (2)

as a practical model.

hathar than abandon (2), we will now investigate the possi-

bility of reducing the number of unknown parameters. In the pa►g^s

which follow,rre will investigate tho effects of the simplication

we impose. Since the data ► to be considered includes no information

far separately estimating p, the modal can with no loss in generality

be rawritten as

P(t) - PO `F [A, + 13C(t-- t0 ;ac,5)1 F(t- to) 	(3)

wh ere

& . ( PI - P O ) p +	 13 W pll

F

c
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'	 and now A and B are the unknown parameters to be estimated. 	 The

model in ( 3), therefore, requires 8 parameters to be estimated, a 9

reduction of	 1.

For the data to be considered there is no 	 deleterious effect {

in going from ( 2) to (3) since no data are available from which to tt

estimate p, p l , and D separately. 	 It should be noted that (3)

applies whether or not we have full crop coverage (i.e. whether j

or not p = 1).	 Of course the number of parameters in (3) is still

too large to be useful. ?
a

Investigation of LANDSAT Corn-Soybean data suggests that

assuming F(t) to be the distribution function, associated with

a uniform density over (0,X), yields a reasonable linear approxi-

mation to F(t). 	 Under this assumption we have
i

0	 t < t0

F(t-t0) =	
t-t0	 to < t <	 (4)
X-t0

< t 9

1

F

and (3) becomes
a

P o	 t < t0

t-t0
	(t-t0)a+1	 2	 (5)

P(t)	 p0 +	 A a-t	 + B-t	
exp (-S(t-t0) )

0	 0
¢

t0<t<a

P O + A + B ( t-t
0

) a
 exp (-S( t-t0)2)

a < t.

The model in (5) represents a reduction of one parameter over ( 3) since

the parameter X is absorbed in the uniform distribution.	 From
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(3), note that for t0 < t< X

P I (t) . AF'(t-t0) + B(E'(t-tO;a,$)F(t-t0)

+ E(t-t0 ;a,S)F'(t-t0 )I 	 (6)

But, if a > 0,

E'(t-t0;a,$)F(t-t0) +	
#

E(t-tO ;a,6)F'(t-t0){	 = 0
I 

t;t0

The left hand derivative of p(t) at t 0 is clearly zero. Therefore,

the derivative of p(t) exists at t0 if and only if

AF'(t0) = 0 ,	 (7)

where here F'(t0) denotes the right hand derivative at t 0 . Since

this seems desirable and F'(t 0) # O,we are left with requiring A - 0.

Since p  # po this is clearly incorrect. However, it does not seem

that taking p  = p0 would seriously degrade the model's ability to

classify since p  will probably not differ greatly from p 0 9 and p  may be

nearly constant from crop to crop. Essentially this error is due

to our linear approximation of F(t), for if F(t) were quadratic

the requirement that A = 0 could be eliminated. Nevertheless,

for the reasons mentioned above, and the fact that it results in

one less parameter, we now take A = 0 in (3) to obtain the model

P O	 t <.t0

P(t )	 p0 +	
X B t

0 (t- t0 ) a+lexp(-s(t-t0) 2) to_ < t < a (II)

PO + B(t-t0 ) aexp(-S(t-t0) 2 )	 t > a

6
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Note that

PI(t) . B(a+l) ( t-t0)ae 
s(t

-t0)2

0
a+2

+ B(t-t0),	
(-2s)e- s(t

-t0)2 for to .< t < a
7^-t0

- aB(t-t0 )
a-le-s(t-t0)2-2sB

( t-t0)a
+le 0(t-t0)2 

for X < t .

Thus for P I (t) to exist at X we must have

B(a-t )a-1e-0(a-t0)2
0	

0 .

Unfortunately this cannot occur so we must examine the model further. Since our

desire is to simplify the model we do not wish to add additional terms

to the model which would guarantee (8), especially for the purpose of

fitting the curve in the right tail, since by that time the data will

already be classified. It can be demonstrated numerically that B, a

and a play similar roles in Model II and as a result are jointly very

nonrobust to errors. This is particularly true of B and a. With

only a few data points it,theref ore , is desirable to fix a or B in

advance.

In other words, when there are only a few data points available.,

and there is error in the model, small differences in data values

can lead to large differences in B and a. This is due to the fact

that for fixed B or a a reasonable fit to the data can be obtained

by varying the other. We thus let B = 1 and arrive at the following

model	 P(t) = PO	 t < t 0

(8)

	

= P
O
	 (t-t0)a+l e -s(t-t0)2

	

0	 X-t0

2

= P O 
+ (t-t0)a 

a 
s(t-t0).

t0<t<A
(III)

X < t ,

'	 where t0 , a, S > 0, a > t0.
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Model III is a five parameter model,and therefore is a

candidate for application on the data we will consider. Further

simplifications of this model come to mind. For example,one might

simply fix X as some maximum value. One might also argue that

attempting to fit two curves together at a point so late in time

as X,with any degree of validity, requires data past the point

of interest,and hence Model III should be modified to

pa	 t _< to
p(t) 	 (IV)

PO + B(t-t0) a exp (-S(t-t0)Z), to < t	 ,

where now S is again to be estimated.

Moreover,again noting that B and a play much the same role, and

that a classification is desired as soon as possible, it might further

be argued that p(t) could be reduced to the four parameter model

PO
p (t) -

pO + (t-t0)°`	exp (-8(t-t0) 2	t  e t	 (V)

In the next section,we investigate via simulations the effects

on classification of the above suggested simplifications.

Feature Selection for Classification and Simulation

Once an appropriate model has been obtained the problem of

classification is not solved. The proper features to be utilized

and the manner in which they are to be used must still be decided.

Badhwar, Carnes, and Austin (1981) selected a,$, and t  as the

appropriate features and utilized these in the Ho-Kashyan algorithm

(essentially the linear discriminant function) to form a discriminating

plane.
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It seems reasonable that other "features" of the model, obtained

might also prove to be as useful,ur more useful,than the model para-

meters in separating crops. One feature which will be investigated

in the present report is the maximum value of the fitted curve. If

tm is the Julian date at which this maximum occurs, then p(tin
) is

the corresponding feature of interest. In addition to the maximum

greenness it appears that tip-to, i.e. the time from emergence to peak

greenness, is also a feature of potential importance in the classifi-

cation problem. As our investigations continue,we anticipate the

examination of still other features,but in the present report we

will examine only these two features in addition to the model para-

meters as investigated by hadhwar, Carnes, and Austin.

Performance of the Proposed Profile Models

In this paper we have discussed a general profile model which

we believe is appropriate for purposes of describing the greenness

of a crop across time. However, the general: expression for the model

is such that estimation of the parameters would be impossible given

the 5-8 observations typically available from LANUSAT observations.

Thus, various simplifcrtions of this model were proposed (Models II-V).

In this section,we will discuss the results of our preliminary investi-

gations into the performance of these models and Model I proposed by

8adhwar. .

Our investigations have been primarily in Zwo areas. First,we have

utilized models I-V in order to estimate parameters and ;features from 1978

field data on corn and soybeans from Segment 882 in Palo Alto, Iowa. from

the resta is of these investigations, we are able to find typical Model III
.t,	

parameters for corn and for soybeans. These parameters are then used

y

i

ti

k
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to simulate profile data from our " typical" corn model, and soybea

model,and investigate the performance of the various models based

upon these simulations. Model III was used in the simulation 0 "%O:

it was the most general model for which ''typical" values of the

parameters could be found.

As mentioned earlier, we will not primarily be investigating

the models with respect to estimation of the model parameters but

for the purpose of ascertaining the effect on features such as

tm-t0 and p (tm) which may be used for classification. In Table I,

the value of t  is given for each of the models under consideration.

Table I - Julian Data ( tm) of Maximum Greenness

Associated with Models I-V

Model	 t
m

a
I	

26

t0 + 3T^ if 1 > 3 201
II, III	

t + 3 	 if ,x 3 =
0	 26	 26

t0 + x	 if S
- 
< a < 71

IV, V	 t0 + 3 s

For each model to be considered here,the parameter estimation

was accomplished using Marquardt ' s (1963) method for unweighted least

squares estimation of nonlinear parameters.

Parameter Estimation Utilizing 1978 Data from Segment 882

In this section , we will report the parameter estimation results,

based upon the utilization of Models I-V,for modeling the multitemporal
i
ts

I?
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behavior of corn fieldeF C01-C47 and soybean fields SYll - SY17. In

Figure 1, we have plotted the five models obtained for soybean field

Sy . It`islAteresting to note the various "interpretations" con-

cerning the proper functional curve to fit to these eight points.

Notice in particular the fact that t0 , the emergence date, varies

considerably from model to model.

In Table II we present the results of the parameter estimation

based upon Models I-V. Several observations can be made concerning

the results displayed in Table II. A first observation is that

parameter estimates in Model II are less stable than those in the

Model III. In Model II the parameter estimates of a and B are quite

variable, a behavior which was discussed earlier in this report.

Based upon the results for Model II and Model III, it would appear

that indeed more stable estimates of a are obtained when B is set

equal to a constant (in this case 1).'It should be noted that the

stability of B is also affected by the inclusion of B in the model,

but not to the extent that a is affected. It appears that we simply

do not have a sufficient number of readings to obtain reliable esti-

mates of 6 parameters. It should be noted that the 1978 data for

segment 882 contains 8 observations. Obviously, in most situations,

as many as 8 observations will not be available and hence the need

to find a satisfactory reduced model is clear.

Using Model III, there is an indication that both a and S

are larger for soybeans than for corn, and reasonable separation

between the two crops could be made using these two parameters.

Also of interest is the fact that the estimation of the maximum

greenness and t
m 
-t 

0  
features in Model II are as stable as they are

Y
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Table II - Parameter Estimation for Corn and
Soybean Field Data -- Segment 882

MODEL I

col
CO2
CO3

CORN	 C04
CO5
C06
C07

A A ^. A A I

a 6o t0 max t -t 0 

15.2 1.16 146 39.9 68
18.9 2.14 147 43.8 63
21.5 2.42 149 52.1 62
18.6 2.13 146 44.8 62
14.4 1.60 134 44.2 78
19.1 2.21 147 43.8 61
18.6 2.35 146, 43.9 62

SYll 24.9 2.52 165 42.6 57
SY12 23.7 2.54 155 52.1 61

sG	 SY13 21.7 2.40 152 48.4 61
SOYBEANS	 SY14 24.2 2.58 158 49.9 59

SY15 24.9 2.67' 158 52.3 58
SY3.6 27.7 2.80 166 55.6 56
SY17

j

F

26.9 2.82 163 51.5 55

4 .0001 sc

w

r

P_RECEDIN- R,,AGE, FLANK, XO.T, rL MEDF

Elk
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MODEL II

a 8G t0 a-00 g Max tm-t0

COl .89 2.08 142 125 3.4 40.6 67
CO2 -.15 1.89 158 73 153.9 43.5 48
CO3 .39 2.20 154 68 23.3 52.2 56

CORN	 C04 -.23 1.91 158 63 220.7 44.9 45
CO5 1.02 1.38 141 45 1.0 44.6 61
C06 .02 2.20 155 76 91.7 44.0 48
C07 .93 2.76 144 123 4.8 45.5 59

SYll 1.06 2.03 152 70 1.20 41.7 71
SY12 1.12 2.51 151 80 1.52 51.7 65
SY13 2.06 2.85 155 0 .03 49.3 60

SOYBEAN	 SY14 1.11 2.49 152 '%9 1.47 49.2 65
SY15 1.15 3.13 157 74 1.57 52.5 58
SY16 1.14 2.78 160 71 1.43 55.3 62
SY17 1.12 2.64 155 76 1.50 50.8 62

I	 MODEL III

A	 A	 A	 A	 A	 A

a	 Se	 t0	 A-t0	 Max	 tm _t 0
CO1	 1.11	 1.83	 136	 95	 40.1	 76
CO2	 1.07	 2.07	 150	 39	 45.4	 51
CO3	 1.15	 2.35	 150	 48	 56.7	 49

CORN	 C04	 1.07	 2.08	 151	 23	 45.5	 51
CO5	 1.01	 1.34	 141	 45	 44.4	 61
C06	 1.07	 2.01	 146	 45	 45.9	 52
C07	 1.06	 2.04	 149	 27	 44.6	 51

SY11	 1.10	 1.98	 151	 80	 41.6	 73
SY12	 1.24	 2.75	 152	 79	 52.2	 64
SY13	 1.12	 2.06	 146	 62	 52.7	 62

SOYBEAN	 SY14	 1.21	 2.59	 151L	 80	 49.6	 65
SY15	 1.26	 3.10	 155	 76	 52.5	 60
SY16	 1.23	 2.80	 159	 72	 55.3	 63
SY17	 1.23	 2.76	 154	 77	 51.1	 64

19
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MODEL TV

A

a
A

Sc

A

t0
+.
B

A	 A

Max	
tm-t0

C01 .70 1.59 158 3.34 40.1	 47
CO2 1.10 2.35 156 .93 44.5	 48
CO3 2.29 3.00 146 .01 53.3	 62

CORN	 C04 .81 2.13 158 2.72 45.6	 44
CO5 .51 1.43 158 7.10 44.7	 42
C06 1.08 2.40 155 1.03 44.6	 47
C07 .75 2.11 158 3.41 44.7	 42

syll 3.24 3.09 148 .0002 42.5	 72
SY12 3.02 3.13 145 .0005 52.5	 69
SY13 2.98 2.85 138 .0006 49.3	 72

SOYBEAN	 SY14 2.97 3.41 149 .0007 50.5	 66
SY15 3.00 3.70 151 .0006 53.0	 64
SY16 2.88 3.46 156 @001,0 5$.6	 65
SY17 3.05 3.45 150 .P306 51.7	 67

COM

MODEL V

A

a
A

(3c
A

t0
A

Max
A

tln-t0

Col 1.02 1.85 155 40.4 52
t,0? 1.011 2.34 156 44.5 48
CO3 1.14 2.48 158 52.3 48
C04 0 1.09 2.41 155 45.9 48
CO5 1.05 1.86 152 45.1 53
C06 1.09 2.40 155 44.6 48
C07 1.09 2.46 155 45.1 47

sY11 1.09 2.87 174 42.4 44
SY12 1.18 3.23 170 53.2 43
SY13 1.10 2.25 158 48.3 50
SY14 1.17 3.41 172 51.1 41
SY15 1.20 3.69 172 53.8 40
SY16 1.19 3.21 175 55.6 43
SY17 1.18 3.35 172 52.1 42

E



A	 ^^NAL' YR^A^#E ^ 21
^f	 Q,WJ#IU1i1Y

in Model III. Thus, although the addition of the extra parameter B

caused problems with the stability of the parameter estimation, the

fitted curves were quite consistent at least with regard to the two

features. From Models I and III we see that the maximum greenness

is greater for soybeans than for corn, and that corn reaches its

maximum greenness somewhat sooner than do soybeans. Again, reasonable

separation between corn and soybeans could have been obtained based

upon these two features for either Model II or Model III. The esti-

mation of t0 is approximately equally stable for Models II and III,

with a slight indication being given that soybeans emerged later

E

	

	 than corn. (Thus at least at this point there appears to be no

negative effect in RoinR from Model II to III.) Also of interest

is the fact that the addition ' of the parameter B has a tremendous

effect on a to, i.e. the time from emergence to maximum crop

coverage (as mentioned previously, maximum crop coverage need not

be total coverage for our model to apply). Based upon the data

from Model III, it appears that time to total coverage, X - t0,

is longer for soybeans than for corn.

The comparison between Models IV and V are similar to those

between Models II and III. In particular, the inclusion of the

parameter B in the model results in unstable estimates of both B

and a. For these models, the general tendency is for a and $ to

be larger for soybeans than for corn. The emergence date, t0,

is of considerable interest. For Model IV, there does not seem

to be any difference between emergence date for corn and soybeans.

However, for Model V the estimate of t 0 for soybeans is approximately

170, which is significantly later than that for corn. Again, maximum
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greenness and tm t0 seem to be stable features for both models,

with soybean attaining a larger value of greenness. The result

of the late estimate of t0 in Model V is to cause tm t0 to not

separate crops, whereas for Model IV this separation was apparent.

The parameter estimation using Badhwar's Model I was quite

stable. Again, the tendency is for a and $ to be larger for

soybeans than for corn, emergence date to be later for soybeans,

soybeans to attain a higher greenness, and for corn to attain its

maximum greenness earlier than soybeans.

Simulations

In order to gain a better understanding of these models we

have examined their performance in a simulation study. As a

result of the parameter estimation study using Segmgnt 882, we

selected a typical set of corn parameters and a typical set of

soybean parameters for Model 'III. These parameters and associated

features are given in Table III.

Table III - Parameters and Features of

Corn and Soybean Models (Model III)

Corn Soybeans

p0 7.0 7.0

a 1.07 1.24

gi 2.07 2.75

to 150.0 150.0

X-t0 40.0 80.0

Max 46.2 52.0

tm t0 51.0 64.0

*$ = .0001 Sc

22
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Note that although there was an indication that soybeans emerged

somewhat later than corn on Segment 882, these simulations are

based upon a common emergence date. One hundred realizations from

cacti model were generated.

Tile simulated observations were of the form

P s (t)- p
(t) + w(t)c(t)

where p(t) is as defined in Model III and e(t) is a normal random

variable with zero mean and unit variance.. Note that e(t) and

e(t') are independent if t f t'. In the simulation results presented

here we have also taken w(t)= 1.

Models I-V were applied to each realization within a set and

parameter estimates and features were obtained. Summary statistics

describing the results of these simulations are presented in Table IV.

For each parameter we indicate the average of the parameter values

obtained over the 100 realizations, the coefficient of variation in

order to provide an indication of relative variability of each

parameter, and lower and upper .90 content tolerance limits with 95%

level of confidence. In other words there is a 95% level of confi-

dence that 90% of parameter estimates • obtained in this manner would
a.

fall between the two tolerance values given. These values will assist

the reader in discerning the separability of tile two crops on the

basis of the given parameter. It should be noted that these

tolerance limits are based upon an assumption that parameter esti-

mates obtained in these ways will be normally distributed. This may

or may not be a good assumption but nevertheless the tolerance limits

given should provide crop separability information to the reader.

The results of the simulations are similar to the results
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Model 1
A

a
A*

Sc

A

t0
w

Max
w

tm-t0

x 18.6 2.10 147.5 44.6 62.7
CV .04 .05 .01 .01 .03

CORN LTL 17.2 1.92 143.6 43.4 58.8
UTL 20.0 2.28 151.4 45.8 66.6

SOYBEANS	 x 22.9 2.48 154.6 51.9 60.4
CV .04 .04 .01 .01 .04
LTL 19.0 2.28 150.8 50.8 56.3
UTL 24.6 2.68 158.4 53,0 64.5

A

*s =
A

.00010c

Model 11
A

a
A

oc

A

t0
A

a-t0
A

B
A

Max
A

t 
-t 

m	 0
x 1.11 2.02 152.1 2.82 2.05 45.6 53.2
cv .33 .22 .04 .61 2.26 .04 .17

CORN	
LTL .42 1.19 141.9 0.0 0.0 41.8 36.6
UTL 1.80 2.85 162.3 60.7 10.7 49.4 69.8

x 1;.13 2.69 151.3 78.3 3.82 52.1 62.7
SOYBEANS	 cv .33 .10 .04 .11 2.17 .O'_ .09

LTL .42 2.21 141.2 61.9 0.00 50.8 51.6

UTL 1.84 3.17 161.4 94.7 19.36 53.4 73.8

Model III
A

a
A

R^
A

t0
A

X -t0
A

Max
A

tm t0

X 1.06 2.04 152.3 28.4 45.6 51.9
CORN	 cv .04 .19 .03 .57 .04 .12

LTL .98 1.32 144.5 0.0 42.5 40.6
UTL 1.14 2.76 160.1 58.9 48.7 63.2

X 1.22 2.60 149.8 75.7 52.6 65.2
cv .03 .10 .02 .11 .02 .05

SOYBEANS	 LTL 1.15 2.13 145.2 59.5 50.6 58.9
UTL 1.29 3.07 154.4 91.9 54.6 71.5
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X

cv
CORN	 LTL

UTL

X

SOYBEANS	 cv
LTL
UTL

X

E	 CORN	 cv
LTL
UTL

X

SOYBEANS

	

	 cv
LTL
UTL

Model IV

a ac

..
t0 B Max t	 t0

1.02 2.33 157.5 1.76 45.3 46.4
.18 .08 .02 2.17 .02 .10
.68 1.97 151.4 0.00 43.9 38.0

1.36 2.69 163.6 8.94 46.7 54.8

2.31 3.19 152.2 .03 52.7 60.2
.12 .06 .03 3.39 .01 .07

1.79 2.84 144.4 .00 51.5 51.8
2.83 3.54 160.0 .21 53.9 68.6

Model V

a 8c t0 Max
A

t-t 0

1.08 2.41 156.9 45.5 47.5
.01 .05 .01 .01 .02

1.06 2.19 155.1 44.2 45.5
1.10 2.63 158.7 46.6 49.5

1.18 3.23 168.5 53.1 42.7
.01 .05 .005 .01 .02

1.16 2.91 167.0 51.8 40.9
1.20 3.55 170.0 54.5 44.5

i.
f

i
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t0 using models such as Models I and V may be due to adjustments

which must be made in fitting a non-optimal model to a set of data.

It seems that crop separation based upon t 0 must be viewed with

caution. It is clear that if, for example, t 0 = 165 for corn and

t0 = 150 for soybeans and Model II were the appropriate model, then

probably no separation between the two crops would be seen using
A

Model V on the basis of t0.

A final observation will be made concerning the role of t0

in Models I - V. Obviously in Models II-V, t 0 is a location para-

meter. As such, the shifting of each date in a set of observations

by K will result in no change in the estimation of the other model

parameters as long as the starting value for t0 is also shifted by

K. However, t0 in Model I is not a location parameter, and it is

of importance to understand the effect on the remaining parameters

of Model I which result from this shift by K. In Table V we

illustrate these results for K . -10, 0, ` 10, and 20. As an

explanation of these results note for example that the 100 corn

realizations which were analyzed by Models I-V in Table IV were

again utilized here and the results for K - 0 are identical to

those in Table IV. For K - -10, the 100 profile realizations

remained unchanged yet the generated profile value for time t is

now associated with time t-10, i.e. we have assumed that emergence

date occurred 10 days earlier than t0 s 150. The corresponding

parameter estimates in Table V are those estimates obtained by

applying Model I to this augmented data set. Note that the

starting value for t0 was also adjusted by -10. Similar proce-



ORIGINAL VAU^ iS	 28

OF POOR QUALI"i

TABLE V - The Effects of Shifts in t0 on the Parameters of Model I

t0
A

a
A

a*m
A

Max
A

t-t0

^r

150-10 16.8 2.10 44.6 62.5
E	 150 18.6 2.10 44.6 62.7

CORN	 150 + 10 20.4 2.10 44.6 62.9
'i	 150 + 20 22.3 2.10 44.6 63.1

3	 150-10 20.8 2.43 51.9 60.2
SOYBEANS	 150 22.9 2,48 51.9 60.4

150+10 25.1 2.48 51.9 60.6
150+20 27.3 2.47 51.8 61.4

A

*a - .0001
A

0^
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dures resulted in the remaining entries in Table V. Note tha

is the only parameter significantly effected by this shift in

emergence date. However, based upon Table V we see that soybeans

with emergence date of t 0 * 140 would be relatively'indistinguishable

from corn with emergence date t 0 = 160 on the basis of a. However,

the separability associated with R and the "features" is still

present.

There is a final observation that should be made concerning

A

Table V and Model I. That is, from Table I, a appears to be a

monotonically increasing function of t 0 and visa versa. The impact

of this is that late emergence dates give significantly larger values

Of a so that in this model a is certainly not a reliable feature.

The reverse is also true, i.e., t 0 is a monotonically increasing

function of a. Therefore large values of a give large values of to.

This is obviously highly undesirable and as a result, one could not

expect reliable estimates of t 0 from Model I.

The validity of this observation on actual data is born out by

inspecting Table II. Note that a is nearly a monotonically increasing
A

Function of to. The pattern is also clear for soybeans, i.e. larger
A	 A

values of t 0 tend to give larger values for a. Thus whether from a
A

careful analysis of the actual data or the simulated date, a from

Model I by itself should not be considered a viable parameter for use

in discriminating Corn and Soybeans. Moreover Model I should not be

expected to produce reliable estimates of to.

Final Comments

We believe that the results in this paper provide important

f

n

r

°t

i((
i

A
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information concerning both the development and the performance

of various temporal profile model--. It should be emphasized,

however, that the results presented here are vary preliminary in

nature. Further investigation into the performance of these

models is suggested in order to provide more experience with both

real data and simulation. It is the opinion of the authors that

tho performers of "features" such as max and t 
MA.

^-to should be

investigated further. From the discussion in the previous section,

we definitely do not recommend using a 
in 

Modal I. Further investi-

gations should also consider the problem of separability by finding

discriminating surfaces based upon the utilization of more than

one parameter or feature,
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A COMPARISON OF MINIMUM DISTANCE AND
MAXIMUM LIKELIHOOD TECHNIQUES

FOR PROPORTION ESTIMATION

Wayne A. Woodward, William R. Schucany,
Hildegard Lindsey, and H. L. Gray

Center for Applied Mathematical and Statistical Research
Southern Methodist University

1. Introduction

A common objective in remote sensing is the estimation

of the proportions p 1► p 2' ' ' 'rpm in the mixture density

f (x)	 p1f1(x) + p.) f 2 (x) + ... + pmfm (x)	 (1.1)

where m is the number of components(crops) in the mixture

and for component i,fi (x) is a (possibly multivariate)

density. In past practice this density has been assumed to

be (multivariate) normal with X being the reflected energy

in four bands of the light spectrum, certain linear

combinations of these readings, or other derived "feature"

variables. Generally the parameter estimation has been

accomplished using maximum likelihood techniques. In this

paper we examine the use of minimum distance estimation as

an alternative to maximum likelihood and we will compare

the performance of the two estimation techniques when

dealing with mixtures of normal and of non-normal densities

with varying amounts of separation. We will focus on the

mixture of two univariate distributions given by

f(x) = pf (x) + ( 1 P)f2(x)	 (1.2)

1

}

4

y
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We are also assuming that only data from the mixture

distribution are available. Other sampling schemes in which

training samples from the component distributions are also

available have been discussed by Hosmer(1973),

Redner(1980), and Hall(1981) among others.

2. Estimation in the Mixture of Normals Model

In this section we will assume

(1.2) are normal densities with mean

11 2 respectively where it is

parameters u l, a2 t , s2, and p are
estimating these parameters will be

that f 1 ( x) and f2 (x) in

n and variance p 01 and

assumed that all five

unknown. Techniques for

discussed.

.

(a) Maximum Likelihood

Several recent articles have dealt with the problem of

obtaining the maximum likelihood estimates of u , a2 11 2l	 1 

a2 1 and p (Hasselblad(1966), Day(1969), Wolfe(1970),

Hosmer(1975), Fowlkes(1979), Lennington and Rassbach(1979),

and Redner(1980).) Since the likelihood function

L	 f ()e1 ) f (x 2 ) ... f (xn )	 (2.1)

where n is the sample size, is not a bounded function in

this case (see Day(1969)), the objective in the maximum

likelihood approach is to find a local maximum of L. This

maximum is usually found by setting the partial derivatives

of log(L) with respect to each of the 5 parameters equal to

zero and solving the resulting set of equations,, called the
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likelihood equations. Since closed form solutions of

equations do not exist, they must be solved using iterative

techniques. Hasselblad(1966) and Wolfe(1969) suggested that

these equations be solved by taking advantage of their

fixed point form. Redner(1980) and Redner and Walker(1982)

have pointed out that this fixed point technique 	 is

essentially an application of	 the EM algorithm	 (see

Dempster, Laird and Rubin(1977)) with the only difference

being that using the EM algorithm, the estimates of a2 and

a2 at step k involve the updated kth step estimates of ul

and u 2

Fowlkes(1979), on the other hand, maximized the

likelihood function directly by utilizing a quasi-Newton

method for minimizing -log(L) and found that good starting

values	 were	 crucial	 for	 acceptable	 performance.

Hosmer(1975) stated that using the likelihood equations,

starting values were not	 a serious problem in ' his

experience. In order to determine which of the two

techniques seemed preferable in our simulation studies we

replicated simulations performed by Fowlkes in which

various sets of poor starting values were used to initiate

the minimization procedure. We simulated realizations from

the mixture utilized by Fowlkes and estimated the

parameters using both direct maximization and the EM

algorithm. The results of our simulations indicate that

the EM algorithm approach is preferable and hence we have

used this technique for obtaining MLEs in our simulations.

0
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Via

Although ML estimation procedures are known to have

certain optimality properties, their 	 sensitivity	 to

violations of the underlying assumptions is also

recognized. The development of estimation procedures which

perform well even under moderate deviations from

assumptions has been a topic of major interest in recent

literature. One of these robust procedures which has

received recent attention is that of minimum distance(MD)

estimation introduced by Wolfowitz(1957). Parr -and

Schucany(1980), for example, have shown that MD techniques

provide robust estimators of the location parameter of a

symmetric distribution. Minimum distance estimation has

been used for parameter estimation in the mixture model by

Choi and Bulgren(1968) and MacDonald(1971) with some

success although, to our knowledge, the question of

sensitivity to assumptions in this setting has not been

addressed. These previous authors assumed that the

parameters of the component distributions were known and

that only the mixing proportion(s) was to be estimated.

In order to briefly describe minimum distance

estimation, we let x1PX210.0fxn 
denote a random sample from

a population with distribution- function F and let Fn

denote the empirical distribution function, i.e. Fn(x)=k/n

where k is the number of observations less than or equal

to x. Further, letU= {He:Oa)	 denote a family	 of

distributions depending on the possibly vector valued.

k

s
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parameter 0. The MD estimate of 0 is that value of 0 for

which the distance between P n and H 0 is minimized. it is

not necessary that Fr%* Of course, when a mixture of two

normals is used as the projection family, H O becomes

x	
1 (y'u

_	 1 ) 2	 x	 1 (!LPy-U 2 ) 2

Ho (x) - p J 1	 e	 al dy + (1-p) 1 1	 e" a2 dy.

Certain considerations become obvious at this point.

First, we must define what we mean by the "distance"

between two distributions. Several such distance measures

have appeared in the literature. The reader is referred to

the article by Parr and Schucany(1980) for a discussion of

these measures. For our purposes we have chosen the

Cramer-von Mises distance, W2 between distribution

functions G 1 and G 2 which is given by

w2 = j [G1(x) -G (x)) 2 dG 2 (x) .
-00

2
_

In our setting a computing formula for the Cramer-von

Mises distance between 
n 

and H B is given by

n
W  _ 

-f 
2—n + E CH8

(y i)	 n 
5 ) 2

i=1

where Y  is the ith order statistic. The similarity

between W 
n 

and the sum of squared differences between the

empirical distribution function F
r; 

and 
H© 

used by Choi and

Bulgren(1968) should be noted.

Another consideration	 involves	 the	 minimization

procedure to be employed in minimizing Wn. Parr and
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Schucany used the IMSL quasi-Newton algorithm Z

comparisons have shown , however, that the IMSL Lv..6.ia.c

ZXSSQ which uses Marquardt's(1963) method for minimizing a

sum of squares was significantly faster, usually taking no

more than half the time required by ZXMIN. In the

simulation studies reported in the next section we have

used the Marquardt minimization procedure when calculating

the MDE. It should be noted that minimization is subject

to the constraints o1>0, a 2>0 , and 0<p<1. Another finding

which deserves mention before proceeding is that similar

to the technique we have chosen for calculating the MLE,

the MDE has the desirable property that it is relatively

insensitive to starting values.

3. Starting Values

In order for the estimators discussed in the previous

chapter to be used in practice, starting values for the

iterative procedures must be provided. We have chosen to

obtain starting values in this two component univariate

setting using a partitioning technique which is very easy

to implement. In the discussion to follow we will assume,

without loss of generality, that u 1< 11 2 . This technique

involves first obtaining the initial estimate of p,

denoted by p 0, and then estimating the remaining four

parameters given p0 . Under the current implementation,

only the 9 values .1,.2 ...... 9 are allowed as possible
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values for p0 . For each allowable value of p 
0, 

the sam

is divided into two subsamples

Y , Y 2 , ...,Yn
1

Y , Y , ...,Yn
nl+l nl+2

where Y1 is the ith order statistic and n l is np 0 roun

f	 .

L

to the nearest integer. The value for p 0 is that value of

p for which p (1-p ) (m l-m 2)2 is maximized, where m  is

the sample median of the jth subsample. The criterion used

here is a robust counterpart to the classical cluster

analysis procedure of selecting the clusters for which the

within cluster sum-of-squares is minimized. It is easy' to

show, however, that the within cluster sum-of-squares is

minimized in the two cluster case when p(1-p)(x1-_2)2 is

maximized, where W. is the sample mean of cluster j and
7

and p=n 1/n with n  the numbbr of sample values placed in

cluster 1. Such a clustering is based upon a cut-point,

c , for which all sample values below c are assigned to

the cluster associated with population 1. It must be

observed, however, that due.to the overlap between the two

mixture distributions, some sample points assigned to

cluster 1 may be from population 2 and some observations

from population 1•may be in cluster 2. The effect of this

truncation of the right tail in population 1 is that the

sample mean from cluster 1 is likely to underestimate p 

while u2 is likely to be overestimated. In addition 
a2 and

a2 are likely to be underestimated by Sia nd s2. If we
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assume that the overlap between the two populations is not

too seveter then the sample values in cluster 1 to the

.left of m l are relatively pure observations from

population 1 in which case ml is a "good" estimate of the

population mean in the case of symmetric distributions.

This reasoning also indicates that m 
I 

and m^ should

provide better estimates of p, and 
U2 

than would x, and

x2. In order to estimate the variances of the component

distributions we again will depend upon the fact that the

values to the left of ml and to the right of m, are "pure"

samples from populations I and 2 respectively. Thus ( we

will use only this portion of the data for estimation of

the sample variances. We have used the fact that the

semi-interquartile range of a standard normal distribution

is .6745, to estimate q2
1 

by

	

M	 ( . 25) 2

onto) "	 ^-.6745

where- r (q) 
is the qth percentile from the jth cluster,
 

2	 (
j-1, 2. Similarly, a 2(0)	 Hr2

.751 
-i%^)/.674S]

2

In the next section we will discuss the results of a

major simulation investigation comparing ML and MD

estimation. in these simulations the iterative techniques

were initiated bjr the starting values as discussed in the

previous paragraph. A preliminary simulation investigated

the performance of the starting values described here. in

	

this preliminary	 study we compared the convergence
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initiated from these starting values with that when the

iterative procedures are started at the true parameter

values. The convergence from these two starts was almost

always to the same parameter estimates, a, result which

held for both the MLE and MDE. For this reason and results

to be shown in Section 4 1 we believe this starting value

procedure to be adequate.

4. Simulation Results

In the previous two sections we have discussed ML and

MD estimators for the parameters of the mixture of two

distributions, In this section we report the results of

simulations designed to compare these two estimators when

the component distributions are normal and when they are

non-normal. In addition we have made our comparisons under

varying degrees of separation between the two

distributions. All computations were performed on the CDC

6600 at Southern Methodist University.

In our ccitiparison of the MDE and MLE we have begun by

comparing their performance when the normality assumption

is valid, i.e., when the component distributions actually

are normal. We should mention that because of the

optimality properties of the MLE we would expect that the

MLE would be superior in this situation. Since in practice

the validity of the normality assumption is subject to

question, we are also very interested in the performance

of the MDE and MLE when the component distributions are
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not normal. To this end we have simulated mixtures in

which the component distributions are distributed as a

Student's t with 4 degrees of freedom. We simulated 500

samples of size n=100 from mixtures of normal and of t(4)

components for each of the following parameter

configurations:

Mixing proportion

.25

.50

.75

Variances

	

2	 2

	

°1	 02

a2 = 202

The nature of the mixture model also depends on the

amount	 of separation between the two	 component

distributions. While, for	 sufficient separation, 	 the

mixture model	 has	 a characteristic	 bimodal	 'shape,

Behboodian(1970) has shown, for example, that a sufficient

condition for	 the mixture density (of	 two norma,k

components) to be unimodal is that 1ul u 2 1<1nin(Ql , Q2). Of

course, in -this situation,	 parameter estimation	 is

difficult.

For purposes of quantifying this separation between

the components, we will define a measure of "overlap"

between two distributions. Without loss of generality we

C	 _D

a
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assume that population 1 is centered to the left of

population 2. We define "overlap" to be the probability of

misclassification using the rules

Classify an observation x as:

population 1 if x < xC

population 2 if x > xC,

where x  is the unique point between u l and u 2 such that

pf1 (xc ) = (1-p)f2(xc).

We have based our currant study on "overlaps" of .03 and

.10. In Figure 1 we display the mixture densities associated

with normal components and a 2 = a2 For each mixture, the
scaled components pf I (x) and (1-p)f 2 (x) are also shown. Note

that the densities for p=.75 are not displayed here since

when a 2=a 2 it follows that fp (x)=f l p (u l+u 2-x)where fh(x)

denotes the mixture density associated with a mixing

proportion of h. Thus the shapes of the densities at p=.75

can be inferred from those at p=.25. Likewise, parameter

estimation for p=.75 is not included in the results of' the

simulations when a 2= a2

Although both estmation procedures provide estimates of

all 5 of the parameters, only the results for the estimation

of p will be shown since the mixing proportion is the

parameter of primary interest. In addition, when dealing

with the non-normal mixtures, the remaining parameter

11
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FIGURE 1 - Mixture Densities Associated with

Normal Components and a2 = a2 1

u1 = 0, u 2 	 2.56

overlap = .10

mixture	 ............ pf1(x) 	 ......... .(1-p)f2(x)

p = .5

u1	 0, U 2 = 3.76

overlap	 .03
i

r

ux

p=.25

	

V 1 = 0 , u 2 	3.6

	overlap	 .03

p - .25

il l
 = 0 1 u 2 - 2.32

overlap - .10

•.a

•.1

M

•.0
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estimates often do not have a meaningful interpretation. In

these simulations we have used the procedure discussed in

the previous section to obtain starting values. It should be

j	 noted that	 although we	 refer to	 mixtures of	 t(4)

distributions here, they are actually mixtures of

distributions associated with the random variable T'=aT+b,

where T has a t(4) distribution. These modifications are

made in order to obtain the desired separation and variance

ratios.

In Table 1 we show the results of the simulation
k
t	 comparing the performance of the MLE and MDE. In particular,

k let pi denote the estimate of p for the ith sample. Then

based upon the simulations, estimates of the bias and MSE

are given by;

bias = n sE(pi-p)
s i=1

MSE = n E s (pi-p)
2

S i=1

where ns is the number of samples. It should be noted that

nMSE is the quantity actually given in the table. In

addition, we provide the ratio

E	 MSE (MLE)
MSE MDE

as an efficiency measure.

Upon viewing the results, it can be seen, as expected,

that the bias and MSE associated with the MLE were generally

smaller than those for the MDE when the components were )
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Simulation Results Comparing MLE and IME

Sample Size - 100
Number of replications L 500

NORMAL
Overlap - .10 Overlap w .03

Bias nMSE*	 E Bias nMSE	 E
a1	 02 MLE	 MDE MLE	 MDE MLE	 MDE MLE	 MDE

p	 .25 .052	 .125 4.26	 7.80	 .55 .008	 .028 .54	 1.09	 .50

p	 .50 .000	 .010 3.21	 3.86	 .83 .000	 .001 .38	 .42	 .90

v2 - 2a2

p - .25 .002 .084 2.25 5.30 .42 .006 .027 .49 .96 .51

p - .50 -.009 .005 2.41 2.79 .86 .009 .008 .42 .44 .95

p - .75 -.086 -.137 4.87 8.36 .58	 11 -.002 -.024 .47 1.08 .44

t(4)

14

Overlap - .10
2 _ 2	 Bias	 nMSE	 E

01 c2 MLE	 MDE	 MLE	 MDE

p - .25	 .096	 .104	 7.35	 6.18 1.19

p - .50	 .015	 .004	 5.59	 1.82 3.07

a,	 2cr;

p = .25	 .061	 .098	 4.63	 5.20	 .89

p = .50	 .028	 .022	 4.49	 1.80 2.49

p - .75 -.076 -.058	 7.84	 3.68 2.13

*nMSE = n times the MSE where n = sample size

Overlap = .03
Bias	 nMSE	 E

MLE MDE	 MLE MDE

	.029	 .020	 .88	 .44 2.00

	

-.005	 .000	 .47	 .27 1.74

.044 .029 .95 .61 1.56

.010 .001 .55 .30 1.83

-.012 -.016 .57 .36 1.58
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normally distributed. This relationship between the

estimators held for both overlaps. The TALE and MDE were

quite similar at p=.5 while for p=.25 and p=.75 the

superiority of the MLE is more pronounced.

For the t(4) mixtures the relationship between MDH and

MLE is reversed in that the MDE generally has the smaller

bias and MSE. The superiority of the ME in this case is due

in part to the heavy tails in the t(4) mixture. The MLE

often interpreted an extreme observation as being the only

sample value from one of the populations with all remaining

observations belonging to the other. Due to the well known

singularities associated with a zero variance estimate for a

component distribution, Day(1969), we were concerned that

the observed behavior of the MLE was due to the fact that we

did not constrain the variances away from zero.

However,simulation results in which equal variances were

assumed (which removes the singularity) and also those which

used a penalized MLE suggested by Redner(1980) were very..

similar to those quoted here.

Although the MSE is a widely used measure among

statisticians for assessing the performance of an estimator,

the practical implications, for example, of an estimator

having an MSE three times larger than that for another

estimator, may not be immediately apparent. Recall that each

MSE quoted in Table 1 is based upon 500 estimates of p. In

order to provide a better appreciation for the practical

impact of differences in MSE, in Figure 2 we display

histograms of the 500 estimates of p associated with three

I
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different MSEs in the table. The true value of pin each

case is p= d. It is obvious that as the MSE increases, the

performance of the estimator deteriorates. Notice that the

MSE for Figure 2(c) is approximately three times greater

than the MSE associated with Figure 2(a), while the MSE for
Figure 2(b) is app roximately twice that for Figure 2(a).

Thus, from these histograms, an intuitive feel for

efficiency ratios of E=2 and E=3 can be obtained.

A very surprising result is that the starting values

obtained using the procedure outlined in Section 3 produced

estimators which were competitive with both the MLE and MDE.

In fact, for both the normal and t(4) mixtures, the MSEs

associated with the starting values were lower than those

for the MDE and MLE for every parameter configuration

associated with an overlap of .10. At an overlap of .03,

however, the starting values estimates weLe generally poorer

than those for the MDE and MLE.

5. Mixtures of Asymmetric Distributions

The simulation results of the previous section focus on

the performance of the MLE and MDE under deviations from the

assumption of normality. However, the t(4) distribution is

symmetric, and recent studies have indicated that there is

often a substantial asymmetry in the component distributions

for variables of interest in agricultural remote sensing. A

Monte Carlo examination of the performance of the MDE and

MLE, assuming normal components, when in fact the component

17
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F

	

	 distributions were asymmetric, was performed, and the

results of this examination will be discussed in this

'	 section.t

For purposes of our examination, we simulated mixtures

of X 2 (9) distributions with p=.5. In these simulations the

two distributions differed from each other only by a

location shift. Actually the component distribution to the

left is X2 (9) while that to the right is that of a 'shifted"

X 2 (9) with origin no longer at 0. This shift was varied to

provide overlaps of .01, .05, and .10. Since our estimation

procedures .involve a normality assumption, we used the means

and variances of the two component X 2 (9) distributions and

the true mixing proportions as our starting values. The

problem of obtaining starting values from the data in this

case is being examined. In Table 2 we display the results of

this simulation. Only when the two component distributions

were widely separated (overlap=.01) do the two procedures

provide reasonable results. However, when the two chi,-square

distributions are not widely separated, both estimators tend

to seriously underestimate p. In Figure 3 wo display the

three mixture distributions on which these simulations were

based. We see there that it is no surprise that the estimate

of p is less than .5, especially for p=.10. Both estimation

procedures view this as a mixture of normals, and therefore

make the reasonable interpretation that the density to the

left has a smaller variance and a mixing proportion less

than .5. These results point out the impact which skewed

distributions can have on the proportion estimation in the
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TABLE 2

Simulation Results

Mixtures of x 2 (9) Components

Sample Size 100
Nut,`ier of replications - 200

p - .5

.10

Overlap	 .05

.01

MLE MDE

p Bias nMSE p Bins nMSE
.28 -.22 6.8 .28 -.22 6.6

.35 '	 -.15 2.7 .37 -.13 2.3

.47 -.03 .4 .45 -.05 .5
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mixture model when normal mixtures are assumed. 	 a

Current investigation into this area centers around

modifying the estimation procedures by assuming that the

underlying component distributions belong to some family of

distributions whose members can be either symmetric or

asymmetric depending on parameter configurations. At the

present time, the Weibull distribution is being examined

concerning its usefulness.

6. Concluding Results

We believe that the results of the preceding sections

are of sufficient substance to motivate further research in

the area of MD estimation in the mixture model. Our results

indicate that the MDE is indeed more robust than the MLE in

the sense that it is less sensitive to symmetric departures
from the underlying assumption of normality of component

distributions. Several areas for future investigation have

already been identified in addition to the asymmetric

components problem discussed in Section 5.

First, simulations similar to the ones presented here
t:

should be performed without the assumption of only two

populations in the mixture. The performance of the MDE and

MLE should be compared when the number of populations is

known and larger than two. In addition the applicability of

the MDE to the problem of estimating the number of

populations also warrants investigation. We plan to examine

these possibilities.

i
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Second, the problem of applying the MDE to the multivariate

setting is of interest. Preliminary indications are that

such an extension will be possible.

Third, the choice of distance measure in the MDE is a

topic of interest. Our results are not meant to imply that

W 
2 

is optimal.

Finally, the MDE and MLE must ultimately be compared on

real data. Several related practical considerations have not

yet been investigated. For example, when applying these

estimators to LANDSAT data, the number of iterations allowed

must be small due to time constraints. In the simulations

described here, these constraints were not imposed and

iteration was allowed to continue until convergence was

obtained. The performance of the MDE and MLE under

convergence restrictions should be examined.
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PROPORTION ESTIMATION IN MIXTURES

OF ASYMMETRIC DISTRIBUTIONS

Wayne A. Woodward, Richard F. Gunst,
Hildegard Lindsey, and H. L. Gray

Center for Applied Mathematical and Statistical Research
Southern Methodist University

1. Introduction

A standard approach to the estimation of crop

proportions in agricultural remote sensing has been to

estimate the proportions pl ,p2 ,,,pm in the mixture density
.

f (x) = p l f l (x) + p 2 f 2 (x) + ... + pmfm (x)	 (1.1)

where m is the number of coriponents(crops) in the mixture

and f i(x) is the density associated with component i. The

usual procedure for estimating the parameters in the mixture

model of (1.1) has been to:

(a) assume that the component distributions are normal

(b) use maximum likelihood estimation.

The variable X has usually been taken to be the

reflected energy in the four LANDSAT bands or some linear

combination of these such as greenness or brightness. Recent

efforts have focused on the use of certain derived features

from growth models such as gmax and t max as variables in the

mixture model. Studies have indicated that there is often a
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substantial asymmetry in the distributions of these features

for a given crop. Woodward et. al.(1982) have shown that

asymmetry in the component distributions can cause a

substantial bias in the proportion estimators when the

mixture of normals model is assumed. As an example, in

Figure 1 we display the mixture density associated with the

mixture of two distributions. Examination of the figure

reveals that if we assume that the component distributions

are symmetric, then we must conclude that pl <p2 and that the

component to the right has larger variance. Actually, in

this mixture pl=p2 and the distribution to the left in this

mixture is a X 2(9) whale the component to the right is a

"shifted"X 2 (9), i.e. its left truncation point is at x=10

instead of x=0. We see that a bias will be introduced in

estimating mixing proportions in this mixture if the

component distributions are assummed to be symmetric, which

of course is the case when the components are assumed to be

normal.

In this paper we will discuss techniques for estimating

the crop proportions in the presence of asymmetric component

distributions. In particular the estimation procedures we

will propose assume that the underlying component

distributions belong to some family of distributions whose

members can be either symmetric or skewed depending on

parameter configurations. At the present time, the Weibull

distribution is being examined concerning its usefulness in

this area. The effectiveness of this technique will be

s
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2. The Weibull Distribution

The Weibull distribution is named after the Swedish

physicist Waloddi Weibull who used it to represent the

distribution of the breaking strength of materials

(Weiball(1939)). The distribution has been widely used in

recent years in the fields of reliability and quality

control. Its popularity is largely due to the flexibility

which it introduces into the model due to the fact that it

can be used to describe distributions which are symmetric or

skewed in either direction. For these,reasons we have chosen

to investigate its applicability to estimation in mixtures

of asymmetric components.	 The three-parameter Weibull

density can be expressed as

_ x-a Y
f (X) _	 ((X-01) Y-1 e (^^	 , x > a	 ( 2.1)

s,Y	 o

We will,use the notation X"uW(a, b,c) to indicate that the

random variable X has a three-parameter Weibull distribution

with parameters a=a, O=b, and Y=c. The parameter a locates

the loft truncation point and S serves as a scale parameter

while Y determines the shape of the distribution. In

Figure 2 we show Weibull densities for a fixed a and ^ and a

range of values for Y• From the figure it is clear that the

shape can vary dramatically as Y changes. In Figure 3 the
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fact that the Weibull density can be skewed to the left as

well as to the right is more clearly demonstrated. For

y=3.60232 aprroximately, the standardized skewness parameter

P3
61-	

3^ 2 ,where U i is the ith central moment, is zero
ul

indicating symmetry. If Y<3.60232 then the Weibull is skewed

to the right, while if y>3.60232 it is skewed to the left.

The Weibull distribution is unimodal, and if y11 the mode

occurs at
1/y

Otherwise, when 0<y<l, the mode occurs at xM=a.

Dubey(1967) has studied the Weibull distribution when

y=3.60232 and has concluded that it is very similar to the

normal. In particular, Dubey has shown that

sup IF Z (v) - FY (v)	 = .0078	 (2.3),

3<v*.3

where FZ denotes the cumulative distribution function of the

random variable Z n N(0,1) and Y is the standardized variate

Y=(X-11)/ a where where u and o 2are the mean and variance of

the Weibull variate X.

It should be noted that the Weibull distribution is

often given in the literature in two parameter form in which

a is assumed to be known ( and usually 0). However, unless

otherwise specified, when we refer to the Weibull

distribution, we will be referring to the three -parameter

form specified by (2.1).

The cumulative distribution function corresponding to

a
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the three-parameter Weibull is given by the closed form

expression

4x-a )y

FX W = 1-e	 (2.4)

while the noncentral moments are given by

u  =k o ( k ) ar-ksk1, (,k—y + l)	 (2.5)

From (2.5) it can be seen that

U	 a+or(Y+l)

c 2 = S 2 {r(2 + 1) - r 2 ( Y + 1)}	 (2.6)

The first three moments of the Weibull distribution

determine the values of a, s, and Y. The method of moment

estimators can be obtained using these relationships, but

unfortunately the estimators do not exist in a closed form.

The log-likelihood function for a random sample of n

observations from the Weibull distribution is

	

n	 n

	

kn(L) = nRny -nykns + (y-1)	 P,ri(X.-a) - 1-- I (X-a) Y (2.7)

	

i=1	 i	 5yi=l i

	Differentiating ln(L) yields	 the following	 likelihood

equations

n	 n

	

-(y-1) I (X -a)	 Y-1 
+ 	I (X -a) Y-1 = 0	 (2.8)

i=1 1	 syi=1 1
n

S = [n.I 
(Xi-a)yll/y

i=1
n	 X.	 X. -a y	 -1

Y = {	 [knOl[( i s ) - 1)}
=1

7

I
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Let a t S , and Y denote the estimators obtained from the

simultaneous solution of equations (2.8) to (2.10). If 0<a<1l•

A,,re Y i denotes the ith order statistic, these estimators
f

are the maximum likelihood(ML) estimators for the three

Weibull parameters. However, due to the restriction x>a in

(2.1), if a>Y l 	, then the MLE of a is taken to be Y1 and

0 and a are estimated from (2.9) and (2.10). As in the case

of method of moment estimators, the 14L estimators do not

have a closed form expression. For a general review of the

literature on Weibull parameter estimation see Johnson and

Kot2 (1970) .

3. Mixtures of Weibull Distributions

In order to examine the feasibility of using the

Weibull as a model for the component distributions in the

mixture model of (1.1), we will investigate the estimation

of the parameters in	 the mixture of	 two Weibull

distributions. This mixture density is given in (3.1)

X-a ^	 X-a Y
yl X-a

1) 
Yl	

e
-1 - ( 011) 1 + (1-p) 2 

( X-a 2 ) Y2-le- (-T72) 2

f(X) = p ^( S	 ^ S1	 1	 2	 2	 (3.1)

where the 7 parameters p, al, S l ' Y i ' a 2 , S 2 , and Y 2 are

assumed to be unknown.

Previous research in this area includes that of

Kao(1.959), who proposed a graphical procedure for estimating

the parameters in (3.1) when one of the location parameters

is assumed to be known and equal to zero. The estimation of

r
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the 6 remaining parameters is accomplished using a graphical

procedure whose applicability to our problem seems to be

limited although some of his estimation rules could be

automated. Rider(1963) and Falls(1970) propose estimating

the parameters of a mixture of two-parameter Weibulls using

the method of moments. Falls' procedure involves estimating

the mixing proportion p using a graphical'procedure similar

to that of Kao.

Maximum likelihood estimation of the parameters of

(3.1) has been discussed by Looney and Bargmann(1982). The

likelihood equations obtained by differentiating the

log-likelihood function ln(L)

n

kn(L) _	 {2n[pf1 (X i) + (1-p) f 2 (X i ) ] }
i=1

with respect to each of the 7 parameters yields the

likelihood equations
n	 n

(Y j - 1 ) I f(j1Xi)(Xi-aj)-1- Y - I f(jjXi)(Xi-aj)Y3-1=0.j=1,2
i=1	 Sj i=1	 (3.2)n	

Y	 n	 1/Y
j,	

(3.2)

 (X
i
-a j ) lf ( j l x i ) ]/ I f(j 1 X i )}	 3^ j=1 , 2	 (3.3)

i	 n=1	 i=1
Y

y j ={ [ L ( (Xl ^-) 3 -1) ^n( Xl ) l/	 f (j (Xi) }-1 j=1,2	 (3.4)s
i=1	 j	 3	 i-1

P = n 1 f(llXi )	 (3.5)
1=1

where f (i j x) = p if i (x)/f (x) with f i (x) denoting the ith

component density and f(x) the mixture density. Solving this

set of equations for the maximum likelihood estimators is

difficult due largely to equations (3.2) , which are not in

fixed point form. Looney and Bargmann(1982) suggested a

9
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procedure, in which the shape parameters Y1 and Y 2 are fixed

independently at each of the values

1 1 1 1 2	 3{51 4 ^ 
'51 

"T? 7F 1, 71p 2, 3 1 4 5 }

A n

and, for each of the ( Y1 , Y2 ) pairs, . " preliminary" maximum

likelihood estimates of the remaining 5 parameters are

found. A search procedure results in selecting the (Y 11 Y2)
A	 i

pair for which ln(L) is maximized. With Y 1 and Y 2 fixed at

these values,	 maximum• likelihood	 estimation for	 the

remaining 5	 parameters is	 then carried	 through	 to

convergence. The Looney and Bargmann procedure for solving

the system of equations (3.2) - (3.5) seems overly

restrictive with respect to the selection of possible values

of the shape parameter, while expansion of the search

procedure to allow for more shape parameter values would

probably be prohibitive because of time constraints.

However, solution of these likelihood equations directly

appears to us to be quite untractable. For these reasons, we

have investigated	 the	 use	 of	 minimum	 distance(MD)

estimation, first introduced by Wolfowitz(1957), for

estimating the 7 parameters in the mixture of Weibulls model

given in (3.1). Woodward et. al.(1982) have recently studied

the use of MD estimation in the mixture of normals model.

These authors showed that MD estimation was easy to

implement in that setting, and that MD estimators showed to

be superior to YIL estimators under departures from component

normality. Since our use of Weibull components is due to the

a
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flexibility which it introduces into the model rather than

underlying theoretical justifications, we definitely need an

estimation procedure which is robust to departures from

assumptions.

The minimum distance estimator of the parameter 6

(possibly vector valued) is defined to be that value of e

which minimizes the distance between H8 and Fn where

H= {H6 :6eQ} denotes a family of distributions depending on 6

and Fn denotes the empirical distribution function, i.e.

Fn (x)=k/n where k is the number of observations less than or

equal to x. The family of distributions H is referred to as

the	 projection	 model,	 where a in	 this	 case

6=(p, al , S 1' Y 1' a 2, S 2' Y2) and H
6 (x) is the distribution

function associated with a mixture of two Weibull components

given by
X-a Y1	 X-a Y

- (	 1)
(77

2) 2

	

H 6 (x) = p[1-e	 1	 ] + (1-p)[1-e	 2	 ] .	 (3.6)

Note that in contrast to the situation in which the

projection model is taken to be the mixture of two normals,

H e (x) in (3.6) has a closed form expression. The choice of

distance function to be used to measure the distance between

two distributions is a topic of current interest in the,

field of MD estimation. Woodward et. al.(1982) used the

Cramer-von Mises distance, W 2, given by

2 = f[ G 1 -G 2 (x) 1 2W

	

	 (x)	 dG2W	 (3.7)
_C

where G1 and G 2 are two distribution functions, and we have

I
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chosen to use this distance measure in the current study.

The distance between a distribution function H 8 and the

empirical distribution function F n , ,,hich is needed for

calculation or the MD estimator, is given by the simplified

expression
n

Wn	 12n +
	 [ H8(Yi) _ i_n532 ,
	 (3.8)

i=1

where Yi denotes the ith order statistic. Since HP) exists in

closed form, the MD estimator in this case is easily

obtained by using nonlinear least squares techniques to

minimize (3.8). We have chosen to perform this minimization

by using Marquardt's(1963) procedure.

4. Simulation Results

In Section 3 we discussed the problem of estimation in

the mixture of Weibulls model. From that discussion it

t
	 appears that the minimum distance techniques are preferable

for . estimating the parameters in a mixture of three

parameter Weibulls, especially in terms of computational

convenience. In this section we will discuss the results of

an initial computer simulation which was designed fQr use in

evaluating the numerical capabilities of, this method. All

computations were performed on the CDC 6600 at Southern

Methodist University. In this section we will evaluate the

performance of tk MD estimation procedures discussed. Since

the usual procedure is to assume that the"components are

normal, we will compare the Weibull based fIDEs with the	 I

t ..

1
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normal based procedures. We have generated samples from

mixtures of normal components and mixtures of X2(9)

components. Obviously, we would expect the normal based

procedures to perform better than Weibull based procedures

when the mixture really is a mixture of normal components.

However, if the Weibull techniques are to be useful, then

they must give reasonable results in this situation since

the normal assumption does appear to be a reasonable

assumption in some cases. Since the Weibull with Y=3.6 is

very nearly normal, there is reason to believe that Weibull

procedures will perform well in this situation, We have not

simulated samples from mixtures of Weibull distributions,

but we plan to consider this in the future. Of course, as

mentioned in the previous section, we are most interested in

the performance of the Weibull based procedures when the

underlying components from which we 	 sample are not

necessarily Weibulls, but are realistic representativs of

the types of component distributions we see in practice.

Our simulation results are based on 200 samples of size

n=200 from mixtures of normal and of X 2(9) components. In

each mixtures the variance associated	 with the	 two

components are	 equal.	 In fact,	 the	 two	 component

distributions differ from each other only by a location

shift. We have simulated from mixtures having mixing

proportions of .25, .50, and .75. We have simulated from

mixtures with varying degrees of separation between the. two

component distributions. Overlap as defined by Woodward

i

r
	 `d	

z

2

w

13
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et.al.(1982)	 is a quantification	 of this separation. It	 is

defined as the	 the probability	 of misclassification	 using 9

the rule:

Classify an observation x as:

population 1 if x < xc

population 2 if x > x c

where without loss of generality, population 1 is assumed to

be centered to the left of	 population, and where xc is	 the

unique point between }i l and 112 such that

Pf l (xc )	 _	 (1-p) f 2 
(X

C )

Y

We have based	 our current	 study on "overlaps"	 of .03	 and

.10.	 In Figure 4 we display the mixture densities associated

with	 normal	 components.	 For	 each	 mixture,	 the	 scaled

components pfl (x)	 and	 (1-p) f 2 (x)	 are also shown. Note 	 that
i

the densities for p=.75 are not displayed here. Since of=02,

it follows that f p(x) =f1	 U1+u2-x)	 where f P(x)	 denotes	 the

mixture density associated	 with a mixing	 proportion of	 p.

Thus the shapes of	 the densities at	 p=.75 can be	 inferred

from those	 at	 p=.25. Likewie,	 parameter	 estimation	 for

p=.75 is not included in the results of the simulations 	 for

the mixtures of normals.	 In Figure 5 we display the	 mixture

densities associated with the mixtures of	 X 2 (9)	 components.

Note	 that	 although	 we	 refer	 to	 a	 mixture	 of	 X2(9)
t

L-A
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distributions here, they are actually "shifted" chi-squares,

i.e. the left truncation points are different from zero.

For each of the simulated samples, three sets of

parameter estimates were obtained:

(1) ML estimates based on mixture of normals model (DILEN)

(2) MD estimates based on mixture of normals model (MDEN)

(3) MD estimates based on mixture of Weibulls model(MDEW)

Although the r1LEN and MDEN provide estimates of all 5 of the

parameters of the mixture of normals model, and the MDEW

produces estimates for all 7 parameters in the mixture of

Weibulls model, only the results for the estimation of p

will be shown. The mixing proportion is the parameter of

primary interest, and when dealing with the "wrong-model"

situations, the remaining parameter estimates often do not

have a meaningful interpretation.. For purposes of aiding in

the discussions which follow, we will calf, a component model

from which we actually simulated, a "simulation component

model", while a component model which is assumed under a

particular estimation	 procedure	 will	 be	 called	 an

"estimation component model". Thus, a "wrong-model"

situation is one in which the simulation com ponent models

are not the same as the estimation component models.

in the "correct-model" situations, i.e. using the NLEN

or MDEN to estimate the parameters of a simulated mixture of

normal components, the true parameter values are used as

starting values for the iterative estimation procedures. In

all of the other cases, there is not a "true" set of
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parameters. For starting values, we have used the "true"

mixing proportion, and then estimated the parameters of each

component separately using a method of moments procedure.

Consider a situation in which the estimation components are

normal. We obtain starting values for each component by

equating the first and second moments of the corresponding

simulation and estimation components and using these to

obtain u i and cr for the normal estimation component. When

the estimation components are Weibull, we have taken the

approach of setting the starting value for Y at Y =3.6 For

each component. Then the first two moments of 	 the

corresponding simulation and estimation components are

equated to yield starting value estimates for the other two

parameters. We believe that this provides a "neutral" start.

If the final estimates reflect the finding of substantial

skewness for one or both of the component Weibulls, this

will be because of the data and not because of "skewed"

starting values.

The normal component models were generated with u l =7.5,

Cy = cr2=1, and u2 positioned so that the desired overlap is

obtained. As mentioned previously, both components in the

chi-square mixtures were "shifted" chi-squares. In our

simulations, the left truncation point for population 1 was

always taken to be 7.5, and for population 2 it was located

so that the desirei? overlap was obtained. In the MEN and

!•ADEN procedures, the natural constraints a2>0, a2>0 , and
0<p<1 were imposed. Similarly, for the riDEW, the natural

18
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constraints S1>0 Y201 02>01 y 2 > 0, and 0<p<1 were imposed

along with the constraints a l>0 and a 2>0 which are

reasonable constraints on the left-truncation point which

'	 would be imposed due to physical considerations, etc,
a

In Table 1 we display the results of the simulations.

Foraiven simulation model and estimationg'	 procedure, we
A

t	 will obtain an estimate p of p t defined by

^	 n	 jA	 7	 s A	 1
J.	 1

p = ns 1 1 Pi

where p i is the estimate of p for the ith sample, and n s is

the number of samples. Then based upon the simulations,

estimates of the bias and VISE are given by:

1 ns ^
a

bias= n-	 (Pi-P) = P - P	 a

s i=1

1	 ns ^	 2
MSE _	 (pi -P)

s i=1
Upon viewing the results, it can be seen that the MDEW

was competitive when tine component models were actually

normally distributed, and it produced the best overall

results for the,chi-square mixtures. Of particular interest

is the chi-square mixture where p=.5 and overlap=.10. This

is the mixture displayed in Figure 5c and also in Figure 1

(except for location shift). When symmetric components are

.aesUmed (as with the MEN an4 ;MDEN), a bias does occur in

the @stimation of p as discussed in Section 1. This behavior

tae been noted previously :by Woodward„ et.al .(1982). We see

froin the table that tree DIDLV periloxms substantially better	 3

i^:
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Table 1 - Simulation Results

Comparing Normal Based with
Weibull Based Estimation Procedures

Sample size - 200
Number of repititions = 200

Mixture of Normals

Overlap = .l0 Overlap - .03

p Bias MSE p Bias MSE
MLEN .27 .02 .022 .25 .00 .022

p -.25 MDEN .37 .12 .074 .26 .01 .004
MDEW .34 .09 .044 .30 .05 .011

MLEN .50 .00 .014 .50 .00 .002

p = .5 MDEN .49 -.01 .023 .47 -.03 .002

MDEW .48 -.02 .019 .51 .01 .004

Mixture of X2(9)

Overlap - .10 Overlap .03

'p Bias MSE p Bias MSE
MLEN .24 -.01 .061 .18 -.07 .006

p -.25 MDEN .41 .16 .098 .17 -.08 .008

MDEW .50 .25 .122 .29 -.04 .007

MLEN .27 -.23 .064 .45 -.05 .011

p -.50 MDEN .26 -.24 .061 .41 -.09 .010

MDEW .42 -.08 .024 .50 .00 .004

MLEN .50 •	 -.25 .070 .65 -x.10 .013

p -.75 MDEN .48 -.27 .085 .64 -.11 .016

MDEW .62 -.13 .032 .71 .04 .005
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than either of these normal based procedures on the basis of

both bias and MSE. In Figure 6 we display histograms of the

200 estimates of p obtained from the three estimation

procedures for the chi-square mixture shown in Figure 5c. It

can be seen there, that the normal based procedures

consistently estimated p to be substantially less than .5

while the estimates based on Weibull components were in

general closer to the true vaue p=.5.

The one case in which the Weibull based estimates were

not best, was when p=.25 with overlap=.10. This mixture is

displayed in Figure 5a where it is obvious that estimation

should be difficult since there is no distinct contribution

due to component 1 in the mixture. Indeed, all procedures

yield poor estimates as measured by the high MSEs. In Figure

7 1 we display histograms of the p values obtained from the

three estimation procedures for this set of parameter

configurations. There it can be seen that the Weibull

procedure certainly gave the poorest results, with estimates

being spread nearly uniformly between 0 and 1. However, the

normal based procedures also had difficulty as is reflected

in the histograms. In fact, there appears to be a tendency

for the pi values to be very low (approximately .10).

However, p is very close to .25 for the MLEN since several

of the p. values were spread out uniformly between 0 and 1,
].

which increased the estimate of p.to near .25. However, the

large MSE shown in the table for this case reflects this

lack of accuracy.
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S. Concluding Remarks

Results in this report and in the report by Woodward,

et.al .(1982) indicate that the normal based procedures

perform p<torly in the presence of a mixture of asymmetric

distributions. In this paper we have suggested the mixture

of Weibulls model as an alternative to the mixture of

normals model in this situation. Results indicate that

minimum distance estimation of the parameters of a mixture

of Weibulls is a viable alternative to the normal-bused

techniques currently in use.

Before this procedure could be recommended and

implemented, further research is needed. For example, the

problem of how to obtain starting values for the parameters

of mixtures of possibly asymmetric components has not been

resolved. also, the Weibull based procedures should be

applied to LANDSAT data in order	 to examine their

performance on the types of asymmetry which will	 be

encountered in practice. The fact that an additional

parameter has been introduced into the model for each

component has caused the estimation procedures to be slower

than for the normal based procedures. Further investigation

concerning the practical aspects of actually implementing

the procedures is needed.

(ry
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i	 (~	 Critique of FCPF Automatic and Semi-Automatic
Proportion Estimator Results

W.A. Woodward

The following discussion will concern the results given

by FCPF in two recent NASA documents (1,2) concerning the per-

formance of three new automatic and semi-automatic proportion

estimation techniques. There is much overlap in these two

documents although the data and conclusions in (2) represent

revisions and additions to those given in (1). For this reason,

the current report will concentrate mainly on the data and con-

clusions in (2). Before proceeding further it should be pointed

out that we simply cannot draw certain inferences without access

to the data itself. However, we will draw whatever conclusions

we feel are warranted from the information provided.

Since we have no first hand experience with implementing

any of the procedures involved,we will make no remarks concerning

the implementation aspects of the various methods. Instead we

will restrict ourselves to questions surrounding the quality of

the proportion estimators being considered. This quality should

be viewed from the perspective of how the new estimators compare

with the current state-of-the--art analyst-intensive estimators as

well as from a more absolute viewpoint concerning simply whether

or not the new estimators meet acceptable standards.

Some useful information concerning the performance of the

estimators is given in the table on page 2-22 of (2). Before continuing

with the discussion of the results of this table some words of

^q



ORIGINAL PAGE IS
- 2 -	 OF POOR QUALITY

caution should be given. First, the historical procedure is not

a procedure but rather the various stages of the current P1A pro-

cedure during its evolution. Since 1979 is the only year during

which the current state-of-the-art PlA technique was utilized

the 1979 comparisons would be of most value from this perspective.

In addition, it is our understanding that the FCPF techniques were

developed using 1978 and 1979 data. We would expect procedures to

perform best on segments undergoing similar weather patterns, etc.

to the ones on which the techniques were based. Third, the 1976

historical data is based upon ratioed spring wheat rather than

spring small grains. For this reason the 1976 comparisons will

not be of much interest to us. Finally, it is impossible to tell

from the table what the relationship is, for example, in 1977 among

the 38 SSG4 segments, the 25 SSG3C segments, the 37 SSG3B segments

and the 45 historical segments. This should be made clearer as it

has a bearing on interpretation.

It is unfortunate that the mean absolute error (MAE) is not

available for the historical procedures. When dealing with biased

estimators, as the historical ones seem to be, the MAE and the mean

squared error (MSE) are more informative measures than the standard

deviation. The sample MSE is given by:
n

n
MSE = n
	

(pi pi) 2 = n	 e 

The 14AE and MSE measure the amount of spread in the data around

the ground truth whereas the standard deviation measures the

amount of spread around the sample mean which may be quite
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different from the ground truth. From the data on 2-22 the MAE

values cannot be computed for the historical procedures. However,

since MSE - °n
l
 Se + e2, we can calculate MSE values for each proce-

dure and each year. These MSE values are presented below:

Mean Squared Error Values for Data

of Table 2-22

1976	 1977	 1978	 1979

SSG4 131.9 136.0 110.0 182.3

SSG3C 99.7 147.9 131.1 354.7

SSG3B 75.2 92.5 121.3 311.9

Historical 100.9 65.7 69.4 46.1

The results of this table indicate that for 1977-1979 the MSE

values for the new procedures,are two to six times as large as

those for the historical procedures whereas MSE values for 1976

are similar. This reinforces the information given on page 2-22

concerning standard deviation comparisons. In comparing

estimators,unbiasedness is usually not as important a criterion

as MSE,i.e. the estimator with smallest MSE is usually favored

regardless of the bias properties of the estimators.

Thus the historical techniques seem to be substantially

better than the new.procedures on the basis of MSE for 1977-1979

with results in 1979 being quite desparate. On page 2-40 the claim

is made that when acquisitions can be made in windows 2, 3, and

4 (which is the optimal sampling situation) then SSG4 performs

well since e = .04. However, alorig ehe lines of our previous

arguments,SSG4 in fact does not perfo::m well in this most optimal
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of situations since the associated MSE is 124. From an absolute

perspective,it simply appears to us that the MSE's for the FCPF

procedures are too high.

At this point brief comment will be made concerning the

bias properties of the estimators. A 90% confidence interval

(based upon normality) about the true bias of a procedure is

given by
Se	

S
e

(e - t. 95(n-1) Vn— ' e + t .95(n-1) T )

where 
t.95(n-1) 

is the4.95 percentage point of the t distribution

with n-1 degrees of freedom. If this interval contains zero

then the bias is not significantly different from zero whereas

if this interval does not include zero,the bias is concluded to

be significantly different from zero at the a - .10 level of

significance. It is obvious that the effect of large standard

deviation or of small n is to lengthen this interval. Said another

way, the result of a larger standard deviation or a smaller sample

size is to decrease theop wer of the test i.e. decrease therp ob-

ability of rejecting unbiasedness when an estimator is really biased.

In the present setting the failure to reject unbiasedness in the FCPF

estimators is largely a function of larger standard deviation and

smaller sample size than it is due to smaller bias estimates. In

fact, if for each year the FCPF estimates had the same standard

deviation and sample size as that associated with the historical

data, only SSG3C and SSG3B in 1978 would have yielded estimates

for which the bias was not significantly different from zero. In

P
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summary,although the sample biases were generally smaller for

FCPF estimates than for historical estimates,we certainly agree

with the statement on 2-3 that there is no significant difference

in the biases of the two procedures. The authors were not as

careful in their statement on 2-19. It should be pointed out

again however that MSE is a measure of the goodness of an esti-

mator which is appropriate for comparing estimators whether they

be biased or unbiased.

The implications of the large MSE's are evident in other

data presentations in (2). The small r2 values in pages 2-23

through 2-25 are the ones associated with large MSE's with the

1979 results for SSG4, HOC, and SSG3B being extremely noteworthy.

One would certainly be hesitant to recommend a procedure which

yielded results as unrelated to ground truth as were the FCPF

results in 1979. The claim on page 2-19 that the lack of "good"

correlation in 1979 for ,SG4 is explainable,seems to be questionable.

If the outlier point is deleted, the correspondence between ground

truth and SSG4 estimates is still poor. Consider a vertical line

drawn through ground truth proportion .25 on the 1979 SSG4 *plot.

It can be seen that there is very little correlation between ground

truth and p on either side of the line. The correlation which does

appear is only due to the fact that SSG4 seems to do a fair job of

separating low ground truth proportions from high ones. Another

word of warning concerning interpretation of r 2 values is in

order here. The r 2 value measures the amount of fi.t to the line

which best fits the data. If this line is not approximately

the 1-1 line, i.e. the line with slope of 1 and intercept of zerok ^	 3

a
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then this fit is of little importance. The line drwn in the

plots on 2-23 through 2-26 is the 1-1 line. It is clear that

in some of the plots this line is not the beet fitting line

whose fit to the data is being measured by r 2 . A more meaning-

ful measure of fit would be one which measures departure from

the data to this 1-1 line. It is easily shown that MSE is the

average squared vertical distance from the data points to the

1-1 line.

We will conclude with a few additional comments. On page

2-50,data are given concerning processability rates of the proce-

dures. In 1978 data from the second satellite were available which

should have produced a higher processability rate. This increased

processability rate is visible in the 3 FCPF procedures but is

not visible in the 1978 historical data. Since SSG4 processability

for 1976, 1977, and 1979 was approximately 12-20% lower than that

for the historical,and since for 1978 the SSG4 rate was 24% higher

than the historical rate, there seems to be cause for concern

relating to the validity of the 1978 historical processability

rate. The error characterization analyses were interesting and

Ld indeed provide useful information concerning possible modi-

:ions of the FCPF techniques. It is not clear of course whether

)t modification in the procedure will be able to improve per-

4

ince .

In conclusion we feel that the results of the comparisons

_en the FCPF automatic and semi-automatic procedures and the

)rical results are not very encouraging. Although results
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and cautions are in general adequately related in (2) it is our

opinion that the apparent unbiasedness of the FCPF procedures

resulted in excessive optimism concerning their performance.

The problem with excessive variance with the FCPF procedures

was mentioned but seemingly did not cause great concern possibly

because of "apparently" larger bias for the historical procedures.

However our analyses involving the MSE as the standard for com-

paring estimators indicates that indeed the FCPF procedures do

not perform at the level of historical stkdl,yst-intensive techniques.
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Review of
A Crop Area Estimator Based on tShanges

k	 in the Temporal Profile of a
l

	

	 Vegetative Index
(Smith and Ramey)

i

by Wayne A. Woodward

The paper by Smith and Ramey contains some interesting

ideas concerning the use of temporal data in estimating a

vegetative index. I have several comments concerning the

paper:

1. :although I am not extremely familiar with the Cubic

Color Model of Cates, et al, I do want to make some

comments about it. To me it appears that normalizing the

readings from channels 1,2 1 and 4 based upon the segment

means in each of these bands can have some undesirable

effects.	 For example,	 if	 early	 in	 the	 season	 an

acquisition is taken when a	 majority of the segment	 is

bare soil,	 then on the	 CIR film it would appear	 mostly

green in color. However, the	 normalizing procedure	 of

dividing by	 segment means would	 assign what	 is	 very
JY

probably	 green (on	 CIR film)	 to	 the	 neutral	 gray

position. Consequently, a pixel with relative	 energies

of	 (4.99,4.98 ., 5.01)	 would be called red, and placed	 in

'r.	 the vegetative class when in fact it was represented 	 as

green on the	 film, and was probably nonvegetated. 	 The 7
t

same phenomenon could of course occur	 in reverse.	 In a

j	 addition,	 the fact that (4.99,4.98,5.01)	 and	 (0,0,10)

i. a
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are assigned the same "color" seems like an unfortunate

loss of information.

2. The fact that the procedure does no more than provide

a vegetative index, implies that it will not,, of course,

be able to provide proportion estimates for individual

crops.

3. The shortcomings which the authors list on page 9 are

quite serious. The fact that the underlying profiles are

not separated by a -,onstant violates a basic assumption

in the multiple regression (or analysis of -covariance)

model posed. Also, although only the parameter alpha is

of interest, it is likely that if estimation is a

problem, estimates of alpha will suffer along with those

of the betas.

4. Finally, the results of the technique as applied to

segment data requires some comment. To me these results

f.rom the 10 segments seem quite unimpressive. The

magnitude of the errors is unacceptably high, and the

authors' statement on page 11 that the technique

"apparently produced unbiased estimates" is completely

unfounded. It seems that the authors believe that the

impressive feature of their results is the "high"

correlation of .73 between observed and expected percent

1
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changes. Observing the 10 pairs of values upon which

4 this correlation is based reveals that there actually

does not seem to be a strong correlation between these

values. In fact, when the results for segment 1658 are

removed from the data set, then the correlation is only

.33. (My calculations showed a correlation of .67

instead of .73 for the data shown.) Examination of the

data in the table shows that both observed and expected

pewcent change for this segment were much larger than

those from other segments. This data pair thus had an

inordinate influence on the correlation coefficient

(sometimes called the "lollipop" effect.) If the

nonparametric Spearman correlation coefficient had been

used instead of the Pearson correlation which depends

upon a bivari•ate normality assumption, the correlation

using all 10 data pairs would have been only .43, 'again

an unimpressive result.

In short, the results of this paper certainly do not

convince me that the technique proposed here has any merit.

R
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