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Final Report

Establishment of a Center of Excellence
for Applied Mathematical and
Statistical Research

Introduction

In this report, we will describe the research efforts which
have heen undertaken at Southern Methodist Univ~rsity (SMU)
in support of contract NAS 9-16438. As the title of the
contract states, a first priority has been the establishment
of a "Center of Excellence" for directing and carrying out
research in the area of BAerospace Remote Sensing. Such a
center is needed in order to adequately organize and direct
mathematical and statistical research in support of the
AgRISTARS objectives. We have conducted a thorough
assessment of the current state of the art {as defined by
NASA and its contractors) with regard to estimation efforts
in support of the crop production estimation problem. . In
particular, we have reviewed old methods and have evaluated

methods in current use.




This review and evaluation process was facilitated

through seminars in which methods were presented and

discussed. Rirong the methods reviewed in this manner were:

Proportion estimators from LACIE - analyst dependent

(i) PC estimator

(ii) Procedure 1 estimator

(iii) etc.
CLASSY/APEP ORIGINAL PAGE IS
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AMOEBA/HISSE

Procedure M

Spatial/Color Sequence

ERIM Profile Model
Multitemporal Profile Modeling

Others

Reviews and evaluations have been presented as lengthy
written reports, such as the report in Appendix A on the
multitemporal profile modeling. Other reports have been in
the form of written and oral rgports' delivered to the
project director and at workshop settings.

Qur second major effort has been in the area of
development of alternative generic proportion estimation
techniques. Of course, there is no distinct dividing 1line
between the efforts involved in the two tasks. For example,

as we developed alternative  proportion estimation
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techniques, we compared these with the existing techniques.

This provides us with further insight into the performance

of the current procedures.,

(]

Major Reports

Cur efforts have resulted in three major written reports
which will be introduced in this section. These reports are
included in the Appendix. During the early months of the
contract, our major efforts were in the evaluation of
current and former methods. At this time, G. Badhwar had
introduced a procedure for modeling the multitemporal
profile for a crop. It was believed that this profile
(usually of "greenness") across the growing season would
provide feature variables with superior discriminating
power. Early results using this procedure showed that it had
promise. We were asked to evaluate this procedure and make
recommendations. Our report is included in Appendix A, and
was presented at the January 1982 Quarterly Technical
Interchange. Basically, we took a systematic look.at the
modeling of the greenness profile, and discussed the
properties which such a model’  should possess. Our major
concern with the early Badhwar model was that in that model,
emergence date, t3;, was not a location parameter. This
concern was mentioned in discussions with Dr. Badhwar in

October 198l. Recent modifications of the profile model have

Pos ST L R
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included emergence date as a locatiun parameter, and we
believe that our evaluations had an impact on" these
modifications. Various possible models for the profile are
discussed in the report in Appendix A, along with results
from both simulated and LANDSAT data.

In Appendix B we include a report which is a
compilation of results presented at both the April and
October 1982 Quarterly Technical Interchanges and at the
special mini-symposium &t NASA in December, 1982. These
results were also presentec at a special session on remote
sensing at the national meetings of the American Statistical
Association in Cincinnati, August 1982 and were published in
the Broceedings of the Section on Survey
Research Methods. This rteport has been distributed as
Technical Report SR-62-04376, and it summarizes some of the
results obtained in our second major effort, specifically,
the development of alternative generic proportion
estimators,

The mixtdre model is currently being used extensively
by NASA and its contractors to obtain crop proportion
estimates. CLASSY was an early result of this effort, and
current investigations in this area are included in the APEP
study headed ' by R. Heydorn. Parameter estimation in this
mixture model is being accomplished using maximum likelihood
(ML) techniques based upon an assumption that the underlying

component distributions are normally distributed. Although




ML estimators have desirable optimality properties when the
underlying assumptions are valid, they are notoriously
sensitive to departures from these underlying assumptions.
It is our belief that the underlying normality assumption in
the case of LANDSAT data is of gquestionable validity. For
these reasons we investigated alternatives to ML estimation
which were not as sensitive to departures from the
underlying assumptions. Our investigations in this area have
centered around minimum distance (MD) estimation. We
conducted a §imu1ation study in which the ML and MD
estimators were compared on both mixtures of normal and of
non-normal components, We have shown that MD estimators are
competitive with ML estimators when the components actually
are normal, while they tend to be superior when the
components are non-normal yet symmetric. The non-normal
model used is the Student's t with 4 degrees of freedom,
and similar results have recently been obtained for the
double exponential. Neither of these models is extremely
non-normal. Thus even when the non-nosmality would probably
not be detectable visually, the MD estimates are better than
the "optimal" ML estimates. The results of this study are
given in Appendix B.

Although the results shown in Appendix B basically
reflect research efforts 1in the area of development of
generic proportion estimation techniques, they also iﬁﬁolve

an "evaluation" component., For example, we believe that the

ORIGINAL PAGE (8
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results of our simulations provide much needed insight

concerning the role of the normality assumption in the
current implementations. For example, it was found that
normal based estimation techniques ofiten provide very biased
estimates when the underlying distributions are actually
skewed. For example, a 50-50 mixture of two chi-squared
distributions will "confuse" the normal based procedures
which assume that the underlying distributions are
symmetric. This phencmenon is mentioned in Section 5 of the
report in Appendix B. The problem of asymmetry is one of
extreme concern since the variables currently being used in
proportion estmation are feature variables from the profile
models, and these variables have been shown to have
asymmetric distributions. In Appendix C we have suggested an
approach to the problem of obtaining proportion estimates
when the underlying distributions are asymmetric. This
report reflects material which was presented at the October
1982 Quarterly Technical Interchange and at the December
1982 mini-symposium. Briefly, instead of assuming that
components are normally distributed, we have proposed that
ghey be assumed to have Weibull distributions. This
assumption is made since Weibull distributions are
"flexible" in the sense that they can be either symmetric or
asymmetric depending upon parameter configurations.
Properties of the Weibull are summarized in Appendix C along

with the proposed procedures for estimating the parameters

R T I
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in a mixture of Weibulls. This procedure utilizes the MD
techniques discussed in Appendix B. Although ML estimation
is shown to be quite untractable in this setting, the MD

estimators are relatively easy to obtain. The results in
this report suggest that this Weibull assumption may prove

to be a viable alternative to the procedures now in use.

Future Research Directions

In each of the reports in Appendices A-C, suggestions are
made for future research. We refer the reader to those
gections for a discussion of research topics which are

suggested by the current results.
Other Reports
In Appendices D and E we include two other reports which

were technical evaluations requested by the project

directors.
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A Tumporal Model For Crop Classification
by

H. L. Gray and W, A. Woodward

Introduction
In a recent article G. D. Badhwar (1980) suggested a
function pb(t) for modeling the greenress spectral profile of
a crop from emergence to harvest. The function pb(t) is
defined as follows:
Pb(t) = Pg y 02t 2t
Pb(t) = p06E§—)a exp [-B(tz-tg)], kg S t o
where
Po ™ Soil greenness
to = Emergence date
and a and B are parameters to be estimated.
By applying the Model T to Landsat spring wheat data for
LACIE segments in North Dakota and Minnesota, Badhwar demonstrated
that Model I could be used to successfully estimate to in these

cases. *

Badhwar (1979) and Badhwar, Carnes, and Austin (1981) have

also applied the model in (I)to the problem of crop classification.

It was demonstrated that o, B and to could be used as features to
correctly classify corn and soybeans. Again these methods were
utilized on Landsat data, and the results were impressive on the

data considered. Austin (1980), (1981) has reported on more

extensive testing of these methods on LANDSAT data with the results

e setres St #gn sre i are s % e tiibs
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again being quite good. In this paper we examine (I) more closely
from the perspective of a desirable mathematical model for describing
crop greenness. Some shortcomings of Model I are noted and some
modifications are proposed. It is shown how this modified model

can be utilized for crop classification from LANDSAT data. The

results are then demonstrated on some LANDSAT corn-soybean data.

Analysis

Even though a mathematical model may perform well on a selected
number of data sets, it seems desirable that it also satisfy some of
the more obvious physical constraints imposed by the phenomenon it
seeks to explain, If this is not the case, i.e., if it does not
satisfy such constraints, then i% behooves the investigator to
axplain why such constraints can be relaxed and the model still be
expected to perform its function.

Several properties which a function, p(t) for greenness should
possess are

(1) o(t) = p, t<t

0

(11) o(t) = o, L2t

and ﬁ. is the corresponding point in time.

, where P is terminal greenness

(i11) p'(t) should be independent of Po after full coverage.
(iv) to should be a location parameter, i.e., p should be a
function of t ~ ty
Several other criteria could be listed, but the above suffice
for the current discussion. The condition (iv) requires some

comment. Certainly the same variety of crop planted at greatly

differing times would be expected to have greenness character-

e s ot D evres 6
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istics which differ in more ways than simple translation. However,
the model in (T) 1s posad for crops in the same segment and as such
tie planting date¢ of the same crop are not expected to differ
greatly even though it is possible. In any event it is the opinion
of these authors that effects of to,ccher than location effects, have
to be relegated to noise in the model or treated as producing a
different classification,not necessarily generically different
but labeled different, spring wheat and winter wheat for example.
in any event there is no reason to believe that the model in (1)
speaks to this problem. Moreover,in (I),to is clearly not a
location parameter. Note also that although pb(t) satisfies (1),
it clearly fails to satisfy (ii) and (iii).

Actually Model I represents a considerable simplification
of the general model suggested by Badhwar in (1980). The following
definition for p(t) makes use of that general model and the

function
E(t;a,B) = ta'exp (-Btz) R @)

demonstrataed by Badhwar to be of some value in describing greenness.
Let F(t) be a probability distribution function such that F(t) = 0

for t < 0 and F(t) = 1 for t > A. Then define

p(t) = [1-pF(t=tg)Ipg + PF(t-ty) [py + DE(E=Eg;a,B)], (2)
where
p = proportion of ground covered for t > A
Po = soil greenness i

p, = crop greenness at terminal greenness

(24
"

emergence date

@ = greenup parameter

greendown parameter

o
il

constant
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In (2) clearly
a) alty) =0,
b) p(t) + py + (py=pp)p @ torminal greemness of the pixel
¢) 4f p = 1, p'(t) is independent of P for t > A

d) ty is a location parameter.

Thus interpreting (b) as a satisfactory approximation to
(11), wa can say that the model in (2) satisfles conditions (i)-

(iv) and makes use of important aspects of the exponantial
function found by Badhwar as a model for greenness.

Unfortunataly the model in (2) has 9 unknown parameters
(assuming that the distribution F(t) has one unknown parameter).
Since the data to which we intend to apply our model consists
of no morae than 8 acquisitions,(2) is obviously not acceptable.

Tha problem is complicated by the fact that it is desirable to
clasglfy the data as earvly as possiblae. Therefore,from a practical
point of view,ope can probably only count on 4 to 6 acquisitions
bafora 8 classification must ba wmrdr. This clearly eliminates (2)
as a practical model.

Rather than abandon (2), wve will now investigate the possi-
bility of reducing the number of unknown pavameters. In the pages
which follow,wa will investigate the affects of the simplication
we impose. Since tha data to be considered includes no information
fov separately estimating p, the model can with no loss in generality
be vawvritten as

p(t) = py o+ [A + BECE-tgia,B)] Flt-ty) (3)
where

A = (pl - po)p! Bow DD
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and now A and B are the unknown parameters to be estimated., The
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model in (3), therasfore, requires 8 parameters to be estimated, a
reduction of I.

For the data to be considered there is no deleterious effect
in going from (2) to (3) since no data are available from which to
estimate p, Py and D separately. It should be noted that (3)
applies whether or not we have full crop coverage (i.e. whether
or not p = 1), Of course the number of parameters in (3) is still
too large to be useful.

Investigation of LANDSAT Corn-Soybean data suggests that
assuming F(t) to be the distribution function associated with
a uniform density over (0,)), ylelds a reasonable linear approxi-

mation to F(t). Under this assumption we have

0 t <

! 0
F(t-t)) = % tg 2t A (4)
A—to
1 A<t
and (3) becomes '
o t <t
e-t, (t-t )%+ 2. (5
p(t) = Po * ATt +B g exp (-B(t-to) )
: 0 0
tg St <A

o + A+ B(t—to)a exp ('B(t-to)z)

A< t.

The model in (5) represents a reduction of one parameter over (3) since

the parameter A is absorbed in the uniform distribution. From

P et
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(3), note that for ty <t< A

p'(t) = AF'(t-to) + B[E'(t-ty3a,B)F(t=ty)
+ E(t—to;a,B)F'(t-to)] . (6)
But, if a > O,
E'(t-ty;a,8)F(e-t ) + E(t=ty3a,8)F' (t-t) . =0 .
trt,

The left hand derivative of p(t) at to is clearly zero. Therefore,
the derivative of p(t) exists at ty if and only if

AF'(t) = 0, )

where here F'(tb) denotes the right hand derivative at t,. Since
this seems desirable and F'(to) # O,we are left with requiring A = 0.

Since P1 # o this is clearly incorrect. However, it does not seem

that taking P1 = Pg would seriously degrade the model's ability to

classify since Py will probably not differ greatly from Py? and Py may be

nearly constant from crop to crop. Essentlally this error is due
to our linear approximaticn of F(t), for if F(t) were quadratic
the requirement that A = 0 could be eliminated. Nevertheless,
for the reasoné mentioned above, and the fact thét it results in

one less parameter, we now take A = 0 in (3) to obtain the model

t<t

Po 0

B o+l
ot Tt

(t-to)

p(t ) 0

oo + B(t-t) exp(-B(t-t)P)  £21 .

exp(-B(t-to)z) tg St <A (ID)

6
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Note that

2
p'(t) = ‘%%?%il (t-to)ae'B(t'tO)

ot+2

B(t-t.) 2
0’ (-2s)e'8<"‘to) for t, < t <A

P —
X-to

2

2
0’ -ZBB(t—tO) )

a-le-s( t-t a+1e-a(t:-t

] aB(c-tO) 0" for A <t .

Thus for p'(t) to exist at A we must have

B(A_to)a-le-ﬁ(k-to)z =0. (8)

Unfortunately this cannot occur sowe must examine themodel further. Since our
desire is to simplify the model we do not wish to add additional terms
to the model which would guarantee (8), especially for the purpose of
fitting the curve in the right tail, since 5y that time the data will
already be classified. It can be demonstrated numerically that B, A
and a play similar roles in Model II and as a result are jointly very
nonrobust to ertors. This is particularly true of B and a. With
only a few data points it therefore,is desirable to fix o orB in
advance.

In other words, when there are only a few data points available,
and there is error in the model, small differences in data values
can lead to large differences in B and o. This is due to the fact

that for fixed B or a a reasonable fit to the data can be obtained

by varying the other. We thus let B = 1 and arrive at the following

model =
p(t) o t <ty
o+l 2
= oot (e-ty) e ~R(t-ty) tg St A
A=t (II1)
2
= py+ (t-to)a e BlE=Eg). AstE,

where to, a, 8 >0, A > to.
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Model III is a five parameter model, and therefore is a
candidate for application on the data we will consider. Further
simplifications of this model come to mind. For example,nne might
simply fix A\ as some maximum value. One might also argue that
attempting to fit two curves together at a point so late in time
as \with any degree of validity, requires data past the point
of interest,and hence Model III should be modified to
<
SO A . ) TR (1v)
pg + B(t-ty)" exp (-B(t-ty)"), ty <t
where now B 1is again to be estimated.
Moreover,again noting that B and a play much the same role, and
that a classification is desired as soon as possible; it might further

be argued that p(t) could be reduced to the four parameter model

N po *
p(t) =

oo * (t)®  exp (-B(t-t)®) gy <t )

In the next section,we investigate via simulations the effects

on classification of the above suggested simplifications.

Feature Selection for Classification and Simulation

Once an appropriate model has been obtained the problem of
classification is not solved. The proper features to he utilized
and the manner ;n which they are to be used must still be decided.
Badhwar, Carnes, and Austin (1981) selected o,B, and to as the

appropriate features and utilized these in the Ho-Kashyap algorithm

(essentially the linear discriminant function) to form a discriminating

plane.
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It seems reasonable that other "features'" of the model obtained
might also prove to be as useful,or more useful,than the model para-
meters in separating crops. One feature which will be investigated
in the present veport is the maximum value of the fitted curve, If
e, is the Julian date at which this maximum occurs, then p(cm) is
tha corresponding feature of interest. In addition to the maximum
greenness it appears that cm-to. i.e. the time from emergence to peak
greenness, is also a feature of potential importance in the classifi-
cation problem. As our investigations continue,we anticipate the
examination of still other features,but in the present report we

will examine only these two features in addition to the model para-

Performance of the Proposed Profile Models

In this paper we have discussed a general profile model which

we believe 1is appropriate for purposes of describing the greenness

* of a crop acrogs time. However, the general expression for the model

is such that estimation of the parameters would be impossible given

the 5-8 observations typically available from LANDSAT observations.
Thus, various simplifcations of this model were proposed (Models II-V).
In this section,ve will discuss the results of our preliminary investi-
gations into the performance of these models and Model I proposed by
Badhwar.

Qur investigations have been primarily in two areas. First,we have
utilized Models I-V in order to estimate parvameters and features from 1978
field data on corn and soybeans from Segment 882 in Palo Alto, Iowa. From
the results of these investigations, we are able to find typical Model III

parameters fov corn and for soybeans. These parameters are then used
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to simulate profile data from our "typical" corn model and soybean
model,and investigate the performance of the various models based
upon these simulations. Model III was used in the simulation since
¥
it was the most general model for which "typical" values of the
parameters could be found.

As mentioned earlier, we will not primarily be investigating
the models with respect to estimation of the model parameters but
for the purpose of ascertaining the effect on features such as
.%o and p(tm) which may be used for classification. In Table I,
the value of tm 1s given for each of the models under consideration.

Table I - Julian Data (tm) of Maximum Greenness
Associated with Models I-V
Model tm
/a
I 28
a+l o
/ +1
t:0~l~»’2B T ¥ >‘>'/’273“‘
II, III b+ /a 1f ) < /o
0 28 28
/a / o+l
tO + A if 78 < X< EE—
/o
Iv, v to + 6

For each model to be considered here, the parameter estimation
was accomplished using Marquardt's (1963) method for unweighted least
squares estimation of nonlinear parameters.

00

Parameter Estimation Utilizing 1978 Data from Segment 882

In this section,we will report the parameter estimation results,

based upon the utilization of Models I-V, for modeling the multitemporal

10
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behavior of corn fieygstOI-CO7 and soybean fields SY11 - SY17., 1In

i

Figure 1, we %nve plotted the five models obtained for soybean field
sY. It,igfé%teresting to note the various "interpretations" con-
cerning the proper functional curve to fit to these eight points.
Notice in particular the fact that ty> the emergence date, varies
considerably from model to model.

In Table II we present the results of the parameter estimation
based upon Models I-V. Several observations can be made concerning
the resu;ts displayed in Table II. A first observation is that
parameter estimates in Model II are less stable than those in the
Model III, In Model II the parameter estimates of a and B are quite
variable, a behavior which was discussed earlier in this report.
Based upon the results for Model II and Model IIT, it would appear
that indeed more stable estimates of o are obtained when B 1is set
equal to a constant (in this case 1). It should be noted that the
stability of B is also affected by the inclusion of B in the model,
but not to the extent that a is affected. It appears that we simply
do not have a sufficient number of readings to obtain reliable esti-
mates of 6 parameters. It should be noted that the 1978 data for
segment 882 contains 8 observations. Obviously, in most situations,
as many as 8 observations will not be available and hence the nead
to find a satisfactory reduced model is clear.

Using Model III, there is an indication that both o and B
are larger for soybeans than for corn, and reasonable separation
between the two crops could be made using these two parameters.

Also of interest is the fact that the estimation of the maximum

greenness and tm-to features in Model II are as stable as they are

11
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Table II - Parameter Estimation for Corn and
Soybean Field Data - Segment 882

>

15.2
18.9
21.5
18.6
14.4
19.1
18.6

24.9
23.7
21.7
24,2
24.9
27.7
26.9

*é = ,0001 Bc
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MODEL I

146
147
149
146
134
147
146 .
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165
155
152
158
158
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163
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39.9
43.8
52.1
44.8
44.2
43.8
43.9

42,6
52.1
48.4
49.9
52.3
55.6
51.5

57
61
61

58
56
55
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MODEL II
o Bc t:o A-t:o B Max t:m-t:o
co1 .89 2.08 142 125 3.9 40.6 67
o2 -.15 1.89 - 158 73 153.9  43.5 48
o3 .39 2,20 154 68 23.3  52.2 56
CORN 04 -.23 1.91 158 63 220.7  44.9 45
05 1.02 1.38 141 45 1.0 44.6 61
06 .02 2,20 155 76 91.7  44.0 48
co7 .93 2.76 144 123 4.8  45.5 59
SY11 1.06 2.03 152 70 1.20  41.7 71
SY12 1,12 2,51 151 80 1.52 51.7 65
SY13 2,06 2,85 155 0 .03 49,3 60
SOYBEAN SY14 1.11 2.49 152 79 1.47 49,2 65
SY15 1.15 3.13 157 74 1.57 52.5 58
Y16 1.14 2,78 160 71 1.43  55.3 62
sY17 1.12 2.64 155 76 1.50  50.8 62
MODEL III
a Bc to A-to Max tm-to
co1 1.11 1.83 136 95 40.1 76
o2 1.07 2,07 150 39 45.4 51
o3 1.15 2.35 150 48 56.7 49
CORN  CO4 1.07 2.08 151 23 45.5 51
o5 1.01 1.34 141 45 444 61
06 1.07 2.01 146 45 45.9 52
co7 1.06 2.04 149 27 44.6 51
SY11 1.10 1.98 151 80 41.6 73
SY12 1.24 2.75 152 79 52.2 64
SY13 1.12 2.06 146 62 52.7 62
SOYBEAN SY14 1.21 2.59 151 80 49.6 65
SY15 1.26 3.10 155 76 52.5 60
SY16 1.23 2.80 159 72 55.3 63
SY17 1.23 2.76 154 77 51.1 64

s
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MODEL IV
o Bc to B Max cmfto
col .70 1.59 158 3.24 40.1 47
¢02 1.10 2.35 156 .93 44,5 48
co3 2.29 3.00 146 .01 53.2 62
CORN €04 .81 2.13 158 2,72 45.6 44
€05 «S51 1.4) 158 7.10 4,7 42
C06 1.08 2,40 155 1.03 44.6 47
co7 .75 2.11 158 3.41 44,7 &2
SYll 3,24 3.09 148 .0002 42,5 72
SYl12 3,02 3.13 145 .0005 52.5 692
SY13 2,98 2.85 138 .0006 49.3 72
SOYBEAN 8Yl4 2,97 3.41 149 .0007 50.5 66
SY15 3.00 3.70 151 .0008 53.0 64
SY16 2.88 3.46 156 -0010 55.6 65
SY17 3.05 3.45 150 L1206 51.7 &7
MODEL V
] Bc to Max tm~t0
co1 1.02 1.85 155 40,4 52
€02 1.08 2,34 156 44,5 48
€03 1.14 2.48 158 52.3 48
CORN C04, 1.09 2.41 155 45.9 48
€05 1.05 1.86 152 45,1 53
o6 1.09 2,40 155 44,6 48
co7 1.09 2.46 155 45.1 47
SYll 1.09 2.87 174 42.4 44
SY12 1.18 3.23 170 53.2 43
SY13 1.10 2.25 158 48.3 50
SQYBEAN SYl4 L.17 3.4l 172 51.1 4]
5Y15 1.20 3.69 172 53.8 40
SYL16 1.19 3.21 175 55.6 43
SY17 1.18 3.35 172 52,1 42
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in Model III. Thus, although the addition of the extra parameter B
caused problems with the stability of the parameéer estimation, the
fitted curves were quite consistent at least with regard to the two
features. From Models I and III we see that the maximum greenness

is greater for soybeans than for corn, and that corn reaches its

maximum greenness somewhat sooner than do soybeans. Again, reasonable

separation between corn and soybeans could have been obtained based
upon these two features for.either Model II or Model III. The esti-
mation of t, 1is approximately equally stable for Models II and III,
with a slight indication being given that soybeans emerged later
than corn. (Thus at least at this point there appears to be no R
negative effect in going from Model II to IIX.) Also of interest

1s the fact that the addition'of the parameter B has a tremendous
effect on A - tye i.e. the time from emergence to maximum crop
coverage (as mentioned previously, maximum crop coverage need not
be total coverage for our model to apply). ﬁased upon the data

*

from Model III, it appears that time to total coverage, A - tO’
is longer for soybeans than for corn. l

The comparison between Models IV and V gre similar to those
between Models II and III. In particular, the ihclusion of the
parameter B in the model results in unstable estimates of both B
and a. For these models, the general tendency is for o and g to
be larger for soybeans than for corn. The emergence date, to,
is of considerable interest. For Model IV, there does not seem
to be any difference between emergence date for corn and soybeans.

However, for Model V the estimate of CO for soybeans is approximately

170, which is significantly later than that for corn. Again, maximum

21
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greenness and tm-to seem to be stable features for both models,
with soybean attaining a larger value of greenness. The result
of the late estimate of to in Model V is to cause tm-to to not
separate crops, whereas for Model IV this separation was apparent.
The parameter estimation using Badhwar's Model I was quite
stable. Again, the tendency is for o and B to be larger for
soybeans than for corn, emergence date to be later for soybeans,
soybeans to attain a higher greenness, and for corn to attain its

maximum greenness earlier than soybeans,

Simulations

In order to gain a hetter understanding of these models we
have examined their performance in a simulation study. As a
result of the parameter estimation study using Segment 882, we
selected a typical set of corn parameters and a typical set of
soybean parameters for Model III. These parameters and associated
features are given in Table III.

Table III ~ Parameters and Features of
Corn and Soybean Models (Model III)

Corn Soybeans

Po 7.0 7.0

o 1.07 1.24

B: 2.07 2.75

tg 150.0 150.C

A=t, 40.0 80.0
Max 46.2 52.0 ,
t -t . 31.0 64.0

m O

*g = ,0001 8.
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Note that although there was an indication that soybeans emerged
somewhat later than corn on Segment 882, these simulations are
based upon a common emergence date. One hundred realizations from
each medel were generated.

The simulated observations were of the form

pg(t) = p(t) + w(t)e(t)
where p(t) is as defined in Model III and €(t) is a normal random
variable with zero mean and unit variance. Note that £(t) and
e(t') are independent if t ¥ t', In the simulation results presented
here we have also taken w(t)= 1,

Models I-V were applied to each realization within a set and
parameter estimates and features were obtalned. Summary statistilcs
describing the results of these simulations are presented in Table IV.
For each parameter we indicate the average of the parameter values
obtained over the 100 realizations, the coefficient of variation in
order to provide an indication of relative varilability of each
parameter, and lower and upper .90 content tulerance limits with 95%
level of confidence. In other words there is a 95% level of confi-
dence that 90% of parameter estimateseobtained in this manner would
fall hetween the two tolefance values given, These values will agsist
the reader 1? discerning the separability of the two crops on the
basis of the given parameter. It should be noted that these
tolerance limits are based upon an assumption that parameter esti-
mates obtained in these ways will be normally distributed. This may
or may not be a good assumption but nevertheless the tolerance limits
given should provide crop separability information to the reader.

The results of the simulations are similar to the results

crsidreny o
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CORN

SOYBEANS

cv
LTL
UTL

cv
LTL
UTL

g = ,0001 fsc

cv
LTL
UTL

cv
LTL
UTL

cv
LTL
UTL

cy
LTL
UTL

1. 84

1.22

1.29

>

18.6
.04

17.2

20.0

22.9

19.0
24.6

2.04

.19
1.32
2.76

2.60

.10
2.13
3.07

Table IV

Model I

~ R
BC

2.10

.05
1.92
2,28

2,48

2 28
2.68

Model II

~

o

152.1
.04

141.9

162.3

151.3
.04

141.2

161.4

Model IIT

147.5
.01

143.6

151.4

154.6
.01

150.8

158.4

A-t

2.82
.61

60.7

78.3
11

61.9

94.7

58. 9

75.7
11

59.5

91.9

\J FP
Max tm-to
44.6 62.7
.01 .03
6334 58.8
45.8 66.6
51.9 60.4
.01 .04
50.8 56,3
53.0 64.5
fl M;x
2.05 45.6
2.26 .04
0.0 41.8
10.7 49.4
3.82 52.1
2.17 .01
0.00 50.8
19.36 53.4

Max t ~t
m

0

45.6  51.9
04 .12
42.5 40.6
48.7  63.2
52.6 65.2
.02 .05
50.6 58.9
54,6 71.5

24

t -t
m
53.2

17

36.6
69.8

62.7

51. 6
73.8




CORN

SOYBEANS

CORN

SOYBEANS

Table IV (continued)

Model IV
_ a B to
X 1.02 2.33 157.5
cv .18 .08 .02
LTL .68 1.97 151.4
UTL 1.36 2.69 163.6
x 2,31 3,19 152.2
cv .12 .06 .03
LTL 1.79 2.84 144.4
UTL 2.83 3.54 160.0
Model V

o Bc to
x 1.08 2.41 156.9
cv .01 .05 .01
LTL 1.06 2.19 155.1
UTL 1.10 2.63 158.7
x 1.18 3.23 168.5
cv .01 .05 .005
LTL 1.16 2.91 167.0

UTL 1.20 3.55 170.0

WVONMH W
s o o o

OO
HONN

.03
3.39
.00
.21

45.5
.01

44.2

46.6

53.1
.01

51.8

54.5

ORIGINAL PAGE IS

Max

45.3
.02

43.9

46.7

52.7
.01

51.5

53.9

47.5

.02
45.5
49.5

42.7

40.9
44-5
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obtalnad from Segment 8§82 data. For example, the eatimation of B
in Models TYT and IV da quite unatable as indicated by the large
coaffictenta of varlation. Yor all Five wodels, waximum grasonesas
ig a stable featura which seems to provide good separation batween
corn and zovbeang. The tima Lfrom emargencae to maximum greennass
19 not quite as atable a featuva as maximom greennass yeat it seews
to provide separvation batwean avops Fov all models except Modal 1.
The parvamatevs & and f tend to be lavger for sovbeana than for
corn in all wodala, Nowevar, as seen in the Segment 882 data,
the eatimation of o 4n not as atabla in Modela IT and TV fuvolving
tha 1} parvamatav, In Modala IT and IV the estimation of B ia very
unatabla, Also of note ia the fact that the estimation of :\»t:a
in Modela II and ITT fa not aa atabla as onae would hopa. ITn Modala
TT and ITT the estimatad pavawmetevs can be compared with tha true
pavameters wiven tn Table TIYT which were uwsed in the sinulations.
Tn thia sitvation, the moat diffionlt pavameter to estimata appears
to ba the pavameter B In Madel TT. Data wag gonevated from Model 13X
whieh fa Model 7 with W=l, However vUitting Model IT to the Jdata vields
antimatea for B of 2.08 and 3.82 for corn and zovhaang veapectivaly, o
Tn additdon, \-RQ ta meen o be difficult to estimate belny sigod=
fLoantly underastimated for corn,

Of additional intevest ia the esgtimation of by Thare seems
t0 be separation batween orops based upon gO for Model ¥ and Model

Voo Thia ts sueprelstog sloee the true value for g, in the atmilation

Madel TIT fn a yeasonably good approximatfon to the true wrowth

model (and we helieve it ta) then Jdd{ferences in the estimation of

st
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to using models such as Models I and V may be due to adjustments
which must be made in fitting a non-optimal model to a set of data.
It seems that crop separation based upon ty must be viewed with
caution. It is clear that 1if, for example, ty = 165 for corn and
tn = 150 for soybeans and Model II were the appropriate model, then
probably no separation between the two crops would be seen using
Model V on the basis of 20'

A final observation will be made concerning the role of to
in Models T - V. Obviously in Models II-V, to is a location para-
meter. As such, the shifting of each date in a set of observations
by K will result in no change in the estimation of the other model

parameters as long as the starting value for t, is also shifted by

0
K. However, to in Model I is not a location parameter, and it is
of importance to understand the effect on the remaining parameters
of Model I which result from this shift by K. In Table V we
illustrate these results for K = =10, 0, 10, and 20. As an
explanation of these results note for example that the 100 corn
realizations which were énaleed by Models I-V in Table IV were
again utilized here and the results for K = 0 are identical to
those in Table IV. For K = -10, the 100 profile realizations
remained unchanged ye¢t the generated profile value for time t is
now associated with time t-10, i,e. we have assumed that emergence
date occurred 10 days earlier than ty = 150, The corresponding
parameter estimates in Table V are those estimates obtained by

applying Model I to this augmented data set. Note that the

starting value for t, was also adjusted by ~10. Similar proce-
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TABLE V - The Effects of Shifts in to on the Parameters of Model I

* -
to o B Max tm t

c 0
150-10 16.8 2.10 44,6 62.5
150 18.6 2.10 44,6 62.7
150 + 10 20.4 2.10 44,6 62.9
150 + 20 22.3 2,10 44,6 63.1
150-10 20.8 2.48 51.9 60.2
150 22.9 2,48 51.9 60.4
150+10 25.1 2.48 51.9 . 60.6

150420 27.3 2.47 51.8 61.4
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dures resulted in the remaining entries in Table V. Note that «
is the only parameter significantly effected by this shift in
emergence date. However, based upon Table V we see that soybeans

with emergence date of t, ™ 140 would be relatively ‘indistinguishable

0
from corn with emergence date to = 160 on the basis of a. However,
the separability associated with f and the "featurss" is still
present.

There is a final observation that should be made concerning
Table V and Model I, That is, from Table I, & appears to be a
monotonically increasing function of 20 and visa versa. The impact
of this is that late emergence dates give significantly larger values
of & so that in this model & is certainly not a reliable feature.

The reverse is also true, i.e., EO is a monotonically increasing
function of &. Therefore large values of & give large values of EO'
This is obviously highly undesirable and as a result, one could not
expect reliable estimates of to from Model I.

The validity of this observation on actual data is born out by
inspecting Table II. Note that & is nearly a monotonically increasing
function of EO’ The pattern is also clear for soybeans, i.e. larger
values of EO tend to give larger values for ;. Thus whether from a
careful analysis of the actual data or the simulated date, ; from
Model I by itself should not be considered a viable parameter for use

in discriminating Corn and Soybeans. Moreover Model I should not be

expected to produce reliable estimates of to.

Final Comments

We believe that the results in this paper provide important



=3

ORIGINAL PAGE S
OF POOR QUALITY

information concarning both the development and the performance
of various temporal profile models. It should be emphasized,
however, that the results presanted hare are very preliminary in
nature. Further investigation into the performumce of these
models is suggested in orvder to provide more experience with both
real data and simulation., It is the opindon of thae authors that

should bhe

" L
the parformers of "features" such as max and t  ~t,

investigated further. From the discussion in the previous section,

we definitely do not recommend using & in Modal I. TFuorther investi-~
gations should also consider the problem of separvability by finding

discriminating surfaces based upon the utilization of more than

one parvametar or feature,

30
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A COMPARISON OF MINIMUM DISTANCE AND
MAXIMUM LIKELIHOOD TECHNIQUES
FOR PROPORTION ESTIMATION

Wayne A. Woodward, William R. Schucany,
Hildegard Lindsey, and H. L. Gray
Center for Applied Mathematical and Statistical Research
Southern Methodist University

1. Introduction

A common objective in remote sensing is the estimation

of the proportions pl,pz,...,p“‘in the mixture density
£(x) = p £, (x) + szz(X) + ve. + pmfm(x) (L.1)

where m is the number of components(crops) in the mixture
and for component i,gi(x) is a (possibly multivariate)
density. In pastvpractice this density has been assumed to
be (multivariate) normal with X being the reflected enezgy
in four bands of the 1light spectrum, certain linear
combinations of these readings, or other derived "feature"
variables. Generally the parameter estimation has been
accomplished using maximum likelihood techniques. In this
paper we examine the use of minimum distance estimation as
an alternative to maximum 1likelihood and we will compare
the performance of the two estimation techniques when
dealing with mixtures of normal and of non-normal densities
with varying amounts of separation. We will focus on the

mixture of two univariate distributions given by

£(x) = pfy(x) + (1-p) £, (x) ' (1.2)
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We are also assuming that only data from the mixture
distribution are available. Cther sampling schemes in which
training samples from the component distributions are also
available have been discussed by Hosmer (1973),

Redner(1980), and Hall(l198l1) among others.
2. Estimation in the Mixture of Normals Model

In this section we will assume that fl(x) and ﬁz(x) in
(1.2) are normal densities with mean and variance My qi and
uz,og respectively where it is assumed that all five
parameters “l’ci"h'°§' and p are unknown. Techniques for

estimating these parameters will be discussed.

(a) Maximum Likelihood

Several recent articles have dealt with the problem of
obtaining the maximum likelihood estimates of My o ci, My v
cg, and p (Hasselblad(l966), Day (1969), Wolfe(1970),
Hosmer (1975), Fowlkes(1979), Lennington and Rassbach(1979),

and Redner(1980).) Since the likelihood function

L o= £(x))£(x,) wo. E(x) (2.1)

where n is the sample size, is not a bounded function in
this case (see Day(1969)), the objective in the maximum
likelihood approach is to find a local maximum of L. This
maximum is usually found by setting the partial derivatives
of log(L) with respect to each of the 5 parameters equal to

zero and solving the resulting set of equations, called the
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likelihood equations. Since closed form solutions of these
equations do not exist, they must be solved using iterative
techniques. Hasselblad(l1966) and Wolfe(l969) suggested that
these equations be solved by taking advantage of their
fixed point form. Redner(1980) and Redner and Walker(1982)
have pointed out that this fixed point technique 1is
egsentially an application of the EM algorithm (see
Dempster, Laird and Rubin(1977)) with the only difference

being that using the EM algorithm, the estimates of ci and

og at step k involve the updated kth step estimates of M,
and U,

Fowlkes(1979), on the other hand, maximized the
likelihood function directly by utilizing a quasi-Newton
method for minimizing -log(L) and found that good starting
values were  ¢rxuegial for acceptable performance.
Hosmer (1975) stated that using’ the likelihood equations,
starting values were not a sericus problem in ° his
experience. In order to determine which of the two
techniques seemed preferable in our simulation studies we
replicated simulations .performed by Fowlkes in  which
various sets of poor starting values were used to initiate
the minimization procedure. We simulated realizations from
the mixture utilized by Fowlkes and estimated the
parameters using both direct maximization and the EM
algorithm. The results of our simulations indicate that
the EM algorithm approach is preferable and hence we have

used this technique for obtaining MLEs in our simulations.

s R T
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Aléhough ML estimation procedures are known to have
certain optimality properties, their sensitivity to
violations of the underlying assumptions is also
recognized. The development of estimation procedures which
perform well even under moderate deviations from
assumptions has been a topic of major interest in recent
literature. One of these robust procedures which has
received recent attention is that of minimum distance(MD)
estimation introduced by Wolfowitz(1957). Parr -and
Schucany (1980), for example, have shown that MD techniques
provide rcbust estimators of the location parameter of a
symmetric distribution. Minimum distance estimation has
been used for parameter estimation in the mixture model by
Choi and Bulgren(l1968) and MacDonald(1971) with some
success although, to our knowledge, the question of
sensitivity to assumptions in this setting has not been
addressed. These previous authors assumed that the
par~meters of the component distributions were known and
that only the mixing proportion(s) was to be estimated.

In order to briefly describe minimum distance
estimation, we let xl,xz,,,,,xndenote a random sample from
a population with distribution' function F and let Fn
denote the empirical'distribution function, i.e. Fn(x)=k/n
where k is the number of observations 1less than or equal

to x. Further, letM= {Hezaeﬂ} denote a family of

distributions depending on the possibly vector valued.

AT I et S S R .
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parameter 0. The MD estimate of 9 is that value of 6 for
which the distance between Fx\ana‘ﬂe is minimized. It |is
not necessary that Fe?& Of course, when a mixture of two

normals is used as the projection family, Hgy becomes

X Jr 2 < _1 ¥Ha
He(x) = p f A e 2 % dy + (1-p) [ 2 e 2 92 dy.
-00 m Gl ’ -0 )/TTT 02

Certain considerations become obvious at this point.
First, we must define what we mean by the "distance"
between two distributions. Several such distance measures
have appeared in the literature. The reader is referred to
the article by Parr and Schucany(l1980) for a discussion of
these measures. For our purposes we have chosen the
Cramér-von Mises distance, w2 ' between distribution

functions G, and 62 which is given by

1

W = 16, (x) =G, (x) 1%dG, (x) .

In our setting a computing formula for the Cramer-von

Mises distance between g\ and He is given by

2 _ 1 n i-,.5,2
W = Tan * I MHe(Yy) = SE

i=1

where Y, is the ith order statistic. The similarity
between Wi and the sum of squared differences between the

empirical distribution function F and H used by Choi and

)
Bulgren(l1968) should be noted.

Another consideration involves the minimization

2

procedure to be employed in minimizing er

Parr and

)
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Schucany used the IMSL quasi-Newton algorithm ZXMIN. Our
comparisons have shown ,however, that the IMSL routine
ZXsSsSQ which uses Marquardt's(1963) method for minimizing a
sum of squares was significantly faster, usually taking no
more than half the time required by ZXMIN. 1In the
simulation studies reported in the next section we have
useé the Marquardt minimization procedure when calculating
the MDE. It should be noted that minimization is subject
to the constraints cizp, c%go r and 0<p<l. Another finding
which deserves mention before proceeding is that similar
to the technique we have chosen for calculating the MLE,
the MDE has the @esirable property that it is relatively

insensitive to starting values.

3. Starting Values

In order for the estimators discussed in the previoué
chapter to be wused in practice, starting values for the
iterative procedures must be provided. We have choéen to
obtain starting values in this two component univariate
setting using a partitioning technique which is very easy
to implement. In the discussion to follow we will assume,
without loss of generality, that Lxl< Uy This technique
involves first obtaining the initial estimate of p,
denoted by P o and then estimating the remaining four
parameters given By Under the current implementation,

only the 9 values .l1,.2,...,.9 are allowed as possible

T
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values for B For each allowable value of p the sample

00
is divided into two subsamples :

Y Y .Y

7 oon,Y
2 n,

where ﬁ. is the ith order statistic and n; is np, rounded
to the nearest integer. The value for‘p0 is that value of
p for which p (1-p )(ml-mzf is maximized, where mj is
the sample median of the jth subsample. The criterion wused
here is a robust 'counterpart to the classical cluster
analysis procedure of selecting the clusters for which the
within cluster sum-of-squares is minimized. It is easy’ to
show, however, that the within cluster sum-of-squares 1is
minimized in the two cluster'case when p(l-p)(ii4?2)2 is
maximized, where fj is the sample mean of cluster j and
and p=nl/n with n, the number of sample values placed in
cluster 1. Such a clustering is based upon a cut-point,
¢ , for which all sample values below ¢ are assigned to
the cluster associated with population 1. It must be
observed, however, that due. to the overlap between the two
mixéure distributions, some sample points assigned to
cluster 1 may be from population 2 and some observations
from population 1l-may be in cluster 2. The effect of this

truncation of the right tail in population 1 is that the

sample mean from cluster 1 is likely to underestimate My

whileLb is likely to be overestimated. In addition c% and
cg are likely to be underestimated by %2_ and 'sg. If we

e . 1 L b L b i
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assume that the overlap Betwmen the two populations is not

too severe, then the sample values in cluster ) to the

,left of my; are relatively pure observations from

population 1 in which case my is a "good" estimate of the
population mean in the case of symmetric distributions.
This reasoning also indicates that m1 and n, should
provide better estimates of Wy and Mg than would'§l and
?é. In order to estimate the variances of the component
distributions we again will depend upon the fact that the
values to the left of m, and to the right of m, are "pure"
samples from populations 1 and 2 respectively. Thus, we
will use only this portion of the data for estimation of
the sawmple variances. We have used the fact that the
semi~interquartile range of a standard normal distribution

is .6745, to estimate o‘i by

)
.6745 !

2 m
0y (0) = (

L]

where rgw is the qth percentile f£rom the 3jth c¢luster,
I=1,2. Similarly, ol = Cle, 7%,/ 674502,

In the next section we will discuss the results of a
major simulation investigation comparing ML and MD
estimation. In these simulations the jiterative techniques
were initiated by the starting values as discussed in the
previous paragraph. A preliminary simulation investigated
the performance of the starting values described here. 1In

this preliminary study we compared the convergence
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initiated from these starting values with that when the
iterative procedures are started at the true parameter
values. The convergence from these two starts was almost
always to the same parameter estimates, a result which
held for both the MLE and MDE. For this reason and results
to be shown in Section 4, we Qelieve this starting value

procedure to be adequate.
4. Simulation Results

In the previous two sections we have discussed ML and
MD estimators for the parameters of the mixture of two
distributions., In this section we report the results of
sinulations designed to compare these two estimators when
the component distributions are normal and when they are
non-normal. In addition we have made our comparisons under
varying degrees of separation between the two
distributions. All computations were performed on the CDC
6600 at Southern Methodist University.

In our cgmparison of the MDE and MLE we have begun by
comparing their performance when the normality assumption
is yvalid, i.e., when the component distributions actually
are normal. We should mention that because of the
optimality properties of the MLE we would expect that the
MLE would be superior in this situation. Since in practice
the validity of the normality assumption is subject to
question, we are also very interested in the performance

of the MDE and MLE when the component distributions are
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not normal. To this end we have simulated mixtures in

which the component distributions are distributed as a
Student's t with 4 degrees of freedom. We simulated 500
samples of size n=100 from mixtures of normal and of t(4)
components for each of the following parameter

configurations:

Mixing proportion
.25 '
.50
.75

variances

2 2
091 ¥ 92

o2 = 202

The nature of the mixture model also depends on the
amount of separation between the two component
distributions. While, 1{or sufficient separation, the
mixture model has a characteristic bimodal shape,
Behboodian(1970) has shown, for example, that a sufficient
condition for the mixture density (of two normal
components) to be unimodal is that [ulfuzljgmUNcl,cz). of
courge, in this situation, parameter estimation is
difficult.

For purposes of quantifying this separation bétWeen
the components, we will define a measure of "overlap"

between two distributions. Without loss of generality we
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assume that population 1 is centered to the left of
population 2, We define "overlap"™ to be the probability of
misclassification using the rule:
Classify an observation x as:
population 1 if x < X,

population 2 if x > x_,

where X, is the unique point between Mq and H, such that

pfl(xc) = (1-p)f2(xc).

We have based our current study on "overlaps"™ of .03 and

.10. In Figure 1 we display the mixture densities associated
2_ .2
192
scaled components pfl(x) and (l-p)fz(x) are also shown. Note

with normal components and o For each mixture, the
that the densities for p=.75 are not displayed here since
when oi=c§, it follows that fp(x)=fl_p(ul+u2-x)where fh(x)

denotes the mixture éensity associated with a mixing

proportion of h. Thus the shapes of the densities at p=.75

can be inferred from those at p=.25. Likewise, parameter
estimation for p=.75 is not included in the results of the
simulations when ci=(5§

Although both estmation procedures provide estimates of

all 5 of the parameters, only the results for the estimation

of p will be shown since the mixing proportion 1is the
parameter of primary interest. 1In addition, when dealing

with the non-normal mixtures, the remaining parameter

11
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FIGURE 1 - Mixture Densities Associated with

2

Normal Components and oi =0, ™ 1
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estimates often do not have a meaningful interpretation. 1In
these simulations we have used the procedure discussed in
the previous section to obtain starting values. It should be
noted that although we refer to mixtures of t(4)
distributions here, they are actually mixtures of
distributions associated with the random variable T'=aT+b,
where T has a t(4) distribution., These modifications are
made in order to obtain the desired separation and variance
ratios.

In Table 1 we show the results of the simulation
comparing the performance of the MLE and MDE. In particular,
let 51 denote the estimate of p for the ith sample. Then
based upon the simulations, estimates of the bias and MSE

are given by:

A 1 n A

bias = =— % (p,-p)
Ng i=1 1
~ ns fa)
MSE = %% X (pl-p) ’
s i=1

where n_ is the number of samples. It should be noted that
nMSE is the quantity actually given in the table. 1In

addition, we provide the ratio

MSE (MLE)
MSE (MDE)

E =
as an efficiency measure.

Upon viewing the results, it can be seen, as expected,

that the bias and MSE associated with the MLE were generally

smaller than those for the MDE when the components were
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Simulation Results Comparing MLE and MDE

TABLE 1
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Sample Size = 100
Number of replications = 500

NORMAL )
Overlap = ,10 Overlap = .03

2 9 Bias nMSE* E Bias nMSE E
gy = 9% MLE MDE MLE MDE MLE MDE |MLE MDE
P = .25 +052 125 4,26 7.80 .55 .008 ,026 54 1.09 «30
p = .50 .000 .010 3.21 3,86 .83 .000 .001 .38 A2 .90
2 2

g = 202

p = .25 .002 .084 2,25 5.30 A .006 027 49 .96 WSl
p = 050 "'0009 .005 2.1‘1 2079 086 -009 0008 .42 044 095
p=.75 -.086 =-.137 4,87 8,36 .58 -,002 ~-.024 A7 1.08 A

t(4)
Overlap = ,10 Overlap = .03

2 _ 02 Bias nMSE E Bias nMSE E
°p ¥ % ME MDE [MLE  MDE MLE MDE MLE MDE
p = .25 .096 ,104 7.35 6.18 1.19 .029 .020 .88 44 2,00
p = .50 015 .004 5.59 1.82 3.07 -.005 .000 A7 27 1.74
ci = 20§
p = .25 061 ,098 4.63 5.20 .89 044 .029 .95 .61 1.56
p = .50 .028 .022 4,49 1.80 2.49 010 001 .25 .30 1.83
p = -75 _.076 -.058 7.84 3.68 2.13 "0012 -0016 .57 '36 1058
*nMSE = n times the MSE where n = sample size
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normally distributed. This relationship between the
estimators held for both overlaps. The MLE and MDE were
quite similar at p=.5 while for p=.25 and p=.75 the
superiority of the MLE is more pronounced.

For the t(4) mixtures the relationship betseen MDE and
MLE is reversed in that the MDE generally has the smaller
bias and MSE. The superiority of the MDE in this case is due
in part to the heavy tails in the t(4) mixture. The MLE
often interpreted an extreme observation as being the only
sample value from one of the populations with all remaining
observations belonging to the other. Due to the well known

sinqularities associated with a zero variance estimate for a

‘component distribution, Day(1969), we were concerned that

the observed behavior of the MLE was due to the fact that we
did not constrain the variances away from 2zero.
However, simulation resnlts in which equal variances were
assumed (which removes the singularity) and also those which
used a penalized MLE suggested by Redner(1980) were very.
similar to those quoted here.

Although the MSE is a widely used measure among
statisticians for assessing the performance of an estimator,
the practical implications, for example, of an estimatqr
having an MSE three times larger than that for another
estimator, may not be immediately apparent. Recall that each
MSE quoted in Table 1 is based upon 500 estimates of p. In
order to provide a better appreciation for the practical
impact of differences in MSE, in Figure 2 we display

histograms of the 500 estimates of p associated with three

15
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different MSEs in the table. The true value of p in each
case is p= .. It is obvious that as the MSE increases, the
performance of the estimator deteriorates. Notice that the
MSE for Figure 2(c) is approximately three times greater
than the MSE associated with Eigure 2(a), while the MSE for
Figure 2(b) is aprroximately twice that for Figure 2(a).
Thus, from these histograms, an intuitive feel for
efficiency ratios of E=2 and E=3 can be obtained.

A very surprising result is that the starting values
obtained using the procedure outiined in Section 3 produced
estimators which were competitive with both the MLE and MDE.
In fact, for both the normal and t{4) mixtures, the MSEs
associated with the starting values were lower than those
for the MDE and MLE for every parameter configuration
associated with an overlap of .l1l0. At an overlap of .03,
however, the starting values estimates were generally poorer

than those for the MDE and MLE.
5. Mixtures of Asymmetric Distributions

The simulation results of the previous section focus on
the performance of the MLE and MDE under deviations from the
assumption of normality. However, the t(4) distribution is
symmetric, and recent studies have indicated that there is
often a substantial asymmetry in the component distributions
for variables of interest in agricultural remote sensing. A
\Monte Carlo examination of the performance of the MDE and

MLE, assuming normal components, when in fact the component

17
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distributions were asymmetric, was performed, and the
results of this examination will be discussed in this
section.

For purposes of our examination, we simulated mixtures
of x2(9) distributions with p=.5. In these simulations the
two distributions differed from each onther only by a
location shift. Actually the component distribution to the
left is x2(9) while that to the right is that of a "shifted"
x2(9) with origin no longer at 0. This shift was varied to
provide overlaps of .01, .05, and .10. Since our estimation
procedures involve a normality assumption, we used the means
and variances of the two component x2(9) distributions and
the true mixing proportions as our starting values. The
problem of obtaining starting values from the data in this
case is being examined. In Table 2 we display the results of
this simulation. Only when the two component distributions
were widely separated (overlap=.0l1) do the two procedures
provide reasonable results. However, when the two.chi—square
distributions are not widely separated, both estimators tend
to seriously underestimate p. In Figure 3 - we¢ display the
three mixture distributions on which these simulations were
based. We see there that it is no surprise that the estimate
of p is less than .5, especially for p=.10. Both estimation
procedures view this as a mixture of normals, and therefore
make the reasonable interpretation that the density to the
left has a smaller variance and a mixing proportion 1less
than .5. These results point out the impact which skewed

distributions can have on the proportion estimation in the

18
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TABLE 2

Simulation Results
Mixtures of x2(9) Components

Sample Size = 100
Nuther of replications = 200

P ™.
MLE MDE
8 Bias nM5E ; Bias nMSE
.10 .28 -.22 6.8 .28 -.22 6.6
Overlap .05 35 ¢ =,15 2,7 .37 -.13 2,3
.01 47 -.03 oh <45 -.05 o5

LR S
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mixture model when normal mixtures are assumed.

Current investigation into this area centers around
modifying the estimation procedures by assuming that the
underlying component distributions belong to some family of
distributions whose members can be e¢ither symmetric or
asymmetric depending on parameter configurations. At the
present time, the Weibull distribution is being examined

concerning its usefulness.
6. Concluding Results

We believe that the results of the preceding sections
are of sufficient substance to motivate further research in
the area of MD estimation in the mixture model. Our results
indicate that the MDE is indeed more robust than the MLE in
the sense that it is less sensitive to symmetric departures
from the wunderlying assumption of normality of coniponent
distributions., Several areas for future investigation have
already been identified in addition to the asymmetric
components problem discussed in Section 5.

First, simulations similar to the ones presented here
should be performed without the assumption of only two
populations in the mixture. The performance of the MDE and
MLE shohld be compared when the number of populations is
known and larger than two. In addition the applicability of
the MDE to the problem of estimating the number of
populations alsoc warrants investigation. We plan to examine

these possibilities,

21
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Second, the problem of applying the MDE to the multivariate
setting is of interest. Preliminary indications are that
such an extension will be possible.

Third, the choice of distance measure in the MDE is a
topic of interest. Our results are not meant to imply that
w2 is optimal. ‘

Finally, the MDE and MLE must ultimately be compared on
real data. Several related practical considerations have not
yet been investigated. For example, when applying these
estimators to LANDSAT data, the number of iterations allowed
must be small due to time constraints. In the simulations
described here, these constraints were not imposed and

iteration was allowed to continue until convergence was

obtained. The performance of the MDE and MLE under

convergence restrictions should be examined.
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PROPORTION ESTIMATION IN HIXTURES
OF ASYMMETRIC DISTRIBUTIONS

Wayne A. Woodward, Kichard F. Gunst,
Hildegard Lindsey, and H. L. Gray

Center for Applied Mathematical and Statistical Research
Southern Methodist University

1. Introduction

A standard approach to the estimation of crop
proportions in agricultural remote sensing has been to

estimate the proportions PyiPyreiPy in the mixture density

»

£(x) = pyEy(x) + pyf (x) + o0 + p £ (x) (1.1)

where m is the number of components(crops) in the mixture -
and fi(x) is the density associated with component i. The
usual procedure for estimating the parameters in the mixture

model of (l1.1) has been to:

(a) assume that the component distributions are normal

(b) use maximum likelihood estimation.

The variable X has usually been taken to be the
reflected energy in the four LANDSAT bands or some 1linear
combination of these such as greenness or brightness. Recent
efforts have focused on the use of certain derived <features

from growth models such as g and tmax as variables in the

max
mixture model. Studies have indicated that there is often a

thcEn R b ey e s



substantial asymmetry in the distributions of these features
for a given crop. Woodward et. al.(1982) have shown that
asymmetry in the component distributions can cause a
substantial bias in the proportion estimators when the
mixture of normals model is assumed. As an example, in
Figure 1 we display the mixture density associated with the
mixture of two distributions. Examination of the figure
reveals that if we assume that the component distributions
are symmetric, then we must conclude that p;<p, and that the
component to the right has'larger variance. Actually, in
this mixture p,=p, and the distribution to the left in this
mixture is a x2(9) while the component to the right is a
”shifted"xz(Q), i.e. 1its left truncation point‘is at x=10
instead of x=0. We see that a bias will be introduced in
estimating mixing proportions in this mixture if the
component distributions are assummed to be symmetric, which
of course is the case when the components are assumed to be
normal. |

In this paper we will discuss techniques for estimating
the crop proportions in the presence of asymmetric component
distributions. In particular the estimation procedures we
will propose assume that the underlying component
distributions belong to some family of distributions whose
members can be either symmetric or skewed depeﬁding on
parameter configurations. At the present time, the Weibull
distribution is being examined concefning its usefulness in

this area. A The effectiveness of this technique will be
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2. The Weibull Distribution

The Weibull distribution is named afte£ the Swedish
physicist Waloddi Weibull who used it to represent the
distribution of the Dbreaking strength of materials
(Weiball (1939)). The distribution has been widely used in
recent years in the fields of reliability and quality
control. Its popularity is largely due to the flexibility
which it introduces into the model due to the fact that it
can be used to describe distributions which are symmetric or
skewed in either direction. For these,reasons we have chosen
to investigate its applicability to estimation in mixtures
of asymmetric components. The three-parameter Weibull

density can be expressed as

£(x) =

W<
™

B,y > 0

We will use the notation XwW(a,b,c) to indicate that the
random variable X has a three-parameter Weibull distribution
with parameters o=a, B=b, and Y=c. The parameter O locates

the left truncation point and B serves as a scale parameter

while vy determines the shape of the distribution. 1In

Figure 2 we show Weibull densities for a fixed o« and B and a
range of values for Y. From the figure it is clear that the

shape can vary dramatically as Y changes. In Figure 3 the

)
(25 e P, x>aq (2.1)

e
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Weibull Densities with o = 0, g = 1,

and Various Values for vy
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fact that the Weibull density can be ékewed to the left as

well as to the right is more clearly demonstrated. For

vy=3.60232 aprroximately, the standardized skewness parameter
u

Bl= -*g——uwhere My is the ith central moment, is zero
up3/2

indicating symmetry. If Y<3.60232 then the Weibull is skewed

to the right, while if y>3.60232 it is skewed to the left.

The Weibull distribution is unimodal, and if y>1 the mode

cccurs at
1
= y=1
xm“a+B(Y) .
Otherwise, when 0<y<l, the mode occurs at Xy =0
Dubey (1967) has studied the Weibull distribution when
¥=3.60232 and has concluded that it is very similar to the

normal. In particular, Dubey has shown that

sup[FZ(v) - FY(v)I = ,0078 (2.3)

-3<v<3
where P, denotes the cumulative distribution function of the
random variable ZVWN(0,1) and Y is the standardized variate
Y=(X-1)/0 where where U and Gzare the mean and variance of
the Weibull variate X.

It should be noted that the Weibull Gistribution is
often given in the literature in two parameter form in which
o is assumed to be known (and wusually 0). However, unless
otherwise specified, when we refer to the Weibull
distribution, we will be referring to the three-parameter
form specified by (2.1).

The cumulative distribution function corresponding to

SSMTERANAY
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the three-parameter Weibull is given by the closed form

expression
- (x‘a )Y »
Fx(x§ = l-e LB (2.4)

while the noncentral moments are given by

r
= § (et & 4 1 (2.5)

From (2.5) it can be seen that

W= a4 sr<$ + 1)
s a2 4 1y L 2,

The first three moments of the Weibull distribution
determine the values of «, B, and Y. The method of moment
estimators can be obtained using these relationships, but
unfortunately the estimators do not exist in a closed <tform.
The log-likelihood function for a random sample of n

observations from the Weibull distribution is
n

n

&n(L) = nf&ny =-nynB + (y-1) )} &n(xi-a) -

2 (x;=a) 7 (2.7)
i=1 BY

Differentiating 1n(L) yields the following 1likelihood

equations
n n
-(y=1) § (X;=a)” 2 )71 =0 (2.8)
i=1 i=1
n 1
s =] i-a)Y] &

1
X-"'CI

-0 Y -1
{ 2 [zn< 7 11 13 ) = 1]}

i=1

=<
]
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Let &, B , and Y denote the estimators obtained from the

simultaneous solution of equations (2.8) to (2.10). If 0<&5¥1:
whore Y, denotes the ith order statistic, these estimators
are the %aximum likelihood (ML) estimators for the three
Weibull parameters. However, due to the restriction x>0 in
(2.1), if 3>Yl + then the MLE of o is taken to be Y, and
B and o are ectimated from (2.9) and (2.10). As in the case
of method of moment estimators, the ML estimators do not
have a closed form expression. For a general review of the
literature on Weibull parameter estimation see Johnson and

Kotz (1970).

3. Mixtures of Weibull Distributions

In order 5o examine the feasibility of using the
Weibull as a model for the component distributions in the
mixture model of (l1.1), we will investigate the estimation
of the parameters in the mixture of two Weibull

distributions. This mixture density is given in (3.1)

X-0q Y *  X-a, Y
() Y1 x-al)yl-l - ( Bll 1 (Lop) Yz(x-az Yz'l -( 822) 2
fx) = P 7( e + -p e
By Py By B, (3.1)

where the 7 parameters p, Gy 61' YOy 62, and Y, are
assumed to be unknown.

Previous research in this aréa includes that of
Kao(1959), who proposed a graphical procedure for estimating
the parameters in (3.1) when one of the location parameters

is assumed to be known and equal to zero. The estimation of
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the 6 remaining parameters is accomplished using a graphical
procedure whose applicability to our problem seems to be
limited although some of his estimation rules could be
automated. Rider(196i) and Falls(1970) propose estimating
the parameters of a mixture of two-parameter Weibulls using
the method of moments. Falls' procedure involves estimating
the mixing proportion p using a graphical’'procedure similar
to that of Kao.

Maximum likelihood estimation of the parameters of
(3.1) has been discussed by Looney and Bargmann(l982). The
likelihood equations obtained by Gifferentiating the

log-likelihood function 1ln(L)

n

2n(L) = § {an[pf, (X,) + (1-p)£,(X;)1}
1—1

with respect to each of the 7 parameters yields the

likelihood equations

o 1Y @ Yin1
(y5=1) I £(3]%;) (X;-ay L ] £(3]%,) (X =a;) 7 =0,3=1,2
i=1 J BYJ- 1 i 3
n j i=l (3.2)
'Y.
Bs={1] (x;-a) Jf(JIx )1/ Z £ ( |x )} 3, 3=1,2 (3.3)
il
~ -1
vy=(0 ] (( L) :_1,“(_5?1)]/ £(51%X) 17 §=1,2  (3.4)
1£l Bj j 121 1
n
p == z f(llX ) (3.5)

where f(llx) = p,f,(x)/£(x) with £,(x) denoting the ith
component density and f(x) the mixture density. Solving this
set of equations for the maximum ‘likelihood estimators is
Gifficult due largely to equations (3.2) which are not in

fixed point form. Looney and Bargmann(l1982) suggested a
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procedure in which the shape parameters Y; and Y, are fixed
independently at each of the values
& 3 5% 132 348
A A

and, for each of the (Yi’Yé) pairs, ."preliminary" maximum
likelihood estimates of the remaining 5 parameters are
found. A search procedure results in selecting the (§1,§2)
pair for which 1ln(L) is maximized. With ;1 and ;2 fixed at
these values, maximum. likelihood estimation for the
remaining 5 parameters 1is then carried through to
convergence. The Looney and Bargmann procedure for solving
the system of equations (3.2) - (3.5) seems overly
restrictive with respect to the selection of possible values
of the shape parameter, while expansion of the search
procedure to allow for more shape parameter values would
probably be prohibitive because of time constraints.,
However, solution of these likelihood equations directly
appears to us to be quite untractable. For these reasons, we
have investigated the use of minimum distance(MD)
estimation, first introduced by Wolfowitz (1957), for
estimating the 7 parameters in the mixture of Weibulls model
given in (3.1). Woodward et. al.(1982) have recently studied
the use of MD estimation in the mixture of normals model.
These authors showed ﬁhat MD estimation was easy to
implement in that setting, and that MD estimators showed to
be superior to ML estimators under departures from component

normality. Since our use of Weibull components is due to the
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flexibility which it introduces into the model rather than
underlying theoretical justifications, we definitely need an
estimation procedure which is robust to departures from
assumptions. '

The minimum distance estimator of the parameter 6
(possibly vector valued) is defined to be that value of @
which minimizes the distance between Hy and F, where
H={He:659} denotes a family of distributions depending on 6
and Fn denotes the empirical distribution function, 1i.e.
Fn(x)=k/n where K is the number of observations less than or
equal to x. The family of distributions H is referred to as
the projection model, where 8 in this case
e=(p,a1,sl,yl,a2,82,y2), and He(x) is the distribution
function associated with a mixture of two Weibull components

given by

HB(X) = p[l-e-( Bl ) ] + (l-P)[l-e-(TZ—) ] . (3.6)
Note that in contrast to the situation in which the
projection model is taken to be the mixture of two normals,
He(x) in (3.6) has a closed form expression. The choice of
distance function to be used to measure the distance between
two distributions 1is a topic of current interest in the,
field of MD estimation. Woodward et. al.(1982) used the

Cramer-von Mises distance,vv% given by

w? = [16) (x)-G, (x) 174G, (x) (3.7)

where Gl and G2 are two distribution functions, and we have

11l
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chosen to use this distance measure in the current study.
The distance between a distribution function Hg and the

empirical distribution function F_, which 1is needed for

nl

calculation of the MD estimator, is given by the simplified

expression
2 2
2 _ 1 i-.5
W = oe t L [Hg(Y)) - =21, (3.8)
i=1

where Y; denotes the ith order statistic. Since Héx) exists in

closed form, the MD estimator in this case 1is -easily
obtained by using nonlinear least squares techniques to
minimize (3.8). We have chosen to perform this minimization

by using Marquardt's(1963) procedure.

4., Simulation Results

In Section 3 we discussed the problem of estimation in
the mixture of Weibulls model. From that discussion it
appears that the minimum distance techniques are preferable
for. estimating the parameters in a mixture of three
parameter Weibulls, especially in terms of computational
convenience. In this section we will discuss éhe results of
an initial computer simulation which was designed f(v¢ use in
evaluatiné the numerical capabilities of, this method. All
computations were performed on the CDC 6600 at Southern
Methodist University. In this section we will evaluate the
performance of tr2 MD estimation procedures discussed. Since
the usual procedure is to assume that the components are

normal, we will compare the Weibull based !NDEs with the

12
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normal based procedures. We have generated samples from
mixtures of normal components and mixtures of X2(9)
components. Obviously, we would expect the 'normal based
procedures to perform better than Weibull based procedures
when the mixture really is a mixture of normal components.
However, if the Weibull techniques are to be useful, then
they must give reasonable results in this situation since
the normal assumption does appear to be a reasonable
assumption in some cases. Since the Weibull with y=3.6 |is
very nearly normal, there is reason to believe that Weibull
procedures will perform well in this situation. We have not
simulated samples from mixtures of Weibull distributions,
but we plan to consider this in the future. Of course, as
mentioned in the previous section, we are most interested in
the performance of the Weibull based procedures when the
underlying components from which we sample are not
necessarily Weibulls, but are realistic representativs of
the types of component distributions we see in practice.

Our simulation results are.basad on 200 samples of size
n=200 from mixtures of normal and of x2(9) components. In
each mixture, the variance associated with the two
components are equal. In fact{ the two component
distributions differ <from each other only by a 1location
shift. We have simulated from mixtures having mixing
proportions of .25, .50, and .75. We have simulated from
mixtures with varying degrees of separation between the two

component distributions. Overlap as defined by Woodward

13
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et.al.(1982) is a quantification of this separation. It is
defined as the the probability of misclassification using

the rule:

Classify an observation x as:
population 1 if x < x,

population 2 if x 2> x

where without loss of generality, population 1 is assumed to
be centered to the left of population, and where X, is the

unique point between My and Mo such that

pEy(x.) = (l-p)£,(x.) .

We have based our current study on "overlaps" of .03 and
.10, In Figure 4 we display the mixture densities associated
with normal components. For each mixture, the scaled
components pfl(x) and (l-p)fz(x) are also shown. Note that
the densities for p=.75 are not displayed here. Since G1=04¢
it follows that fp(x)=fl-Qul+u2-x) where £P(x) denctes the
mixture density associated with a mixing proportion of p.
Thus the shapes of the densities at p=.75 can be inferred
from those at p=.25. Likewise, @parameter estimation for
p=.75 is not included in the results of the simulations for
the mixtures of normals. In Figure 5 we display the mixture
densities associated with the mixtures of x2(9) components.

Note that although we refer to a mixture of x2(9)

14
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FIGURE 4

Mixture Densities with Normal Components
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Mixtures Densities with )(2(9) Components

(e) p = .75, Overlap = .10

(f) p = .75, Overlap = .03
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distributions here, they are actually "shifted" chi-squares,
i.e. the left truncation points are different from zero.

For each of the simulated samples, three sets of
parameter estimates were obtained:

(1) ML estimates based on mixture of normals model (MLEN)

(2) MD estimates based on mixture of normals model (MDEN)

(3) MD estimates based on mixture of Weibulls model (MDEW)
Although the MLEN and MDEN provide estimates of all 5 of the
parameters of the mixture of normals model, and the MDEW
produces estimates for all 7 parameters in the mixture of
Weibulls model, only the results for the estimation of p
will be shown. The mixing proportion is the parameter of
primary interest, and when dealing with the "wrong-model”
situations, the remaining parameter estimates often do not
have a meaningful interpretation. For purposes of aiding in
the discussions which follow, we will call a component model
from which we actually simulated, a "simulation component
model", while a component model whigh is assumed under a
particulat estimation procedure will be called an
"estimation component model". Thus, a "wrong-mogel"
situation is one in which the simulation component models
are not the same as the estimation component models.

In the "correct-model" situations, i.e. using the MLEN
or MDEN to estimate the parameters of a simulated mixture of
normal components, the true parameter values are used as
starting values for the iterative estimation prbcedures. In

all of the other cases, there 1is not a "true" set. of

17
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parameters. For starting values, we have used the "true"
mixing proportion, and then estimated the parameters of each
component separately using a method of moments procedure.
Consider a situation in which the estimation components are
normal. We obtain starting values for each component by
equating the first and second moments of the corresponding
simulation and estimation components and using these to
obtain u,and Ui for the normal estimation component. When
the estimation compoﬁents are Weibull, we have taken the
approach of setting the starting value for Yy aty =3.6 for
each component. Then the first two moments of the

-

corresponding simulation and estimation components are

equated to yield starting value estimates for the other two

parameters. We believe that this provides a "neutral" start.
If the final estimatés reflect the finding of substantial
skewness for one or both of the component Weibulls, this
will be because of the data and not because of "skewed"
starting values.

The normal component models were generated with}Jl=7.5,
2

ol=c§=l, and U, positioned so that the desired overlap is

obtained. As mentioned previously, both components in the

chi-square mixtures were "shifted" chi-squares. In our

simulations, the left truncation point for population 1 was

always taken to be 7.5, and for population 2 it was located

so that the desired nverlap was obtained., 1In the MLEN and
2

MDEN procedures, the natural constraints oi>0 ,02>0, and

0<p<l were imposed. Similarly, for the MDEW, the natural

18
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constraints §,>0, v,>0, B,>0, Y,>0, and 0sp<l were imposed

along with the constraints a,>0 and a,>0 which are

2
reasonable constraints on the left-truncation point which
would be imposed due to physical considerations, etc,

In Table 1 we display the results of the simulations.
For a given simulation model and estimation procedure, we

A
will obtain an estimate p of p, defined by

n
PN 1 S A
p= =— ) P
A Dgim?

where p; is the estimate of p for the ith sample, and ng is
the number of samples. Then based upon the simulations,

estimates of the bias and MSE are given by:
n

~

s
.A — l ~ - - -
bias = = ) (pi P) =p-0p

S i=1
ng
1 A 2
MSE = <~ ] (p,;-p)°.
S i=1

Upon viewing the results, it can be seen that the MDEW
was competitive when the component models weré actually
normally distributed, and it produced the best overall
results for the. chi-square mixtures. Of particular interest
is the chi~square mixture where p=.5 and overlap=.10. This
is the mixture displayed in Figure 5¢ and also in Figure 1
(except for location shift). When symmetric components are
assumed (as with the MLEN and MDEN), a bias does occur in
the estimation of p as discussed in Section 1. This behavior

hag been noteu previously by Woodward, et.al.(1982). We see

from the table that the MDEW perfoxms substantially better

19
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Table 1 - Simulation Results

Comparing Normal Based with
Weibull Based Estimation Procedures

Sample size = 200
Number of repititions = 200

Mixture of Normals

Overlap = .10 Overlap = ,03

é, Bias MSE ; Bias MSE

MLEN 027 .02 .022 .25 .00 .022

p=.25 MDEN .37 .12 074 «26 .01 .004
MDEW . 34 .09 044 .30 .05 011

MLEN .50 .00 .014 .50 .00 .002

P = .5 MDEN .49 -.01 .023 47 -.03 .002
MDEW .48 -,02 ,019 251 .01 .004

Mixture of x2(9)
Overlap = .10 Overlap = ,03

’S Bias MSE S Bias MSE

MLEN .24 -.01 .061 .18 ~.07 006

p=.25 MDEN W41 .16 .098 17 -.08 .008
MDEW .50 .25 «122 .29 ~.04 007

MLEN .27 -.23 .064 o45 ~.05 .011

p =.50 MDEN .26 ~-.24 .061 W41 ~.09 .010
MDEW 42 -,08 .024 «50 .00 .004

MLEN 50 - =,25 .070 .65 -,10 .013

p=.75 MDEN .48 -.27 .085 .64 =,11 .016
MDEW .62 -,13 .032 .71 .04 .005

20
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than either of these normal based procedures on the basis of

both bias and MSE. In Figure 6 we display histograms of the
200 estimates of p obtained £from the three estimation
procedures for the chi-square mixture shown in Figure 5c. It
can be seen there, that the normal based procedures
consistently estimated p to be substantially 1less than .5
while the estimates based on Weibull components were in
general closer to the true vaue p=.5.

The one cage in which the Weibull based estiﬁates vere
not best, was when p=.25 with overlap=.10. This mixture is
displayed in Figure 5a where it is obvious that estimation
should be difficult since there is no distinct contribution
due to component 1 in the mixture. Indeed, all procedures
yield poor estimates as measured by the high MSEs. In Figure
7, we display histograms of the p values obtaineﬁ from the
three estimation procedures for this set of parameter
configuraiions. There it can be seen that the Weibull
procedure certainly gave the poorest results, with estimates
being spread nearly uniformly between 0 and 1. However, the
normal based procedures also had difficulty as is reflected
in the histograms. In fact, there appears to be a tendency
for the Bi values to be very 1low (approximately .1l0).
However, % is Veryyclose to .25 for the MLEN since several
of thé Ei values were spread out uniformly between 0 and 1,
which increased the estimate of p .to near .25. However, the
large MSE shown in the table for this case reflects this

lack of accuracy.

21
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5. Concluding Remarks

Results in this report and in the report by Woodward,
et.al.(1982) indicate that the normal based procedures
perform pcorly in the presence of a mixture of asymmetric
distributions. In this paper we have suggested the mixture
of Weibulls model as an alternative to the mixture of
normals model in this situation. Results indicate that
minimum distance estimation of the parameters of a mixture
of Weibulls is a viable alternative to the normal-bused
techniques currently in use.

Before this procedure could be recommended and

implemented, further research is needed. For example, the

problem of how to obtain starting values for the parameters

of mixtures of possibiy aéymmetric components has not been
resolved. Also, the Weibull based procedures should be
applied to LANDSAT data in order to examine their
performance on the types of asymmetry which will be
encountered in practice. The fact that an additional
parameter has been introduced into the mo@el for each
component has caused the estimatién procedures to be slower
than for the normal based procedures. Further investigation
concerning the préctical aspects of actually implementing

the procedures is needed.
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Critique of FCPF Automatic and Semi-Autonatic
Proportion Estimator Results

W.A. Woodward

The following discussion will concern the results given
by FCPF in two recent NASA documents (1,2) concerning the per-
formance of threeunew automatic and semi-automatic proportion
estimation techniques. There 1is mﬁch overlap in these two
documents although the data and conclusions in (2) represent
revisions and additions to those given in (1). For this reason,
the current report will concentrate mainly on the data and con-
clusions in (2). Before proceeding further it should be pointed
out that we simply cannot draw certain inferences without access
to the data itself. However, we will draw whatever conclusions
we feel are warranted from the information provided.

Since we have no first hand experience with implementing
any of the procedures involved,we will make no remarks concerning
the implementation aspects of the various methods. Instead we '
will restrict ourselves to questions surrounding the quality of
the proportion estimators being considered. This.quality should
be viewed from the pérspective of how the new estimators compare
with the current state~-of-the-art analyst-intensive estimators as
well as from a more absolute viewpoint concerning simply whether
or not the newestimators meet acceptable standards.

Some useful information concerning the performance of the

estimators is given in the table on page 2-22 of (2). Before continuing

with the discussion of the results of this table some words of

oo immene n
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caution should be given. First, the historical procedure is not

a procedure but rather the various stages of the current P1A pro-
cedure during its evolution. Since 1979 is the only year during
which the current state-of-the-art PlA technique was utilized

the 1979 comparisons would be of most value from this perspective.
In addition, it is our understanding that the FCPF techniques were
developed using 1978 and 1979 data. We would expect procedures to
perform best on segments undergoing similar weather patterns, etc.
to the ones on which the techniques were based. ird, the 1976
historical data is based upon ratioed spring wheat rather than
spring sméll grains. For this reason the 1976 comparisons will
not be of much interest to us. Finally, it is impossible to tell
from the table what the relationship is, for example, in 1977 among
the 38 SSG4 segments, the 25 SSG3C segments, the 37 SSG3B segments
and the 45 historical segments. This should be made clearer as it
has a bearing on interpretation.

It is unfortunate that the mean absolute error (MAE) is not
available for the historical procedures. When dealing with biased
estimators, as the histo;ical ones seem to be, the MAE and the mean
squared error (MSE) are more Informative measures than the standard

deviation. The saimple MSE is given by:
n

n
= 1 I |
MSE = = N (py-p) " = % Y e
i=1 i=1

2
i L
The MAE and MSE measure the amount of spread in the data around

the ground truth whereas the standard deviation measures the

amount of spread around the sample mean which may be quite

e
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different from the ground truth., From the data on 2-22 the MAE
values cannot be computed for the historical procedures. However,
since MSE = 2-1 S2 + e , Wwe can calculate MSE values for each proce-

dure and each year. These MSE values are presented below:

Mean Squared Error Values for Data
of Table 2-22

1976 1977 1978 1979

SSG4 131.9 136.0 110.0 182.3
SSG3C 99.7 147,99 131.1 354.7
SSG3B 75.2 92.5 121.3 311.9
Historical 100.9 65.7 69.4 46,1

The results of this table indicate that for 1977-1979 the MSE

values for the new procedures,are two to six times as large as

those for the historical procedures whereas MSE values for 1976

are similar. This reinforces the information given on page 2-22

concerning standard deviation comparisons. 1In comparing

estimators,unbiasedness is usually not.as important a criterion g

as MSE,i.e. the estimator with smallest MSE is usually favored %

e T

regardless of the bias properties of the estimators.

Thus the'histofical techniques seem to be substantially
better than the new procedures on the basis of MSE for 1977-1979
with results in 1979 being quite desparate. On page 2-40 the claim
is made that when'acquisiﬁions can be made in windows 2, 3, and
4 (which is the optimal sampling situation) then SSG4 performs

well since e = .04. However, along the lines of our previous

arguments,SSG4 in fact does not perfoim well in this most optimul
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of situations since the associated MSE is 124, From an absolute
perspective, it simply appears to us that the MSE's for the FCPF
procedures are too high,
At this point brief comment will be made concerning the
bias properties of the estimators. A 90% confidence interval
(based upon normality) about the true bias of a procedure is

given by S
e S

- —_ = e
(e - tos(n-1) va * %t “.95(n—1)—/;—‘-

where t.95(n—1) is thes.95 percentage point of the t distribution
with n-1 degrees of treedom. If this interval contains zero

then the bias is not significantly different from zero whereas

if this interval does not include zero,the bias is concluded to
be significantly different from zero at the a = ,10 level of
significance., It is obvious that the effect of large standard

deviation or of small n is to lengthen this interval. Said another

way, the result of a larger standard deviation or a smaller sample

size is to decrease the power of the test i.e. decrease the prob-

ability of rejecting unbiasedness when an estimator is really biased.

In the present setting the failure to reject unbiasedness in the FCPF
estimators is largely a function of larger standard deviation and
smaller sample size than it is due to smaller bias estimates. 1In
fact, if for each year the FCPF estimates had the same standard
deviation and sample size as that associated with the historical
data, only SSG3C and SSG3B in 1978 would have yielded estimates

for which the bias was not significantly different from zero. 1In

Sy
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summary,although the sample biases were generally smaller for
FCPF estimates than for historical estimates,we certainly agree
with the statement on 2-3 that there 1s no significant difference
in the blases of the two procedures. The authors were not as
careful in their statement on 2-19. It should be pointed out
again however that MSE 1is a measure of the goodness of an esti-
mator which is appropriate for comparing estimators whether they
be biased or unbiased.

The implications of the large MSE's are evident in other
data presentations in (2). The small rz values in pages 2-23
through 2-25 are the ones associated with large Msp's with the
1979 results for SSG4, SSG3C, and SSG3B being extremely noteworthy.
One would certainly be hesitant to recommend a procedure which
yielded results as unrelated to ground truth as were the FCPF ;
results in 1979. The claim on page 2-19 that the lack of "good"
correlation in 1979 for 5SG4 is explainable,seems to be questionable.
If the outlier point is deleted, the correspondence between ground
truth and SSG4 estimates is still poor. Consider a vertical line
drawn through ground truth proportion .25 on the 1979 SSG4 ‘plot.
It can be seen that there is very little correlation between ground
truth and ; on either side of the line. The correlation which does
appear is only due to the fact that S5G4 seems to do a fair job of
separating low ground truth proportions from high ones. Another
word of warning concerning interpretation of r2 values is in
order here. The rz value measures the amount of fit to the line
which best fits the data. If this line is not approximately

the 1-1 line, i.e. the line with slope of 1 and intercept of zero
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then this fit is of little importance. The line drawm in the
plots on 2-23 through 2-26 is the 1-1 line. It is clear that
in some of the plots this line is not the best fitting line
whose fit to the data is being measured by r2. A more meaning-
ful measure of fit would be one which measures departure from
the data to this 1-1 line. It is easily shown that MSE is the
average squared vertical distance from the data points to the
1-1 line.

We will conclude with a few additional comments. On page
2-50,data are given concerning processability rates of the proce-
dures. In 1978 datafrom the second satellite were available which
should have produced a higher processability rate. This increased
processability rate is visible in the 3 FCPF procedures but is
not visible in the 1978 historical data. Since 5SG4 processability
for 1976, 1977, and 1979 was approximately 12-207% lower than that
for the historical,and since for 1978 the SSG4 rate was 247 higher
than the histor?cal rate, there seems to be cause for concern
relating to the validity of the 1978 historical processability
rate. The error characterization analyses were interesting and
should indeed provide useful information concerning possible modi-
fications of the FCPF techniques. It is not ciear of course whether
or not modification in the procedure will be able to improve per-
formance.

In conclusion we feel that the results of the comparisons
between the FCPF automatic and semi-automatic procedures and the

hiztorical results are not very encouraging. Although results
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and cautions are in general adequately related in (2) it is our
opinion that the apparent unbiasedness of the FCPF procedures
resulted in excessive optimism concerning their performance.

The problem with excessive variance with the FCPF procedures

was mentioned but seemingly did not cause great concern possibly
because of "apparently" larger bias for the historical procedures.
However our analyses involving the MSE as the standard for com-
paring estimators indicates that. indeed the FCPF procedures do

not perform at the level of historical analyst-intensive techniques.
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Review of _

A Crop Area Estimator Based on {hanges
in the Temporal Profile of a
Vegetative Index
(Smith and Ramey)

by Wayne R. Woodward

The paper by Smith and Ramey contains some interesting
ideas concerning the use of tempcral data in estimating a
vegetative index. I have several comments concerning the
paper:

1. Although I am not extremely familiar with the Cubic
Color Model of Cates, et al, I do want to make some
comments about it. To me it appears that normalizing the
readings from channels 1,2, and 4 based upon the segment
means in each of these bands can have some undesirable
effects. For example, if early in the season ' an
acquisition is taken when a majority of the segment is
bare soil, then on the CIR film it would appear mostly
green in color. However, the normalizing procedure of
dividing by segment means would assign what is very
probably green (on CIR f£film) to the neutral gray
positiaon. Consequently, a pixel with relative energies
of (4.99,4.98, 5.01) would be called red, and placed in
the vegetative class when in fact it was represented as
green on the film, and was probably nonvegetated. The
same phenomenon could of course occur in reverse. In

addition, the fact that (4.99,4.98,5.01) and (0,0,10)
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are assigned the same "color" seems like an unfortunate

loss of informaticon.

2. The fact that the procedure does no more than provide
a vegetative index, implies that it will not, of course,
be able to provide proportion estimates for individual

crops.

3. The shortcomings which the authors list on page 9 are
quite serious. The fact that the underlying profiles are
not separated by a constant vioclates a basic assumption
in the multiple regression (or analysis of -covariance)
model posed. Also, although only the parameter alpha is
of interest, it is 1likely that if estimation is a
problem, estimates of'alpha will suffer along with those

of the betas.

4, Finally, the results of the technique as applied to
segment data requires some comment. To me these results
from the 10 segments seem quite unimpressive. The
magnitude of the errors is unacceptably high, and the
authors' .statement on page 11 that the technique
"apparently produced unbiased estimates" is completely
unfounded. It seems that the authors believe that the
impressive feature of their results is the "high"

correlation of .73 between observed and expected percent
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changes. Observing the 10 pairs of values upon which
this correlation is based reveals that there actually
does not seem tc be a strong correlation between these
values. In fact, when the results for segment 1658 are
removed from the data set, then the correlation is only
.33. (My calculations showed a correlation of .67
instead of .73 for the data shown.) Examination of the
data in the table shows that both observed and expected
pe:cent change for this segment were much larger thaﬁ
those from other segments. This data pair thus had an
inordinate influence on the correlation coefficient
(sometimes called the "lollipop" effect.) If the
nonparametric Spearman correlation coefficient had been
used instead of the Pearson correlation which depends
upon a bivariate normality assumption, the cortelatién
using all 10 data pairs would have been only .43, ‘again

an unimpressive result.

In short, the results of this paper certainly do not

convince me that the technique proposed here has any merit.
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