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A COMPUTER PROGRAM FOR THE SIMULATION

OF HEAT AND MOISTURE FLOW IN SOILS

ABSTRACT

A

This document describes a computer program that simulates the flow of heat and moisture in

soils. The space-time dependence of temperature and moisture content is described by a set of

diffusion-type partial differential equations. The simulator uses a predictor/corrector to numer-

ically integrate them, giving wetness and temperature profiles as a function of time. The simulator

was used to generate solutions to diffusion-type partial differential equations for which analytical

solutions are known. These equations include both constant and variable diffusivities, and both

flux and constant concentration boundary conditions. In all cases, the simulated and analytic

solutions agreed to within the error bounds which were imposed on the integrator. Simulations

of heat and moisture flow under actual field conditions were also performed. Ground truth data

were used for the boundary conditions and soil transport properties. The qualitative agreement

between simulated and measured profiles is an indication that the model equations are reasonably

accurate representations of the physical processes involved.





A COMPUTER PROGRAM FOR THE SIMULATION

OF HEAT AND MOISTURE FLOW IN SOILS

SECTION 1 - INTRODUCTION

It is not generally feasible to attempt an exact simulation of heat and moisture flow in soils under

field conditions. The number of variables involved is large, and it is difficult to include all relevant

_ transport processes. However, simulations of this type are useful when used as a laboratory to

assess the relative importance of the various factors contributing to the heat and moisture fluxes.

They can also be used to predict the changes in heat and moisture profiles caused by the imposition

of particular boundary conditions or by modifying the thermal and hydraulic properties of the soil-

water system. For example, this simulator will be used as part of a study to assess the utility of

radiometric measurements of soil microwave emissions as an indication of the moisture profile

below the surface (Schmugge, 1978). Emission models that compute the brightness temperature

as a function of soil moisture and temperature profiles are currently being evaluated. To test the

emission response to varying boundary conditions (rainfall, water table height, surface heat fluxes,

etc.), ground truth data must be measured under the appropriate conditions to use as input to

these algorithms, which is not always possible. However, in the initial stages of model assessment,

the output of this simulator can be used in place of the ground truth data as it correctly models

(at least qualitatively) the response of the profiles to the boundary conditions.

Section 2 contains a mathematical description of the program. As an example of the kind of system

this simulator is designed to model, Section 2.1 presents the equations that describe a particular

diffusion model of the transport properties. Section 2.2 is an overview of the predictor-corrector

method used to numerically integrate the equations. A derivation of the equations used to perform

the time integration is given in Section 2.3.

Section 3 describes some test results. The simulator has been used to solve diffusion equations

that conform to Fick's law and for which analytical solutions are known. Section 3.1 reports on
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these results. In Section 3.2, the results of a day-long field simulation are compared to the ground

truth data. The resulting agreement indicates that the simulator solves the model equations cor-

rectly.

Section 4 is a complete description of the software, including a baseline diagram, all required input,

all output, and the job control language (JCL) required for execution.

1-2



SECTION 2 - MATHEMATICAL DESCRIPTION

2.1 DERIVATION OF EQUATIONS

The slow movement of heat and moisture in a porous medium such as soil can be described by

diffusion-type equations (Nielson et. al., 1972). In the classical diffusion theory, the flux (the

amount of substance crossing a unit area per unit time) is proportional to the negative of the

gradient of the concentration. The proportionality factor is the diffusion coefficient. The best

known example of this kind of flow is embodied in Darcy's Law (Hillel, 1971). The wetness

flux is

q0 = -K(0) V(¢(0)- z) (2-1)

where q0 is the flux (cubic centimeters of water per square centimeter per second, cm]sec), K(0)

is the hydraulic conductivity (cm/sec), if(0) is the matric potential (cm), and z is the distance from

some reference point. The term q/- z is the hydraulic head and is the potential energy of the soil

water (matric plus gravitational) per unit weight of water. The function i is called the matric

potential and is the energy per unit weight required to overcome the capillary and adhesion forces

that bind the water in the soil. Because work must be done to remove water from an unsaturated

soil, _ is negative. The distance z is the gravitational potential energy per unit weight.

K and _bare functions of volumetric wetness 0 (cm3 water/cm 3 medium). In this application, it

is assumed that soil properties change only with depth; thus the gradient is a derivative with respect

to z. Therefore, Equation (2-1) may be written as
i

q0
: -K(0) _0

dO
+ K(0) (2-2b)

The second line follows from the chain rule of differentiation.

Defining a diffusion coefficient

D(0) : K(0) d__ (2-3)dO
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yields, when inserted into Equation (2-2),

q0 = -D(0) dO+_-_ K(0) (2-4)

The first term in Equation (2-4) is the diffusion contribution to the moisture flux due to a wetness

gradient.

There is a large body of experimental evidence indicating that thermal gradients induce moisture

flow (Nielsen et. al., 1972). For example, if a uniformly moisture soil sample is enclosed in a

horizontal c3_linderand is subjected to a thermal gradient, moisture flows from the warm toward

the cool end. As field soil temperatures are always changing, an isothermal model such as Equation

(2-4) is not complete; a theory that treats both heat and moisture flow in soils is necessary. In the

following description, diffusion-type expressions for both heat and moisture fluxes are presented.

The derivation closely follows the work of Philip and De Vries (1957). Contributions to heat and

wetness fluxes that are proportional to wetness and temperature gradients are described. The

conservation of mass and energy is then fnvoked to derive the partial differential equations that

describe the variation with time of temperature and moisture profiles.

The diffusive flux of water vapor in a porous medium is modeled as

qv = -Datm f(e, 0) Vp (2-5)

where qv = vapor flux density (gm/cm 2/sec)

Da_n = molecular diffusivity of water vapor in air (cm2/sec)

f = tortuosity and porosity function

p = density of water vapor (gm/cm 3)

Equation (2-5), with f= l, describes the diffusion of water vapor in air (Eagleson, 1970). The

factor f represents the reduced volume available for vapor diffusion due to the soil and water and

the obstacles to the diffusing substance presented by the soil matrix. An experimentally deter-

mined graph of f as a function of 0 can be parameterized by a linear function (Jackson et al., 1974).

f(0) = a (e - 0) (2-6a)
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where € = soil porosity

ot= constant less than 1

The diffusivity Dat m is a function of temperature and can be adequately modeled by the equation

(Kimball et. al., 1976)

Datm _ Do (2-6b)

where Do ; 0.229 (cm2/sec) and T is the absolute temperature.

The gradient in Equation (2-5) is to be evaluated in terms of moisture and temperature gradients

as these are the dependent variables of the model. This can be accomplished by using the relation-

ship between vapor density and relative humidity:

P = Poh = Po exp [(_g)](RT)] (2-7a)

where Po = density of saturated water vapor

h = relative humidity

g = gravitational acceleration constant

R = gas constant for water vapor = 4.615 X 106 (ergs/gm/degrees Kelvin (°K))

The vapor density/9 o depends on temperature and can be approximated by (Kimball et. al., 1976)

Po(T) _- exp (R0 - (Rl/Y)) (2-7b)

where Ro = 6.0035

Rj = 4975.9 (°K)

_ T = temperature (°K)

Equation (2-7) can be derived from the laws of thermodynamics. Assuming water vapor behaves

as an ideal gas, an expression can be readily obtained relating the vapor pressure, the temperature,

and the chemical potential of the gas. The chemical potential and the matric potential of liquid

water are related because they both represent the free energy of the respective phases and the two

phases are in equilibrium. The gas density is proportional to the partial pressure.
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The gradient in Equation (2-5) can be expressed in terms of temperature and moisture gradients

as follows:

_p= V (Poh)=Po Vh + hV'_Po
(2-8)

ah -*_ ah -* "* "*
= po (-_--_V . + -_-ffVO) + h (_ VT + a_-_O-_VO)

The derivative of h with respect to T can be computed from Equation (2-7)-

(2-9)

-T+lnh

The matric potential is dependent on temperature through the surface tension of water, which is

responsible for the capillary force that binds the water to the soil matrix. Therefore, _Ois pro-

portional to surface tension a (Philip and De Vries, 1957) and

b-T- _,V]_'T (2-10)

A table giving surface tension at a pressure of one atmosphere as a function of temperature (Eagle-

son, 1970) can be fit with the exponential

o(T) = o0exp [--7(T- 273.16)] (2-11)

where Oo = 75.9 dynes (dyn)/cm

7 = 2.09 X 10 -3 (1/°C)

T = temperature, °K

The derivative of ff with respect to T can be computed using Equations (2-10) and (2-11). Equation

(2-9) therefore is

dh=-hdT lnh(7+1) (2-12)

The 0 dependence of h is, from Equation (2-7),
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d-g= _ = h In h In _ (2-13)

Matric potential ff typically changes by four to six orders of magnitude over the range of wetness

values normally found in unsaturated soils. A comparison of Equations (2-12) and (2-13) shows

that the variation of h with 0 is much larger than the variation of h with T, at least over the range

of temperatures found in soils (273 to 310°K). Therefore, relative humidity h in Equation (2-8)

is considered to be only a function of 0.

Since water vapor behaves approximately like an ideal gas, its density depends primarily on pressure

and temperature. Therefore, Po can be assumed to be.a function of temperature only, with no

dependence on 0. With h depending only on 0 and P0 depending only on T, Equation (2-8)

becomes

(_-_) V0 + h/_P°_ VT (2-14)VP = Po \aT/

Inserting Equation (2-14) into Equation (2-5) and using Equation (2-13) for dh/d0 yields

_v = --DT,vao_T- Oo,_apV0 (2-15a)

where

/dpo
DT,va p = Dat m oz(e - 0) h_-h--_-) (2-15b)

Datm a(e-O)pogh (d_-) (2-15c)Do ,yap -- R"T"

This is the sought-for diffusion expression for the vapor flux. Diffusion co-efficients DT,vap and

D0,vap (respectively vailed the "thermal vapor diffusivity" and the "wetness vapor diffusivity")

depend on both 0 and T.

The liquid flux can be computed from Darcy's Law (Equation (2-1)). The gradient of _bin terms of

moisture and temperature gradients is

a¢,--* a¢,---"
scvo= + -ff_VT (2-16)
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Equations (2-10) and (2-11) give the derivative of ff with respect to temperature:

0_=_74 (2-17)0T

Thus, the liquid flux is

q, = z- Do q (2-18a)

where

DT,Iiq = -Kv0 (2-18c)

The total moisture flux, qo, is the sum of the vapor and liquid fluxes:

_0 = qv + ql (gm/cm2/sec) (2-19)

This can be written in a diffusion form by adding Equations (2-15) and (2-18):

q0 -Do V0- Or 7T + KVz (2-20a)

where

Do = D0_iq+ D0,va° (2-20b)

D T = DT,nq + D.r,va p (2-20c)

The volumetric water content, 0, is the volume of moisture per unit volume of soil. Because the

density of water is 1 gm/cm 3, 0 also represents the mass of water per volume soil, assuming that

the water includes the liquid phase plus the gas phase. As 0 represents the mass and q0 is the mass .

flux, they are related by the continuity equation:

dO "* qod-T+ V • = 0 (2-21)

This is a partial differential equation involving 0 as a function of depth and time. An analogous

diffusion equation can be derived to describe the time dependence of the temperature profile as a

function of the soil heat flux.
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Fourier's heat flow equation gives the heat flow due to a temperature gradient:

_h,T =-XVT (2-22)

where _h,T is the temperature-driven heat flux (calories/cm =/sec) and Xis the thermal conductivity

of the medium (cal/cm/sec/°K).

To apply this equation to heat transfer in the soil, the effective thermal conductivity of the soil-

_ water-air system must be known. A generally accepted model (De Vries, 1975) gives k as a weight-

ed average over the thermal conductivity of each soil constituent:

fX w+E kifik i+k af(k +kap)i
X- (2-23)f +Ek.f.+k f

w i tt aa

where f, fi, and f are the volumetric fractions of the liquid, various solids, and the air, respec-

tively. (It should be noted that f and 0 are the same, and the porosity, e, is equal to f + f.)

The thermal conductivities of each component are Xw,Xi, and ka. Factors ki represent the ratio of

the average thermal gradient in the ith soil constituent to the average thermal gradient in water.

They also depend on the shape and orientation of the soil grains. For spheroid-shaped particles,

the k. factors are
1

2 1
ki=_- + -1 g +_- + - (1-2g (2-24)

where gi is the shape factor and is equal to 1]2 for cylinders of infinite length, 1/3 for spheres, and

0 for disks of infinite radius.

The weight factor ka for air can be determined from Equation (2-24), with Xi equal to the thermal

conductivity of dry air. The air shape factor gi in this case has no physical meaning. It is usually

treated as a variable function of wetness that must be determined for each soil type. Near satura-

tion, its value is usually accepted to be 1]3.

The latent heat absorbed or emitted by the soil as the wetness changes state between the liquid and

vapor phases can be an important cause of temperature fluctuations. This heat can be included in
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the heat flux by assuming that the vapor flux carries with it a heat flux due to the latent heat of

vaporization that it absorbed from the soil when it evaporated. This heat flux carried by the vapor

phase is

qh ,v = L

where L is the latent heat of vaporization (cal/gm) and _v is the vapor flux (Equation (2-15)).

Both thermal and moisture gradients contribute to 5,, and therefore contribute to q_a" The mois-

ture contribution is computed by inserting the appropriate term from Equation (2-15) into the

above equation:

qh,v(0)= L D0,vap _70 (2-25)

The temperature gradient contribution from Equation (2-15) is included by increasing the apparent

thermal conductivity of the air-filled pores, where the vapor phase primarily exists. This vapor has

thermal conductivity Xvap and carries heat flux -Xvap VT according to Fourier's Law, where VT is

the temperature gradient in the pore. However, this heat flux can also be represented by the ther-

mal term in Equation (2-15) with porosity factor f set equal to 1: -Dat m h (dPo/dT)VT. By

equating these two expressions for the same heat flux, the vapor conductivity is found to be

_kvap = L Datm h \'_] (2-26)

Therefore, the total heat flux in the soil is

_h = q-*h,T+ _ha(O) (2-27)
------_kVT - t D0,vap V0

where Xis given by Equation (2-23) and includes the vapor thermal conductivity.

The total thermal energy per unit volume of medium at temperature T is CT, where C is the volu-

metric heat capacity (cal/cm 3/.°K) and T is the absolute temperature. The conservation of heat

energy leads to an equation similar to the conservation of mass for water (Equation (2-21));

d(CT)
+ V" qh = 0 (2-28)dt
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The volumetric heat capacity of the soil is computed as a sum over the capacities of the constit-

uents (De Vries, 1975);

C =E.f.C.+f C +fC (2-29)
I I I W W a a

Fractions fi, f' and f are the volumetric contents of solid, water, and air; and Ci, Cw, and Ca

are the heat capacities of the solid constituents, water, and air, respectively.

., Equations (2-21) and (2-28) describe the time dependence of soil wetness and temperature profiles.

In this application, only vertical fluxes are considered; this constitutes a stratified model of the

soil. Therefore, the gradient operator can be replaced by a derivative with respect to soil depth.

Thus, the moisture and heat fluxes are, from Equations (2-20) and (2-27),

dT
qo = -Do (-_zz)- Dx _-_-)- K (2-30)

qh = -_" dT _ L Do,v.p _" (2-31)

The time derivatives of the moisture and temperature profiles are, from Equations (2-21) and

(2-28),

dO _ dqo
dt dz (2-32)

dT_ 1 (dqh'_
dt C \ dz ] (2-33)

BOUNDARY CONDITIONS

, To solve these equations, boundary conditions must be supplied for both wetness and temperature

at the air/soil interface and in the bottom layer of the profile. In principle, either the fluxes q0

and qh or the variables 0 and T could be specified. In the sinmlator both heat and moisture fluxes,

qh and q0, are computed at the surface. In this way the effects of the environment (i.e., rainfall,

evapotranspiration, radiation, etc.) on the profile evolution can be modeled. At the bottom of the

profile a mixture of flux and variable boundary conditions are used. One can specify constant wet-

ness, a downward wetness flux equal to the hydraulic conductivity of the bottom layer, or a flux

equal to zero. The temperature in the bottom layer is held constant.
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When both temperature and moisture profiles are modeled the surface fluxes can be found by the

solution of the heat balance equation

S = R + LE + H (2-34)

All fluxes are positive downward. S is the heat absorbed by the soil, R is the net radiation flux,

LE is the evapotranspiration heat flux, and H is the sensible heat. This equation can be written

with the temperature at the soil surface as the only unknown variable. After finding the solution, -,

the heat flux qh at the surface is set equal to S, and the surface moisture flux q0 is set equal to E.

The heat flux absorbed by the soil can be evaluated by using the discrete form of equation 2-22

S=-_'( T'-Ts)zl (2-35)

where kl = thermal conductivity of the surface layer

T1 = temperature at the center of the first layer

Ts = surface temperature

z 1 = depth to center of first lay6r

The net radiation R is usually divided into average short and long wavelength components (Eagle-

son, 1970):

R = Rshor t + Rlong (2-36)

The short wave component of R is

Rshor t = (1 -- A) [ 1 - (1 - k) N] Ic (2-37)

where A = surface short wave albedo

N = fractional cloud cover

k = fraction of radiation transmitted by a completely cloud covered sky

Ic = insolation at Earth's surface for a cloudless sky

An empirical model for Ic is (Eagleson, 1970)

I sins exp (-. 128 n/sins), a:>O
Ic = 2-38

0 , _<0
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where Io = short wave solar energy flux incident at the top of the Earth's atmosphere (.033

cal/cm 2/sec)

n = air turbidity factor (n ~ 2-5)

o_ = angle between the sun and the local tangent plane computed from the following:

sino:= sin6 sin _ + cos6 cos _ cos r (2-39)

6 = angle between Sun and plane of celestial equator (-23 deg _<5 < + 23 deg)

= local latitude

r = hour angle of the Sun

= Wd (t - 12)

t = hour of the day

Wd = rr/12 (rad/hour)

The contribution to the net radiation from the long wavelength part of the spectrum is modeled by

Rlong 4 _ oT 4 (2-40)= °EaTa s

where Ta = air temperature

Ea = emissivity of the air

Ts = surface temperature

o = Stefan-Boltzmann constant

The air emissivity is modeled as (Eagleson, 1970)

E -- .74+ .005 e, (2-41)a a

where ea is the vapor pressure in milli-bars. The vapor pressure and air temperature are supplied

by the user, and should be taken from the same height above the surface. Equation 2-40 is a

mathematical statement of the assumption that both the air and soil surface radiate with emissivi-

ties of Ea and one respectively.

A standard model for the heat carried by the evapotranspirational flux is (Eagleson, 1970)

)'p LU a
LE = - (es - ea) (2-42)

tV 2 ln2(Z 3
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where L = latent heat of vaporization

P = density of air = 1.15 X 10-3 gms/cma

p = atmospheric pressure in units of es and ea ("-1000 millibars)

V = Von Karman's constant (2.5)

Z° = surface roughness parameter (_ .025 cm. for smooth surface)

Ua = wind velocity at height Z (cm/sec), averaged over 1 hour

ea = vapor pressure at height Z

e = vapor pressure at soil surfaces

_'= psychrometric constant (0.61808 mb/°K)

The surface vapor pressure is computed from

es = h esa t

esat = saturation vapor pressure

= Psat (Ts) RgasT mb (2-43)
1000

Rgas = gas constant

Psat = density of saturated water vapor (Equation 2-7b)

h = relative humidity of surface soil water (Equation 2-7a)

The evapotranspiration model outlined above has proven to be most accurate for computing fluxes

which have been averaged over a time period on the order of an hour. However, in this simulator

the model is used to calculate instantaneous fluxes. The comparison between simulated and mea-

sured evaporation rates in Section 3 shows that this approach gives qualitatively correct rates.

The mathematical model of Equation 2-42 is implemented as follows: -

LE = - Co - Ci Ua (es-e a) (2-44)

The user supplies the constants. Co, CI, and Ua and e as functions of time. Co would normally

have the value zero. To input a constant rate offset in cm/sec, Co would equal the rate times the

latent heat of vaporization (586 cal/cm 3). By comparing equations 2-42 and 2-44, it can be seen

that C1 is equal to the following expression:
2-12



3'pL
C1 =

pV2 ln2 (_'3

The sensible heat flux H in Equation 2-34 is calculated by the Bowen ratio method. This ratio,

,. r, is the ratio of sensible heat to the evapotranspiration flux. Under the assumption that the turbu-

lent transfer coefficients for the two processes are equal, this ratio is

/3 H (Ts- Ta)-- L-T= 3' (2-45)\e s -e a /

In the simulator the Bowen ratio is computed from Equation 2-45, and the sensible heat flux is

then calculated using

H = 13LE (2-46)

The terms of the heat balance equation are all functions of the unknown surface temperature Ts

and the known meterological variables ea, Ua, and Ta. The method for specifying the values of air

vapor pressure, wind speed, and air temperature is described in Section 4.

To solve the heat balance equation for Ts, one starts by rewriting Equation 2-35 as (Hillel, 1977)

Z1

Ts=_-i S+T1

Inserting the right hand side of the heat balance equation (2-34) for S gives

Z,( _)T = T1 +_T R(T")+ LE(Ts) +H(T (2.47)

The dependence of the flux terms on Ts has been explicitly noted here. This equation is of the

form

Ts = F(Ts) (2-48)

and can be solved by the method of successive of approximations. A trial value for Ts is chosen,

F(T s) is evaluated, and a new value for T results. This procedure can be repeated until satisfactory

convergence is obtained. In the simulator the air temperature T is used as a start value, and a
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maximum of five iterations are allowed. Tests have shown that the process converges after one or

two iterations. Convergence is defined as the absolute value of the change in Ts between iterations

being less than 0.1 °K. The process will always converge if the magnitude of the derivative of F

is less than 1,

This derivative is a complicated function of changing meteorological variables, so an analytical study

of the conditions required for convergence is not feasible. However from Equation 2-47 it is clear

that this derivative is proportional to Z1, the depth to the center of the first layer. If the iterative

procedure does not converge, then the program should be executed with a thinner surface layer.

Lack of convergence will be evident because T will be unphysical, either too large or too small.s

Periods of rainfall can also be modeled. The user supplies the number of rain storms, the start and

stop times of the rain (to and t1), and the total accumulation (rtot) for each one. A constant rate

throughout each time interval is assumed and calculated as

rtot
r = _ (2-49)

tl - to

The short wave attenuation factor during each rain storm must also be supplied. This number is

equivalent to the cloud attenuation factor 1 - (I-k) N in Equation 2-37.

During periods of rain, the evapotranspiration and sensible heat fluxes are set equal to zero (LE

and H, Equation 2-34), and the wetness flux at the surface q0, is set equal to the rain rate, Equa-

tion 2-49.

It is possible to remove all temperature dependence from the simulation. (See the description of

the NAMELIST parameter ITEMPS). In this case the temperature profile, soil heat fluxes, and

atmospheric heat fluxes are not modeled. This simulation model is useful when studying moisture

flow in relatively moist soils. In this case the temperature gradient contribution to the moisture
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flux is negligible, and execution time is significantly decreased when the temperatu're profile is

not modeled. However, the evapotranspiration flux must still be estimated. To do this a Gaussian

function of time is supplied,

E(t) = - Emax exp [- k (t - tmax )2 ] (2-50)

where t is the time of maximum demand and E is the rate at this time. The variable kmax max

which determines the width of the Gaussian can be related to the integrated daily rate Eday as

follows:

oO

Eday = J dtlE(t)l _ Em.x t exp [-k(t-tmax) 2 ] (2-51)
day --oo

= Em ax _/_

This gives

_Eday /

The user supplies trn ax' Emax' and Eday. The simulator computes k from Equation 2-52, and then

Equation 2-51 is used to model the evapotmnspiration flux.

For some simulations it may be simpler to specify the integrated daily total and the width of the

Gaussian. The maximum rate Emax can be computed from these two. The exponential slope k

equals 1/t_, where te is the time interval between the maximum rate and the time when the rate

falls to 1/e of this value. Setting equation 2-52 equal to 1/t_ and solving for Emax gives

1
E - Eday

max _ te

Therefore the user can compute the value of the required input Emax from Eo_y and te.

Figure 2-1 compares the model of equation 2-50 to measured data. The evaporation rates were

measured during a field experiment performed in Phoenix, Arizona in 1971 (Jackson, R.D.). Sec-

tion 3.2 of this document discusses this data in more detail. Curves a and b represent evaporation
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rates three and ten days after irrigation. The squares and circles are the data, and the solid lines

represent the model of equation 2-50. The maximum rate Emax and associated time tmax' and the

daily total Eday used in evaluating equation 2-50 were estimated from the data.

E(X10-5)
cm/sec

[]

[]

(b)
.2

[]

O

O []
.1

[]DID []
[]

[] 0 -,

[]
0

I I I I I
6 12 18 24

Time Of Day (Hours)

Figure 2-1. Comparison of measured and modelled evaporation rates. The solid lines are the model

of equation 2-50, and the squares and circles are the data. Curves a and b represent

evaporation three and ten days after irrigation, respectively.
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Figure 2-1 shows that equation 2-50 provides a qualitatively acceptable representation of evapo-

transpiration during daylight hours, when the process is most important. The model does not in-

clude the rise in the data from sunset to sunrise. Also the data points are not exactly symmetri-

cal about the maximum.

It is also possible to model the surface temperature and the heat balance equation (and thereby

include the effect of the meteorological variables on evapotranspiration) without modeling the

soil temperature profile. The surface temperature Ts and average subsurface temperature T are

modeled by the force restore method (Lin, 1980). The mathematical model is

dTs
dt-_ _ (Ts-T-) (2-53a)

dT S

dt ax/" 365rr (2-53b)

where S is the heat flux absorbed by the soil and

In this expression Xis the thermal conductivity of the surface layer, c is the heat capacity, and r

is the number of seconds in a day. The thermal conductivity and heat capacity are computed using

Equations 2-23 and 2-29.

; Since Equation 2-53 gives the time dependence of the surface temperature explicitly, Ts is made

one element of the state vector and is therefore known. Therefore, no iteration is required to

solve the heat balance equation. The terms R, LE, and H, are evaluated using the state vector

value for T, and S is computed from Equation 2-34.

ROOT MODEL

A model of soil water depletion by plant roots has been included as an extra term in the equation

of continuity, Equation 2-32:
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dO _ dq
d-T= dz - Q (z,t) (2-54)

The sink term Q (1/sec) in Equation 2-54 is positive when water flows from the soil to the plant.

The mathematical model is (Hillel, 1977 ;Gardner, 1964)

q_s(0,z) - ¢,p(t)
Q(z,t) = _2 + _2 (2-55)

s P

where q5s(O,z) is the total potential energy of the soil water;

qs(0,z) = _(0) - z (2-56)

where qJ(0) = matric potential

-z = gravitational potential (z is the depth below the surface and is positive)

The plant potential Cp (cm) in Equation 2-55 varies with time but is assigned the same value

throughout the root system. The soil resistance $2s (cm-sec) is inversely proportional to the soil

conductivity and the amount of active roots:

_2s = 1/(B K (0) P (z)) (2-57)

where B = constant

K(O) = hydraulic conductivity (cm/sec)

P (z) = relative root density (1/cm 2)

The resistance to flow in the roots _p is also modeled as inversely proportional to the root density

and root conductivity. The inverse of conductivity, called the specific resistance, is sometimes

used. The plant resistance is

I2p (z) = r/P (z) (2-58)

where r = specific resistance to flow in the roots (sec/cm).

Using Equations 2-57 and 2-58 for the resistances and Equation 2-56 for the soil water potential

energy in Equation 2-55 and rearranging gives
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BKP[@- z- q_l
Q- I+BKr

(2-59)

BKP [4-z-q_p]

1 + _p/_2

The important model parameters are the relative root density P (z) and the ratio of the resistances

- _p/_2 s. No loss of generality results from setting B = 1, since its value can be absorbed into the

definitions of P and r. Since Q is proportional to P, multiplying P at all depths by a constant

would only Change the rate at which the moisture profiles evolve. Since P has the dimensions

(1/cm2), it is commonly thought of as the length of active roots per volume of soil. As yet there

is no experimental evidence that this is true; the model only requires that P (z) represent the rela-

tive ability of the roots to absorb water at each depth. The plant potential _p, commonly referred

to as the crown potential, is modeled as a response to an atmospheric evapotranspiration demand

function.

The discrete model of the sink term as used in this simulator is

K.P. [_j-z.-,I, ]J J J P

QJ - 1 + rK. (2-60)J

Qj is the value of the sink in the jth soil layer, and zj is the depth to the center of this layer. Ki

and _j are the hydraulic conductivity and matric potential of the soil water in the layer. The rela-

tive root density in each layer Pj and the specific resistance of the plant roots r are input parameters.
t_

The crown potential _I,p(t) is modeled as a response to a known transpiration demand function

Ep_ (t). The crown potential is computed by requiring that the integral of the sink terms over the

soil profile be equal to Ep_. In its discrete form, this integral is
N

" Ep_= _ Qj dzj (2-61)
j=l

where dzj is the thickness of the jth layer and N is the number of layers in the profile model. Using

Equation 2-60 for Qj and solving for the crown potential gives
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lq

Ep_ (t) + _ KjPj (ffj - zj) dzj
j=l

_I, (t) = (2-61)
P }_

KjPj dzj
j=t

Both Ep_ and ffi are negative, so q_pis is also negative. Its magnitude can be large if either the

demand is large, the soil is dry (so Ifflj J is large), or both. The magnitude of qbpmust be less than

the magnitude of the wilting point, _I,w,which is the largest potential for water intake the plant can

create before wilting. Thus, the crown potential must satisfy the inequality

• w_ _p _<0 (2-62)

If qSp < _I,w the simulator will set _p = q5w . Once qbp is calculated the sink term can be evaluated

for each layer using Equation 2-60. It must be positive for all layers, to correspond to flow from

soil to roots. Any of the Qj which are negative are set equal to zero. This procedure is used to

accommodate experimental evidence that water flow from plant roots to the soil is negligible

(reference 8).

The transpiration demand Ep is computed from the total evapotranspiration demand E (t). This

is known from the solution of the heat balance equation, or from the function of Equation 2-50

when heat fluxes are not modeled. A fraction f of the total demand will be satisfied by soil evapo-

ration, Es;

Es = f E (2-63)

where typically f_ 0.1 (Eagleson, 1970).

The rest of tile demand will be satisfied by plant transpiration Ep_ ;

Ep_ (t)= E -E = (1 - f) E (t) (2-64)
4

This is the transpiration demand used in Equation 2-61 to compute the crown potential.

SOIL HYDRAULIC PROPERTIES

Both matric potential and hydraulic conductivity as functions of volumetric wetness can be

modelled as follows for a wide range of soil types and textures, (Clapp and Hornberger, 1978);
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_ h 2b+3

K(0) = K k-_] (2-65a)

¢(0) = @s (2-65b)

where 0s is the volumetric wetness at saturation, Ks and _s are the conductivity and matric poten-

tial respectively at saturation, and b is a parameter determined primarily by the soil texture. Repre-

sentative values are 4 for sand to 11 for clay. This model has been implemented in the simulator.

2.2 METHOD OF SOLUTION

The solution space for 0(z,t) and T(z,t) consists of a variable time grid and a fixed space grid. The

soil is divided into n layers. These layers need not all have the same thickness. However, they

should be small enough to enable 0 and T within two adjacent layers at a fixed time to be ade-

quately represented by a linear function of depth. For a soil with n layers, Equations (2-32) and

(2-33) become 2n partial differential equations:

d0---k= -dq°i (2-66a)
dt dz

(dO i_ (dTi._
q°i = Ki - D°i \"_z/ - DTi \-'_-z] (2-66b)

dTi 1 (dqhi 1
d---_"= - C"7. \ -'-_z/ (2-66c)

1-X i , --, - L (2-66d)
" qhi = \ dz/ D0,vap \7/

If the force-restore method is used, the n equations 2-64c are replaced by the two equations 2-53a

and b.

Each equation describes the time dependence of 0 or T at a fixed depth. These equations are

coupled, as spatial derivatives of 0 and T appear on the righthand sides.
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An Adams-Bashforth numerical integration scheme is used to perform the time integration. The

general equation that can be solved by this method is of the form

d__.y= fit, _) (2-67)dt

where _ is called the state vector.

Knowledge of fit,y) enables the generation of solutions y('*t).In this application, state vector

contains 0 and T at various depths within the soil. Functions f are the spatial derivatives of the

fluxes, the righthand sides of Equations (2-66), and these are known functions of z, t, 0, and T.

The elements of y and f'are

0i i= 1, n
Yi = (2-68a)

Ti i=n+ 1,2n

dq°i i 1, n
dz

fi =' 2-68b1

-(_2_i) (__zT) i=n+ 1,2n

If the force-restore method is used, the temperature variables are replaced by the following;

Yn+l = L

Yn+2= T (2-68c)

The corresponding time derivatives f,l and f+2 are given by equations 2-53a and b.

The time integration is performed via the following steps:

1. Estimate y(t + At), using known values t), t), t- At), f(t- 2At),..., f(t- kAt).

The estimate is usually called the predicted value _(P) (t + At).

2. Compute _(t + At), using the elements of_ (p) (t + At) from step 1 for 0i and Ti.
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3. Recompute _(t + At), using known values y(t), f(t + A t) (step 2), fit),..., f(t -(k-1)At).

This is called the corrected value _(c) (t + At).
i

In principle, steps 2 and 3 could be iterated until they both give approximately the same answer.

: However, it is more economical to reduce the integration step size At until convergence is achieved

on the first iteration.

The order of this method is determined by k, the number of back values of f that are used. A

fourth order method is used in this application. The actual equations used to compute yCp)and y(¢)

are

[ 1 -* 5 2_(t)+ 3V 3_(t) -251V 4fft)] (2-69)_P) (t + At) = _(t) + At 1 + Vf(t) + T_-V .'_0

and

At fit + At) + 109V f'*(t)+ 49 V2 f(t) + 19 V3 fit)] (2-70)_(c) (t + At)=_(t)+-ff_ [251 469_(t)+ -"

where functions Vj _t) are linear combinations of the back values of f_defined by

V_'(t) = fft)-fft-At)

V2fft) = V(V_(t)) =_(t)- 2_(t' At)--fft-- 2At)

V3fit) = V(V 2 fit)) = f(t) - 3 f(t -At) +3 f(t - 2At)
(2-71)

- f(t - 3 At)

V4"_(t) = V(V 3 "_(t))=-_(t)-4f(t-At)+_f(t-2At)

: - 4 fit - 3At) + f(t - 4 At)

These equations are derived in Section 2.3.

To perform the time integration, the functions fi, which are the spatial derivatives of the wetness

and heat fluxes (Equations (2-68)), must be computed.
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The soil is divided into n layers, each of thickness dz r There are n+l boundaries. The center of

each layer is at depth zi below the surface. The diagram in Figure 2-1 illustrates this division.

[qol, i = 2,..., n] are calculated from theFirst, the fluxes at the n-1 interior boundaries qxi,

known values of 0 i, Ti, and zc The fluxes at the two boundaries [q01 ' qo,+l ' qT 1 ' qT,+I ] are

then calculated to satisfy the boundary conditions. The surface moisture and heat fluxes q0. and
1

qT.' are found from the solution of the heat balance equation. To hold the bottom temperature
t

constant, the net flux into the bottom layer must be zero. The simulator does this by setting

equal to qT " Similarly, if constant wetness in the bottom is to be modelled, then q0n+ 1 isqTn+l n

set equal to qon" The fi are then computed using a linear finite difference representation of the

derivative:

dq0. q0 - q0.
f ! i+l t•= = (2-72a)
' dz dz i

dqh. - qh.
= 1 _ 1 qhi+l 1

f'+" _ dz =-_ "d_ (2-72b)

The fluxes at the interior boundaries [q0., qT. ' i = 2.... , n] are computed as follows:
1 1

1. In each soil layer, compute Ki (hydraulic conductivity), ¢i (pressure head), Xi (thermal

conductivity), Ci (volumetric heat capacity), DTi (thermal diffusivity), and D0,vaPi(the coefficient

= D' (d_]d0)). Theof d_/dO in the vapor contribution to wetness diffusivity; that is, D0,va p 0,yap

calculation of these quantities as functions of 0i, Z, and Ti are described in Section 2.1.

2. Compare the spatial derivative of the temperature and pressure head at the ith boundary:

(2-73a)

_+1- zi l(dzi_l+ d_)

dT) _ Ti+l - Ti Ti+l - Ti
i zi+, _ -l(dz+l + dzi) (2-73b)2
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dTn_ "-- _I'!'1-1

NOTE: The center of the ith layer is at depth Zi.

Figure 2-1. Diagram Showing the Division of the Soil Profile Into n layers,
Each One of Thickness dz.

l
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It should be noted that in Equations (2-66) the spatial derivative of the wetness, d0/dz, always

occurs in the product (dff/d0) (d0/dz). This is equal to dff/dz by the chain rule of differentiation;

hence, the derivative of if, and not 0, is computed. (This means that hysteresis is not included in

the simulations).

3. Compute the average value of K, k, Dr , and D' at the boundaries by linear interpolation0,yap

between the values in the two adjacent layers: "

-- Ki dzl_ 1 + 1_1 dz i
K. = (2-74)

l dz i + d_r_1

Similar expressions are used for L, DTi , and'_0,vapi.

4. Compute the fluxes. From Equation (2-66), these are

I i i i

qh i = --'-_i (_)1 -- t D0 ,vapi (_--)i (2-75b)

These fluxes are used to evaluate the righthand sides of Equations (2-72) and thereby perform the

time integration.

2.3 DERIVATION OF INTEGRATION EQUATIONS

In the following development, the vector nature of the state vector is ignored to simplify the

notation. The references provide a more detailed description. (Teddington, 1958; Booth, 1957;

Baginski et. al., 1979)

A general k-step formula to integrate Equation (2-67) can be written in the form

Yn+x= h[bkf+l + bk-1 f +"" + bo f+l-k ]
(2-76)

+ [am-lYn +am-2 Yn-I +'" "+ a0 Yn+l-m ]

where h is the integration step size and choice of coefficients a_and bi defines the method. Back

values of Y and f plus the current value of f may be used. A multistep method is explicit if bk = 0
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and implicit if b k =/=0. Implicit methods require a recursive evaluation of Y+,, as f+, appears in

the formula. Despite this drawback, implicit methods are desirable to solve nonlinear problems

because they can usually be designed to have smaller truncation errors and better stability. The

Adams-Bashforth integrator uses an explicit method, known as a predictor, to calculate Y,.l •
?

fn+l is then calculated using this estimate and an implicit method, known as a corrector, is used to

compute a refined value, yCc) Calculation of derivative f+l typically involves far more executionn+l "
r,

time than manipulation of the integrator equations. However, in this formalism f is only computed

once per integration step. Therefore, the extra accuracy derived from using the corrector equation

costs only a small increase in execution time.

The difference between the corrected and predicted values of Y._ yields, in most cases, a reliable

estimate of the error in the integration. This error estimate is monitored to ensure that the errors

are not too large. If necessary, the step size can be reduced by half. If the error is smaller than

some lower limit, the step size is automatically doubled, thereby saving execution time.

The predictor/corrector equations define Yn+l in terms of Yn and derivatives f.a, f, f__, etc.

(Only one previous value of Y is used.) However, the resulting equation is most conveniently ex-

pressed in terms of functions called "backward differences," which are linear combinations of f.

The backward difference operator V acting on discrete function gn is defined by

Vgn = gn -- gn-1 (2-77a)

" Higher powers of Vacting on gn are computed by successive applications of V:

V2gn = V(Vgn) = Vgn -- Vgn-I = gn -- 2gn-1 + gn-2 (2-77b)

Vagn = V.(V2gn ) = gn --3gn--1 + 3gn--2 --gn--a (2-77c)

V4gn = V(Vagn) = gn - 4gn-l + 6gn--:-- 4gn--a+ gn--4 (2-77d)

A useful recursion relation connecting various backward differences at two adjacent time steps is

"Vkgn+l = vk-I gn+l -- _7k-1 gn (2-78)
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Equation (2-76) written in terms of backward differences of f instead of f itself is

Yn+l = all Yn + _-2 Y n--I +" " "+ a0 Yn+l-! (2-79)

+h[c ° f +clvf +...+CkVkf+df+,]

TOderive the values of coefficients a, c, and d, the backward difference operator V must first be

related to derivative operator D = d/dt. A Taylor's series extrapolation of a continuous function is

Y(t + At) = exp(At D) Y(t)

In terms of discrete function gn, this is

gn = exp(hD) gn-t (2-80)

where h is the step size.

Equation (2-77) can be rewritten as

gn = (1 - V)-I gn__ (2-81 )

Comparing Equations (2-80) and (2-81) yields

exp(hD) = (1 -V) -1 (2-82)

or

V 2 V3 n
hD=_ln(l_V)=V+____+___ff__+...+V"n +"" (2-83)

Equatiofl (2-80) can be used to compute Yn+l given Yn because the operator hD is known in

terms of the backward differences from Equation (2-83):

Yn+l = exp(hD) Yn (2-84)

This can be manipulated as follows:

Yn+l = Y_ + (exp(hD)- 1) Yn

(hD) (2-85)=Y +(exp(hD)-l) _-_ Y

Because DYn = fn, this yields
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/exp(hD)- 1)Yn+, = Y. + h \ hD f (2-86)

The numerator and denominator are expanded in powers of V From Equation (2-82),

1 -l+V+V 2 + +V n + (2-87)exp(hD) = 1 - V ......

Using Equation (2-83) for hD and Equation (2-87) for exp(hD) in Equation (2-86) yields

h[V+V2+V a + +V" + -1
+ Yn+l = Y + ..... f

n LV+___at_V3 .F ..F vn.l_ j3 n

This division can be carried out to any number of terms. To fourth order, it is

Y(P)~Y +h[1 1 5 +,,+, +_V + V.2 + V3 251 4-= +_V I f (2-88)

This is the predictor equation because it does not contain f+_. The corrector equation can be

derived by starting with the identity

Y+I = Yn + vY+I

Manipulation as performed above yields

hD
Yn+l = Yn +V _ Yn+l

: +h f nYn +1

Using Equation (2-83) to expand hD gives

v+V:+ .+v--n+..f"+'
2 n

-, . If the division is carried out to the fourth order, the following corrector equation results:

I 12_4V3 194Y_n?l--_Yn +h [1 --_V- V - 720V ] f+_ (2-89)

When an integration is performed, the derivative f+x is known, but the backward differences

vk f+l are unknown. Therefore, the recursion relation equation (Equation (2-78)) is used to

express y(C)n+_in terms of Vk f. The resulting corrector equation is
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/ \
yfiCc)=y +1.251.1 (469+109V+49V 2+19V3)fn (2-90)

h
+I n \'-_-OJ h fn+t +

The integrator uses the predictor (Equation (2=88)) to estimate the state at the (n+l) step, and the

derivative fn+l is evaluated using this first value. This derivative and previous backward differences

are then used to refine the estimate of Yn.l using Equation (2-90). The magnitude of the differ-

ence between these two estimates, IYCnP)I- y(c) I, is a reliable estimate of the corrector error, and•_ n+l

the step size can be changed at this point if necessary. This is determined by testing whether the

difference for each state vector element lies within the error window for that layer. This window

for the ith layer is the interval

(Wl, Wh)i = (Ei/ED , Ei * ED) (2-91)

where Ei and ED are input parameters. If the differences in all layers are less than the lower limit

(w I ), the step size is doubled. If the difference in one or more layers is larger than the upper limit

(wh ), the step size is halved.

When the integration is complete, the baakward difference table is updated via Equation (2-78)

to prepare for the next integration step. In addition, if the step size is changed, new backward

differences must be computed to reflect the new step size. These can be calculated in terms of the

old differences in the following way. The value p is defined to be the ratio of the new interval

length to the old length:

hnew

p- hold

Halving gives p = 1/2, and doubling results in p = 2. In terms of the new interval, the first back-

ward difference is ,,

-Pholdb=%-e %

UsingEquation(2-82)toexpresstheexponentialintermsofV,thisbecomes

2-30



The mth order backward difference is found by raising the first order to the mth power.

V; fn = [1 - (1 --V) p ] m fn (2-92)

This can easily be expanded in powers of V. Because the new backward differences are linear

combinations of the old, changing the step size can simply be effected by a matrix multiplication.

Halving is accomplished as follows:

and doubling is achieved as shown below.

r_7 [2 -1 0 0 !

_ z 0 4 -4 1
= (2-94)

V 0 0 8 -12

., IV /0 0 0 162
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Simulator output is desired at predetermined intervals. Because the Adams method integrates by

using the largest interval yielding the required accuracy, an integration step frequently ends beyond

the desired output time. As a result, interpolation is necessary; however, back values of the state

vector are not available for this purpose. A method as acct_rate as integration and not requiring

the storage of previous data points is available (Glang, 1971). This method essentially consists of

an equation for integrating a partial step forward or backward using the existing table of backward
7,

differences. The derivation closely follows the derivation of the predictor equation. Let

tn+p -- tn •
P- h

Then

Yn+p = ePhD Yn

= Yn + (ePhD -- 1) Yn

hD
= Yn + (ePhD-- 1) _ Yn

Ie'-t=Yn+h L hD fn

Expressing this as a function of V using Equations (2-82) and (2-83) gives

Expanding in powers of v gives

n _ fn (2-95)
V+V- +V3 +...

2 3

To the fourth order in V, this i's
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[ (2p3+3p2)Yn+p= Yn +h p+£ V+
V 2

2 12
(2-96)

( + +90p1+ p4 + 4p3 + 4p2 V3 + . !74 fn
24 720

t

This is the required interpolation formula.
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SECTION 3 - TEST RESULTS

3.1 COMPARISON OF SIMULATED TO ANALYTICAL SOLUTIONS

This program has been tested by using it to solve diffusion-type partial differential equations for

which analytical solutions are known. Numerical solutions of the following three equations were

generated:

1. Constant diffusion coefficient with constant wetness boundary condition at the surface:

- DO _-_z2] (3-1)

subject to 0 (z, 0) = 0i and 0 (0,t) = 00 . The solution is (Eagleson, 1970)

O(z,t) = 0o + (0i - 0o) erf (3-2)

2. Constant diffusion coefficient with constant flux at the surface:

dO Do / d20._d-T= \-_z2] (3-3)

subject to 0(z,0) = 0i and-D O (dO(0,t)/dz) = fo" The solution is (Eagleson, 1970)

2f°F[Dot (_ z21_2J_erfc( Izl _70(z,t) = 0i + --_-0L._---_- exp _ 2Dv/_D_ 0t/j (3-4)

3. Concentration-dependent diffusion coefficient with constant wetness at the surface:

dt dz (0)
(3-S)

.

D(0) = D---0-°(1-£n 0)
2

subject to 0 (z,0) = 0 and 0 (03) = 1. The solution is (Philip, 1960)

0(z,t) = exp (-z/v/-D0t) (3-6)

In Equations (3-2) and (3-4), erf and erfc are the error function and complementary error function

respectively.
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For each simulation, the soil depth was set at 60 cm and the equations were integrated for 6 hours.

The diffusion constant, Do, was set equal to 0.01 cm2]sec. The flux at the bottom was set equal

to 0 in all cases. This boundary condition is not compatible with the equations being integrated

(as a semi-infinite medium is tacitly assumed in the analytical solution, no bottom boundary condi-

tion exists). However, with this value of Do, the water incident at the surface could not appreciably

infiltrate to a depth of 60 cm in 6 hours; thus, the simulated and exact solutions should agree

throughout the top layers. Results are reported to a depth of 25 cm.

The simulator was run with an absolute error tolerance of 0.005. This is the largest allowable

magnitude of the difference between predicted and corrected values for each iteration and is a test

of convergence. In most cases the difference between the simulated and exact solutions did not

exceed 0.001, indicating that the simulation converged to the correct value. The only exception is

in the top layers when constant wetness boundary conditions are used (simulations 1 and 3). The

exact solution gives constant wetness at z = 0, but the simulator requires all layers to have a finite

thickness. For these two cases the top two layers were given a thickness of 0.1 cm and the thick-

nesses of the deeper layers were gradually increased to a maximum of 2 cm. Because of this finite

surface thickness, the exact and simulated solutions in the top cm of soil differed by about 0.01.

Agreement at other depths was within 0.005.

For case 2, the soil was divided into layers 2-cm thick throughout. The exact and simulated solu-

tions were consistently within 0.001.

Figures 3-1 through 3-6 represent the results of the simulation. Figures 3-1, 3-3, and 3-5 give

wetness profiles at 20 minutes, 2 hours, and six hours for cases 1, 2, and 3, respectively. Figures

3-2, 3-4, and 3-6 show wetness as a function of time at soil depths of 1, 11, and 25 cm for the

three cases.
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NOTE: Curves are labeled with the simulation time. The initial value of wetness is 0.2 at all
depths, and the surface wetness boundary value is 0.9.

Figure 3-1. Wetness Profiles from the Solution of the Diffusion Equation with Constant Diffusivity
and Constant Wetness Boundary Conditions (Equations (3-1) and (3-2))
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Figure 3-2. Wetness as a Function of Time for Three Depths
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depths. The flux at the surface (fo) has the value 4 × 10-4 (cm/sec).
J

Figure 3-3. Wetness Profiles From the Solution of the Diffusion Equation With Constant Diffusivity
vity and Constant Boundary Condition (Equations (3-3) and (3-4))
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NOTE: The initial and boundary conditions are the same as those in Figure 3-3.

Figure 3-4. Wetness as a Function of Time for Three Depths
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• everywhere, and the surface wetness boundary value is 1.0.

Figure 3-5. Wetness Profiles From the Solution of the Diffusion Equation With Variable Diffusi-
vity and Constant Wetness Boundary Condition (Equations (3-5) and (3-6))
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Figure 3-6. Wetness as a Function of Time for Three Depths
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3.2 FIELD SIMULATION

To gain confidence in the ability of the program to solve the more complicated coupled system of

diffusion-type partial differential equations, a day-long simulation of conditions in an actual field

was performed. Initial conditions were taken from data that were measured in an experiment

performed in March 1971 (Jackson, 1972). In this experiment the soil was irrigated, and at half-

hour intervals thereafter for 16 days temperature and moisture profiles, evaporation rates, heat
r

fluxes, and other pertinent meteorological data were measured. Thermal and hydraulic properties

of the soil type were also known. The simulation was performed for a 24-hour period starting at

the beginning of the fifth day after irrigation.

Subsequent analysis of this data has shown that the flow theory described in Section 2 of this

document can provide reasonably accurate moisture fluxes at intermediate values of wetness (Jack-

son et. al., 1974), but the heat fluxes predicted by this theory are not very accurate (Kimball

et al., 1976). Nevertheless, these expressions for moisture and temperature fluxes are generally

accepted to be qualitatively correct; therefore, they may be used in a test of the ability of the

simulator to qualitatively model heat and moisture flow in soils.

Values for the various input parameters that were used in this simulation are described below.

Semi-log plots of the hydraulic properties of Adelanto loam (the soil used in the experiment) were

given in graphical form (Jackson, 1972). These are reproduced here in Figure 3-7, with the scales

changed to reflect the different units used in the simulation. Data points were estimated from the

curves and then used to find acceptable values for the parameters in the potential and conductivity

models, Equations 2-65a and 2-65b. The data points are the logarithms of K and I@1.The corre-

sponding logarithms of the model equations can be used to solve for the model parameters. To

use conductivity and potential data at the same time, the sum of the logarithms of K and ff was

used;
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Figure 3-7. Hydraulic properties of Adelanto loam. The solid curves are reproduced from
Jackson (1972).
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log K(0) + log IC (0)1 = (b + 3) log (_s)+ log ICsl+ log Ks (3-7)

The model equations as implemented will not accommodate the sudden change in the slope of the

potential curve near saturation. (A procedure to include this behavior is described in Clapp and

' Hornberger_ 1978). Therefore, a value of 0.375 was used for saturation wetness, and calculated

matric potentials will not be valid above this value. A linear least squares fit of the data to Equation

"- 3-7 gives a value for the texture parameter b and the sum log ICsl+ log Ks which is valid for wetness

in the range (.125, .375), where both conductivity and potential are known. Values for Ks and

Cs are then determined by examining the conductivity and potential data separately.

This procedure results in a value of 5.2 for b. However, the resulting fit does not match the matric

potential data very well for wetness below 0.1. A slight decrease in the texture parameter will

greatly improve the fit for dry conditions, yet does not greatly alter the fit for wetness greater

than 0.1. The following values for the model parameters were chosen to match the data:

b = 5.0

ks = 2.8 X 10-s cm/sec
(3-8)

Cs = -42.7 cm

0 = 0.375
s

The points on Figure 3-7 have been calculated with these values in Equation 2-65. The RMS

errors of the fit to the logarithms are

tr_ (log [_l) = 0.37 (3-9a)

oK (log IKI)= 0.48 (3-9b)

These errors in the logarithms are equivalent to multiplicative errors in the hydraulic properties.

With K° (0) and Co (0) defined to be the model values for conductivity and potential from Equa-

tions 2-65a and 2-65b, the one standard deviation ranges for the error in the fit are 10±° r¢ Ko and

10-+°_ Co. Inserting the values from Equations 3-9a and 3-9b for the RMS errors gives
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.43 Ko (0) _<K (0) _<2.3 Ko (0) (3-10a)

.33 _o (0)_< _ (0)<_ 3.0 _o (0) (3-10b)

These errors are due only to the fit to the model equations. Errors in the measured data are un-

known and are therefore not included. -,

The soil porosity (e, Equation (2-6)) was assumed to be 0.39 because this is the largest value of 0

for which the hydraulic properties were given. Also, the maximum values of wetness on the data

base for any soil layer at any time is 0.38, which occurred in the top layers just after irrigation.

The volume fractions of the solid constituents of Adelanto Loam are .373 for quartz and .627 for

clay (Kimball, et al., 1976). The volume fractions of quartz and clay for the soil-air-water system

are therefore

fq = .373 (l-e) = 0.228
(3-11)

fc = .627 (l-e) = 0.384

The thermal conductivities of quartz and clay are 21 and 7 (mcal/cm/sec[°C) respectively. Equation

(2-24) gives, for the weighting factors,

kq = .173
(3-12)

ke = .422

The value used for the shape factor gi is 0.333.
t_

Equation (2-23) contains contributions to the effective thermal conductivity from all solid consti-

tuents. In the simulator, these factors are replaced by one effective solid term with volume fraction

f = 1-e. This is accomplished by defining the effective thermal conductivity of the solids 3,and

weighting factor k by solving the equations

k(1-e)"-X = Zikifi3ì (3-13)

(l-e) = _ikifi (3-14)
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Using previously stated values ki, fi' and _ki, these equations can be solved, giving

_= 0.329 (3-15a)

_= 9.72 × 10-3 (mcal/cm/sec/°C) (3-15b)

' The volumetric heat capacities of quartz and clay have the same value, 0.5 (cal/cm a/°C), which was

used for Cs in Equation (2-29) to compute the volumetric heat capacity of the soil-water system.

The soil moisture in the bottom layer was approximately constant over a 24-hour period; con-

sequently, the"option to hold this value constant in the simulation was chosen. (JBOT = 1 in

NAMELIST, see Section 4.)

Values for parameters needed for the solution of the heat balance equation were either measured or

could be deduced from the measurements. Air temperature, vapor pressure, and wind speed were

measured at half-hour intervals, and a linear interpolation scheme was used to provide values at

intermediate times. The subroutine which did this is listed in Section 4.

Values for parameters in the solar radiation flux model (Equation 2-37) are as follows: X= 33.5 ° ,

6 = 0.0° , A = 0.3, N = 0.0, and n = 2.0. The first two variables in this list follow from the location

of the experiment (Phoenix) and the time of year (March 8, near the vernal equinox). Both in-

coming and outgoing short wave fluxes were measured, and the average value of their ratio (the

albedo) over the day was 0.3. Figure 3-8 shows both modeled and measured fluxes. The qualita-

tive agreement is very good. The major error source is the phase difference of one-half to one hour.

Evaporation rates were measured during the experiment. Therefore the constant C1 in Equation

2-44 was chosen to make the model calculations match the data as accurately as possible when the

rate was the largest. The simulated and measured evaporation rates are compared in Figure 3-9,

with the value of 0.5 × 10-_ (cal/cm 3]mb) used for C1. In the nominal simulation Co was set

equal to zero. The simulation was also run with the value of Co chosen to represent the reported
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Figure 3-8. Simulated and measured incoming and outgoing short wave radiation fluxes for March

8 simulation. Solid lines represent the data, and the points represent the model calcu-
lations.
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Figure 3-9. Comparison between simulated and measured evaporation rates.
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uncertainty of .02 mm/hr., the resulting curve is also shown in Figure 3-9. The qualitative agree-

ment is good, indicating that Equation 2-44 can be used to model physically realistic instantaneous

evaporation rates.

The results of a 24-hour simulation are presented in Figures 3-10 through 3-15. The qualitative _,

similarity between the measured and simulated variables is evidence that the program has solved

the model equations correctly. As previously noted, the solutions of the model equations are not -.

expected to agree exactly with the data because of uncertainties in soil properties.

Figure 3-10 shows simulated and measured wetness in the top ½ cm of soil as a function of time.

The greatest daily variation occurs in this layer, so a comparison of the simulated and measured

wetness there provides the most stringent test of tbe program. Curve a is the data, and curve b

is the simulation using nominal values of the input parameters. The quantitative agreement between

these two curves is poor. However, some of the discrepancy can be accounted for by uncertainties

in the input parameters. For example, the error in the evaporation rate is conservatively estimated

to be .02 millimeters per hour (Jackson, 1972). Curve c results from increasing the magnitude of

the evaporation rate in the simulation by this amount, and only a small change is produced. The

values of the hydraulic parameters can also be in error by considerable amounts (Equation 3-10).

Decreasing the magnitudes of K and ff by the factors of .33 and .43 respectively (and therefore

r_ducing the value of the wetness flux everywhere) results in curve d. The simulated wetness is

very sensitive to changes in these variables. It should also be noted that the errors quoted include

only those due to curve fitting and extracting numbers from the semilog plot; the errors in mea-

suring K(0) and _b(0)are not known and have therefore not been included. Finally, curve e shows

the effect of changing both the evaporation rate and hydraulic parameters. In this case changing

the evaporation rate has a greater effect on the moisture content.

Figure 3-1 1 shows the simulated and measured surface temperatures, and Figure 3-12 shows the

corresponding heat fluxes at a depth of 5 cm. The qualitative agreement in both cases is good.
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Figure 3-10. Wetness in top ½ cm. of soil as a function of time. Curve a is the data, and curves
b-e represent simulations with various uncertainties in the input variables included.
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Figure 3-11. Simulated (dashed line) and measured (solid line) surface temperatures over one
day.
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Figure 3-12. Simulated (dashed line) and measured (solid line) heat fluxes at 5 cm. depth. Fluxes
are positive away from the surface.
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The maximum error in the surface temperature is 3°C. Errors in the heat flux can be reduced by

calibration of the thermal conductivity model (Equation 2-23). (Kimball, et al., 1976a and b.)

This is done either by making the air shape factors (Equation 2-24) functions of soil moisture, or

by introducting a constant factor in Equation 2-23. However, in this simulation the value 1/3 was

used for ga for all values of wetness, and no multiplying factor was used.

Figures 3-13 and 3-14 show wetness profiles for three different times of the day. The simulations

represented in figure 3-13 were performed with nominal values for the input parameters (curve b,

figure 3-10); figure 3-14 shows the changes when errors in the hydraulic parameters are included

(curve d, figure 3-10). Figure 3-15 shows temperature profiles from the nominal simulation. The

simulations were performed to a depth of 100 cm"but little variation was found below 25 cm for

wetness and temperature in both the simulations and the data; therefore, profiles below this depth

are not shown. The qualitative agreement is good for moisture profiles below 7 cm. The tempera-

ture profiles agree within 3° at all depths.

Uncertainties in the hydraulic parameters are responsible for most of the surface moisture differ-

ence between the simulations and the data; errors in the simulation of evaporation rate are of

secondary importance. Surface soil moisture variations are determined by the difference in the

evaporation rate and the recharge flux into the surface layer from below. Table 2-1 shows values

for the integrals of these fluxes over one day for the four simulations discussed. The integrated

evaporation rate from the data is also presented.

The differences between columns b and d show that changing the hydraulic parameters has very

little effect on the evaporation rate but does alter the recharge flux. Therefore large variations

in surface soil moisture can be created by changing the hydraulic parameters because the input to

the layer changes, but output is relatively constant. (This decrease in recharge is reflected in the

smaller change over time of the simulated moisture profdes in Figure 3-14 when compared to

Figure 3-13). However, if only the evaporation rate is changed (column c), both surface and
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Figure 3-13. Wetness profiles at three times for the sample simulations. Solid lines are data, and
dashed lines are simulations.
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Figure 3-14. Wetness profiles at three times for a simulation with hydraulic parameter reduced
by maximum uncertainty. The legend from figure 3-13 applies here.
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Data Source

a b c d e

Evaporation .181 .125 .167 .126 .168

Recharge .157 .196 .118 .147

Table 2-1. Daily Integrated Evaporation and surface recharge fluxes, in cm of water.

a- Data

b - Simulation with nominal input values

c - Simulation with evaporation rate increased by uncertainty

d - Simulation with hydraulic parameters reduced

e - Simulation with evaporation rate increased and hydraulic parameters reduced
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recharge fluxes change by almost the same amount. Thus the effect on surface soil moisture is

minimal. The increased evaporation in this case is supplied by moisture in layers deeper than the

surface.
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SECTION 4 - USER'S GUIDE

Figure 4-1 shows the JCL needed to execute the simulator on the SACC (Science and Applications

Computing Center, GSFC) S/360-91 and S/360-75 computers. Subroutines which perform the

integration and create printer plots are in object module format as members of the data set

ZB2PC.UTIL.OBJ. All other subroutines exist as a non-executable load module named ZB2PCSSM

on the system load module data set, SYS2.LOADLIB. The linkage editor is used to combine

these and create an executable load module. In this example NAMELIST input is entered instream

in the GO.DATA5 DD statement. The DD card labeled GO.FT10F001 is for printer plots (see the

description of NAMELIST parameter IPR). The GO.FT12F001 DD statement points to the disk

data set which will receive the temperature and moisture profiles (see the description of NAMELIST

parameters NDISK and IUDISK).

Figure 4-2 is an example of the JCL used to relink a subroutine created by the user and then exe-

cute the simulator. The first job step is a compilation of the user subroutine using the standard

FORTRANH procedure, and the second step is the LINKGO procedure from Figure 4-1. Note

that in the present example the NAMELIST is read from the data set ZB2PC.MARCH17.NL.DATA.

The variables in the simulator NAMELIST are described in Table 4-1. For each variable the type

(real (R) or integer (I)) length (4 or 8 bytes), and default value are given. If the variable name and

value does not appear in the NAMELIST input data, then the variable will have the value given in

Table 4-1. Variable descriptions are also given. References to defining equations are provided

where relevant.

In addition to values for the NAMELIST variables, the user can provide values for the air tempera-

ture, air vapor pressure, and wind speed as functions of time. This is done by coding a subroutine

named METEOR. The routine which is used in the simulator is given in Figure 4-3. The calling

sequence is as follows:
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//* SOIL SIMULATE
//LGO EXEC LINKGO,REGION.GO=3OOK,OUT=8
//LINK.SYSLIB DD DISP=SHR,DSN=ZB2PC.UTIL.OBJ
//LINK.OBJECT DD *

I_CLUDE LOADLIB(ZB2PCSSM)
ENTRY MAIN

/*
//GO.DATA5 DD *

&INPUT
NL=22,DZ=l.0,2.0,3.0,4.0,1B*5.0,WATER=27*O.1,TEMPS-27*290.O,
SATW=27*O.4,SATP=27*-10.O,SATK=27*1.0E-4,EB=27*5.0,
TSTOP=B.64D5,DTOUT=lOBO0.O,
WATERR:O.OO2,TEMERR=2.0,ED=2.0DO,HMAX=IBOO.ODO,
IROOTS=O,ITEMPS=I,NWATRS=2,NWFLUX=2,NTEMPS=2,NTFLUX=2,
SPRES=1.0D6,ROOTS=27*O.I,
INDXW=I,2,INDXWF=I,2,INDXT=I,2,INOXTF=I,2,
NHCUMS=I,IXHCUM=I,NWCUMS=2,IXWCUM=I,2,
NDISK=l,IUDISK=12,.
RNSTRT=B.64E4,RNSTOP=1.72BE5,RNTOT=O.O,
NFUNCT=B,
&END

//GO.FTIOFO01 DD SYSOUT=B,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=7265)
//GO.FT12FO01 DD DISP=SHR,DSN=ZB2PC.PROFILE.NORAIN,DATA(DRYNORTS)
//

Figure 4.1. Execution JCL

//COMP EXEC FORTRANH,PARM-XREF,OUT=B
//SYSIN DD DISP=SHR,DSN=ZB2PC.METEOR.FORT
//LGO EXEC LINKGO.REGION.GO=3OOK,OUT=B.

//LINK.SYSLIB DD DISP=SHR,DSN=ZB2PC.UTIL.OBJ
//LINK.OBJECT DD *

INCLUDE LOADLIB(ZB2PCSSM)
ENTRY MAIN

/,
//GO.DATA5 OD OISP=SHR,DSN=ZB2PC.MARCHtT.NL.DATA
//QO.FTIOFO01 DD SYSOUT=8,DCB-(RECFM=VBA,LRECL-137,BLKSIZE=7265)

Figure 4.2. Relink JCL
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TABLE 4-1 NAMELIST INPUT VARIABLES

All subscripted variables are arrays with one element per soil layer. Subscripts run from 1 to NL

(number of soil layers) unless otherwise indicated. The NAMELIST name is INPUT.

Integrator Control Variables
Name Type Default Description
TSTOP R*8 8.64D4 Stop time for integration (seconds

from start)
g-

IFORCE 1"4 I Force integration step size to
remain less than HMAX (0 = no,
1 = yes)

HMAX R*8 1.8D3 Maximum step size (seconds)
(not applicable if IFORCE = 0)

H R*8 1.0D0 Initial step size (seconds) (not
applicable if IFORCE = 1; in this
case H is automatically set equal
to HMAX/512)

WATERR R*4 1.0E-3 Error tolerance parameter for
wetness in soil layers (Equation
(2-59))

TEMERR R*4 1.0 Error tolerance parameter for
temperature in soil layers
(Equation (2-59))

ED R*8 5.0D0 Error window parameter (Equa-
tion (2-59))

IROOTS 1"4 0 Include water uptake by plant
.. roots in the simulation (0 = no,

1 = yes)

ITEMPS 1"4 0 Temperature model indicator:
" 0 = no temperature in model,

1 = model soil temperature pro-
file, 2 = use force-restore equa-
tions to model surface and average
subsurface temperatures
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Name Type Default Description
JBOT 1"4 1 Bottom wetness boundary condi-

tion indicator: 0 = flux is zero,
1 = wetness is constant, 2 = flux
is hydraulic conductivity of
bottom layer

Output Control Variables
Name Type Default Description
DTOUT R*4 1800.0 Output period (seconds)

NFUNCT 1"4 0 Number of wetness and tempera-
ture profiles per plot page
(0 _<NFUNCT _<10)

NWATRS 1"4 0 Number of soil layers for which
wetness is to be plotted as a
function of time
(0 _<NWATRS _<10)

INDXW 1"4 10"0 Indices of soil layers for wetness
(I, I=1, 10) versus time plots

NWFLUX 1"4 0 Number of soil boundaries for
which wetness flux is to be
plotted as a function of time
(0 _<NWFLUX _<10)

INDXWF 1"4 10"0 Indices of soil boundaries for
(I, I = 1, 10) wetness flux versus time plots

NTEMPS 1"4 0 Number of soil layers for which
temperature is to be plotted as a
function of time

(0 _<NTEMPS _<10)

INDXT 1'4 10"0 Indices of soil layers for tempera-
(I, I=1, 10) ture versus time plots

NTFLUX 1"4 0 Number of soil boundaries for .-
which heat flux is to be plotted
as a function of time
(0 _<NTFLUX < 10)

INDXTF 1"4 10"0 Indices of soil layers for heat flux
(I, I= 1,10) versus time plots

ITABLE 1"4 1 Print tables of important variables
(0 = no, 1 = yes)
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Name Type Default Description
IPR 1"4 10 Output unit number for printer

plots (tables are printed on unit 6)

WL1 R*4 0.0 Lower limit for wetness on plots
(cm3/cm3 )

WH1 R*4 0.0 Upper limit for wetness on plots
(cm3/cm 3)

.- WFL1 R*4 0.0 Lower limit for wetness flux on
plots (cm/sec)

WFH1 R*4 0.0 Upper limit for wetness flux on
plots (cm/sec)

TL 1 R*4 0.0 Lower limit for temperature on
plots (oK)

TH1 R*4 0.0 Upper limit for temperature on
plots (°K)

TFL _ R*4 0.0 Lower limit for heat flux on
plots (cal/cm 2/sec)

TFH 1 R*4 0.0 Upper limit for heat flux on
plots (cal/cm z/sec)

NWCUMS 1*4 0 Number of layer boundaries for
which cummulative wetness
fluxes are to be computed
(0 _<NWCUMS< 10)

IXWCUM 1"4 0 Indices of boundaries for which
(I, I = 1, NWCUMS) cumulative wetness is to be com-

puted

NHCUMS 1"4 0 Number of layer boundaries for
which cumulative heat fluxes are

_. to be computed (0 _ NHCUMS
lO)

IXHCUM 1"4 0 Indices of boundaries for which
(I, I = 1, NHCUMS) cumulative heat flow is to be

computed

1If the lower and upper limits for any variable are equal, the actual limits used are determined
from the data being plotted.
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Name Type Default Description
NDISK 1"4 0 Flag to indicate if wetness and

temperature profiles are to be
written to disk or tape (0 = no,
1 = yes)

IUDISK 1'4 12 Unit number for output device
(disk or tape)

Variables Defining Soil Proffie and Properties
Name Type Default Description
NL 1"4 200 Number of soil layers

(2 _<NL < 200)

DZ(I) R*4 200* 1.0 Thickness of soil layers (cm)

WATER(I) R*4 200*0.25 Initial volumetric wetness of
soil layers (cm3/cm 3)

TEMPS(I) R*4 200*293.0 Initial temperature of soil
layers (oK)

SATW(I) R*4 200*0.3 Saturation volumetric wetness of
soil layers (cm3]cm3) (0s, Equa-
tion 2-65)

SATK(I) R*4 200"1.0E-4 Saturation hydraulic conductivity
of soil layers (cm]sec) (ks, Equa-
tion (2-65a))

SATP(I) R*4 200"-10.0 Saturation matric potential of
soil layers (cm) (ffs, Equation
(2-65b))

EB(I) R*4 200"5.0 Texture parameter of soil layers b,
(Equation (2-65))

_r

PORSTY(I) R*4 200*0.45 Porosity of soil layers (cm3]cm3)

TCONDS(I) R*4 200"2.5E-3 Thermal conductivity of solid
matter in soil layers (cal[cm]
sec/°K)

VHCAPS(I) R*4 200*0.5 Volumetric heat capacity of soil
layers (cal/cm3/°K)

FACTKS R*4 0.75 Shape factor for soil grains (ki in
Equation (2-23))
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Name Type Default Description
TCONDW R*4 1.3E-3 Thermal conductivity of water

(cal]cm]sec/°K)

TCONDA R*4 5.967E-5 Thermal conductivity of air
(cal/cm/sec/°K)

VHCAPW R*4 1.0 Volumetric heat capacity of water
(cal/cm3/°K)

VHCAPA R*4 3.0E-4 Volumetric heat capacity of air
•' (cal/cm 3/oK)

FACTKA R*4 1.4 Air weighting factor in definition

of thermal conductivity (k a in
Equation (2-28))

ALPHA R*4 0.667 Tortuosity factor (a, Equation
(2-6))

GAMMA0 R*8 2.09D-3 Surface tension temperature
coefficient (%Equation (2-11))

RHOVP0 R*4 6.0035 Constant in exponential to com-
pute the density of water vapor
(Equation (2-7b))

RHOVPT R*4 4975.9 Coefficient of 1IT in definition of
the density of water vapor (Equa-
tion (2-7b))

DATM0 R*4 0.229 Diffusion coefficient of water
vapor in air at 0° C (cm2/sec)
(Equation (2-6b))

LHEAT R*8 586.0D0 Latent heat of vaporization of
water (cal/gm)

THMIN R*8 0.05D0 Minimum value of soil moisture
to support evaporation. If the

_' surface soil moisture is below this
value, evaporation is limited to
flux into the surface layer from
below

SFRAC R*8 0.1DO Fraction of evapotranspiration
demand which is satisfied by
evaporation (f, Equation (2-63))

•ROOTS(I) R*8 200*0.0D0 Root density prof'fle (Pj, Equation
(2-60))
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Name Type Default Description
CPMIN R*8 -1.5D4 Limiting value of crown potential,

cm (¢w, Equation (2-62))

SPRES R*8 1.0D6 Specific resistance of roots, (sec/
cm) (r, Equation (2-58))

Variables Defining the Processes at the Air/Soil Interface
Name Type Default Description
EMAX R*8 3.0D-5 Maximum rate for time dependent

evapotranspiration model (cm/sec)
(Ernax, Equation (2-50))

EMAXT R*8 4.68D4 Time of maximum rate, seconds

since start of simulation (tmax'
Equation (2-50))

EDAY R*4 1.0 Total daily evapotranspiration
(cm) (Eday, Equation (2-51))

NRAINS 1"4 0 Number of rain storms

RNSTRT (10) R*4 0.0 Start time of rainfall, seconds
since start of simulation (to,
Equation (2-49))

RNSTOP (10) R*4 0.0 Stop time of rainfall, seconds

since start of simulation (t1, Equa-
tion (2-49))

RNTOT (10) R*4 0.0 Total rainfall accumulation, (cm)
•(rtot, Equation (2-49))

ATTEN (10) R*4 0.5 Short wave attenuation during
rainfall

CEVAP0 R*4 0.0 Constant term in evapotranspi-

ration model (cal/cm:/sec) (Co,
Equation (2-44))

CEVAPI R*4 0.0 Coefficient of variable term in

evapotranspiration model (C1,
Equation (2-44))

XLAT R*4 45.0 Latitude of simulation, degrees
(4_,Equation (2-39))

SUNDEC R*4 0.0 Declination of Sun, degrees
(6, Equation (2-39))
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Name Typ_______e Default Description

ALB R*4 0.3 Surface albedo to shortwave
radiation (A, Equation (2-37))

CTRANS R*4 0.2 Cloud transmittivity (k, Equation
(2-37))

CLOUDS R*4 0.0 Fractional cloud cover (N, Equa-
tion (2-37))

TURB R*4 2.0 Air turbidity factor, (n, Equation
(2-38))
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SUBROUTINE METEOR(T,TAIR,VAPZO,WIND)
REAL*8 T
DIMENSION TEMPSlSO),VAPORS(50),WINDS(50)
DATA TEMPS/

*'0.28036E 03, 0.28056E 03, 0.28026E 03 0.26046E 03, 0.27976E 03
* 0.27846E 03, 0.26166E 03, 0.27586E 03 0.27806E 03, 0.27746E 03
* 0.27796E 03, 0.27896E 03, 0,27866E 03 0.27856E 03, 0.27806E 03
* 0.28106E 03, 0.28306E 03, 0.29236E 03 0.30076E 03, 0.29846E 03
* 0.29806E 03, 0.30126E 03, 0.30206E 03 0.30196E 03, 0.30396E 03,
* 0.30566E 03, 0.30576E 03, 0.30546E 03 0.30296E 03, 0.30096E 03
* 0.30126E 03, 0.30186E 03, 0.30266E 03 0.30216E 03, 0.30296E 03
* 0.30146E 03, 0.29936E 03, 0.29606E 03 0.28896E 03, 0.28786E 03
* 0.28976E 03, 0.28666E 03, 0.28556E 03 0.28706E 03, 0.28796E 03
* 0.28656E 03, 0.26736E 03, 0.28206E 03 283.26E0, 283.06E0/

DATA VAPORS/
* 0.49000E 01 0.44000E 01 0.32000E 01 0.96000E 01 O.57000E 01,
* 0.25000E 01 0.63000E 01 0.49000E 01 0.50000E 01 0.55000E 01,
* 0.53000E 01 0.55000E 01 0.52000E 01 0.55000E 01 0.56000E 01,
* 0.77000E 01 0.61000E 01 0.67000E 01 0.76000E 01 0.13500E 02,
* 0.53000E 01 0.59000E 01 0.56000E 01 0.57000E 01 0.55000E 011
* 0.53000E 01 0.57000E 01 0.55000E 01 0.57000E 01 0.57000E 01,
* 0.52000E 01 0.51000E 01 0.50000E 01 0.48000E 01 0.47000E 01,
* 0.46000E 0i 0.44000E 01 0.44000E 01 0.59000E 01 0.59000E 01,
* 0.49000E 01 0.47000E 01 0.51000E 01 0.46000E 01 0.43000E 011
* 0.45000E 01 0.45000E 01 0.51000E 01 4.8EO,4.4EO/
DATA WINDS/

* 59.0, 68.6, 85.4, 94.8, 104.8, 115.8, 136.4, 114.8, 98.8,
* 112.4, 93.0, 60.2, 91.4, 98.2, 74.6, 88.0, 100.0, 79.21
* 99.0, 125.0, 107.2, 104.8, 112.6, 88.4, 54.2, 60.4, 50.61
* 40.6, 67.2, 90.4, 112.81 139.8, 162,4, 146.81 127.4, 102.0,
* 93.4, 77.0, 77.2, 83.8, 89.2, 76.0, 75.4, 68.0, 62.2,
* 58.6, 58.6, 60.0, 59.2, 64.0/

RINTRP(A,B) = A + (B - A)*DTREL
TREL = DMOD(T,8.6484)/1800.ODO
ITRL = INT(TREL)
I0 = ITRL + 1
I1 = IO . 1
DTREL = _REL - ZTRL
TAIR = RINTRP(TEMPS(I0),TEMPS(II))
VAPZO = RINTRP(VAPORS(IO),VAPORS(I1))
WIND = RINTRP(WINDS(IO),WINDS(II))
RETURN
END

Figure 4-3. Example of subroutine METEOR
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T - input - Time in seconds since start of simulation (R*8).

TAIR - output - Air temperature at reference height above the surface, degrees K, (R*4).

VAPZO - output - Air vapor pressure at reference height, millibars (R*4).

WIND - output - Wind speed at reference height, cm/sec (R*4)

The output variables are used to solve the heat balance equation. In this example data are provided

: at half-hour intervals, and a linear interpolation sceme is used to provide values at other times. The

DMOD function causes the simulator to reuse the data in case the simulation extends beyond 24

hours.

As long as the calling sequence convention is followed and the data have the correct units, the user

is free to use any scheme to generate values. The relink JCL of Figure 4-2 would be used to link

the user subroutine with the simulator. The subroutine would be on the sequential data referred

to by the SYSIN DD statement of the FORTRANH procedure.

Figures 4-4 through 4-12 are samples of the printed output c_eated by the simulator. Figure 4-4a

shows values of input parameters which vary with depth. In the following, NAMELIST names

are given in parentheses. The first three columns are the layer index, the layer thickness (DZ),

and the depth to the center of each layer. The latter is computed by the simulator using the input

layer thicknesses. The next two columns are the initial wetness (WATERS) and the temperature

(TEMPS) of each layer. The next three columns are the thermal conductivity of the solid material

(TCONDS), porosity (PORSTY), and the volumetric heat capacity of the solids (VHCAPS). The

next four columns are used in the model of the soil hydraulic properties, Equations 2-65a and b.

They are saturation wetness 0 s (SATW), saturation matric potential _s (SATP), saturation hydrau-

lic conductivity Ks (SATK), and soil texture parameter b (EB). The column labeled EM is the

exponent 2b + 3 in the hydraulic conductivity model. The last column (ROOTS) is the root density

profile, Pi from Equation 2-60.
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•• INPUT AND INJ Tl ALJZEO PARAMETEI<S ••
THICI<NESS DEPTH WETNESS TEMP TCONDS PaR ST, VHCAP SATW SATP SATK f.R ::", ROllTS

10.500E 00 0.2500 00 0.167E 00 0.279E OJ 0.250E-02 0.4S0E Oil O.SOOE 00 0.J7SE 00 -.142E 02 o. 12 2C-~ 4 C .500E. 01 O.13JF 02 C.O
20.500E 00 0.7500 00 0.19JE 00 0.280E 03 0.250E-02 0.4S0E OJ 0.500E 00 0.37SE 00 - .1421:: 02 o .122E-C4 O.SCOE 01 0.1 JOE" 1)2 0.0
JO.200E 01 0.2000 01 0.229E 00 C.281E OJ 0.250E-02 0.4S0E 0.1 a .500E 00 O.J 75E 00 - .14 2E 02 O. 12 ~E-I) 4 C.5C'0E 01 J.IJ)l ')2 1).0
40.200E 01 0.4000 01 o .243E 00 0.28JE OJ 0.250E-02 0.4S0E OJ o .SOOE 00 0.37~E 00 - .14 2t: 02 o .122E:-04 a.scor- 01 O.130f. 1)2 O.C
5O.500E 01 0.7500 01 0.256E 00 0.284E OJ 0.250E-02 0.4S0E OJ o .500E 00 0.J75E 00 - .14 2E 02 0.122E-04 0.5COE 01 0.130E 02 0.0
60.500E 01 0.1250 02 0.266E 00 0.285E 03 0.250E-02 0.450E OJ o .500E 00 0.375E 00 -.142E 02 o .122E-04 O.SOOE 01 O.IJCF ')2 0.0
70.500E 01 0.1750 02 0.268E 00 0.286E OJ 0.250E-02 0.4S0E OJ 0.50010 00 0.37510 00 -.14210 02 0.12 2E:-r> 4 O.SOOE 01 ·O.IJOE:: 'J2 0.0
80.100E 02 0.2500 02 o .272E 00 0.286E OJ 0.250E-02 0.450E 00 o .500E 00 0.37510 00 - .14 210 02 0.122E-04 0.5001:: 01 O.IJOE ')2 'l.o
90.10010 02 0.3500 02 0.265E 00 0.286E OJ 0.250E-02 0.4SCE Oil 0.50010 00 0.J7SE 00 - .14 210 02 0.12210-04 0.5001' 01 0.130E 02 0.0

100.100E 02 0.4500 02 0.258E 00 0.286E OJ 0.250E-02 0.450E 0.1 O.sOOE 00 0.J75E 00 - .142E 02 0.1<: 210-(- 4 0.S00E 01 O.IJOE 02 0.0
1I0.10CE 02 0.5500 02 0.244E 00 0.287E 03 0.250E-02 0.4S0E OJ 0.50010 00 0.J75E 00 - .14 2E 02 o .122E-() 4 (l.500E ()1 0.130[ J2 'l.0

f- 120.100E 02 0.6500 02 0.239E 00 0.287E OJ 0.250E-02 0.4S0E OJ 0.50010 00 0.J7SE 00 - .14210 02 C .122£-:)4 a .51)010 01 O.l30E 02 0.0
...... IJO.I00E 02 0.7500 02 0.214E 00 0.287E 03 0.250E-02 0.450E 00 o .500t: 00 0.37510 00 - .142E 02 0.122E-04 O.SCOE 01 0.130 E 02 0.0

N 140.100E 02 0.8500 02 0.170E 00 C.288E OJ 0.250E-02 0.45010 OJ 0.50010 00 0.37510 00 - .14210 02 0.12 2E-0 4 O.5QIJC ()1 1).13010 02 0.0
ISO. lODE 02 0.9500 02 o .15JE 00 0.288E OJ 0.250E-02 0.450E OJ 0.50010 00 O. J 7510 00 - .14210 1)2 0.1<0'210-04 0.500" 01 0.130E 02 0.0

Figure 4-4a. Input Parameters



Figure 4-4b is an example of the second output page, where the values of all other input parameters

are given. The variable name appears first, followed by a brief description and its value.

A typical page of table output is shown in Figure 4-5. The output time is in DDDHHMMSS.SS

format, where DDD is the day (DDD = 0 is the first day), HH is the hour of the day, MM is minutes?

of the hour, and SS.SS is seconds. It is assumed that the simulation start time corresponds to mid-

_ night. The first line also shows the current integrator step size in seconds.

Next on this table are the values of some important variables related to moisture flow. Layer

number, depth to the center of each layer, and wetness in the layer are shown in the first three

columns. Next is the wetness flux in cm/sec (% Equation 2-75a) at each of the NL + 1 layer

boundaries. The first layer is the air-soil interface. The next two columns are the hydraulic con-

ductivity (HYD COND) and matric potential, or pressure head (PHEAD) of the water in the layer.

The next column lists values of the derivative of the matric potential with respect to depth (_

Equation 2-73a). The Ith derivative is evaluated at the boundary separating the I and I + 1 layers.

The last entry in the column is not used, since the derivative is required only at the NL-1 interior
dO

boundaries. The column labeled DWDTis the derivative of wetness with respect to time (_-_-,Equa-
dq

tion 2-54). If the sink term is zero, this is the spatial derivative of the wetness flux (- _-, Equation

2-72a). The last column is the value of the sink term Q, Equation 2-55.

The next entry is the amount of water stored in the profile in centimeters. This will be calculated

J if the value of the input variable NWCUMSis greater than zero.

The cumulative wetness flux at any of up to 10 layer boundaries can be computed. This is the

integral of the flux over time, starting with the beginning of the simulation. The trapezoid rule is

used to compute the integral, and the value of the integral is updated after each simulator time

step. The number of integrated fluxes is set via NAMELIST parameter NWCUMS;the layer indices

are input via the array IXWCUM. In the example of Figure 4-5 NWCUMSis 3, and the first three

elements of IXWCUMare 1,2, and 16 (see Figure 4-4b). Boundary 1 is the air-soil interface, so
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INTEGRATOR VARIABLES

[STOP STOP TIME (SECONDS) 0=864000D 05
WATERR ERROR TOLERANCE FOR WETNESS 0.20E-02
TEMERR ERROR TOLERANCE FOR TEMPERATURE C.20E 01
ED ERROR WINDOW: WINDOW = (E/EO,.E_=ED) 0.20D OI
IFORCE FORCE MAX. STEP SIZE (O=NC, I=YES) 1
H INITIAL STEP SIZE (N/A IF IFORCE=I) 0.1000000 01
HMAX MAXIMUM STEP SIZE (N/A IF IFOqCE=O) 0.1800000 04

OUTPUT 30NTR_)L VARIABLES
DTOUT OLFrPUT PERIOO (SECONDS) 0.180000(£ 04
NFUNCT NUMBER OF GRAPHS OF WETNESS VS GEPTH

AND TEMP VS DEPTH PER PLOT PAGE 6
NWATRS NLINBER OF WETNESS VS TIME GRAPH_ 3
INDXW SOIL LAYERS FOR WETNESS PLOT 1 2 3 0 0 0 0 0 0 0
NWF1.UX NUMBER OF WETNESS' FLUX VS TIME C4_APHS 2
INDXWF BOUNDARIES FOR WETNESS FLUX PLOT I 2 0 0 0 0 0 0 0 0
NTEMPS NL_4BER OF TEMP VS TIME GRAPHS 3
INDXT SOIL LAYERS FORT TEMP PLOT 1 2 3 0 0 0 0 0 0 0
NTFLUX NUMBER OF HEAT FLUX VS TINE GRAQHS 3
I NDXTF BOUNDARIES FORT HEAT FLUX PLOT I 2 5 0 0 O 0 0 0 0
IPR OUTPUT UNIT NUMBER FOR ALL PLOTS 10
ITABLE PRINT TABLES (O=NO, I=YES) 1
iLl WH FORCED MIN AND MAX FOR'WETNESS I:LOT OeO 0=0
TLI TH FORCED NIN AND MAX FOR TEMPe I;LOT 0°0 0.0
WFLtWFH FORCED NIN AND NAX FOR W FLUX PLOT 0=0 0.0
TFLoTFH FORCED MIN AND MAX FOR H FLUX PLOT 0.0 O. 0

IF L AND H LIMITS ARE EQUAL,, THEY ARE SET BY THE PROGRAM

NWCUMS NUMBER OF CUMULATIVE WETNESS FLI_XES 3
iXWCUM BOUNDARIES FOR CUMULATIVE WETNESS FLUXES 1 2 16 0 0 0 0 0 0 0
NHCUMS NUMBER OF CUMULATIVE HEAT FLUXES I
IXH<:UM BOUNDARIES FUR CUMULATIVE HEAT FLUXES I 0 0 0 0 0 0 0 0 O
NDISK OUTPUT STATE TO DISK (O=NO,I=YES) 0

_--' IUDISK FORTRAN UNIT NUMBER FOR DISK OUTPUT 12

OTNER MDD F'I PARAN ETERS
ITENPS TEMPERATURE MODEL INDICATCR I

(O=NO TEMP=t I=TEMPePROFILEt 2=-FORCE--RESTQR6)
IROOTS INCLUDE ROOT MODEL (O=NO, |=YES) 0
SPRES RI_DT SPECIFIC RESISTANCE (SEC/CN) 0.1000000 07
CPMIN PLANT CROWN POTENTIAL AT WILTING --elSOOOOD 05
SFRAC FRACTION OF ET DEMAND TO S_IL EtrAP 0.I00OO00 00
NEXT 3 PARAMETERS USED FOR GAUSSIAN TIME-DEPENDENT ET FUhlCTI3;,J WHEN ITEMPS = 0
EMAX MAXIMUM RATE (CM/SEC) 0.300000E-04
EDAY TOTAL DAILY EVAPOTRANSPIRATION |CM) OelOOOOOE 01
EMAXT TIME OF MAX RATE (SIC SINCE START) Oe468000f- 05
THNIN LIMITING SURFACE WETNESS FCdR EV#PORATIONOeSOOOOOD-Ol
RNTOT TOTAL RAIN FALL (CM) 0*0
RNSTRT START TIME OF RAIN (SIC FRCM SII_ START) BeD
RNSTOP STOP TIME OF RAIN (SIC FRCN Slit START)OoO
RNRATE RAINFALL RATE (CM/SEC) BeD
JBOT BOTTOM WETNESS BOUNDe CONOe I

=OoFLUX----OeO ; =l ,WETNESS IS CONSTANT; ;2*FLUX=CONDUCTIVITY
THE FOLLOWING INPUT PARAMETERS ARE USED WNEN SOLVING THE HEAT BALANCE EQUATION (ITENPS>O)
ALB SURFACE SHORT WAVE ALBEDO Oe3OOOOCE O0
CLOUDS FRACTIONAL CLOUD COVER 0eO
CTRANS CLOUD TRANSNITTIVITY TO SHCRT WAVES Oe2OOOOOE 00
SUNDEC SUN DECLINATION ANGLE (DEGREES) 0°0
XLAT LATITUDE 0.33500 OE 02
TURB TURBIDITY FACTOR 0.200000E Ol
CEVAPO COEFFICIENT FO_ PET CALCULATION 0°0
CEVAP! C(_EFFICIENT FOR PET CALCULATION OeSO0000E-06

THESE ARE USED TO COMPUTE POTENTIAL ElrAPOTRANSPIRATION AS _ FUNCTION OF WIND SPEED (W, CM/SEC)
AND VAPOR PRESSURE DIFFERENCE (DVAPt _B=)° THE MODEL IS _'ET = -(CEVAPO . CEVAPItW*DVAP)

Figure 4-4b.



TIME (D[)DHHMMSS) = t20000oO0 CURRENT INTEGRATU_ STEP SIZE (SECUNDS) -- O.2B12SO0000{) 02
FLUX COMPUTE[) AT I-lll 01)UNDARY; DPOZ CCWPUTED AT I/I.l O;UN}_RY

l [)EPTH WETNESS FLUX HY[) CON1) PH-AD [)Pl)Z [)W[)T 5 INK

I Ot25000D O0 0.144690 CO -.52689D-05 OeSO32TD-IO -.1_1211) 04 0.25956[) 04 -=52474[)-05 0.0
2 0.750C00 O0 0=194911) O0 -.2_AS2D--05 0=24646D-0_ -=37_36D 03 O=I6003D 03 -=10239D-05 0=0
3 0.20000[) OI 0.22710{) O0 --.,=0736D-06 O. I7_B01)-07 -.1_321) OJ 0=22_03[) 02 -.2'533D-O? C.C
6, 0.40000[) OI 0.241150 O0 --.A0969D-06 0.392381)-07 -.1-_1-_D 03 O=(_1624_L) OI -.25277D-07 0.0
5 0=75000D Ol 0=255321) O0 --,3e33ID--06 OeBEA27D-07 -,97054.DD 02 0,322090 01 -.12070D)-07 0=0
6 0=12500D 02 0=264761) O0 --,23461D-06 OeI3211D-06 -=83J50D 02 O,91925L) O0 --,238q2D-07 0.0
7 O,I7500D 02 0=207871) O0 O,431S5D-OO 0,15380D-06 -=75J54D 02 0.573753 O0 -,59348[)-08 0.0
B 0.25000D 02 0,271001) O0 0,(._3664.D-07 0,17883D-06 -,7_JSlO 02 -,08240D O0 -,20369D-07 O,C
9 O,35000D 02 0=266130 O0 0,2_735D-06 0,141340-06 -,70J741) 02 -,I208bt) Ol O,5138OD-Ob 0.0

10 0.A5000D 02 0,258650 O0 0,2_221D--06 0,97._63D-07 -,93_61D 02 -,204.70L) Ol 0,27239D-07 0.0
11 0,55000D 02 0,24836D O0 0.2-_4971)--00 0,57557D-07 -,111431) 03 -,31269[) Ol 0,54953D-07 C,C
12 0=65000[) 02 0,236380 O0 0,180021)-06 0,302561)-07 -=1_70[) 03 -,89239D Ol -.11482D-07 0.0
13 0.75000[) 02 0=214490 O0 O, lgt501)-06 Oe85574.D"O_I -e23194.1) 03 -,364170 02 0=18751D-07 0=0
14" O=_SO00D 02 O=l_rZS90 O0 O. 17275[)--06 0.735311)-09 -.5g)llD 03 --.05989L) 02 0.14.57B[)--00 0.0
15 0=95000[) 02 O.lS3001) O0 0.2_971D-07 O. I05@ID-09 -.1_560D 04. --.6598VL) 02 0°0 0.0

O= 2_971D-07

CUNULATIVE WETNESS VARIABLES (CN CF WATER)
TOT_*L IN PROF ILE = [)=2330202460D 02

BIDUNDARY CUMULATI VE FLUX
1 --,441422J714D-OI
2 -,33191228410-01

IO 0.83 54.74.6017D--03

EVAPOTRANSPIRATIQN 1)JTPUT -- FLUXE. < IN CN/SEC
TOTAL = -,52689D-05 SOIL EVAP = -=5_689D-05 PLANT TR_ dSPIRATIfJN = 0,0 CROWN PUTENTIAL (C_4) = 0=0

I DE}TH TEMP FLUX TCOND TOIFF _DIFF VHCAP L)TDZ [)TF_MPDT

I 0,250001) O0 0.3044.9D 03 O,74955D--02 0,13864D'-02 0,98134D-07 0.1274.20-11 OeAI95BD O0 -.74184D OI -,14228[)-01
2 0,75000D O0 0,300781) 03 O, I0480D--OI OelA"396D-O2 O=bgO_TD-07 0.86253D-12 0,4699O[) O0 -,A4"200D Ol 0.43525D-02
3 0,20000[) Ol D,29525D 03 O,L=3Bg2D--02 0=14693D-'02 0,49107D-07 0,_454.6D--12 0,50217[) O0 -.2864.8D OI 0=F}633_[)-C3
4 DeI_OOOOD Ol 0,2B9521) 03 0=42215D-02 0,14778D-02 0,39_'_1D-07 0,360B0[)-12 0,516211) OO -=14"H3_1) 01 0,7_J_3_)-G3
5 0.7SO00D Ol 0,2_4.330 03 0,2198_D-02 0,14_301)-02 0,3_)_78D-07 0.2424.2L)-12 0.530301) O0 --,93_21)-01 0,3_390-03
0 0=125000 02 0=28386D 03 O, I40bOD-03 0,15093D-02 0,4"0_10D-07 O,22383L)-I2 O,53qOl() O0 O=lTI14.D OC' 0.7_07D-04
7 0.17500D 02 0,284720 03 -.258900-03 0.151621)-02 C.43o5BD-07 0.232500-12 0.54292D O0 0.12193D OC -.135_J2[)-04.
8 0=25000[) 02 0=2_5631) 03 --elOSl6O--03 0..15233D-02 0,45r82o-07 0,24224L)-12 0e54605[) oo O,43554D-D)I --.21790D-04
9 O,]SO00D 02 0,28_)070 03 -, _170D-04 0, 15 152D-.02 0,44-_._D-07 0,25580D-12 0,541190 O_ 0 .3orlZOD-01 -= IG24.4.0-C4.

10 O.q, BOOOD 02 0=28645D 03 --e'_.7379D-04 0.15025D--02 O.A3-J3ZD-07 O.27269D-12 Oe5337ID O0 O.J4.SI3D-O]. -.lOglOD-04.
11 0,55000D 02 0,286790 03 -=51552D-04" 0=14849D-02 0,37$76D-07 0,293691)-12 0,5234.2D O0 0,32606D-01 -,60273[)-05
12 0=550000 02 3,287121) 03 -,4.80830--04 0,14645D-02 O=3t#17D-07 0,31760U-12 0,51144[) OC O,31088D-OI -,35026D-05
13 0,75000[) 02 0=2874"40 03 -,4_2510-04 0°142740-02 0,33-"400-07 0,3572J0-12 0,48956[) O0 0,32533D-01 -=16734L)-05
14. 0.850000 02 0,28776D 03 --,45432[)-04. 0,13_61D-02 0,35_13D-07 0=4.21610-12 0,4.5267D O0 O.3Lw'J46O-O! -=62659[)-06
15 0,950000 02 0=288100 03 -=4-_148D--04 0,13267D-02 0,3B_021)-07 0,409210-12 0,428C90 O0 0.335460-01 0.0

TERMS OF THE HEAT BALANCE ED)UATIOI%= FLU](ES IN CAL/CM=t_2/SEC
NET RA[)IATIUN = 0,108938E--01 ET FLU}€ = -,308758E-02 S-NSIr_LE HEAT = -=31066_E-03 HEAT ABSORt3ED RY SOIL = 0o74"955_E-02

ITERATIVE SOLUTION 1)F HEAl* BALANCE EOUA]IQN GIVES SURFACE TEN_E_ATURE = 0,30_020 03 DEGREES K

CUNULATIVE HEAT VARIABLES (CAL/CNe_2)
TOTAL IN PROFILE = O,l_572485=-_D 05

BOUNO ARY CUMULAI I VE FLUX
I 0.58 20627614.0 02

Figure 4-5. Example of table output



the first integrated flux is the integrated soil evaporation rate. The last entry is the amount of

water lost through the bottom boundary.

The evapotranspiration in cm/sec is shown in the next line. Values are given for the total flux

(E, Equations 2-34 or 2-50), the soil evaporation flux (Es, Equation 2-63 if a root model is in- .

cluded; otherwise it equals the total flux), and the plant transpiration (Epl, Equation 2-64 if the

root model is included). The crown potential (_bp,Equation 2-61) is also given here.

The remaining output in this page gives values for parameters related to the temperature model.

The first three columns are layer index, depth to center of the layer, and layer temperature (°K).

The next column is the heat flux (q, Equation 2-75b) at layer boundaries. The next four columns

are: thermal conductivity (k, Equation 2-23); thermal diffusivity (DT, Equation 2-20c); vapor
d_

wetness diffusity (coefficient of-d--0- in the definition of D0vap, Equation 2-15c); and the volu-

metric heat capacity (C, Equation 2-29). The derivative of temperature with respect to depth at

layers ((_-_Tz)i,Equation 2-73b) is given in the next column. Finally, the derivative of
the interior

dT
temperature with respect to time ((_-_-)_,Equation 2-72b), which is used to integrate the state

equations, is given in the last column.

The values of the four terms of the heat balance equation (Equation 2-34) are given in the next

line. These are net radiation (R, Equation 2-36), heat carried by the evapotranspiration flux (LE,

Equation 2-42), sensible heat flux (H, Equation 2-46), and the heat absorbed by the soil (S, Equa-

tion 2-34). The surface temperature (Ts, Equation 2-47) is given in the next line. '-

Finally, cumulative heat fluxes can be optionally computed. NHCUMS is the number of such

fluxes, and the array IXHCUM contains the boundary indices. In this example, only the integrated

surface flux is computed.

The next six figures are examples of the plots generated by the simulator. The FORTRAN unit

number of the output is the value of the NAMELIST variable IPR.
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Figures 4-6 and 4-7 are moisture and temperature profiles respectively. To reduce the amount of

printout, more than one profile can be put on a plot page. Variable NFUNCT is the number of such

graphs per plot page; in this example NFUNCT = 6. If NFUNCT is zero, no profiles will be plotted.

The correspondence between print character and output time is shown at the top of each page. If

more than one print character fall in the same place, then the number of such characters is plotted.

These two figures show that over the time interval from noon to 2:30 PM, the profiles change

only in the surface layers.

Figures 4-8 and 4-10 are plots of wetness and temperature respectively in selected layers as func-

tions of time. NWATRS is the number of layers for which wetness is to be plotted, and INDXW

is the array containing the indices of the chosen layers. In Figure 4-8 NWATRS is 3, and the in-

dices are 1, 2, and 3. Similarly, NTEMPS is the number of layers for which temperature is to be

plotted, and INDXT is the array containing the indices of the layers. In Figure 4-10 NTEMPS is

3, and the first three elements of INDXT are 1, 2, and 3.

Figures 4-9 and 4-11 are plots of moisture and heat fluxes at selected boundaries. NWFLUX is

the number of boundaries for which wetness flux is to be plotted, and the array INDXWF contains

the indices of those boundaries. NTFLUX and INDXTF are the number of boundaries and their

indices for the heat flux plot.

The user can optionally control the vertical limits on all plots. NAMELIST variables WL and WH

are respectively the lower and upper limits on wetness plots. (Figures 4-6 and 4-8). If WL= WH,

then these values are ignored and appropriate limits are chosen from the data being plotted. Simi-

larly, TL and TH are lower and upper limits for temperature plots (Figures 4-7 and 4-10); WFL and

WFH are lower and upper limits for wetness flux plots (Figure 4-9); and TFL and TFH are lower

and upper limits for heat flux plots. If any pair of lower and upper limits are equal, the actual

limits are chosen from the data.
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PLOT L_,E]EL TO OUTPUT T|ME CORRFSPCNO_'N(E (I"I_IE IN OD_HHf4NSS. b
A 120000=00 I_ 123000*00 r, 130_OOoCO D I 3_000'.C 0 E t_,OO30oO_
F 143000o00

0o27_0o270._.... .--_. .... . .... . .... . .... 4"-6................... . _ . . ..................................................... . . . . . _ . . _ . . .
0o268 . 6 ..
0 • 26E> . 6 .
0o262 . .
0Q260 . ..
0o258 . 6 .
0o256 . 6
0e25 _, . +
0o252 .
0.;250 .

.
0o248 . 6 .
0 Q2 _,6 .
0 =:_4J, . .
0o242 . 4 .
0=240 • 2 .

.
0 o 2 _38 •
0e236 . _ .0123_, .
0o232 .
0t230 . .

.Oo 228 . 3 .
0o226 . 3 .

0°222 . .
0=220 .
0o218 . .
0=216 .
0o 2 IlL . .
0o212 . 6 .
0o210 . .
Oo20B . .
0o206 . .
0.20_ . .
0.202 . .
0o200 . .
0o19_ . .

0o194 .A .
i--= Oo I 9:_ .B ._
O0 Oo 190 ,,-C

0.105 . .
0.18_ .E .
Ott82 .F .
0=!80 . .
0o178 . .
OotT_ . 6 .
0°! _ . .
0.172 . .
0.! 70 . .

0o16_ . .
0=16_ . .
0_162 . .
O. lbO . .
0o158 . .
01t56 . .
O. 15_, . .
OotSZ . _.
0°150 . +
0°t48 .

.
0.14_ A .
Oo 1_,2 . .
0o140 . +
C°13_ B
0°136 . .
0=13_ . .
0o132 C .
O° 133 . .
OoI2B . .
0o12_ D .

0,122: E
O° 1 *_.0 F .

.
0,1 I_ . . . . . . • . . . . . . . . .1_ .--_. .... . .... . .... . .... I_.... . .... . .... .

Oo _._ _ _ _ _ _ _t_ _o _6_ _0o _,_o _'_o _:_ _o _ _o 6_o 7;>° 7_o _0_ _o _t_ _o _

Figure 4-6. Example of plots of soil moisture profiles



PLOT L_BFL 10 uUlrPUT TIME CORRESPCND_NCE (TIME IN OODHHMMSS.}
A 120 000.00 fi 123000.00 C 13 0300. O0 D 133000.00 E ! 400D0 • 0 C
F 143000o00

e_,v_ TFMPE_ATJ_E (L)EG K) Ve:_SJS DEPrH (CM) **_

...............................4- 4. 4- 4- 4- € . -- .........................4- 4- 4- 4- tP 4- . 4--- _ 4-.... 4-.... 4.----4- .... . .... 4-.... 4-.... 4-....307.Z 4-
306t8 2 4-
306 edt 2 4-
306.3 F .
305°6 4- 4-
305.2 4-2 4.
304 e8 4-F 4-
304o4 A 4-
304,0 +C 4-
303,6 + 4-
303,2 + .
302.0 + .
302,1t 4.B 4-
302 ,:) 4- 4-
301 ,6 . .
301 ,.2 + F +
300.8 4-A E 4.
300.4 4- 4-
300.0 4- 4.
299,6 4- O 4-

299 *2 4- .
298,8 4- 4-
298,4 4. C 4-
298,0 4- 4-
297,5 4- 4-
297,2 4- 4-
296,8 + B +
296,4. + 4-
296,0 4. 4-
295 e_) . F 4-
295.2 4- A 4-

294..8 . 4-294 e4 + E 4-

294 e3 + 4.
293.6 . O 4-
293,2 4- 4-
292,9 4- 4-
2g 2 ._1. 4- C 4-
292,0 4- 4-
291,6 4- 4-
291,2 4- .
290.8 4- B +
290,4 . 4.
290.0 + 4-
289.6 4- A .
289.2 + 4-
28_.8 . 4-
288,4 4- 64-
288,0 4- F 6 e. 4-
287.6 4- 6 4-
287.2 4- E 4-
28t5.5 4- 6
286,4, 4- D 6 .4-
2R6eO + C 6 .
285.6 . 6 4-
285p2 4- B 4-
284.8 . 2 6 .
284,4 . A 2 4-
2e4 .0 4- 2 4- 4- 4- --4-----4- .... 4-.... . .... 4-.... 4..... 4.283.6 4- 4- 4- 4- 4- 4- _ 4- 4. 4- . 4- 4- 4- 4- ..........

O, 4. 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, q.8, 52, 56, 60- 64, 68, 72. 76, 80, 84, _8, 92, 96,

Figure 4-7. Example of plots of soil temperature profiles



t
o

••• ~EH£SS VlkSU:i TIME •••

START TIME IOOOHHI4MSS.1 = 0.0 TIME AXIS IS IN HOUI<S SiNCE -;TART
PRINT CHARACTER TO SOiL LEVEL CORRES;>O~OENCE

A I B 2 C 3
0.2295 C--C -+- - --+- ---+-- --+-- -+---- .... ---+--- -+--- - .. ---+- - -- +----+----+- ---+---- +- ---+---- .. -- - +- ---+- ---+--- -+--- -+- - -- +----+
0.2280 + C C C C C C C C C C ( C C C C C C +
0.2265 + C C C C C C C C C C C C C C +
0.2250 + C C C C C C •
0.2235 + C C C C C C C C +
0.2220 + C C
0.2205 + +
0.2190 + +
0.2175 .. ..
0.2160 .. +
0.2145 .. ..
O.21.3~ .. ..
0.2115 .. +
0.2100 + +
0.2085 .. +
0.2070 + +
0.2055 + +
0.2040 +
0.2025 +
0.2010 .. +
0.1995 .. +
0.1980 + B B B B B B B Ii B +
0.1965 + B B eBB +
0.19 SO + B B B B B +
0.1935 B B B B Ii B +
0.1920 .. B ..
0.1905 + B +
0.1690 ... +
0.1875 .. A A a ..
0.1860 + A "A A +
0.1845 + A A A B +
0.1830 + A 13 +
0.1815 .. A +
0.1800 + A A B +
0.1785 + A B +
0.1770 + A A B 8 B 0
0.1755 + ABEl B Bi 3 B B +
0.1740 .. A [] gOB +
0.1725 + A +
0.1710 ... A +
0.1695" A +
0.1680 .. +
0.1665 A ..
0.1650 + +
0.1635 + +
0.1620 .. A +
0.1605 + +
0.1590 .. ..
0.1575 +
0.1560 +
0.1545 .. +
0.1530 .. A +
0.1515 ... +
0.1500 .. A
0.1485 .. A +
0.1470 .. A +
0.1455 .. " +
0.1440 .. A +
0.1425 .. A +
0.1410 + A +
0.1395 .. A +
0.1360 .. A +
0.1365 ... A +
O.135~ .. A ..
0.1335 .. +
0.1320 + A A +
0.1305 + +
0.129:> .. A +
0.1275 + A A +
0.1260 + A A +
0.1245 .. A +
0.1230 .. A +
0.1215 .. A +
0.1200 + A A +
0.1185 .. A A ..
0.117:) +----+-- -+----- .----+---+---- t----.----+----. ---+-- --+---- +----+---- +---- +----+---- +-- -- +----+----+----+--- -+----+----+

o. 1. 2.. 3. 4. 5. t. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 1 e. ISo. 20. 21. 22. 23. 24.

Figure 4-8. Example of plots of soil moisture versus time in selected layers
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-,

••• WETNESS F~UX (CM/SEC) VERSJS TIME •••

START TIME (DDDHHMMSS.) = 0.' TIME AXIS IS IN HOURS SINCE START
PRINT CHARACTER TO SOIL LEVEL CORI<ES'>O"OENCE

AlB 2
Y-AXIS VALUES MUST BE MULTIPLIED BY 1.0E-05 TO OBTAIN CQRR~~T VALUE

./

~
tv.....

-o.oo~ A--A-+----+----+----.----+----t----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
-0.016 + A A A A A A A
-0 .02_ + A A A' A A +
-0.032 + A A A A A A A +
-0.040 + A +
-0. 04~ + B B f B B 2 B A +
-0. 0 56 + !l B B B B +
-0.0 6_ + B !l EI A +
-0 • 0 72 + B B B 8 '1
-O.OBa + a B· A A A B n +
-o.OB6 + B '3 +
-0.096 + A H +
-0.10_ B U +
-0.112+ A A B +
-0.12a + +
-0 • 1 26 + A A B +
-0.136 + +
-0.144 + 0 +
-0.152+ A A A +
-0.160 + +
-0 • 1 66 + B B B +
-0.176.+ B +
-O.lB_ + +
-0.192+ A B +
-0.20a + +
-o.20B + +
-0.216 + +
-0.22_ + B B +
-0.232 + A +
-0.240 + A +
-0.2_6 + B +
-0.256 + +
-0.26_ + B +
-0.272 + +
-0.280 + +
-0.266 + B +
-0.296 + A +
-0.30_ + B B +
-0.312 + +
-0.320 + +
-o.32B + +
-0.336 + +
-0.34_ + +
-0.352 + +
-0 • .360 + B A +
-0.368 + +
-0 • .376 + BUB +
-0.384 + +
-0 • .392 + +
-0.40a + A +
-0.406 + +
-0._16 + +
-0.42_ + A +
-0.432 + A +
-0._40 + +
-0.448 + +
-0. _ 56 + +
-0.46_ + A +
-0. _72 + +
-o._eo + +
-0.488 + +
-0.496 + A +
-0.504 + +
-0.512 + A +
-0.52Cl + A +
-0.529 +----+- - -+-- --+---- +- - -+--- - +----+- ---+--- -+ ----+- --- +----A- ---+- --- +---- +----+---- +-- - +----+----+----+--- -+----+----+

c. 1. 2. 3. 4. !:. f. 7. 8. 9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.

Figure 4-9. Example of plot of soil moisture flux versus time at selected boundaries



4,_ TENPI-RATJ_L (OEG K) VERSU.3 TENE _k++

START T[NE (DODHHNMSS.) = 0.0 TIME AXIS [_ ]N HOUR5 SINCE START
PRINT CHARACTER TU SUIL LEVEL CORRESOOF.DENCF

A I 8 2 C ,3

307o:)306o5_ ............................................................................................. . + . + . . + 1. 4- 1. . . A A . ,11- t- 1. + . . . 1. 1.A A A
306.0 . A
305.5 . B B .
30500 + 8 1.
304.5 + a A
304. ,0 1. rJ 8 _.303.5 .
303.0 . 8 4-1.
302.5 . [3 A 4-
302.0 1. 8 .
30t o5 1. A 1.
301 *3 4- 8 C C C .
300,5 1. C C 2 .300.0 1. 1.
299.5 . C C .
299.0 1. A I:1 +
298 o5 . C 2 .
298°0 . A ,,.
29705 . A n ,I-
297*0 1. C C .296e5 4-

1.
29G.0 41- 2 .
295.5 + A B C C +295,0 +
294.5 + .

4-
294.0 1. B C .
293.5 1. C29300 . 1.

.
29205 + B A 0 C 4-
292.0 + A 1.
291 .5 . C C +291 o0 +

._ 290.5 + 4-290.0 + A R C 9
1.

289.5 + C IJ C +
b,.) 289.3 1. 8 A C .

288 e5 4- A 8 1.
288.0 + A C .
287.5 + A 2 C
28700 . C 8 C
286.5 + 8
286.0 _+ 8 +
285.5 _- A C +
285.0 + C A R C .
284.5 . A A D C
284.0 + 1.
283 e5 + 8 A 8 1.
283.0 1. A B +

13
282.5 . C A .282.0 + A
28105 + A
28 ! o3 C C +
280.5 . C B C .
280.9 8 C 1.
279.5 + C C .
279.0 A 2 B C C .
278 e5 + B C C 1.

278.0 . A 2 8 C C 3277.5 1. A 8 C C

277.0 + B O C C +_276e5 4- A A B A

276°0 + A 8 B B 8275.5 + A A A E
275.0 + A A 1.
274.5 + .

274 °3 4- . . 1. + . . A . . . + + . . . + . . _ . . . . .
O. 1o 21 30 4e _:. 4_. 7. 8. 9. 10. I 1. 12, 13. 14. 15o 16, 17. le. 19. 20. 21. 22. 23. 24.

Figure 4-10. Example of plots of tempe;ratureversus time in selected layers



t,_l, HEAT --LUg( (CAL/CWI*e2/SEC) VERSJS TIME _

START TINE (OODHPIMNSSI) = 0o0 T|ME AXIS IS IN HOURS SINCE _,TART
PRINT CHARACTER TO SOIL LEVEL CL)RRESPO_DENCE

A 1 B 2 C 5
Y--AXIS VALUE5 MUST BE MULTIPLIED BY 1.0E-01 TO OBTAIN CDf_RC-._T VALUe:

0.108 tl-.... 4..... . .... 4-.... .- _ - tP.,--- - 4----- -4. .... .-_-4. _----. .... .---_ 4..... 4-.... 41-.... 4..... 4..... 4-.... _r----- . .... 4-.... 4-.... 4-.... 4-.... 4-
0,104 4- .... B B 4.
O.lO0 4. 4-
0.006 41" 4-
0,002 4- 4-
00088 4- 4.

0,08€ 4- O .
0.080 + 4-
0.07'6 4- B A A A A A A B 4.
0,072 4. A A A .
0.068 4- 13 4.
O,06t' 4- B 13 +
0,060 4. A 4.
0.056 + .
0.052 4- A 4-
0.048 4. 13 2 4-
0 o044. . 13 13 4.
0.040 4. B A 4.
0.035 + A 13 4-
0,0.32 . C C C .
0,028 4. C C A C C 4-
0.02¢ 4- C 2 C C 4-
0.020 4. A El C C B C .

-_ 0.016 4. C C 4.0,012 4. El C C 4-t_
0*008 4. A C +0.004. 4. B C C C +

0.0 4. _ C 2 2 C 4.-'0.004. 4- 13 A C C C C C +
--0.008 C C C C C C 1t C C B B B C C
-0.012 4. C C C C C C C 2 C C A 4.
-'0.016 13 4.
--0.020 A A A A A A 2 2 A A A A _ _ O 4-
--0,024 4. E E [3 A A 2 A 2 2 2
-0,,,028 4. 1:1 b_ A A A A A A R 4-
-0 • 032 4. B 13 R A +
-'0,036 4. 4.
--0.040 "IF 8 13 4-

-0.04€ 4- 4.
-0,048 . 13 4-
-0.052 . 4.
--0.055 4..... '4.--- N 4.-- B- 4-.... 4-- m- 4-.... 4.-.---4. .... 4-.... 4-_--4. .... . .... 4..... 4..... 4-.... 4.----4- .... 4..... 4-- - FdL-4..... 4..... ,I------: --4..... ,iv.... 4.

O, l, 2, 3, 4, '=, £, T, 8, 9e IO, 1 1, 12, 13, 14, 15, 16, 17, 18. lq, 20, 21, 22, 23, 24.,

Figure 4-11. Example of plots of heat flux versus time at selected layer boundaries



Moisture and temperature profiles can also be output to disk or tape. The NAMELIST variable

NDISK controls whether this is done, and IUDISK is the FORTRAN unit number of the DD card

which points to the output data set. This can be a sequential data set on disk or tape, or a member

of a partitioned disk data set.
l"

The output records are unformatted. The record length is 8* (NL + 1) bytes, where NL is the num-

ber of soil layers. This is 2* NL + 2 words of data per record. The records are written with sub-

routine FWRITE of the FTIO package. They can be read with subroutine FREAD from the same

package. If desired, a FORTRAN read statement with a character format can be used instead.

One header record and one data record at each simulator output time are created. The first record

contains the number of soil layers and thickness of each layer. Each data record contains the out-

put time, the wetness profile, and the moisture profile. Record formats are shown in Figure 4-12.
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• Header Record

Words Contents

' 1 Binary zero

2 Number of soil layers, Integer*4

3 Layer thicknesses,Real*4

NL+2

NL + 3 Zero (Real*4)

L L
2NL + 2

Data Record

Words Contents

1-2 Output time (DDDHHMMSS.SS)Real*8

3 Wetness, Real*4

l '
NL+2

NL + 3 Temperature, Real*4

_" l

2NL + 2

Figure 4-12. Record format for profile data set created by the simulator
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