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A COMPUTER PROGRAM FOR THE SIMULATION

OF HEAT AND MOISTURE FLOW IN SOILS

ABSTRACT

This document describes a computer program that simulates the flow of heat and moisture in
soils. The space-time dependence of temperature and moisture content is described by a set of
diffusion-type partial differential equations. The simulator uses a predictor/corrector to numer-
ically integrate them, giving wetness and temperature profiles asa function of time. The simulator
was used to generate solutions to diffusion-type partial differential equations for which analytical
solutions are known. These equations include both constant and variable diffusivities, and both
flux and constant concentration boundary conditions. In all cases, the simulated and analytic
solutions agreed to within the error bounds which were imposed on the integrator. Simulations
of heat and moisture flow under actual field conditions were also performed. Ground truth data
were used for the boundary conditions and soil transport properties. The qualitative agreement
between simulated and measured profiles is an indication that the model equations are reasonably

accurate representations of the physical processes involved.







A COMPUTER PROGRAM FOR THE SIMULATION

OF HEAT AND MOISTURE FLOW IN SOILS

SECTION 1 — INTRODUCTION
It is not generally feasible to attempt an exact simulation of heat and moisture flow in soils under
field conditions. The number of variables involved is large, and it is difficult to include all relevant
transport processes. However, simulations of this type are useful when used as a laboratory to
assess the relative importance of the various factors contributing to the heat and moisture fluxes.
They can also be used to predict the changes in heat and moisture profiles caused by the imposition
of particular boundary conditions or by modifying the thermal and hydraulic properties of the soil-
water system. For example, this simulator will be used as part of a study to assess the utility of
radiometric measurements of soil microwave emissions as an indication of the moisture profile
below the surface (Schmugge, 1978). Emission models that compute the brightness temperature
as a function of soil moisture and temperature profiles are currently being evaluated. To test the
emission response to varying boundary conditions (rainfall, water table height, surface heat fluxes,
etc.), ground truth data must be measured under the appropriate conditions to use as input to
these algorithms, which is not always possible. However, in the initial stages of model assessment,
the output of this simulator can be used in place of the ground truth data as it correctly models

(at least qualitatively) the response of the profiles to the boundary conditions.

Section 2 contains a mathematical description of the program. As an example of the kind of system
this simulator is designed to model, Section 2.1 presents the equations that describe a particular
diffusion model of the transport properties. Section 2.2 is an overview of the predictor-corrector
method used to numerically integrate the equations. A derivation of the equations used to perform

the time integration is given in Section 2.3.

Section 3 describes some test results. The simulator has been used to solve diffusion equations

that conform to Fick’s law and for which analytical solutions are known. Section 3.1 reports on
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these results. In Section 3.2, the results of a day-long field simulation are compared to the ground
truth data. The resulting agreement indicates that the simulator solves the model equations cor-

rectly.

Section 4 is a complete description of the software, including a baseline diagram, all required input,

all output, and the job control language (JCL) required for execution.
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SECTION 2 — MATHEMATICAL DESCRIPTION

2.1 DERIVATION OF EQUATIONS
The slow movement of heat and moisture in a porous medium such as soil can be described by
diffusion-type equations (Nielson et. al., 1972). In the classical diffusion theory, the flux (the
amount of substance crossing a unit area per unit timé) is proportional to the negative of the
gradient of the concentration. The proportionality factor is the diffusion coefficient. The best
known example of this kind of flow is embodied in Darcy’s Law (Hillel, 1971). The wetness
flux is

a, =—K@©) V(y(6)~2) 1)
where q, is the flux (cubic centimeters of water per square centimeter per second, cm/sec), K(0)
is the hydraulic conductivity (cm/sec), ¥(8) is the matric potential (cm), and z is the distance from
some reference point. The term Y — z is the hydraulic head and is the potential energy of the soil
water (matric plus gravitational) per unit weight of water. The function y is called the matric
potential and is the energy per unit weight required to overcome the capillary and adhesion forces
that bind the water in the soil. Because work must be done to remove water from an unsaturated

soil, ¥ is negative. The distance z is the gravitational potential energy per unit weight.

K and ¢ are functions of volumetric wetness 8 (cm® water/cm® medium). In this application, it
is assumed that soil properties change only with depth; thus the gradient is a derivative with respect

to z. Therefore, Equation (2-1) may be written as

9, =-k©) ($£-1) (2-22)
=-K(6) % g—Z+ K(0) (2-2b)

The second line follows from the chain rule of differentiation.

Defining a diffusion coefficient

D(6) = K(6) %52 (2-3)
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yields, when inserted into Equation (2-2),
_ do

The first term in Equation (2-4) is the diffusion contribution to the moisture flux due to a wetness

gradient.

There is a large body of experimental evidence indicating that thermal gradients induce moisture
flow (Nielsen et. al., 1972). For example, if a uniformly moisture soil sample is enclosed in a
horizontal cylinder and is subjected to a thermal gradient, moisture flows from the warm toward
the cool end. As field soil temperatures are always changing, an isothermal model such as Equation
(2-4) is not complete; a theory that treats both heat and moisture flow in soils is necessary. In the
following description, diffusion-type expressions for both heat and moisture fluxes are presented.
The derivation closely follows the work of Philip and De Vries (1957). Contributions to heat and
wetness fluxes that are proportional to wetness and temperature gradients are described. The
conservation of mass and energy is then invoked to derive the partial differential equations that

describe the variation with time of temperature and moisture profiles.

The diffusive flux of water vapor in a porous medium is modeled as
q,=-D__ f(c,0) Vp (2-5)
where (—fv = vapor flux density (gm/cm? /sec)
Datm = molecular diffusivity of water vapor in air (cm?/sec)

f = tortuosity and porosity function

p = density of water vapor (gm/cm?3)
Equation (2-5), with f=1, de-scribes the diffusion of water vapor in air (Eagleson, 1970). The
factor f represents the reduced volume available for vapor diffusion due to the soil and water and
the obstacles to the diffusing substance presented by the soil matrix. An experimentally deter-
mined graph of f as a function of 6 can be parameterized by a linear function (Jackson et al., 1974).

£(6) = « (e — §) (2-6a)



where € = soil porosity
o = constant less than 1
The diffusivity D, isa function of temperature and can be adequately modeled by the equation

(Kimball et. al., 1976)

T 1.75

where Dy = 0.229 (cm?/sec) and T is the absolute temperature.

The gradient in Equation (2-5) is to be evaluated in terms of moisture and temperature gradients
as these are the dependent variables of the model. This can be accomplished by using the relation-
ship between vapor density and relative humidity:
p=poh=p, exp [(¥8)/(RT)] (2-7a)
where p, = density of saturated water vapor
h = relative humidity
g = gravitational acceleration constant

R = gas constant for water vapor = 4.615 X 10 (ergs/gm/degrees Kelvin (°K))

The vapor density p, depends on temperature and can be approximated by (Kimball et. al., 1976)
po(T) =exp (Ry — (R /T)) (2-7b)
where R, = 6.0035
R, =4975.9 (°K)

T = temperature (°K)

Equation (2-7) can be derived from the laws of thermodynamics. Assuming water vapor behaves

as an ideal gas, an expression can be readily obtained relating the vapor pressure, the temperature,
and the chemical potential of the gas. The chemical potential and the matric potential of liquid
water are related because they both represent the free energy of the respective phases and the two '

phases are in equilibrium. The gas density is proportional to the partial pressure.



The gradient in Equation (2-5) can be expressed in terms of temperature and moisture gradients
as follows:

Vo=V (ooh)=p, Th+ h¥p,

(2-8)
- oh dh 900 o Bpo )
(aTVT + 30 V6) +h < vT +T
The derivative of h with respect to T can be computed from Equation (2-7):
()57 -7 + () G2)
h/9T RT? "\RT/ \oT
(2-9)

=1 e () ()

The matric potential is dependent on temperature through the surface tension of water, which is
responsible for the capillary force that binds the water to the soil matrix. Therefore, y is pro-

portional to surface tension ¢ (Philip and De Vries, 1957) and
0
@) 5=() % (2-10)

A table giving surface tension at a pressure of one atmosphere as a function of temperature (Eagle-
son, 1970) can be fit with the exponential
o(T) = ogexp [—y(T — 273.16)] (2-11)
where 0, = 75.9 dynes (dyn)/cm
vY=2.09 X 1073 (1/°C)

T = temperature, °K

The derivative of { with respect to T can be computed using Equations (2-10) and (2-11). Equation

(2-9) therefore is
g},}——hlnh( ,Ir) (2-12)

The 6 dependence of h is, from Equation 2-7,
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=)

dh_(8)dv_ d )
dB_(RT) g ~hinhggIny o (2-13)

Matric potential ¢ typically changes by four to six orders of magnitude over the range of wetness
values normally found in unsaturated soils. A comparison of Equations (2-12) and (2-13) shows
that the variation of h with 8 is much larger than the variation of h with T, at least over the range
of temperatures found in soils (273 to 310°K). Therefore, relative humidity h in Equation (2-8)

is considered to be only a function of 0.

Since water vapor behaves approximately like an ideal gas, its density depends primarily on pressure
and temperature. Therefore, py can be assumed to be a function of temperature only, with no
dependence on 6. With h depending only on § and p, depending only on T, Equation (2-8)

becomes
- oh\ = ap = |
Vo = —|Vo+h{=)VT 2-14
P =Po (ao) <8T> (2-14)

Inserting Equation (2-14) into Equation (2-5) and using Equation (2-13) for dh/d@ yields

q, = Dr,,,VT- De’vapVe (2-152)
where
dp
DT,vap = Datm (X(E - 0) h<d'_Tg> (2'15b)
b =Dum (€ —6) pogh (mp) (2-15¢)
6,vap RT EH—

This is the sought-for diffusion expression for the vapor flux. Diffusion co-efficients D, vap and
De,vap (respectively valled the “thermal vapor diffusivity”” and the “wetness vapor diffusivity”’)

depend on both 6 and T.

The liquid flux can be computed from Darcy’s Law (Equation (2-1)). The gradient of  in terms of
moisture and temperature gradients is

Vy = %oi%'o + %GT (2-16)
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Equations (2-10) and (2-11) give the derivative of ¥ with respect to temperature:

=y (2-17)
Thus, the liquid flux is
4 =KVz-D,, ¥9-D , ¥T (2-18a)
where
Doig = K(S—}f) (2-18b)
Dijg = Kvv (2-18c)

The total moisture flux, Efo , is the sum of the vapor and liquid fluxes:

4, =9, +d, (gm/cm?/sec) . (2-19)

This can be written in a diffusion form by adding Equations (2-15) and (2-18):

d, =—D, V6 —D_VT+KV: (2-20a)

where
D, =D, sia T Do vap (2-20b)
DT = DT,]iq T vap (2-20¢)

The volumetric water content, 6, is the volume of moisture per unit volume of soil. Because the
density of water is 1 gm/cm3 , 0 also represents the mass of water per volume soil, assuming that
the water includes the liquid phase plus the gas phase. As 6 represents the mass and q, is the mass
flux, they are related by the continuity equation:

de - - _
FtV-q =0 (2-21)

This is a partial differential equation involving 0 as a function of depth and time. An analogous
diffusion equation can be derived to describe the time dependence of the temperature profile as a

function of the soil heat flux.

2-6

-



Fourier’s heat flow equation gives the heat flow due to a temperature gradient:
q, ; =-AVT (2:22)
where ah + 1s the temperature-driven heat flux (calories/cm? fsec) and A is the thermal conductivity

of the medium (cal/cm/sec/°K).

To apply this equation to heat transfer in the soil, the effective thermal conductivity of the soil-

water-air system must be known. A generally accepted model (De Vries, 1975) gives A as a weight-

ed average over the thermal conductivity of each soil constituent:
fA, + ? kKN +K QA+, )

= -23
A f +Xkf +k f (2-23)
w oy i aa

where f_, fi, and f_ are the volumetric fractions of the liquid, varioué solids, and the air, respec-
tively. (It should be noted that f,, and 6 are the same, and the porosity, €, is equal to f, +1.)
The thermal conductivities of each component are A, )\i, and )xa . Factors k, represent the ratio of
the average thermal gradient in the ith soil constituent to the average thermal gradient in water.
They also depend on the shape and orientation of the soil grains. For spheroid-shaped particles,

the ki factors are

2 A -1 1 A ' -1
ki=-3— 1+<T - > gi +§ l+<xv— 1)(1‘2&) (2-24)

where g, is the shape factor and is equal to 1/2 for cylinders of infinite length, 1/3 for spheres, and

0 for disks of infinite radius.

The weight factor ka for air can be determined from Equation (2-24), with A equal to the thermal
conductivity of dry air. The air shape factor g, in this case has no physical meaning. It is usually
treated as a variable function of wetness that must be determined for each soil type. Near satura-

tion, its value is usually accepted to be 1/3.

The latent heat absorbed or emitted by the soil as the wetness changes state between the liquid and

vapor phases can be an important cause of temperature fluctuations. This heat can be included in



the heat flux by assuming that the vapor flux carries with it a heat flux due to the latent heat of
vaporization that it absorbed from the soil when it evaporated. This heat flux carried by the vapor
phase is

d,,=L4,
where L is the latent heat of vaporization (cal/gm) and Efv is the vapor flux (Equation (2-15)).
Both thermal and moisture gradients contribute to av and therefore contribute to ah’v. The mois-
ture contribution is computed by inserting the appropriate term from Equation (2-15) into the
above equation:

- —

vy = L DG,vap Vo (2-25)

The temperature gradient contribution from Equation (2-15) is included by increasing the apparent
thermal conductivity of the air-filled pores, where the vapor phase primarily exists. This vapor has
thermal conductivity >\vap and carries heat flux —)\vap —V’T according to Fourier’s Law, where GT is
the temperature gradient in the pore. However, this heat flux can also be represented by the ther-
mal term in Equation (2-15) with porosity factor f set equal to 1: —D,,.. h (de/dT)eT. By
equating these two expressions for the same heat flux, the vapor conductivity is found to be

)xvap =LD,.h <%> (2-26)

Therefore, the total heat flux in the soil is

-

P P

. . (227)
=-A\VT-LDy . Vb

where A is given by Equation (2-23) and includes the vapor thermal conductivity.

The total thermal energy per unit volume of medium at temperature T is CT, where C is the volu-
metric heat capacity (cal/cm?/°K) and T is the absolute temperature. The conservation of heat
energy leads to an equation similar to the conservation of mass for water (Equation (2-21)):

d(CT) +V-q. =0 (2-28)



The volumetric heat capacity of the soil is computed as a sum over the capacities of the constit-
uents (De Vries, 1975);

C= ZlifiCi +f C, + faCa (2-29)
Fractions fi, fW , and fa are the volumetric contents of solid, water, and air; and Ci, C,,and C,

are the heat capacities of the solid constituents, water, and air, respectively.

Equations (2-21) and (2-28) describe the time dependence of soil wetness and temperature profiles.
In this application, only vertical fluxes are considered; this constitutes a stratified model of the
soil. Therefore, the gradient operator can be replaced by a derivative with respect to soil depth.

Thus, the moisture and heat fluxes are, from Equations (2-20) and (2-27),

- dT do -
qh - —)\ (d_Z)_ L DO ,vap (HE) (2 31)

The time derivatives of the moisture and temperature profiles are, from Equations (2-21) and

(2-28),
% o % (2-32)
gré_(%) (2-33)
BOUNDARY CONDITIONS

To solve these equations, boundary conditions must be supplied for both wetness and temperature
at the air/soil interface and in the bottom layer of the profile. In principle, either the fluxes q,
and g, or the variables § and T could be specified. In the simulator both heat and moisture fluxes,
q, and q,, are computed at the surface. In this way the effects of the environment (i.e., rainfall,
evapotranspiration, radiation, etc.) on the profile evolution can be modeled. At the bottom of the
profile a mixture of flux and variable boundary conditions are used. One can specify constant wet-
ness, a downward wetness flux equal to the hydraulic conductivity of the bottom layer, or a flux

equal to zero. The temperature in the bottom layer is held constant.

29



When both temperature and moisture profiles are modeled the surface fluxes can be found by the
solution of the heat balance equation

S=R+LE+H (2-34)

All fluxes are positive downward. S is the heat absorbed by the soil, R is the net radiation flux,
LE is the evapotranspiration heat flux, and H is the sensible heat. This equation can be written
with the temperature at the soil surface as the only unknown variable. After finding the solution,

the heat flux q, at the surface is set equal to S, and the surface moisture flux q, is set equal to E.

The heat flux absorbed by the soil can be evaluated by using the discrete form of equation 2-22

== (———T‘ — TS) (2:35)

Zy
where A, = thermal conductivity of the surface layer
T, = temperature at the center of the first layer
Ty = surface temperature
z, = depth to center of first layer
The net radiation R is usually divided into average short and long wavelength components (Eagle-
son, 1970):
R= Ry * Ry (2-36)
The short wave component of R is
Ryt =(1 =AY [I=(1-k)NJ I, (2-37)
where A = surface short wave albedo |
N = fractional cloud cover
k = fraction of radiation transmitted by a completely cloud covered sky
I, =insolation at Earth’s surface for a cloudless sky

An empirical model for Ic is (Eagleson, 1970)

I, sina exp (= .128 n/sina), 00
I = 2-38
0 , a<O
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where I, = short wave solar energy flux incident at the top of the Earth’s atmosphere (.033
cal/cm? /sec)
n = air turbidity factor (n ~ 2-5)
« = angle between the sun and the local tangent plane computed from the following:
sina = sind sin ¢ + cosd cos ¢ cos T (2-39)
& = angle between Sun and plane of celestial equator (—23 deg <6 <+ 23 deg)
¢ =local latitude
7 = hour angle of the Sun
=W, (t—12)
t = hour of the day
Wd=ﬂﬂ2(mwmmﬂ
The contribution to the net radiation from the long wavelength part of the spectrum is modeled by
Rh“=ogT;—an4 (2-40)
where T, = air temperature
E = emissivity of the air
T, = surface temperature
o = Stefan-Boltzmann constant
The air emissivity is modeled as (Eagleson, 1970)
E, =.74+ 005 ¢, (2-41)
where e, is the vapor pressure in milli-bars. The vapor pressure and air temperature are supplied
by the user, and should be taken from the same height above the surface. Equation 2-40 isa
mathematical statement of the assumption that both the air and soil surface radiate with emissivi-
tiesof E_ and one respectively.
A standard model for the heat carried by the evapotranspirational flux is (Eagleson, 1970)
lE=-_PY% o) (2-42)
PV? 1n2(§—0)
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where L = latent heat of vaporization
P = density of air=1.15 X 1073 gms/cm3
p = atmospheric pressure in units of e; and e, (~1000 millibars)
V = Von Karman’s constant (2.5)
Zo = surface roughness parameter (~ .025 cm. for smooth surface)
Ua = wind velocity at height Z (cm/sec), averaged over 1 hour
e, = vapor pressure at height Z
€, = vapor pressure at soil surface
7 = psychrometric constant (0.61808 mb/°K)
The surface vapor pressure is computed from
e =h €t

Cat = saturation vapor pressure

_ Pt (TOR, T

gas s mb

1000
Rgas = gas constant
Pt = density of saturated water vapor (Equation 2-7b)

h = relative humidity of surface soil water (Equation 2-7a)

(2-43)

The evapotranspiration model outlined above has proven to be most accurate for computing fluxes

which have been averaged over a time period on the order of an hour. However, in this simulator

the model is used to calculate instantaneous fluxes. The comparison between simulated and mea-

sured evaporation rates in Section 3 shows that this approach gives qualitatively correct rates.

The mathematical model of Equation 2-42 is implemented as follows:

LE=-C, —C; U—a (es—e,)

(2-44)

The user supplies the constants C,,C,,and Ua and e, as functions of time. C, would normally

have the value zero. To input a constant rate offset in cm/sec, C, would equal the rate times the

latent heat of vaporization (586 cal/cm?). By comparing equations 2-42 and 2-44, it can be seen

that C, is equal to the following expression:
2-12



vpL
PV? In? (%)

The sensible heat flux H in Equation 2-34 is calculated by the Bowen ratio method. This ratio,

C, =

B, is the ratio of sensible heat to the evapotranspiration flux. Under the assumption that the turbu-

lent transfer coefficients for the two processes are equal, this ratio is

T.—T
5=Ig_=7 < s *‘> (2-45)

e —¢
s a

In the simulator the Bowen ratio is computed from Equation 2-45, and the sensible heat flux is

then calculated using
H=8LE (246)

The terms of the heat balance equation are all functions of the unknown surface temperature T
and the known meterological variablese,, ﬁa ,and T,. The method for specifying the values of air

vapor pressure, wind speed, and air temperature is described in Section 4.

To solve the heat balance equation for T, one starts by rewriting Equation 2-35 as (Hillel, 1977)

Z,

TS:XT S+T,

Inserting the right hand side of the heat balance equation (2-34) for S gives

T =T, +24 (R(T )+ LE(T.) + H(T )) (2-47)
S kl s S s

The dependence of the flux terms on T has been ¢xplicitly noted here. This equation is of the

form

T, =F(T)) (2-48)
and can be solved by the method of successive of approximations. A trial value for T, is chosen,
F(T)) is evaluated, and a new value for T_ results. This procedure can be repeated until satisfactory

convergence is obtained. In the simulator the air temperature Ta is used as a start value, and a
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maximum of five iterations are allowed. Tests have shown that the process converges after one or
two iterations. Convergence is defined as the absolute value of the change in T, between iterations

being less than 0.1 °K. The process will always converge if the magnitude of the derivative of F

dF
Hde <1

This derivative is a complicated function of changing meteorological variables, so an analytical study

is less than 1,

of the conditions required for convergence is not feasible. However from Equation 2-47 it is clear
that this derivative is proportional to Z,, the depth to the center of the first layer. If the iterative
procedure does not converge, then the program should be executed with a thinner surface layer.

Lack of convergence will be evident because Ts will be unphysical, either too large or too small.

Periods of rainfall can also be modeled. The user supplies the number of rain storms, the start and
stop times of the rain (t o, and t, ), and the total accumulation (r,,,) for each one. A constant rate

throughout each time interval is assumed and calculated as

(2-49)

The short wave attenuation factor during each rain storm must also be supplied. This number is

equivalent to the cloud attenuation factor 1 — (1-k) N in Equation 2-37.

During periods of rain, the evapotranspiration and sensible heat fluxes are set equal to zero (LE
and H, Equation 2-34), and the wetness flux at the surface g, , is set equal to the rain rate, Equa-

tion 2-49.

It is possible to remove all temperature dependence from the simulation. (See the description of
the NAMELIST parameter ITEMPS). In this case the temperature profile, soil heat fluxes, and
atmospheric heat fluxes are not modeled. This simulation model is useful when studying moisture

flow in relatively moist soils. In this case the temperature gradient contribution to the moisture



flux is negligible, and execution time is significantly decreased when the temperature profile is
not modeled. However, the evapotranspiration flux must still be estimated. To do this a Gaussian

function of time is supplied,

EM)=—E__ exp[-k(t—t__)] (2-50)

ax

where t is the time of maximum demand and Em ax is the rate at this time. The variable k

which determines the width of the Gaussian can be related to the integrated daily rate Eday as

follows:
o0
Egay = ﬁtlE(t)l =E .« fdt exp [k(t-t_, )?] (2-51)
day —o00
- T
=E \/—;
This gives
E 2
k =q max (2-5 2)
E,
ay
The user suppliest _ ,E__ ,andE day® The simulator computes k from Equation 2-52, and then

Equation 2-51 is used to model the evapotranspiration flux.

For some simulations it may be simpler to specify the integrated daily total and the width of the
Gaussian. The maximum rate E___ can be computed from these two. The exponential slope k
equals 1/ tZ » where t_ is the time interval between the maximum rate and the time when the rate

falls to 1/e of this value. Setting equation 2-52 equal to 1/t? and solving for E_ . sgives

E =

max

3] —

Edax
te
Therefore the user can compute the value of the required input E__ fromE da'y and t_.

Figure 2-1 compares the model of equation 2-50 to measured data. The evaporation rates were
measured during a field experiment performed in Phoenix, Arizona in 1971 (Jackson, R.D.). Sec-

tion 3.2 of this document discusses this data in more detail. Curves a and b represent evaporation
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rates three and ten days after irrigation. The squares and circles are the data, and the solid lines
represent the model of equation 2-50. The maximum rate E .. and associated time t . ax»and the

daily total E day used in evaluating equation 2-50 were estimated from the data.

E(X10~5)
cm/sec

Time Of Day {Hours)

Figure 2-1. Comparison of measured and modelled evaporation rates. The solid lines are the model
of equation 2-50, and the squares and circles are the data. Curves a and b represent
evaporation three and ten days after irrigation, respectively.
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Figure 2-1 shows that equation 2-50 provides a qualitatively acceptable representation of evapo-
transpiration during daylight hours, when the process is most important. The model does not in-
clude the rise in the data from sunset to sunrise. Also the data points are not exactly symmetri-

cal about the maximum.

It is also possible to model the surface temperature and the heat balance equation (and thereby
include the effect of the meteorological variables on evapotranspiration) without modeling the
soil temperature profile. The surface temperzture T, and average subsurface temperature T are

modeled by the force restore method (Lin, 1980). The mathematical model is

dT

s =28 21 7 _T .

F— 2 T (Ts T) (2 538)
aT_ _s

(2-53b)

dt a\/3657

where S is the heat flux absorbed by the soil and
C7-
A=/ ——
T

In this expression A is the thermal conductivity of the surface layer, c is the heat capacity, and 7
is the number of seconds in a day. The thermal conductivity and heat capacity are computed using

Equations 2-23 and 2-29.

Since Equation 2-53 gives the time dependence of the surface temperature explicitly, T, is made
one element of the state vector and is therefore known. Therefore, no iteration is required to
solve the heat balance equation. The terms R, LE, and H, are evaluated using the state vector

value for T, and S is computed from Equation 2-34.

ROOT MODEL

A model of soil water depletion by plant roots has been included as an extra term in the equation

of continuity, Equation 2-32:
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do_
dt

_dq _ .
Z-Qan (2:54)
The sink term Q (1/sec) in Equation 2-54 is positive when water flows from the soil to the plant.

The mathematical model is (Hillel, 1977 ; Gardner, 1964)

,(0,2)= (1)

Qz,v) = (2-55)
Q + Slp
where <I>s (0,z) is the total potential energy of the soil water;
®.(0,2)= $(0)~z (2:56)

where (0) = matric potential

—z = gravitational potential (z is the depth below the surface and is positive)

Thg plant potential fbp (cm) in Equation 2-55 varies with time but is assigned the same value
throughout the root system. The soil resistance 2 (cm-sec) is inversely proportional to the soil
conductivity and the amount of active roots:
Q. =1/(BK(@)P (2) 257
where B = constant
K(8) = hydraulic conductivity (cm/sec)

P (z) = relative root density (1/cm?)

The resistance to flow in the roots Qp is also modeled as inversely proportional to the root density
and root conductivity. The inverse of conductivity, called the specific resistance, is sometimes
used. The plant resistance is

Qp (2)=1/P (2) (2-58)

where r = specific resistance to flow in the roots (sec/cm).

Using Equations 2-57 and 2-58 for the resistances and Equation 2-56 for the soil water potential

energy in Equation 2-55 and rearranging gives



BKP[y —z— ®,]
T+ BKr

. (2-59)
BKP [{ —z— @]
BTN

The important model parameters are the relative root density P (z) and the ratio of the resistances
SZp /&'ls . No loss of generality results from setting B = 1, since its value can be absorbed into the
definitions of P and r. Since Q is proportional to P, multiplying P at all depths by a constant
would only ¢hange the rate at which the moisture profiles evolve. Since P has the dimensions
(1/cm?), it is commonly thought of as the length of active roots per volume of soil. As yet there
is no experimental evidence that this is true; the model only requires that P (z) represent the rela-
tive ability of the roots to absorb water at each depth. The plant potential <I>p , commonly referred
to as the crown potential, is modeled as a response to an atmospheric evapotranspiration demand

function.

The discrete model of the sink term as used in this simulator is

KP [y.—z—® ]
e i S B )
Q Tk (2-60)

Qj is the value of the sink in the j** soil layer, and z; is the depth to the center of this layer. Kj
and yl/j are the hydraulic conductivity and matric potential of the soil water in the layer. The rela-
tive root density in each layer Pj and the specific resistance of the plantrootsr are input parameters.
The crown potential (I>p (t) is modeled as a response to a known transpiration demand function
Ep,2 (t). The crown potential is computed by requiring that the integral of the sink terms over the

soil profile be equal to Epfl . In its discrete form, this integral is

N
E,, = z Q dz, (2-61)
=1

where dzj is the thickness of the j'" layer and N is the number of layers in the profile model. Using

Equation 2-60 for Qj and solving for the crown potential gives
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N
Ep,2 )+ Z Kij (gl/j - zj) dzj
J=

o (t)= (2-61)
p N

z K.P. dz.
I R

=1

Both Ep‘2 and ‘r’/,- are negative, so <I>p is is also negative. Its magnitude can be large if either the
demand is large, the soil is dry (so N/lj | is large), or both. The magnitude of <I>p must be less than
the magnitude of the wilting point, ®_, which is the largest potential for water intake the plant can
create before wilting. Thus, the crown potential must satisfy the inequality

¢ < ¢ <0 (2-62)

If <I>p <& thesimulator will set fI)p =®_. Once <I>p is calculated the sink term can be evaluated
for each layer using Equation 2-60. It must be positive for all layers, to correspond to flow from
soil to roots. Any of the Qj which are negative are set equal to zero. This procedure is used to
accommodate experimental evidence that water flow from plant roots to the soil is negligible

(reference 8).

The transpiration demand Ep is computed from the total evapotranspiration demand E (t). This
is known from the solution of the heat balance equation, or from the function of Equation 2-50
when heat fluxes are not modeled. A fraction f of the total demand will be satisfied by soil evapo-
ration, Es;

E =fE (2-63)

where typically f = 0.1 (Eagleson, 1970).

The rest of the demand will be satisfied by plant transpiration Epsz ;

E,=E -E =(1-DE(t) (2-64)
This is the transpiration demand used in Equation 2-61 to compute the crown potential.
SOIL HYDRAULIC PROPERTIES

Both matric potential and hydraulic conductivity as functions of volumetric wetness can be

modelled as follows for a wide range of soil types and textures, (Clapp and Homberger, 1978);
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0 2b+3
K(0) =K, <7> (2-652)

]

.
TORE (%) (2-65b)

s

where 6 is the volumetric wetness at saturation, K and Y are the conductivity and matric poten-
tial respectively at saturation, and b is a parameter determined primarily by the soil texture. Repre-

sentative values are 4 for sand to 11 for clay. This model has been implemented in the simulator.

2.2 METHOD OF SOLUTION

The solution space for 6(z,t) and T(z,t) consists of a variable time grid and a fixed space grid. The
soil is divided into n layers. These layers need not all have the same thickness. However, they
should be small enough to enable 6 and T within two adjacent layers at a fixed time to be ade-
quately represented by a linear function of depth. For a soil with n layers, Equations (2-32) and

(2-33) become 2n partial differential equations:

d
0. dy.
o P (2-66a)
dt dz

=K. -D (dei) -D (dTi) (2-66b)
9o, i 78 \dz T; \'dz.

dq

o h;
aT__ 1 < ‘> (2-66¢)
dt Ci dz

aT, do, -
o, =N ) 71 ever \a (669

If the force-restore method is used, the n equations 2-64c are replaced by the two equations 2-5 3a

and b.

Each equation describes the time dependence of 6 or T at a fixed depth. These equations are

coupled, as spatial derivatives of 0 and T appear on the righthand sides.
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An Adams-Bashforth numerical integration scheme is used to perform the time integration. The

general equation that can be solved by this method is of the form

d-’y _ - -4 N
7 =ty (2-67)

where ;is called the state vector.

Knowledge of f-ft,;) enables the generation of solutions y-ft). In this application, state vector ;
contains 6 and T at various depths within the soil. Functions f are the spatial derivatives of the
fluxes, the righthand sides of Equations (2-66), and these are known functions of z, t, 8, and T.

The elements of ; and Fare

0, i=1,n
y; = (2-68a)
T, i=n+1,2n
dq, .
( - i=1,n
J dz
f, = 2-68b)

-1 qu P
)6 o

If the force-restore method is used, the temperature variables are replaced by the following;
yn+1 = Ts

— (2-68c¢)
=T

Yotz

The corresponding time derivatives f 4 and +, are given by equations 2-53a and b.

The time integration is performed via the following steps:
1. Estimate y(t + At), using known values 3(t), 7t), Tt - A1), T(t—24A¢1), . .. ft—kAb).

The estimate is usually called the predicted value —37(") (t+ At).

2. Compute —t?(t + At), using the elements of y®) (t + At) from step 1 for 6, and T..
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3. Recompute y(t + At), using known values y(t), T(t + A t) (step 2),T(t), . .., ft—(k=DA®).

This is called the corrected value S,’(c) (t + At).

In principle, steps 2 and 3 could be iterated until they both give approximately the same answer.
However, it is more economical to reduce the integration step size At until convergence is achieved

on the first iteration.

The order of this method is determined by k, the number of back values of f that are used. A
fourth order method is used in this application. The actual equations used to compute y® and y(©

are

TO) (t+ At) = Y(t) + At [1 +2VE) + 5 v2 fin+3 3 v3 Ty + ?/% v4 ’f'(t)] (2-69)

and
y(°) (t+ At)= y(t) +=54 720 [251 f(t + At) + 469 f(t) +109V f(t) +49 V2 f(t) +19 V3 f(t)] (2-70)
where functions V? ?(t) are linear combinations of the back values of E defined by

Vi) = 1)~ ft—AD

V2Tt) = V(VED) = 1(t) - 2Tt — At) — {(t — 24t)

V3T = V(Y2 1) = f6) ~ 3 f(t —At) +3 f(t — 240)
2-71)
—f(t — 3At)
VIHt) = V (V3 T(0) = £() — 4 £t — At) + 6 f(t = 2A1)

— 47t - 30 + Tt — 4 AD)
These equations are derived in Section 2.3.

To perform the time integration, the functions f,, which are the spatial derivatives of the wetness

and heat fluxes (Equations (2-68)), must be computed.
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The soil is divided into n layers, each of thickness dz,. There are n+1 boundaries. The center of

each layer is at depth z, below the surface. The diagram in Figure 2-1 illustrates this division.

First, the fluxes at the n—1 interior boundaries | qoi, qTi ,1=2,...,n] are calculated from the

known values of 01’ Ti, and z. The fluxes at the two boundaries [qt91 , q0n+l > Ay i ar . ] are

then calculated to satisfy the boundary conditions. The surface moisture and heat fluxes qei and

q. , are found from the solution of the heat balance equation. To hold the bottom temperature
i

constant, the net flux into the bottom layer must be zero. The simulator does this by setting

q; equalto an . Similarly, if constant wetness in the bottom is to be modelled, then B, is

n+1

set equal toq, . The f, are then computed using a linear finite difference representation of the
n

derivative:
. dq, .~
f.=— =- (2-72a)
! dz dz.
d -_—
1 qhi 1 qhi+1 qhx
£, =4 ___=—_ 2-72b
Hn C, dz G dz ( )
The fluxes at the interior boundaries lq, , ar ,i=2,...,n] are computed as follows:

1. In each soil layer, compute K, (hydraulic conductivity), wi (pressure head), A, (thermal
conductivity), C, (volumetric heat capacity), DTi (thermal diffusivity), and De,vapi (the coefficient
of dy/d6 in the vapor contribution to wetness diffusivity; that is, De,vap = D;‘vap (dy/df)). The
calculation of these quantities as functions of Gi, Z, and T, are described in Section 2.1.

2. Compare the spatial derivative of the temperature and pressure head at the ith boundary:

(gz‘p): ;l’iﬂ ~Y; - Vi ~ ¥, (273a)

w1 4 %(dzi—1+ dz,l)

(g) _ Ty - T, _ T, T, (2-73b)
dz /2, — 2, %(dzm +dz))
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1 d% ___le_ l
|1 Z,
i dZ, ————————— i_ %3
2
S 12
—t
.
n-—r— i
47 & cmmmm e m e —— _
n+1—Jn——-

NOTE: The center of the ith layer is at depth Z..

Figure 2-1. Diagram Showing the Division of the Soil Profile Into n layers,
Each One of Thickness dz,
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It should be noted that in Equations (2-66) the spatial derivative of the wetness, d0 /dz, always
occurs in the product (dy//df) (d6/dz). This is equal to dy/dz by the chain rule ofldifferentiation;
hence, the derivative of Y, and not 8, is computed. (This means that hysteresis is not included in

the simulations).

3. Compute the average value of K, X, D.,and D(’, vap at the boundaries by linear interpolation

between the values in the two adjacent layers:

_ Kk dz._l + K, dz
i T i1 i

K=~ 7ar, (274
Similar expressions are used for A, D , and'ﬁgvap‘ .

1

4. Compute the fluxes. From Equation (2-66), these are

I dy\ == dT
qoi =K -+ Do,vapi) (E)l DTi <(E>‘ (2-75a)
= (4T _; 5 EM) )
W, =N, ( = )i LD, ., ( &), (2-75b)

These fluxes are used to evaluate the righthand sides of Equations (2-72) and thereby perform the

time integration.

2.3 DERIVATION OF INTEGRATION EQUATIONS
In the following development, the vector nature of the state vector is ignored to simplify the
notation. The references provide a more detailed description. (Teddington, 1958; Booth, 1957;

Baginski et. al., 1979)

A general k-step formula to integrate Equation (2-67) can be written in the form

Yooy ShIbG, Fb £+ by ]

0 "n+l1-k
(2-76)
1

+la Y ta LYt ta Y

n- 0 "ntl-m

where h is the integration step size and choice of coefficients a and b, defines the method. Back

values of Y and f plus the current value of f may be used. A multistep method is explicit if b, =0
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and implicit if b, # 0. Implicit methods require a recursive evaluationof Y __ ,as f,,, appears in
the formula. Despite this drawback, implicit methods are desirable to solve nonlinear problems
because they can usually be designed to have smaller truncation errors and better stability. Tﬁe
Adams-Bashforth integrator uses an explicit method, known as a predictor, to calculate Y __ .

f4 18 then calculated using this estimate and an implicit method, known as a corrector, is used to
compute a refined value, Yé?l . Calculation of derivative f__ typically involves far more execution
time than manipulation of the integrator equations. However, in this formalism f is only computed

once per integration step. Therefore, the extra accuracy derived from using the corrector equation

costs only a small increase in execution time.

The difference between the corrected and predicted valuesof Y, vields, in most cases, a reliable
estimate of the error in the integration. This error estimate is monitored to ensure that the errors
are not too large. If necessary, the step size can be reduced by half. If the error is smaller than

some lower limit, the step size is automatically doubled, thereby saving execution time.

The predictor/corrector equations define Y, in terms of Y and derivatives f .5, ,etc
(Only one previous value of Y is used.) However, the resulting equation is most conveniently ex-
pressed in terms of functions called “backward differences,” which are linear combinations of f .

The backward difference operator V acting on discrete function g_ is defined by

Ve, =8, ~ &, (2-77a)

Higher powers of Vacting on g are computed by successive applications of V:

vig =V(Vvg,)=Ve, —Ve,_, =8, ~28 _, tg ., (2-77b)
vig, =v(vig)=g, ~3g,, +38,, "8, (2-77¢)
vis =V(Vig )=g —4g_, +68 _,—48 _ te. (2-77d)

A useful recursion relation connecting various backward differences at two adjacent time steps is

v ., =V¥lg,, V¥ e, (2-78)
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Equation (2-76) written in terms of backward differences of f instead of f itself is

Y=, Y +ta Y  +...+aY

n+1 n+1-1

2-79)
+thic, f +evf +...+cy*f +df ]
To derive the values of coefficients a, ¢, and d, the backward difference operator v must first be
related to derivative operator D =d/dt. A Taylor’s series extrapolation of a continuous function is

Y(t+ At)=exp(At D) Y(t)

In terms of discrete function g, , this is
g, =exp(hD) g _ (2-80)

where h is the step size.

Equation (2-77) can be rewritten as

g, =(-vlg , (2-81)
Comparing Equations (2-80) and (2-81) yields
exp(hD) = (1 -v)™! (2-82)
or
V 2 V 3 V n
hD=-In(l1 - V) =9 +X—+—=—+ .. +1—+ . . (2-83)
2 3 n
Equation (2-80) can be used to compute Y, ., given Y because the operator hD is known in
terms of the backward differences from Equation (2-83):
Y, ., =exp(hD) Y (2-84)
This can be manipulated as follows:
Y . =Y, +(exp(hD)-1) Y,
(2-85)

=Y. + (exp(hD) - 1)<%> Y,

Because DY, = f , this yields
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n

Y, =Y, +h (%‘%‘-‘) f (2-86)

The numerator and denominator are expanded in powers of V. From Equation (2-82),

exp(hD)=1—__17=1+V+V2+...+V"+... (2-87)

Using Equation (2-83) for hD and Equation (2-87) for exp(hD) in Equation (2-86) yields

SR vAI L VAR N VA D

Y =Y +hn|¥ f

n+l n [V+Y.?_+23_+_”+.V_n+”_]n
2 3 n

This division can be carried out to any number of terms. To fourth order, it is

®) ~ 1.5 02,303,421 04 .
YO =Y +h[1+2V+55 V2 5V 455,V 1, (2-88)

This is the predictor equation because it does not contain f - The corrector equation can be
derived by starting with the identity

Yn+l = Yn + VYn+1

Manipulation as performed above yields

- hD
Yn+l - Yn +V -}T) Y
~ \%
- Yn th Eﬁfnﬂ
Using Equation (2-83) to expand hD gives
_ v |
Yn+1 _Yn+h[v+y_2_+...+.v_ﬂ.+..]fn+l
2 n

If the division is carried out to the fourth order, the following corrector equation results:

1 1 1
YO, =Y, +h[1-3V 13 v: ~5 v - 735v°] fu, (2-89)

When an integration is performed, the derivative { , is known, but the backward differences
vk f 4 are unknown. Therefore, the recursion relation equation (Equation (2-78)) is used to

express Y in terms of v* f_. The resulting corrector equation is
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- 251 h 2 3
YO =Y + <m> hfoyg + 555 (469 + 109V +49v2 + 19 V3)f (2-50)

The integrator uses the predictor (Equation (2-88)) to estimate the state at the (n+1) step, and the
derivative f ,, is evaluated using this first value. This derivative and previous backward differences
are then used to refine the estimate of Y, +1 using Equation (2-90). The magnitude of the differ-
ence between these two estimates, IYI(]‘;)1 - Yrgi)l [, is a reliable estimate of the corrector error; and
the step size can be changed at this point if necessary. This is determined by testing whether the
difference for each state vector element lies within the error window for that layer. This window
for the ith layer is the interval

(Wi, wp) = (E,/ED, E, * ED) (2-91)
where E, and ED are input parameters. If the differences in all layers are less than the lower limit

(w, ), the step size is doubled. If the difference in one or more layers is larger than the upper limit

(w, ), the step size is halved.

When the integration is complete, the backward difference table is updated via Equation (2-78)
to prepare for the next integration step. In addition, if the step size is changed, new backward
differences must be computed to reflect the new step size. These can be calculated in terms of the
old differences in the following way. The value p is defined to be the ratio of the new interval

length to the old length:

old

Halving gives p = 1/2, and doubling results in p = 2. In terms of the new interval, the first back-

ward difference is

v, f,=f, ~f
pholdb
—fn —e fn

Using Equation (2-82) to express the exponential in terms of V¥, this becomes
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v, f, = [1 - (1 —v)P] £,

=[pv_p(p—1)vz +p(p—13?‘(p—2)va]___ ;

70 n

The mth order backward difference is found by raising the first order to the mth power.
Vg‘ f, = [1-a-vem £ (2-92)

This can easily be expanded in powers of V. Because the new backward differences are linear

combinations of the old, changing the step size can simply be effected by a matrix multiplication.

Halving is accomplished as follows:

| 1 1 S
v 2 8 16 128 v
2 1 1 S 2
v 0 4 8 64 v
= (2-93)
3 1 3 3
v 0 0 5 33 v
4 1 4
v 0 0 0 T v
1
and doubling is achieved as shown below.
v 2 -1 0 0 v
v? 0 4 —4 1 v?
= (2-94)
v3 0 0 8 -12 V3
v 0 0 0 16 v4
2
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Simulator output is desired at predetermined intervals. Because the Adams method integrates by
using the largest interval yielding the required accuracy, an integration step frequently ends beyond
the desired output time. As a result, interpolation is necessary; however, back values of the state
vector are not available for this purpose. A method as accurate as integration and not requiring

the storage of previous data points is available (Glang, 1971). This method essentially consists of
an equation for integrating a partial step forward or backward using the existing table of backward

differences. The derivation closely follows the derivation of the predictor equation. Let

ey Tty
h
Then
— hD
Yn+p =eP Yn

=Y, +E"P -1)Y,

<

=Y, + (" -1) =Y

_ ePhD —

Expressing this as a function of V using Equations (2-82) and (2-83) gives

B

n

- [a-wyr-1]
Yn+p Yn +hl- —ln(l —V) an

Expanding in powers of ¥ gives

+ +1)(p+2
+p(p' 1)V2+p(p )'(p )V3+...
Y,.,=Y,+h 2! 3! £ (2-95)

n+ 2 3 n

\% A%
VHt—+—+ .
2 3

To the fourth order in V, this is
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2 3 2
_ p 2p° +3p ) 2
Yn+p—Yn+h [:p+—2— V+( B \v)
(2-96)

4+ 4p3 + 4p? S +45p* + 110p® + 90p?
. (p +4p° +4p >v3+ (6p Sp p p )v“ £
24 720

This is the required interpolation formula.
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SECTION 3 — TEST RESULTS

3.1 COMPARISON OF SIMULATED TO ANALYTICAL SOLUTIONS

This program has been tested by using it to solve diffusion-type partial differential equations for
which analytical solutions are known. Numerical solutions of the following three equations were
generated:

1. Constant diffusion coefficient with constant wetness boundary condition at the surface:

do ( d? e)
— =D, {—— (3-1)
dt 0 dz?
subject to 6 (z,0) = 6, and 0 0)= 60 . The solution is (Eagleson, 1970)
z
0(zt)=0, + (6, 8,) erf <2\/BOT> (3-2)
2. Constant diffusion coefficient with constant flux at the surface:

do _ . (%0
T D, <d22 > (3-3)

subject to 6(z,0) = 6, and —D, (dé (0,t)/dz) = f0 . The solution is (Eagleson, 1970)

2f,| [D t 2 Iz|
0(z,t) =0, + =0 {20! oxp (- 2 -1 o 34
i DOH P \Tapyt) T2 T\ 2D (3-4)

3. Concentration-dependent diffusion coefficient with constant wetness at the surface:

40 _a (5 20
i @z <D(9’ dz>

(3-5)
D(9) =—D;9 (1-2n6)
subject to 8 (z,0) =0 and 0 (0,t) = 1. The solution is (Philip, 1960)
0(z,t) = exp (—zA/D, ) (3-6)

In Equations (3-2) and (3-4), erf and erfc are the error function and complementary error function

respectively.



For each simulation, the soil depth was set at 60 cm and the equations were integrated for 6 hours.
The diffusion constant, D, was set equal to 0.01 cm?/sec. The flux at the bottom was set equal

to 0 in all cases. This boundary condition is not compatible with the equations being integrated

(as a semi-infinite medium is tacitly assumed in the analytical solution, no bottom boundary condi-
tion exists). However, with this value of D, the water incident at the surface could not appreciably
infiltrate to a depth of 60 cm in 6 hours; thus, the simulated and exact solutions should agree

throughout the top layers. Results are reported to a depth of 25 c¢cm.

The simulator was run with an absolute error tolerance of 0.005. This is the largest allowable
magnitude of the difference between predicted and corrected values for each iteration and is a test
of convergence. In most cases the difference between the simulated and exact solutions did not
exceed 0.001, indicating that the simulation converged to the éorrect value. The only exception is
in the top layers when constant wetness boundary conditions are used (simulations 1 and 3). The
exact solution gives constant wetness at z = 0, but the simulator requires all layers to have a finite
thickness. For these two cases the top two layers were given a thickness of 0.1 cm an;l the thick-
nesses of the deeper layers were gradually increased to a maximum of 2 cm. Because of this finite
surface thickness, the exact and simulated solutions in the top cm of soil differed by about 0.01.

Agreement at other depths was within 0.005.

For case 2, the soil was divided into layers 2-cm thick throughout. The exact and simulated solu-

tions were consistently within 0.001.

Figures 3-1 through 3-6 represent the results of the simulation. Figures 3-1, 3-3, and 3-5 give
wetness profiles at 20 minutes, 2 hours, and six hours for cases 1, 2, and 3, respectively. Figures
3-2, 3-4, and 3-6 show wetness as a function of time at soil depths of 1, 11, and 25 cm for the

three cases.
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2
5 10 15
Depth (cm)

NOTE: Curves are labeled with the simulation time. The initial value of wetness is 0.2 at all
depths, and the surface wetness boundary value is 0.9.

Figure 3-1. Wetness Profiles from the Solution of the Diffusion Equation with Constant Diffusivity
and Constant Wetness Boundary Conditions (Equations (3-1) and (3-2)
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NOTE: The initial and boundary conditions are the same as in Figure 3-1.

Figure 3-2. Wetness as a Function of Time for Three Depths
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3
1/ 3 Hour
2 | |
5 10 15 20 25

Depth (cm)

NOTE: Curves are labeled with the simulation time. The initial value of wetness is 0.2 at all
depths. The flux at the surface (f, ) has the value 4 X 10~ (cm/sec).

Figure 3-3. Wetness Profiles From the Solution of the Diffusion Equation With Constant Diffusivity
vity and Constant Boundary Condition (Equations (3-3) and (34))
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NOTE: The initial and boundary conditions are the same as those in F igure 3-3,

Figure 3-4. Wetness as a Function of Time for Three Depths
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2 Hours
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0 1 1 -
5 10 15 20 25
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NOTE: Curves are labeled with the simulation time. Initially, the profile has a wetness of 0.0
everywhere, and the surface wetness boundary value is 1.0.

Figure 3-5. Wetness Profiles From the Solution of the Diffusion Equation With Variable Diffusi-
vity and Constant Wetness Boundary Condition (Equations (3-5) and (3-6))
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NOTE: The initial and boundary conditions are the same as those in Figure 3-5.

Figure 3-6. Wetness as a Function of Time for Three Depths
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3.2 FIELD SIMULATION

To gain confidence in the ability of the program to solve the more complicated coupled system of
diffusion-type partial differential equations, a day-long simulation of conditions in an actual field
was performed. Initial conditions were taken from data that were measured in an experiment
performed in March 1971 (Jackson, 1972). In this experiment the soil was irrigated, and at half-
hour intervals thereafter for 16 days temperature and moisture profiles, evaporation rates, heat
fluxes, and other pertinent meteorological data were measured. Thermal and hydraulic properties
of the soil type were also known. The simulation was performed for a 24-hour period starting at

the beginning of the fifth day after irrigation.

Subsequent analysis of this data has shown that the flow theory described in Section 2 of this
document can provide reasonably accurate moisture fluxes at intermediate values of wetness (Jack-
son et. al., 1974), but the heat fluxes predicted by this theory are not very accurate (Kimball
et al., 1976). Nevertheless, these expressions for moisture and temperature fluxes are generally
accepted to be qualitatively correct; therefore, they may be used in a test of the ability of the

simulator to qualitatively model heat and moisture flow in soils.
Values for the various input parameters that were used in this simulation are described below.

Semi-log plots of the hydraulic properties of Adelanto loam (the soil used in the experiment) were
given in graphical form (Jackson, 1972). These are reproduced here in Figure 3-7, with the scales
changed to reflect the different units used in the simulation. Data points were estimated from the
curves and then used to find acceptable values for the parameters in the potential and conductivity
models, Equations 2-65a and 2-65b. The data points are the logarithms of K and {¢]. The corre-
sponding logarithms of the model equations can be used to solve for the model parameters. To
use conductivity and potential data at the same time, the sum of the logarithms of K and Yy was

used;



(cm)

X X X Model Calculation of Yy
0O O O Model Calculation of K

6 (cm3/cm3)

{cm/sec)

Figure 3-7. Hydraulic properties of Adelanto loam. The solid curves are reproduced from

Jackson (1972).
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log K(8) + log [ (0) = (b + 3) log (%) +log |y ]+ log K (€3]

The model equations as implemented will not accommodate the sudden change in the slope of the
potential curve near saturation. (A procedure to include this behavior is described in Clapp and
Hornberger, 1978). Therefore, a value of 0.375 was used for saturation wetness, and calculated
matric potentials will not be valid above this value. A linear least squares fit of the data to Equation
3-7 gives a value for the texture parameter b and the sum log [ | + logK, which is valid for wetness
in the range (.125, .375), where both conductivity and potential are known. Values for K and

Y are then determined by examining the conductivity and potential data separately.

This procedure results in a value of 5.2 for b. However, the resulting fit does not match the matric
potential data very well for wetness below 0.1. A slight decrease in the texture parameter will
greatly improve the fit for dry conditions, yet does not greatly alter the fit for wetness greater

than 0.1. The following values for the model parameters were chosen to match the data:

b =50
k, = 28X 1075 cm/sec
" (3-8)
ws = —42.7 cm
0 = 0.375

The points on Figure 3-7 have been calculated with these values in Equation 2-65. The RMS
errors of the fit to the logarithms are |
Oy (log |¥])=0.37 (3-92)
oy (log [K))=0.48 (3-9b)

These errors in the logarithms are equivalent to multiplicative errors in the hydraulic properties.
With K (0) and v, (6) defined to be the model values for conductivity and potential from Equa-

tions 2-65a and 2-65b, the one standard deviation ranges for the error in the fit are 10t ¥ K, and

100V ¢ o+ Inserting the values from Equations 3-9a and 3-9b for the RMS errors gives



43K, (0)<K(0)<23K, (0) (3-10a)

K
33y, (0)<yY (6)<3.0 Y, (6) (3-10b)

These errors are due only to the fit to the model equations. Errors in the measured data are un-

known and are therefore not included.

The soil porosity (e, Equation (2-6)) was assumed to be 0.39 because this is the largest value of 0
for which the hydraulic properties were given. Also, the maximum values of wetness on the data

base for any soil layer at any time is 0.38, which occurred in the top layers just after irrigation.

The volume fractions of the solid constituents of Adelanto Loam are .373 for quartz and .627 for
clay (Kimball, et al., 1976). The volume fractions of quartz and clay for the soil-air-water system
are therefore
fq =373 (1-€)=0.228
G-11)
f, =.627 (1-e)=0.384
The thermal conductivities of quartz and clay are 21 and 7 (mcal/cm/sec/°C) respectively. Equation

(2-24) gives, for the weighting factors,

b
il

173
(3-12)
k, =.422

The value used for the shape factor g; is 0.333.

Equation (2-23) contains contributions to the effective thermal conductivity from all solid consti-
tuents. In the simulator, these factors are replaced by one effective solid term with volume fraction
f=1-e. This is accomplished by defining the effective thermal conductivity of the solids A and
weighting factor k by solving the equations
k(l—e) A= Tk, (3-13)
k (1-¢) =.‘>;‘,kifi (3-14)

1)



Using previously stated valuesk;, f;, and A,, these equations can be solved, giving

k=0.329 (3-152)
N=9.72 X 1073 (mcal/cm/sec/°C) (3-15b)

The volumetric heat capacities of quartz and clay have the same value, 0.5 (cal/cm?3/°C), which was

used for C_ in Equation (2-29) to compute the volumetric heat capacity of the soil-water system.

The soil moisturé in the bottom layer was approximately constant over a 24-hour period; con-
sequently, the: option to hold this value constant in the simulation was chosen. (JBOT =1 in

NAMELIST, see Section 4.)

Values for parameters needed for the solution of the heat balance equation were either measured or
could be deduced from the measurements. Air temperature, vapor pressure, and wind speed were
measured at half-hour intervals, and a linear interpolation scheme was used to provide values at

intermediate times. The subroutine which did this is listed in Section 4.

Values for parameters in the solar radiation flux model (Equation 2-37) are as follows: A =33.5°,
5§=0.0°,A=0.3,N=0.0,and n=2.0. The first two variables in this list follow from the location
of the experiment (Phoenix) and the time of year (March 8, near the vernal equinox). Both in-
coming and outgoing short wave fluxes were measured, and the average value of their ratio (the
albedo) over the day was '0.3. Figure 3-8 shows both modeled and measured fluxes. The qualita-

tive agreement is very good. The major error source is the phase difference of one-half to one hour.

Evaporation rates were measured during the experiment. Therefore the constant C, in Equation
2-44 was chosen to make the model calculations match the data as accurately as possible when the
rate was the largest. The simulated and measured evaporation rates are compared in Figure 3-9,
with the value of 0.5 X 107 (cal/cm?®/mb) used for C, . In the nominal simulation C, was set

equal to zero. The simulation was also run with the value of C;, chosen to represent the reported
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Figure 3-8. Simulated and measured incoming and outgoing short wave radiation fluxes for March
8 simulation. Solid lines represent the data, and the points represent the model calcu-

lations.
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Figure 3-9. Comparison between simulated and measured evaporation rates.



uncertainty of .02 mm/hr., the resulting curve is also shown in Figure 3-9. The qualitative agree-
ment is good, indicating that Equation 2-44 can be used to model physically realistic instantaneous

evaporation rates.

The results of a 24-hour simulation are presented in Figures 3-10 through 3-15. The qualitative
similarity between the measured and simulated variables is evidence that the program has solved
the model equations correctly. As previously noted, the solutions of the model equations are not

expected to agree exactly with the data because of uncertainties in soil properties.

Figure 3-10 shows simulated and measured wetness in the top % cm of soil as a function of time.
The greatest daily variation occurs in this layer, so a comparison of the simulated and measured
wetness there provides the most stringent test of the program. Curve a is the data, and curve b

is the simulation using nominal values of the input parameters. The quantitative agreement between
these two curves is poor. However, some of the discrepancy can be accounted for by uncertainties
in the input parameters. For example, the error in the evaporation rate is conservatively estimated
to be .02 millimeters per hour (Jackson, 1972). Curve c results from increasing the magnitude of
the evaporation rate in the simulation by this amount, and only a small change is produced. The
values of the hydraulic parameters can also be in error by considerable amounts (Equation 3-10).
Decreasing the magnitudes of K and by the factors of .33 and .43 respectively (and therefore
rfeducing the value of the wetness flux everywhere) results in curve d. The simulated wetness is
very sensitive to changes in these variables. It should also be noted that the errors quoted include
only those due to curve fitting and extracting numbers from the semilog plot; the errors in mea-
suring K(0) and y/(0) are not known and have therefore not been included. Finally, curve e shows
the effect of changing both the evaporation rate and hydraulic parameters. In this case changing

the evaporation rate has a greater effect on the moisture content .

Figure 3-11 shows the simulated and measured surface temperatures, and Figure 3-12 shows the

corresponding heat fluxes at a depth of 5 cm. The qualitative agreement in both cases is good.
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Figure 3-10. Wetness in top 2 cm. of soil as a function of time. Curve a is the data, and curves
b-e represent simulations with various uncertainties in the input variables included.
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Figure 3-11. Simulated (dashed line) and measured (solid line) surface temperatures over one
day.
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Figure 3-12. Simulated (dashed line) and measured (solid line) heat fluxes at 5 cm. depth. Fluxes
are positive away from the surface.
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The maximum error in the surface temperature is 3°C. Errors in the heat flux can be reduced by
calibration of the thermal conductivity model (Equation 2-23). (Kimball, et al., 1976a and b.)
This is done either by making the air shape factors (Equation 2-24) functions of soil moisture, or
by introducting a constant factor in Equation 2-23. However, in this simulation the value 1/3 was

used for g, for all values of wetness, and no multiplying factor was used.

Figures 3-13 and 3-14 show wetness profiles for three different times of the day. The simulations
represented in figure 3-13 were performed with nominal values for the input parameters (curve b,
figure 3-10); figure 3-14 shows the changes when errors in the hydraulic parameters are included
(curve d, figure 3-10). Figure 3-15 shows temperature profiles from the nominal simulation. The
simulations were performed to a depth of 100 cm' but little variation was found below 25 c¢m for
wetness and temperature in both the simulations and the data; therefore, profiles below this depth
are not shown. The qualitative agreement is good for moisture profiles below 7 cm. The tempera-

ture profiles agree within 3° at all depths.

Uncertainties in the hydraulic parameters are responsible for most of the surface moisture differ-
ence between the simulations and the data; errors in the simulation of evaporation rate are of
secondary importance. Surface soil moisture variations are determined by the difference in the
evaporation rate and the recharge flux into the surface layer from below. Table 2-1 shows values
for the integrals of these fluxes over one day for the four simulations discussed. The integrated

evaporation rate from the data is also presented.

The differences between columns b and d show that changing the hydraulic parameters has very
little effect on the evaporation rate but does alter the recharge flux. Therefore large variations
in surface soil moisture can be created by changing the hydraulic parameters because the inpuf to
the layer changes, but output is relatively constant. (This decrease in recharge is reflected in the
smaller change over time of the simulated moisture profiles in Figure 3-14 when compared to

Figure 3-13). However, if only the evaporation rate is changed (column c), both surface and
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Figure 3-14. Wetness profiles at three times for a simulation with hydraulic parameter reduced
by maximum uncertainty. The legend from figure 3-13 applies here.
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Data Source

a b c d e
Evaporation 181 125 167 126 .168
Recharge 157 .196 118 .147

Table 2-1. Daily Integrated Evaporation and surface recharge fluxes, in cm of water.
Data
Simulation with nominal input values
Simulation with evaporation rate increased by uncertainty
Simulation with hydraulic parameters reduced

Simulation with evaporation rate increased and hydraulic parameters reduced
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recharge fluxes change by almost the same amount. Thus the effect on surface soil moisture is

minimal. The increased evaporation in this case is supplied by moisture in layers deeper than the

surface.
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SECTION 4 — USER’S GUIDE

Figure 4-1 shows the JCL needed to execute the simulator on the SACC (Science and Applications
Computing Center, GSFC) S/360-91 and S/360-75 computers. Subroutines which perform the
integration and create printer plots are in object module format as members of the data set
ZB2PC.UTIL.OBJ. All other subroutines exist as a non-executable load module named ZB2PCSSM
on the system load module data set, SYS2.LOADLIB. The linkage editor is used to combine
these and create an executable load module. In this example NAMELIST input is entered instream
in the GO.DATAS DD statement. The DD card labeled GO.FT10F001 is for printer plots (see the
description of NAMELIST parameter IPR). The GO.FT12F001 DD statement points to the disk
data set which will receive the temperature and moisture profiles (see the description of NAMELIST

parameters NDISK and IUDISK).

Figure 4-2 is an example of the JCL used to relink a subroutine created by the user and then exe-
cute the simulator. The first job step is a compilation of the user subroutine using the standard
FORTRANH procedure, and the second step is the LINKGO procedure from Figure 4-1. Note

that in the present example the NAMELIST is read from the data set ZB2PC.MARCH17.NL.DATA.

The variables in the simulator NAMELIST are described in Table 4-1. For each variable the type
(real (R) or integer (I)) length (4 or 8 bytes), and default value are given. If the variable name and
value does not appear in the NAMELIST input data, then the variable will have the value given in
Table 4-1. Variable descriptions are also given. References to defining equations are provided

where relevant.

In addition to values for the NAMELIST variables, the user can provide values for the air tempera-
ture, air vapor pressure, and wind speed as functions of time. This is done by coding a subroutine
named METEOR. The routine which is used in the simulator is given in Figure 4-3. The calling

sequence is as follows:
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//% SOIL SIMULATE

//LGO EXEC LINKGO,REGION.GO=300K,0UT=8
//LINK.SYSLIB DD D1SP=SHR,DSN=ZB2PC.UTIL,0BY
//LINK.OBJECT DD «

XECLUDE LOADLIB(ZB2PCSSM)

ENTRY MAIN
/*

//GO.DATAS DD =

&INPUT
NL=22,DZ=1.0.2.0,3.0,4.0,18*5.0,HATER827*0.1.TEMPS-27*290.0,
SATW=27*0.4,SATP=27*-10.0,SATK-27*1.0Ef4.EB=27‘5.0.
TSTOP=8.64D5,DTOUT=10800.0,

WATERR=0.002, TEMERR=2.0,ED=2.0D0,HMAX=1800.000,
IROOTS=0,ITEMPS=1,NWATRS=2,NWFLUX=2.NTEMPS=2,NTFLUX=2.
SPRES=1.0D6,R00TS=27%0.1,

INDXW=1,2, INDXWF=1,2,INDXT=1,2,INDXTF=1,2,

NHCUMS=1, IXHCUM=1 ,NWCUMS=2, IXWCUM=1,2,

NDISK=1,1UDISK=12,.

RNSTRT=8,64E4,RNSTOP=1,728ES,RNTOT=0.0,

NFUNCT=8,

&END
//GO.FT10F001 DD SYSOUT=8,DCB=(RECFM=VBA, LRECL=137,8LKS1ZE=7265)
//GO.FT12F001 DD DISP=SHR,DSN=ZB2PC.PROFILE.NORAIN.DATA(DRYNORTS)
//

Figure 4.1. Execution JCL

//COMP ~ EXEC FORTRANH,PARM=XREF,0UT=8
//SYSIN 0D DISP=SHR,DSN=ZB2PC.METEOR.FORT
//LGO  EXEC LINKGD.REGION.GO=300K,0UT=8{

//LINK.SYSLIB DD DISP=SHR,DSN=ZB2PC.UTIL.0BJ
//LINK.OBJECT DD =

INCLUDE LOADLIB(ZB2PCSSM)
ENTRY MAIN
/* ’
//GO.DATAS DD DISP=SHR,D5N=ZB2PC.MARCH17.NL.DATA
//GQ.FT10F001 DD S$YSOUT=8,DCB= (RECFM=xVBA, LRECL=137,BLKSIZE=7265)
74

Figure 4.2. Relink JCL
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TABLE 4-1 NAMELIST INPUT VARIABLES

All subscripted variables are arrays with one element per soil layer. Subscripts run from 1 to NL

(number of soil layers) unless otherwise indicated. The NAMELIST name is INPUT.

Integrator Control Variables

Name
TSTOP

IFORCE

HMAX

WATERR

TEMERR

ED

IROOTS

ITEMPS

Type

R*8

1*4

R*8

R*8

R*4

R*4

R*8

%4

1*4

Default
8.64D4

1.8D3

1.0DO0

1.0E-3

1.0

5.0D0

4-3

Description
Stop time for integration (seconds
from start)

Force integration step size to
remain less than HMAX (0 = no,
1 =yes)

Maximum step size (seconds)
(not applicable if IFORCE = 0)

Initial step size (seconds) (not
applicable if IFORCE = 1;in this
case H is automatically set equal
to HMAX/512)

Error tolerance parameter for
wetness in soil layers (Equation
(2-59))

Error tolerance parameter for
temperature in soil layers
(Equation (2-59))

Error window parameter (Equa-
tion (2-59))

Include water uptake by plant
roots in the simulation (0 =no,
1 =yes)

Temperature model indicator:

0 = no temperature in model,

1 = model soil temperature pro-
file, 2 = use force-restore equa-
tions to model surface and average
subsurface temperatures



Name
JBOT

Output Control Variables

Name
DTOUT

NFUNCT

NWATRS

INDXW
d,1=1,10)

NWFLUX

INDXWF
I,1=1,10)

NTEMPS

INDXT
d,1=1,10)

NTFLUX

INDXTF
d,1=1,10)

ITABLE

Type
I*4

Type
R*4

1*4

I*4

1*4

I*4

I*4

I*4

I*4

I*4

1*4

I*4

Default
1

Default
1800.0

0

10*0

10*0

10*0

10*0

44

Description
Bottom wetness boundary condi-
tion indicator: 0 = flux is zero,
1 = wetness is constant, 2 = flux
is hydraulic conductivity of
bottom layer

Description
Output period (seconds)

Number of wetness and tempera-
ture profiles per plot page
(0 < NFUNCT < 10)

Number of soil layers for which
wetness is to be plotted as a

function of time
(0<NWATRS < 10)

Indices of soil layers for wetness
versus time plots

Number of soil boundaries for
which wetness flux is to be
plotted as a function of time
(0O <NWFLUX <10)

Indices of soil boundaries for
wetness flux versus time plots

Number of soil layers for which
temperature is to be plotted as a
function of time

(0 <NTEMPS < 10)

Indices of soil layers for tempera-
ture versus time plots

Number of soil boundaries for
which heat flux is to be plotted
as a function of time
(O<NTFLUX < 10)

Indices of soil layers for heat flux
versus time plots

Print tables of important variables
(0 =no, 1 = yes)



Name
IPR

WL!

WH!

WFL!

WFH!

TL!

TH!?

TFL!

TFH!

NWCUMS

IXWCUM

I1,1=1, NWCUMS)

NHCUMS

IXHCUM
I, I=1, NHCUMS)

Type

*4

R*4

R*4

R*4

R*4

R*4

R*4

R*4

R*4

1*4

I*4

1*4

1*4

Default
10

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Description
Output unit number for printer
plots (tables are printed on unit 6)

Lower limit for wetness on plots
(cm3/cm3)

Upper limit for wetness on plots
(cm3/cm3)

Lower limit for wetness flux on
plots (cm/sec)

Upper limit for wetness flux on
plots (cm/sec)

Lower limit for temperature on
plots °K)

Upper limit for temperature on
plots °K)

Lower limit for heat flux on
plots (cal/cm? [sec)

Upper limit for heat flux on
plots (cal/cm? /sec)

Number of layer boundaries for
which cummulative wetness
fluxes are to be computed

(O <NWCUMS <10)

Indices of boundaries for which
cumulative wetness is to be com-
puted

Number of layer boundaries for
which cumulative heat fluxes are
to be computed (0 < NHCUMS
< 10)

Indices of boundaries for which
cumulative heat flow is to be
computed

LIf the lower and upper limits for any variable are equal, the actual limits used are determined
from the data being plotted.
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Name
NDISK

IUDISK

Type
1*4

1*4

Variables Defining Soil Profile and Properties

Name
NL

DZ(I)

WATER()

TEMPS()

SATW()

SATK(@)

SATP(I)

EB()

PORSTY()

TCONDS(I)

VHCAPS()

FACTKS

Type
I*4

R*4

R*4
R*4

R*4

R*4

R*4

R*4
R*4
R*4
R*4

R*4

Default
0

12

Default
200

200*1.0

200%*0.25

200%293.0

200*0.3

200*1.0E-4

200*-10.0

200*5.0

200*0.45

200*2.5E-3

200*0.5

0.75

4-6

Description
Flag to indicate if wetness and
temperature profiles are to be
written to disk or tape (0 = no,
1 = yes)

Unit number for output device
(disk or tape)

Description
Number of soil layers
(2<NL <200)

Thickness of soil layers (cm)

Initial volumetric wetness of
soil layers (cm?/cm?3)

Initial temperature of soil
layers (°K)

Saturation volumetric wetness of
soil layers (cm?®/cm?) (6, Equa-
tion 2-65)

Saturation hydraulic conductivity
of soil layers (cm/sec) (ks, Equa-
tion (2-65a))

Saturation matric potential of
soil layers (cm) (Y, Equation
(2-65b))

Texture parameter of soil layers b,
(Equation (2-65))

Porosity of soil layers (cm3 /cm?3)
Thermal conductivity of solid
matter in soil layers (cal/cm/

sec/°K)

Volumetric heat capacity of soil
layers (cal/cm3/°K)

Shape factor for soil grains (ki in
Equation (2-23))



Name
TCONDW

TCONDA

VHCAPW

VHCAPA

FACTKA

ALPHA

GAMMAO

RHOVPO

RHOVPT

DATMO

LHEAT

THMIN

SFRAC

.ROOTS(I)

Type

R*4

R*4

R*4

R*4

R*4

R*8

R*4

R*4

R*4

R*8

R*8

R*8

R*8

1.0

3.0E4

1.4

0.667

2.09D-3

6.0035
4975.9
0.229

586.0D0

0.05D0

0.1D0

200*0.0D0

4.7

Description
Thermal conductivity of water
(cal/cm/sec/°K)

Thermal conductivity of air
(cal/cm/sec/°K)

Volumetric heat capacity of water
(cal/cm? /°K)

Volumetric heat capacity of air
(cal/cm?®/°K)

Air weighting factor in definition
of thermal conductivity (k, in
Equation (2-28))

Tortuosity factor (o, Equation

(2-6))

Surface tension temperature
coefficient (v, Equation (2-11))

Constant in exponential to com-
pute the density of water vapor
(Equation (2-7b))

Coefficient of 1/T in definition of
the density of water vapor (Equa-
tion (2-7b))

Diffusion coefficient of water
vapor in air at 0° C (cm?/sec)
(Equation (2-6b))

Latent heat of vaporization of
water (cal/gm)

Minimum value of soil moisture
to support evaporation. If the
surface soil moisture is below this
value, evaporation is limited to
flux into the surface layer from
below

Fraction of evapotranspiration
demand which is satisfied by
evaporation (f, Equation (2-63))

Root density profile (Pj, Equation
(2-60))



Name Type Default Description
CPMIN R*8 ~1.5D4 Limiting value of crown potential,
cm (¢, Equation (2-62))

SPRES R*8 1.0D6 Specific resistance of roots, (sec/
cm) (r, Equation (2-58))

Variables Defining the Processes at the Air/Soil Interface

Name Type Default Description
EMAX R*8 3.0D-5 Maximum rate for time dependent

evapotranspiration model (cm/sec)

(E,, .x» Equation (2-50))

EMAXT R*8 4.68D4 Time of maximum rate, seconds
since start of simulation (t o axo
Equation (2-50))

EDAY R*4 1.0 Total daily evapotranspiration
(cm) (Eday, Equation (2-51))

NRAINS 1*4 0 Number of rain storms

RNSTRT (10) R*4 0.0 Start time of rainfall, seconds
since start of simulation (t_,
Equation (2-49))

RNSTOP (10) R*4 0.0 Stop time of rainfall, seconds

since start of simulation (t1 , Equa-
tion (2-49))

RNTOT (10) R*4 00 Total rainfall accumulation, (cm)
- (144> Equation (2-49))
ATTEN (10) R*4 0.5 Short wave attenuation during
rainfall
CEVAPO R*4 00 Constant term in evapotranspi-

ration model (cal/cm?2/sec) (,,
Equation (2-44))

CEVAPI R*4 00 Coefficient of variable term in
evapotranspiration model (O
Equation (2-44))

XLAT R*4 45.0 Latitude of simulation, degrees
(¢, Equation (2-39))

SUNDEC R*4 0.0 Declination of Sun, degrees
(6, Equation (2-39))
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Name

ALB

CTRANS

CLOUDS

TURB

Type
R*4

R*4

R*4

R*4

Default
0.3

0.2

0.0

2.0

4-9

Description
Surface albedo to shortwave
radiation (A, Equation (2-37))

Cloud transmittivity (k, Equation
(2-37))

Fractional cloud cover (N, Equa-
tion (2-37))

Air turbidity factor, (n, Equation
(2-38))
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SUBROUTINE METEOR(T,TAIR,VAPZO ,WIND)
T

REAL»*8

DIMENSION TEMPS(50),VAPDRS(50) ,WINDS(50)

DATA TEMP
'0.28036E
0.27846E
0.27796E
0.28106E

0.298B06E "

0.30566E
0.30126E
0.30146E
0.28876E
0.28656E
DATA VAPO
0.49000E
0.25000E
0.53000E
0.77000F
0.53000E
9.53000E
0.52000E
0.46000E
0.49000E
0.45000E
DATA WIND
59.0, 68
112.4,
89.0, 1
40.6,
93.4,
$8.6,
RINTRP (A,
TREL =
ITRL =
10

I
DTREL
TAIR
VAPZO
WIND
RETURN
END

s/

03, 0.28056E 03, 0.28026E 03, 0.2B8046E 03, 0.27976E 03,
03, 0.28166E 03, 0.27586E 03, 0.27806E 03, 0.27736E 03,
03, 0.27896E 03, 0.27866E 03, 0.27856E 03, 0.27806E 03,
03, 0.28306E 03, 0.29236E 03, 0.30076E 03, 0.29846E 03,

03, 0.30126E 03, 0.30206E 03, 0.30196F 03, 0.30396E 03,

03, 0.30576E 03, 0.30546E 03, 0.30296E 03, 0.30096E 03,
03, 0.30186E 03, 0.30266E 03, 0.30216E 03, 0.30296E 03,
03, 0.29936E 03, 0.29606E 03, 0.28896F 03, 0.28786E 03,
03, 0.28666E 03, 0.28556E 03, 0.28706E 03, 0.28796E 03,

RS/

03, 0.28736E 03, 0.28206E 03, 283.26E0, 283.06E0/

01, 0.44000E 01, 0.32000E 01, 0.96000F 01, 0.57000E 01,

s/

+ 0.63000E 01, 0.49000E 01, 0.50000€ 01, 0.55000F ot,
+ 0.55000E 01, 0.52000E 01, 0.55000EF 01, 0.55000E 01,
» 0.61000E 01, 0.67000E 01, 0.76000E 01, 0.13500E 02,
+ 0.59000E 01, 0.56000E 01, 0.57000F 01, 0.55000€ o1,

01, 0.57000E 01, 0.55000E 01, 0.57000€F 01, 0.57000€ 01,
+ 0.51000E 01, 0.50000E 01, 0.48000€ 01, 0.47000E ot,
+ 0.44000E 01, 0.44000E 01, 0.59000F 01, 0.59000E 0t,
+ 0.47000E 01, 0.51000E 01, 0.46000E 01, 0.43000E 01,
+ 0.45000E 01, 0.51000E 01, 4.8E0,4,.4€0/

.6, 85.4, 94.8, 104.8, 115.8, 136.4, 114.8, 98.8,

93.0, 60.2, 91.4,
25.0, 107.2, 104.8,
67.2, 90.4, t12.8,
77.0,. 77.2, B83.8,
58.6, 60.8, 59.2,

98.2, 74.6, 88.0, 100.0, 79.2,
112.6," 88.4, 54.2, 60.4, 50.6,
139.8, 162.4, 146.8, 127.4, 102.0,

89.2, 78.0, 75.4, 68.0, 62.2,

64.0/ )

B} = A + (B - A)*DTREL
DMOD(71,8.64D4)/1800.0D0

INT(TREL)
ITRL + 1

10 + 1

TREL = ITRL

RINTRP(TEMPS(10),TEMPS(I1))
RINTRP(VAPORS(10),VAPORS(I1))
RINTRP(WINDS(I0),WINDS(I1))

Figure 4-3. Example of subroutine METEOR

4-10



T — input — Time in seconds since staft of simulation (R*8).
TAIR — output — Air temperature at reference height above the surface, degrees K, (R*4).
VAPZO — output — Air vapor pressure at reference height, millibars (R*4).

WIND — output — Wind speed at reference height, cm/sec (R*4)

The output variables are used to solve the heat balance equation. In this example data are provided
at half-hour intervals, and a linear interpolation sceme is used to provide values at other times. The
DMOD function causes the simulator to reuse the data in case the simulation extends beyond 24

hours.

As long as the calling sequence convention is followed and the data have the correct units, the user
is free to use any scheme to generate values. The relink JCL of Figure 4-2 would be used to link
the user subroutine with the simulator. The subroutine would be on the sequential data referred

to by the SYSIN DD statement of the FORTRANH procedure.

Figures 44 through 4-12 are samples of the printed output cfeated by the simulator. Figure 4-4a
shows values of input parameters which vary with depth. In the following, NAMELIST names
are given in parentheses. The first three columns are the layer index, the layer thickness (DZ),
and the depth to the center of each layer. The latter is computed by the simulator using the input
layer thicknesses. The next two columns are the initial wetness (WATERS) and the temperature
(TEMPS) of each layer. The next three columns are the thermal conductivity of the solid material
(TCONDS), porosity (PORSTY), and the volumetric heat capacity of the solids (VHCAPS). The
-next four columns are used in the model of the soil hydraulic properties, Equations 2-65a and b.
They are saturation wetness 0 s (SATW), saturation matric potential Y (SATP), saturation hydrau-
lic conductivity Ks (SATK), and soil texture parameter b (EB). The column labeled EM is the
exponent 2b + 3 in the hydraulic conductivity model. The last column (ROOTS) is the root density

profile, P, from Equation 2-60.
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** [NPUT AND INITIALIZED PARAMETERS *=%

I THICKNESS

10.500E
20.500€E
30.200E
40.200E

120 100E
1304 100E
140.100E
150.100E

00

[=]Y-YoY-RoRoReoToYoRolotoYo)
NAONNNNRNN -0

DEPTH

09500

WETNESS

0+167E
Oe193E
0 +229E
0 «243E
0 «256E
0« 266E

00

00
00

]
00
00
00
00
00
[+ ]
00
00
00
6o

TEMP

Ce279E
Ce280E
C.281€
Ce283E
0e284E
04285E
0+286E
0+286E
C+286E
0286E
0.287E
0.287E
C«287E
C«288E
0.288E

TCONDS

0250E-02
0.250E-02
Ce250E-02
0e250E-02
04250E~-02
0250E-02
0e2S0E-02
0s250E-02
0e250E£-02
0+2S50E~02
0+250E~02
0«250E-02
04250E-02
0.250E-0Q2
0e250E-02

PORSTr

Oe 450E
Oe ASCE
Oe ASOE
0+ 450E
Oe 450E
Oe 450E
O« 450E
O+ AS0E
Oe 45CE
Qe 450E
O+ 450E
O 450
O« 450E
Oe 450E
0« 450E

VHCAP

0+500E
0500
0 «500K
0 +500E
0 «500%

Figure 4-4a.

SATW SATP
00 0437S5E 00 -s142E
00 0.375E 00 -.142E
00 04375E 00 -+142E
00 Qe379E 00 -142E
00 04375E 00 -+142E
00 04375E 00 =-+142E
00 0.375E 00 -.142E
00 0.375E 00 -,142E
00 0437SE 00 —-+142E
00 04375E 00 -4142E
00 0e375E 00 —-e142E
00 0437SE 00 =~e+142E
00 0.375E 00 -.142E
00 0.375E 00 -e142E
00 0437SE 00 -«142E

Input Parameters

SATK

0.122C-04
Q.1226~C4
Qel2zt-N4
Cel22E-04
0D«122E-04
Ce122E-04
Qel122E-N4
0e4122E-04
Oe122E-04
QelZ2e-C4
Oel22€-24
Cel22E-04
Qel22E-C4
Cel2Z2E-04
Cel22E-04

ER

C «500E
0e5C0E
Ce500E
C.5C0F
0.500E
0+5C0E
0«500E
0500
CeSCOE
Ce500E
0«5C0E
0..500E
0.5C0E
0.500C
Ce5C0E

QUOQUOOOLVOOCOO0U
0 bt P b o Dt bk bt o bt ot e P et et

M

0.130F
Oe13CF
Je1J3IL
Q0e130E
0.130E
Cel3CFE
Jel3CE
Qe¢130E
0e130E
Qe130E
0e130C
0«13CE
Oe«130F
Ne130E
C«130F

RGUTS



Figure 4-4b is an example of the second output page, where the values of all other input parameters

are given. The variable name appears first, followed by a brief description and its value.

A typical page of table output is shown in Figure 4-5. The output time is in DDDHHMMSS.SS
format, where DDD is the day (DDD = 0 is the first day), HH is the hour of the day, MM is minutes
of the hour, and SS.SS is seconds. It is assumed that the simulation start time corresponds to mid-

night. The first line also shows the current integrator step size in seconds.

Next on this table are the values of some important variables related to moisture flow. Layer
number, depth to the center of each layer, and wetness in the layer are shown in the first three
columns. Next is the wetness flux in cm/sec (g, Equation 2-75a) at each of the NL + 1 layer
boundaries. The first layer is the air-soil interface. The next two éolumns are the hydraulic con-
ductivity (HYD COND) and matric potential, or pressure head (PHEAD) of the water in the layer.
The next column lists values of the derivative of the matric potential with respect to depth (%
Equation 2-73a). The I'" derivative is evaluated at the boundary separating the I and I + I layers.
The last entry in the column is not used, since the derivative is required only at the NL-1 interior
boundaries. The column labeled DWDT is the derivative of wetness with respect to time (g—f , Equa-

tion 2-54). If the sink term is zero, this is the spatial derivative of the wetness flux (- ((11_2’ Equation

2-72a). The last column is the value of the sink term Q, Equation 2-55.

The next entry is the amount of water stored in the profile in centimeters. This will be calculated

if the value of the input variable NWCUMS is greater than zero.

The cumulative wetness flux at any of up to 10-layer boundaries can be computed. This is the
integral of the flux over time, starting with the beginning of the simulation. The trapezoid rule is
used to compute the integral, and the value of the integral is updated after each simulator time
step. The number of integrated fluxes is set via NAMELIST parameter NWCUMS; the layer indices
are input via the array IXWCUM. In the example of Figure 4-5 NWCUMS is 3, and the first three

elements of IXWCUM are 1, 2, and 16 (see Figure 4-4b). Boundary 1 is the air-soil interface, so
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viv

INTEGRATOR VARIABLES

TST0P STOP TIME (SECONDS) 0«B8640000 0S5
WATERR ERROR TOLERANCE FOR WETNESS 0+20E-02
TEMERR ERROR TOLERANCE FOR TEMPERATURE Ce20E 01

ED ERROR WINDOW: WINDOW = (E/ZEDJE*ED) 0.20D0 01
IFORCE FORCE MAXe STEP SIZE (O0=NCs 1=YES) 1

H INITIAL STEP SIZE (N/A IF IFORCE=1) 01000000 O1
HMAX MAXIMUN STEP SIZE (N/A IF IFORCE=0) 01800000 04

QUTPUT TONFROL VARIABLES

DTOUT CUTPUT PERIOD (SECONDS) 0.180000E 04
NFUNCT NUMBER OF GRAPHS OF WETNESS VS EEPTH
AND TEMP VS DEPTH PER PLOT PAGE 6
NWATRS NUMBER OF WETNESS VS TIME GRAPHS 3
I NDXW SOIL LAYERS FOR WETNESS PLOT 1 2 3 o] 0 o] o o] 0 o]
NWFLUX NUMBER OF WETNESS FLUX VS TIME CRAPHS 2
INDXWF BOUNDARIES FOR WETNESS FLUX PLOT 1 2 o] [o] ] o] o] (o} 0 [o]
NTEMPS NUMBER OF TEMP VS TIME GRAPHS 3
I NOXT SOIL LAYERS FORT TEMP PLOT 1 2 3 o] o o] (¢} [o} o] (o}
NTFLUX NUMBER OF HEAT FLUX VS TIME GRARHS 3
INDXTF BOUNDARIES FORT HEAT FLUX PLOT 1 2 S5 [s) [ o] o [+} 0 [o]
IPR OUTPUT UNIT NUMBER FOR ALL PLOTS 10
ITABLE PRINT TABLES (0=NQ,1=YES) 1
WL, WH FORCED MIN AND MAX FDR ' WETNESS FLOT 0.0 O« 0
TLe TH FORCED MIN AND MAX FOR TEMP. FLOT 0.0 0.0
WFL,WFH FORCED MIN AND MAX FOR W FLUX PLOT 0.0 O« 0
TFLoTFH FORCED MIN AND MAX FOR H FLUX PLOT ] G« 0

‘o
IF L AND H LIMITS ARE EQUAL+ THEY ARE SEY BY THE PROGRAM

NWCUMS NUMBER OF CUMULATIVE WETNESS FLUXES 3
I XWCUM BOUNDARIES FOR CUMULATIVE WETNESS FLUXES 1 2 16 ] o] o [o} ]
NHCUMS NUMBER OF CUMULATIVE HEAT FLUXES 1

IXHCUM BOUNDARIES FUOR CUMULATIVE HEAT FLUXES 1 0 [« o 0 ] 0
ND ISK OUTPUT STATE TO DISK (O=NGe1=YES) [o)
LUDISK FORTRAN UNIT NUMBER FOR DISK OUTPUT 12

OTHER MODEL PARAMETERS
LTEMPS TEMPERATURE MODEL INDICATCR
(O=NO TEMP4.ys 1=TEMP.PROFILEs 2=FORCE-RESTORBE)

IROOTS [INCLUDE ROCOT MODEL (0=NOs 1=YES) o]

SPRES ROOY SPECIFIC RESISTANCE (SEC/CN) 0.1000000 07

CPMIN PLANT CROWN POTENTIAL AT wWILTINGE -+ 1500000 0S5

SFRAC FRACTION OF ET DEMAND TO SCIL EWVAP 01000000 0O

NEXT 3 PARAMETERS USED FOR GAUSSI AN TIME-DEPENDENT ET FUNCTIJN WHEN ITEMPS = 0
EMAX MAXIMUM RATE (CM/SEC) 030000 0E~-04

EDAY TOTAL DAILY EVAPOTRANSPIRATION (CM) 0.100000E 01

EMAXT TIME OF MAX RATE (SEC SINCE START) 0.468000E 05

THMIN L IMITING SURFACE WETNESS FCR EVAPORATIONO0.5000000-01
RNTOT TOTAL RAIN FALL (CM) Qe
RNSTRT START TIME OF RAIN (SEC FRCM SI¥ START) 0.0
RNSTOP STOP TIME OF RAIN (SEC FRCM SIV START) 0.0
RNRATE RAINFALL RATE (CM/SEC) 0.0
JB80OT BOTTOM WETNESS BOUNDe CONDe 1
=0 FLUX=0e03 =1 +WETNESS IS CONSTANT; s2,FLUX=CONDUCTIVITY
THE FOLLOWING INPUT PARAMETZRS ARE USED WHEN SOLVING THE HEAT BALANCE EQUATION (ITEMPS>0)
00

ALB SURFACE SHORT WAVE ALBEDO 0300000
CLOUDS FRACTIONAL CLOUD COVER 0.0

CTRANS CLOUD TRANSMITTIVITY TO SHCRT WAVES 0200000 0O
SUNDEC SUN DECLINATION ANGLE (DEGREES) 0.0

XLAT LATITUDE 04335000E 02
TURB TURBIOITY FACTGR C+200000E 01
CEVAPQO COEFFICIENT FOR PET CALCULATION 0.0

CEVAP1 COEFFICIENT FOR PET CALCULATION 0.500000E-06

THESE ARE USED TO CUMPUTE POTENTIAL EVAPOTRANSPIRATION AS A FUNCTION OF WIND SPEED (W, CM/SEC)
AND VAPOR PRESSURE DIFFERENCE (OVAP, M¥Be.)e THE MODEL IS PET = —(CEVAPO + CEVAP1*W«DVAP)

Figure 4-4b.



Si¥

TIME
FLUX
1

NPWN=OOET~NONPWN=

- e e

(DDDHHMMSS )
COMPUTED AT
DEPTH

0250000 00
0.750€C00 00
04200000 01
0.40000D0 O1
0.75000D 01
Ne12500D 02
0.17500D 02
0.250000
0350000
0.45000D 02
04550000
0650000 02
0750000 02
04350000
0.950000 02

= 120000400

I-17/1 BOUNDARY

WETNESS

0144490
019491D
0.227100
04241150
04255320
04264760
04267870
0.271000
0.26613D
0.25865D
04248360
0236380
0.214490
0417759D
04153000

FLUX

-+ 52689D-05
—e 2€452D0-05
-+ £6736D-06
—e 48969D-06
—e 3€331D-06
-2 23461D-06
0+431550-08
Ce €3664D~07
0. 2€735D-06
0. 2€221D-06
0.224970-06
0.180020-06
0.191500-06
0e 17275D0-06
0.2€9710-07
0¢ 2€9710-07

CUMJULATIVE WETNESS VARIABLTS (CM CF WwATER)

TOTAL IN PROF ILE =

BOUN

1

DARY CUMULATIVE FLUX
1 —e44 142237140-01
2 -e33191228410-01
6 0+8354746017D-03

0423302024600 02

CURRENT INTEGRATUR STEP SIZE (SECUNDS)

DPDZ CCMPUTED AT [/1+1

HYD COND

04503270-10
04246460-08
0¢176800-07
0439238D-07
04824270-07
0+13211D-06
04153800-06
0.17883D-06
Oe14134D-06
0497 563D-07
0.575570~07
0+30256D-07
0.85574D-08
0073531D0-09
0.10591D-09

EVAPOTRANSP IRATION OJTPUT — FLUXES IN CM/SEC

TOTAL

VP UN=OOENFUSUWUN -

- gt s g b

TERMS UF THE HEAT BALANCE EQUATIOA:
0 .108938E-01 ET

NET R

[ TERATIVE SOLUTION OF HEAT BALANCE EQUATION GIVES SURFACE TEM2ERATURE

= -.526890-05 SOIL EVAP =

DE3TH TEMP FLUX

0250000 00 0430445D 03 0.745550-02
0.750000 00 0.30078D 03 0.104800-01
0,200000 01 0.29525D 03 Qe €2892D-02
0.40000D 01 0.289520 03 0042215D-02
0750000 01 0.28433D0 03 0.219830-02
0.12500D 02 0.28386D 03 0.14060D-03
0.17500D0 02 0+284720 03 =-+25890D-03
0.25000D0 02 0285630 03 -+ 185160-03
06350000 02 04286070 03 =—+E£1700-04
04450000 02 0.286450 03 <-e57379D-04
0.55000D0 02 0286790 03 -.51552D-04
0.55000D 02 24287120 03 -.480830-04
0.75000D 02 0.28744D 03 462510-04
0.850000 02 0428776D 03 45432D0~-04
0.950000 02 0.288100 03 4£14380-04

ADIATIUN =

-« 451430-04

FLUXES
FLUX =

CUMULATIVE HEAT VARIABLES (CAL/CM#$32)

TOTAL IN PROFILE =

BOUN

DARY
1

0.145724855€D 05

CUMULATIVE FLUX
05820627614D 02

-+ 526890-05

TCOND

0+13864D-02
0e14396D-02
0«14693D-02
0e14778D~02
0414530D0-02
0e15093D0-02
0e151620-02
0.15233D-02
0415152002
0e150250-02
0+ 148490-02
0e 14645002
0e.14274D-02
0.136610-02
0.132670-02

BUUNDARY
PHZIAD

~-el657210
~e37436D 03
~e17+¢320 03
-«127120 03
- 970540
-«80J450D
-e76354D 02
-e72)51D 02
-+783740
-e9372610D
—e1l1143

-e12360D 04

PLANT TRA ISPIRATIOUN =

TOIFF

0.581340-07
C«693570-07
0ea49/797D0-07
0«397€10-07
0362>78D-07
0.40310D0-07
Ce43058D-07
De457820-07
0.442320-07
0e4)332D-07
0373760-07
043%2170-07
04332400~07
035213D-07
Ce383020-07

IN CAL/CM®%2/SEC

-«308758E~02

SINS IBLE HEAT =

oPLZ

04259560
0.160030
0226000 02
0916220 01
04322090 01
0919250 J0

0573750 00
-+682400 00
-+120860 01
-+204700 01
-+31269D 01
-«89239D 01
~«364170 02
- 659890 02
~+65989D 02

0.0

wD IFF

012742011
0.862530-12
0.545460~-12
0436080D-12
0e242420~12
0223830-12
0.232500-12
0e24224D0-12
04255800-12
0+27269D-12
0.293690-12
0317600-12
0..357230-12
0.42161D~12
04469210-12

-+310664E-03

028125000000 C2

owOT

~e524740-05
~+102390-05
1533D-07
252770-07
128730D-07
-+23892D-07
-+593480-08
-+20369D-07
0..51388D-08
0.27239D0-07
054953D-07
-«114820-07
0.18751D-07
0.14578D-06
0.0

CROWN

VHCAP

0.41958D 00
0.46998D 00
0.502170 00
0.516210 0C
0.530380 00
0.539810 00
0542920 00
04546050 00
0541190 0C
0533710 00
0.52342D0 00
0511440 OC
0.48956D 00
0.45267D 00
0..428C9D 00

= 0.305802D 03 DEGREES K

Figure 4-5. Example of table output

S INK

0«0

PUTENTIAL (CM) =

uTDZ

-74184D 01}
- 2442000 01
-«28648D 01
-+148360 01
- o9 3£62D-01
¢e17114D OC
0121930 0C
0+43554D~01
C368n28D-01
0.34513D-01
0 «326060-01
C «319880-01
0 «32533D-01
032546D-01
0..3354€D-01

040

OTEMPDT

-+142280-C1
0.43525D0=-02
0e86334D-C3
Ne78B3630-C3
04333090-03
0a74207D- 04
~e13542D0~04
-e21790D-04
- 16244D0-C4
-.10918D~-04
-+66273D-05
—+358260-CS
-e16734D-05
-+ 626590~ 06
Oe0

HEAT ABSORBED AY sSOIL = 0.749553E-02



the first integrated flux is the integrated soil evaporation rate. The last entry is the amount of

water lost through the bottom boundary.

The evapotranspiration in cm/sec is shown in the next line. Values are given for the total flux
(E, Equations 2-34 or 2-50), the soil evaporation flux (E,, Equation 2-63 if a root model is in-
cluded; otherwise it equals the total flux), and the plant transpiration (Epl, Equation 2-64 if the

root model is included). The crown potential (¢p , Equation 2-61) is also given here.

The remaining output in this page gives values for parameters related to the temperature model.
The first three columns are layer index, depth to center of the layer, and layer temperature (°K).
The next column is the heat flux (q, Equation 2-75b) at layer boundaries. The next four columns
are: thermal conductivity (A, Equation 2-23); thermal diffusivity (D;, Equation 2-20c); vapor
wetness difrusity (coefficient of % in the definition of D0vap , Equation 2-15¢); and the volu-
metric heat capacity (C, Equation 2-29). The derivative of temperature with respect to depth at
the interior layers ((%)i, Equation 2-73b) is given in the next column. Finally, the derivative of
temperature with respect to time ((%)}, Equation 2-72b), which is used to integrate the state

equations, is given in the last column.

The values of the four terms of the heat balance equation (Equation 2-34) are given in the next
line. These are net radiation (R, Equation 2-36), heat carried by the evapotranspiration flux (LE,
Equation 2-42), sensible heat flux (H, Equation 2-46), and the heat absorbed by the soil (S, Equa-

tion 2-34). The surface temperature (T,, Equation 2-47) is given in the next line.

Finally, cumulative heat fluxes can be optionally computed. NHCUMS is the number of such
fluxes, and the array IXHCUM contains the boundary indices. In this example, only the integrated

surface flux is computed.

The next six figures are examples of the plots generated by the simulator. The FORTRAN unit

number of the output is the value of the NAMELIST variable IPR.
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Figures 4-6 and 4-7 are moisture and temperature profiles respectively. To reduce the amount of
printout, more than one profile can be put on a plot page. Variable NFUNCT is the number of such
graphs per plot page; in this example NFUNCT = 6. If NFUNCT is zero, no profiles will be plotted.
The correspondence between print character and output time is shown at the top of each page. If
more than one print character fall in the same place, then the number of such characters is plotted.
These two figures show that over the time interval from noon to 2:30 PM, the profiles change

only in the surface layers.

Figures 4-8 and 4-10 are plots of wetness and temperature respectively in selected layers as func-
tions of time. NWATRS is the number of layers for which wetness is to be plotted, and INDXW
is the array containing the indices of the chosen layers. In Figure 4-8 NWATRS is 3, and the in-
dices are 1, 2, and 3. Similarly, NTEMPS is the number of layers for which temperature is to be
plotted, and INDXT is the array containing the indices of the layers. In Figure 4-10 NTEMPS is

3, and the first three elements of INDXT are 1, 2, and 3.'

Figures 4-9 and 4-11 are plots of moisture and heat fluxes at selected boundaries. NWFLUX is
the number of boundaries for which wetness flux is to be plotted, and the array INDXWF contains
the indices of those boundaries. NTFLUX and INDXTF are the number of boundaries and their

indices for the heat flux plot.

The user can optionally control the vertical limits on all plots. NAMELIST variables WL and WH
are respectively the lower and upper limits on wetness plots. (Figures 4-6 and 4-8). If WL = WH,
then these values are ignored and appropriate limits are chosen from the data being plotted. Simi-
larly, TL and TH are lower and upper limits for temperature plots (Figures 4-7 and 4-10); WFL and
WFH are lower and upper limits for wetness flux plots (Figure 4-9); and TFL and TFH are lower
and upper limits for heat flux plots. If any pair of lower and upper limits are equal, the actual

limits are chosen from the data.
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Figure 4-6. Example of plots of soil moisture profiles
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Figure 4-7. Example of plots of soil temperature profiles
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Figure 4-8. Example of plots of soil moisture versus time in selected layers
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Figure 4-11. Example of plots of heat flux versus time at selected layer boundaries



Moisture and temperature profiles can also be output to disk or tape. The NAMELIST variable
NDISK controls whether this is done, and IUDISK is the FORTRAN unit number of the DD card
which points to the output data set. This can be a sequential data set on disk or tape, or a member

of a partitioned disk data set.

The output records are unformatted. The record length is 8* (NL + 1) bytes, where NL is the num-
ber of soil layers. This is 2* NL + 2 words of data per record. The records are written with sub-
routine FWRITE of the FTIO package. They can be read with subroutine FREAD from the same

package. If desired,a FORTRAN read statement with a character format can be used instead.

One header record and one data record at each simulator output time are created. The first record
contains the number of soil layers and thickness of each layer. Each data record contains the out-

put time, the wetness profile, and the moisture profile. Record formats are shown in Figure 4-12.
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Header Record

Words Contents
1 Binary zero
2 Number of soil layers, Integer*4
3 Layer thicknesses, Real*4
NL +2
1
NL +3 Zero (Real*4)
Y
2NL + 2

Data Record

Words Contents
1-2 | Output time (DDDHHMMSS.SS) Real*8
.I Wetness, Real*4
NL +2
Y
NII +3 Temperature, Real*4
2NL +2 Y

Figure 4-12. Record format for profile data set created by the simulator
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